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Abstract

Bundle adjustment (BA) is a method of refining the estimation of camera poses and pa-
rameters, and the 3D points extracted from the captured images. It is a key component
of 3D vision applications, such as Structure-from-Motion and Simultaneous Localiza-
tion and Mapping. However, BA can be slow to solve if the optimization routine is not
specially developed with the special structure of BA in mind. The efficiency of a BA
solver is particularly crucial for solving large-scale BA problems, which can result in
substantial runtime differences.

In this work, we study the efficiency and performance of different BA solvers. We
examine the performance of applying the Schur Complement (SC) trick in the explicit
and implicit variant, as well as the recently proposed square root formulation. Then,
we revisit the concept of grouping 3D landmarks into factor groups and reimplement
this factor SC solver as a mix between implicit and explicit SC. Moreover, we propose
a new implicit square root solver and combine it with the factor grouping scheme.
Lastly, we present a novel solver which directly approximates the inverse of the Schur
complement as a power series instead of using preconditioned conjugate gradient.

All solvers are implemented in the same C++ framework, where operations are
efficiently parallelized on multiple CPU cores and supported by SIMD vectorization.
Our solvers are extensively evaluated on multiple real world datasets, which include
a wide diversity of problems. We investigate and compare the characteristics of the
solvers from different perspectives supported by multiple visualizations, and analyse
important implementation details such as the memory access pattern, multiplication
order, and recomputing values versus retrieving them from cache.

Based on our findings we make a recommendation on the best solver choice de-
pending on the scenario at hand. The implicit SC solver is unmatched for accurately
solving large-scale and dense problems. For small- and medium-scale problems the
factor SC solver provides good all-round performance. If computations have to be done
only in single-precision, the implicit square root solver can still offer excellent accuracy,
even if on large dense problems it requires more memory and runtime. Power BA is
recommended for those that can perform optimization in double precision and value
speed over accuracy. It is significantly faster in the initial cost reduction than other
solvers but can have lower final accuracy.
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1 Introduction

Motivation With the rising performance of modern computer hardware, many 3D vi-
sion applications are viable to run on a ubiquitous computer. Subsequently, autonomous
driving may become reality thus attracting a strong interest from the research commu-
nities. Two of the most essential components of autonomous driving are Simultaneous
localization and mapping (SLAM) and Structure from Motion (SfM).

SLAM is a method for simultaneously mapping the surrounding environment and
tracking the pose of a vehicle. It is critical for autonomous driving since it enables a
vehicle to navigate through an unknown environment. However, using SLAM alone for
navigation may create small errors that accumulates over time, or erroneous navigation
may occur in extreme weather circumstances, which may result in serious catastrophe.

SfM is a method for reconstructing the three-dimensional structure of a scene from a
collection of unordered images. In comparison to SLAM, it places a higher emphasis on
the reconstruction accuracy than the real-time capability. SfM can be used to create High
Definition (HD) maps that comprise detailed 3D road information, such as pedestrian
crossings, traffic lights, and lane placement. HD maps enable a more precise navigation
result and make it easy to identify moving objects.

Bundle Adjustment (BA) plays an important role in both SLAM and SfM. It is a
non-linear optimization process that refines the initial estimation of camera poses and
3D landmarks jointly. Since using BA substantially improves the accuracy of navigation
and 3D reconstruction, BA is often a core component of the majority of state-of-the-art
3D vision systems. However, the runtime of BA can be a bottleneck of these systems,
especially for large-scale SfM tasks such as creating HD maps, where the reconstruction
can be the size of a city.

Numerous efforts have been made to improve the runtime of BA. Levenberg-
Marquardt is an algorithm that can convert a BA problem into a linearized problem, and
then it approximates the solution of the original problem iteratively. It has proved to be
a very effective strategy for solving BA problems. The Schur complement (SC) trick is
a commonly used technique for significantly reducing the dimension of the linearized
problem by leveraging the special structure of BA optimization. It can improve the
speed of solving BA problems, and make it tractable to solve on a single computer. The
square root formulation [Dem+21] is an alternative technique for reducing the dimen-
sion. It makes use of nullspace marginalization to eliminate the landmark variables
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1 Introduction

from the optimization by QR decomposition.
There are various ways of solving the reduced linearized BA problem, two of the

most frequently used are Cholesky factorization and preconditioned conjugate gradient
(PCG). Cholesky factorization decomposes the linear system, and then directly solves
the system by forward and backward substitution. It is typically adopted to solve small-
scale problems due to its cubic time complexity and quadratic space complexity in the
number of cameras. On the other hand, PCG approximates the solution of the linear
system iteratively. It solves the system by performing vector-matrix multiplication and
has a lower time complexity than factorization methods. In this work, PCG is adopted
to solve BA problems since it scales better to large-scale problems.

