ПП

Combining Direct and Indirect Features for Efficient Visual Inertial Odometry

Ahmed Agha

Advisor: Nikolaus Demmel Supervisor: Prof. Daniel Cremers

Contents

- 1. Background and motivation
- 2. Implementation
- 3. Evaluation
- 4. Conclusion and future work

Introduction: Indirect Features in Basalt

• FAST corner points

- KLT feature tracking
- Inverse distance of the landmark initialized using triangulation

Introduction: Motion Tracking in Basalt

• Bundle adjustment in a sliding window

 The bundle adjustment optimizes poses, 3D positions of landmarks, IMU Biases

Introduction: Direct features selection

• Point selection based on their gradients

• Selecting points in grid-based manner

Inverse distance initialized using static stereo

Introduction: Information Driven Odometry

- Using all direct features is inefficient
- Usually, Heuristics are used for point selection
 - Image Gradients
 - Image Covering
- Select most informative points using an efficient information-based criterion

ТШП

Motivation

• Complement the indirect features used in Basalt with direct features in an efficient manner

Projection of tracked landmarks when only using indirect features

Projection of tracked landmarks after adding direct features as well

٦Ш

Optimizing Direct and Indirect Features

• Reprojection error

$$E = p_t - \pi (R.P_h + t)$$

• Photometric Error

$$E = I_t(\pi(R\pi^{-1}(p_h, d) + t)) - I_h(p_h)$$

Photometric Bundle Adjustment

- Photometric residual calculated for an 8pixel patch
- Each observation of the feature results in an additional residual with 8 dimensions
- Both direct and indirect landmarks are optimized using a photometric error
- Each landmark represented by its inverse distance i.e., each landmark has one degree of freedom

$$E = I_t(\pi(R\pi^{-1}(p_h, d) + t)) - I_h(p_h)$$

Selecting Most Informative Points

• Describe the information of the pose using the approximate hessian matrix used in the gauss-newton optimization

$$\Lambda = J^T J$$

- Select point that would decrease the entropy of the pose
- Initialize the information matrix using existing landmarks

Selecting Most Informative Points

Selecting Most Informative Points

Candidate points

Selected points

• EuRoC/V1_01

• EuRoC/MH_02

πш

Robustification

- Outlier observations are rejected based on the median absolute deviation (MAD)
 - Based on photometric residuals
 - Takes place during optimization

$$\hat{\sigma}(\mathbf{x}) = c \cdot \text{MAD}$$

= $c \cdot \text{median}(|\mathbf{x} - \text{median}(\mathbf{x})|)$

• Variable Huber Threshold

$$w_h(r_k) = \begin{cases} \frac{1}{\sigma_n^2} & \text{if } |r_k| < \lambda \\ \frac{\lambda}{\sigma_n^2 |r_k|} & \text{otherwise} \end{cases} \qquad \lambda = 1.345\sigma_n$$

ТЛП

Evaluation

- Metric
 - Absolute Trajectory Error in meters

- Datasets: EuRoC
 - Visual inertial dataset
 - Contains: synchronized stereo images, IMU measurements and ground truth

Evaluation

- Switching from a reprojection error to a photometric error results in a degradation in performance
- Adding indirect features improves the odometry in 4 out of 7 sequences, but the performance is worse or stays the same in the other 3

Evaluation

- Switching from a reprojection error to a photometric error results in a degradation in performance
- Adding indirect features improves the odometry in 4 out of 7 sequences, but the performance is worse or stays the same in the other 3

Evaluation: When does adding direct features results improve the odometry ?

Name	Length / duration	Avg. vel. / angular vel.	Note
MH_01_easy	80.6m	$0.44 m s^{-1}$	Good texture,
	182s	$0.22 rad s^{-1}$	bright scene
MH_02_easy	73.5m	$0.49 { m ms}^{-1}$	Good texture,
	150s	$0.21 rad s^{-1}$	bright scene
MH_03_medium	130.9m	$0.99 {\rm ms}^{-1}$	Fast motion,
	132s	$0.29 rad s^{-1}$	bright scene
MH_05_difficult	97.6m	$0.88 m s^{-1}$	Fast motion,
	111s	$0.21 rad s^{-1}$	dark scene
V1_01_easy	58.6m	0.41ms^{-1}	Slow motion,
	144s	$0.28 \text{rad} \text{s}^{-1}$	bright scene
V1_02_medium	75.9m	0.91ms^{-1}	Fast motion,
	83.5s	$0.56 rad s^{-1}$	bright scene
V1_03_difficult	79.0m	$0.75 m s^{-1}$	Fast motion,
	105s	$0.62 \mathrm{rad} \mathrm{s}^{-1}$	motion blur

Evaluation: Comparing different number of activated candidates in each keyframe

• We expect performance to get better as the number of activated per keyframe increases

- Possible reasons:
 - Simplistic outlier rejection
 - Keyframing

Evaluation: Comparing different number of activated candidates in each keyframe

500 450 400 350 300 250 200 150 100 50 MH 02 VI 02 VI 03 MH 01 MH 03 MH 05 VI 01 ■ 30 pts ■ 60 pts ■ 120 pts

Number of keyframes

ТШП

Conclusion

- Complement indirect features with direct features to improve odometry
- Promising results in sequences with high velocities

Future Work

- Improve outlier rejection
- New keyframing strategy, possibly using information-based metrics
- New landmark activation strategy to target always having a constant number of landmarks active
- Refining inverse distance of candidate points using temporal stereo

Thank You For Listening!