By applying the Schur complement trick to the linearized BA system, we can obtain
the reduced system, which is known as reduced camera system (RCS). The matrix
representation of RCS is called reduced camera matrix, which is composed on multiple
matrices. Since solving via PCG only requires the vector-matrix multiplication with
the reduce camera matrix, we can either construct the reduced camera matrix explicitly
or perform multiplications implicitly with the individual matrices sequentially. As
demonstrated in [Aga+10], multiplication with the implicit representation of reduced
camera matrix is faster in practice.

Factor grouping [Car+14] has been proposed to accelerate the optimization by mixing
the explicit and implicit representation. By representing a BA problem on a factor graph,
it demonstrates that the landmarks can be grouped into multiple factor groups. Since
each factor group can be represented as a RCS, factor grouping focuses on selecting
the optimal representation between explicit or implicit representation based on the
multiplication time complexity.

In this work, we study the performance of different BA optimization solvers on
problems with different scales. Our contributions are:

• In addition to the two solvers (explicit SC and
√

BA solver) implemented in
[Dem+21], we develop five new solvers written in C++ within the same framework.
We reimplement two solvers that use implicit RCS representation and apply factor
grouping scheme to solve RCS, respectively. After that, we develop and implement
two new square root solvers that, respectively, marginalize landmarks on-the-fly
and apply factor grouping to square root formulation. Additionally, we present
and implement a novel solver that solves the RCS by directly approximating the
inverse of reduce camera matrix by power series.

• The implementation of our solvers are highly optimized for efficiency. The
operations are parallelized on multiple CPU cores and vectorized with SIMD
instructions.
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1 Introduction

• We perform extensive evaluation of the seven solvers on three datasets with
distinct characteristics: BAL [Aga+10], 1DSfM [WS14], and MCBA [Wu+11]. In
addition, we also compare the performance of our explicit and implicit SC solvers
with Ceres implementation. We illustrate and analyze our experimental results
from different perspectives through multiple visualizations.

• In addition to the overall performance, we investigate the specific aspects of
our implementations, including time complexity, memory access pattern, and
numerical properties.

Related Work The mathematical background of BA is already well established. The
special structure of BA problem and the details of commonly used optimization
algorithms including LM, PCG, and Schur complement trick, can be found in [Tri+99].
Multiple open-source libraries for solving BA problems written in C++ are widely
accessible, in which SBA package [LA09], g2o framework [Gri+11], and Ceres solver
[AMT22] are the most popular ones.

SBA discusses the efficient implementation design of a BA solver, and demonstrates
the superior performance of custom BA solver against a general purpose solver when
solving BA. g2o presents a graph-based non-linear optimization framework designed
for BA. Ceres is a well-written optimization framework which can be used for solving
both generic and BA problems, which is a popular choice in the computer vision and
robotics communities.

Many works in the field of BA have been proposed to accelerate BA. [Aga+10]
proposes a custom preconditioner for PCG to solve RCS. They build a dataset from
internet images and implement different solvers to extensively evaluate their proposed
method. [Car+14] expresses a BA problem on factor group and tries to divide land-
marks into groups, then it exploits the time complexity of multiplication to reduce
the multiplication runtime. [Wu+11] investigates an efficient implementation to solve
RCS via PCG by accelerating operations on multiple CPU cores or GPU. Similarly, they
generate a large-scale dataset for evaluating their implementation. [Ren+21] explores
an efficient GPU implementation which can be parallelized on multiple GPUs.

Outline The content of this thesis is organized as following: In Chapter 2, we give
the concrete definition of BA, and introduce corresponding mathematical background
and notion. In Chapter 3, the mathematical and implementation details of our solvers
are explained. In Chapter 4, the datasets which are used to evaluate our solvers are
introduced. After that, we study the performance of the solvers through analysis and
visualization of the experimental results. In Chapter 5, we summarize our findings and
recommend the solver to use given certain situations.
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2 Background

Structure from Motion is the task of reconstructing the 3D geometry of a particular
scene from a given set of images. In our experiments we perform this task for unordered
internet image collections. Therefore, we assume that each image is captured by a
separate camera and hence for each camera we estimate a different set of not only
position and orientation, but also intrinsic parameters.

Given np images and Nr observations of all landmarks in all images, in which each
observation is a 2D pixel coordinate u ∈ R2, an initial estimation of np sets of camera
parameters and nl landmarks can be extracted using a structure from motion pipeline.
The 3D structure is represented as a set of sparse landmarks {xi}nl

i=1 ⊂ R3. A landmark
is a distinct point in the real world observed by multiple cameras, it can be computed by
projecting the 2D pixel coordinate of its observations to 3D space, and then a estimation
of its 3D coordinate is computed by triangulation. Consequently, landmarks are closely
related to the camera parameters by the projection, thus they are also needed to be
refined together with the landmarks.

In this work, the parameters of a camera are the rotation matrix R ∈ SO(3), trans-
lation t ∈ R3, focal length f ∈ R>0 and distortion parameters k ∈ R2. Given the
parameters, a landmark i can be projected to a 2D pixel coordinate, it then can be used
to compute the reprojection residual using the observation uij of the landmark captured
by camera j. At the end, the 3D structure and the camera parameters can be refined by
minimizing reprojection residuals using bundle adjustment.

In the following sections, rigid body motion which can represent camera poses is first
presented. Then Lie Algebra is introduced to allow a simpler representation of rigid
body motion. After that, camera projection model, reprojection residual and bundle
adjustment are introduced in sequence. Finally, optimization techniques for bundle
adjustment are presented.

2.1 Problem formulation

2.1.1 Rigid Body Motion

A rigid body motion is defined as a family of maps:

gt : R3 → R3; x→ gt(x), t ∈ [0, T] , (2.1)
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2 Background

which preserves the norm and cross products of any two vectors:

||g(u)|| = ||u||, ∀u ∈ R3 , (2.2)

g(u)× g(v) = g(u× v), ∀u, v ∈ R3 . (2.3)

It implies gt preserves the length and orientation, the motion gt of a rigid body can be
represented by the motion of a Cartesian coordinate frame attached to the rigid body.

The special orthogonal group SO(3), i.e. the set of 3D rotation matrices, can be used
for representing rotations in 3D:

SO(3) = {R3×3| R>R = I, det(R) = 1} . (2.4)

Then, the rigid body motion gt can be written as:

gt(x) = Rx + t, R ∈ SO(3), t ∈ R3 . (2.5)

By specifying the rotation matrix R and translation vector t, a rigid body motion is
uniquely defined.

More conveniently, the space of rigid body motions in R3 can be given by the special
Euclidean group SE(3), which combines rotation and translation:

SE(3) =
{(

R t
0 1

)∣∣∣∣ R ∈ SO(3), t ∈ R3
}

. (2.6)

Recognizing rotation matrix R as the camera orientation and translation vector t as the
camera position, a camera pose can be written as:

T =

(
R t
0 1

)
∈ SE(3) . (2.7)

It is a transformation matrix which can map a landmark from world to camera coordi-
nate system (the origin of which is attached to the center of camera).

Skew Symmetric Matrices

A 3D skew symmetric matrix must satisfy:

A> = −A, A ∈ R3×3 . (2.8)

Such skew symmetric matrices can be written as:

û =

 0 −u3 u2

u3 0 −u1

−u2 u1 0

 , u =

u1

u2

u3

 . (2.9)
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2 Background

A skew symmetric matrix can be uniquely identified with a vector u ∈ R3. The operator
·∧ defines an isomorphism between R3 and the space so(3) = {û| u ∈ R3}. The inverse
is defined as ·∨ : so(3)→ R3.

Skew symmetric matrices can model the cross product on R3:

u× v = ûv . (2.10)

Lie Algebra

A matrix R3×3 has 9 DoF (Degree of Freedom), but rotations R ∈ SO(3) can be
represented with 3DoF. By establishing the mapping between SO(3) and so(3), we
can represent rotation matrices with 3DoF, therefore so(3) is called the Lie algebra of
Lie group SO(3). Otherwise if the rotation matrix R is optimized directly, one needs
to setup a constrained optimization, or project R back to the space of SO(3) at every
iteration.

In this thesis, we do not consider rotations independently, but always as part of a
camera pose. Therefore, we skip the discussion of the Lie Group of rotations SO(3)
and its Lie algebra so(3) and directly move on to the Lie Group of rigid body motions
SE(3) and its Lie algebra se(3), which it is more convenient to represent camera poses
(R ∈ R3×3 and t ∈ R3) with se(3) for the same reason as so(3). The interested readers
are referred to [Ead13] for a more detail introduction.

The Lie algebra of SE(3), se(3) is defined as:

se(3) =
{

ζ̂ =

(
ŵ v
0 0

)∣∣∣∣ ŵ ∈ so(3), v ∈ R3
}
⊂ R4×4 . (2.11)

The operators ·∧ and ·∨ to convert between a twist ζ̂ and its twist coordinates ζ ∈ R6

are defined as:

ζ̂ =

(
v
w

)∧
=

(
ŵ v
0 0

)
∈ se(3) ,(

ŵ v
0 0

)∨
=

(
v
w

)
∈ R6 ,

(2.12)

in which the twist coordinate ζ comprises of a translational component v ∈ R3 and
rotational component w ∈ R3.

The exponential map exp : se(3)→ SE(3) can map se(3) to SE(3) in closed-form:

exp(ζ̂) =
(

exp(ŵ) Jv
0 1

)
,

J = I +
1− cos(θ)

θ2 ŵ +
θ − sin(θ)

θ3 ŵ2 .

(2.13)

6



2 Background

The inverse can be computed by the logarithmic map in closed-form:(
v
w

)
= log

(
R t
0 1

)∨
,

w = log(R) ,

v = J−1t ,

J−1 = I− 1
2

ŵ +

(
1
θ2 −

1 + cos(θ)
2θ sin(θ)

)
ŵ2 ,

(2.14)

where θ = ‖w‖.

2.1.2 Camera Projection Model

Since we have a single set of intrinsic parameters per image, it is favorable to use a
minimal representation to reduce the number of parameters needed to be optimized.
In this thesis, we use a simple pinhole camera model with a single parameter focal
length, and a two-parameter radical distortion.

Assuming the pixels are perfect unit squares, a landmark x = (x y z)> can be
projected to the image coordinate using its camera parameters:

x′

y′

z′

1

 =

(
R t
0 1

)
︸ ︷︷ ︸

T


x
y
z
1

 . (2.15)

The landmark x is first augmented with 1 to form a homogeneous coordinate, then
transformed from world to camera coordinate system by multiplying with camera
transformation matrix T ∈ SE(3).

Then we can compute the image coordinate x′ ∈ R2:

x′ =

(
x′
z′
y′
z′

)
. (2.16)

Images captured with average cameras are often distorted, especially at shorter focal
lengths. Such kind of radial distortion can be modeled and used in reprojecting land-
marks for computing reprojection residual. In our experiments, the image coordinate
x′ is distorted using a simple two-parameter model:

k =

(
k1

k2

)
, (2.17)

x′d = (1 + k1‖x′‖2 + k2‖x′‖4)x′ . (2.18)

7



2 Background

Finally, the distorted image coordinate x′d is projected to the pixel coordinate u′ by
multiplying with a focal length f :

u′ = f x′d . (2.19)

For simplicity, we define a projection function π : R3 → R2, which projects a
landmark x to the 2D pixel coordinate u′ using a set of camera parameters as described
above:

u′ = π(Rx + t; f , k) . (2.20)

2.1.3 Bundle adjustment

Bundle adjustment is the process of refining initial estimates of 3D landmark positions
and camera poses. This is a central component of a structure from motion pipeline and
the main topic of this thesis. In bundle adjustment we minimize the reprojection error
over all landmark observations, that is the difference between observed and reprojected
feature position in image space. For a 3D landmark i which was detected in image j at
keypoint position uij ∈ R2, we define the reprojection error residual as:

rij = uij − π(Rixj + ti; fi, ki) , (2.21)

where it computes the difference between the given pixel coordinate in the image and
the reprojected coordinate.

We define Oi as the set of cameras observing the landmark i, P = SE(3)×R>0 ×R2

as the set of camera states, and L = R3 as the set of landmark states. Then, the objective
function of the bundle adjustment can be written as,

E(x) =
nl

∑
i=1

∑
j∈Oi

1
2
‖rij‖2 =

1
2
‖r‖2 , (2.22)

where x ∈ X = Pnp ×Lnl is optimization state of all the cameras and landmarks in the
problem. The optimization state is updated using the operator �, which is defined as:

� : X×R6 → X , (2.23)

x � ∆x = exp(∆x)x . (2.24)

For convenience, the individual residuals rij will be stacked as a vector r ∈ R2Nr .

8



2 Background

2.2 Optimization

2.2.1 Levenberg-Marquardt

Levenberg-Marquardt (LM) is an algorithm for solving non-linear least square problems,
it has proven to be one of the most effective algorithm to solve bundle adjustment.
Following Section 2.1.3, the non-linear objective function of bundle adjustment (2.22) is
minimized:

min
x∈X

E(x) , (2.25)

E(x) =
1
2
‖r‖2 . (2.26)

Similar to the Gauss-Newton algorithm, the LM algorithm minimizes the objective
function by solving a sequence of approximations of the original problem. At each LM
iteration, the residual is approximated by a first order Taylor expansion around the
current value of x:

E(x � ∆x) ≈ 1
2
‖r + J∆x‖2 , (2.27)

where J ∈ R2Nr×(9np+3nl) is the Jacobian matrix.
Instead of solving for x directly, we parameterize the linearized residual by a per-

turbation ∆x ∈ R9np+3nl in the tangent space of the current estimate x. Then, the
minimizing problem in every iteration becomes:

min
∆x

Elin(∆x) , (2.28)

Elin(∆x) =
1
2
‖r + J∆x‖2 . (2.29)

We can solve this linear least squares problem with the normal equations:

∂

∂∆x
1
2
‖r + J∆x‖2 =

∂

∂∆x
(

1
2

r>r + r>J∆x +
1
2

∆x>J>J∆x)

= J>r + J>J∆x !
= 0

⇒ J>J(−∆x) = J>r .

(2.30)

At the end of each LM iteration, x is updated as:

x← x � ∆x . (2.31)

To improve the convergence rate, LM includes a damping parameter that controls
the step size in the objective function:

min
∆x

1
2
‖r + J∆x‖2 +

1
2

λ‖D∆x‖2 , (2.32)

9
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where D is a non-negative diagonal matrix and λ ∈ R≥0 is a parameter controlling the
strength of regularization. A popular choice of D is the square root of the diagonal of
the matrix J>J, i.e. D2 = diag(J>J). Consequently, the step size is inversely proportional
to λ.

Note that H = J>J is an approximation of the Hessian matrix of the nonlinear least
squares energy E. With the damping parameter, the normal equations (2.30) become:

(H + λD2)(−∆x) = J>r . (2.33)

At each LM iteration, damping value λ will change based on whether the current
update is accepted. If the update is accepted, x is updated as (2.31), and λ is decreased
thus the cost of objective function (2.32) is also decreased; if the update is rejected, x
will be unchanged, and λ is increased thus the cost of objective function (2.32) is also
increased. The update decision is based on whether the current approximation of the
objective function is good or poor. We skip the details of LM algorithm in this thesis,
interested readers are referred to [Ran04].

The introduction of damping makes LM a combination of Gauss-Newton and gra-
dient descent. When the current approximation of the objective function is good (λ
is small), it behaves like Gauss-Newton, which has faster convergence rate; when the
approximation is poor (λ is large), it behaves like gradient descent, which converge
slower but assure to be converged. It is empirically proved to be very effective in
solving bundle adjustment problems, therefore it is used in our work.

Huber Loss

To mitigate the negative effect of outliers, Huber loss is applied to the reprojection
residuals. The Huber loss function is defined as:

Lδ(r) =

{
1
2‖r‖2 if‖r‖ ≤ δ

δ(‖r‖ − 1
2 δ) otherwise

, (2.34)

where r ∈ R2 is the reprojection residual of a single observation defined in (2.21).
The non-linear least square BA objective (2.22) is minimized using iteratively reweighted

least squares with Huber loss. The normal equation (2.30) then can be written as:

J>WJ(−∆x) = J>Wr , (2.35)

where W ∈ R(9np+3nl)×(9np+3nl) is a diagonal matrix, and the diagonal entries contains
weights corresponding to the current residuals and Huber loss.
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Figure 2.1: The rearranged Jacobian matrix J =
(
Jp Jl

)
[Dem+21]. The columns are

rearranged, such that Jp ∈ R2Nr×9np only relates to cameras, and Jl ∈
R2Nr×3nl relates to landmarks. Likewise, for the rows, the observations
of each landmark are placed together, such that each landmark forms a
non-zero block in Jl .

Jacobian scaling

To mitigate numeric issues during optimization, we all normalized the columns of the
Jacobian matrix J by:

j← j
‖j‖+ ε

, for some small ε , (2.36)

where j ∈ R2Nr is a column of the Jacobian matrix J.
In our work, normalizing the Jacobian is applied after scaling with the Huber loss.

We will omit both the Huber loss and scaling the Jacobian matrix in other sections for
simplicity.

2.2.2 Schur Complement

Different from general optimization, bundle adjustment has a very special structure.
Notably, the relationship of landmarks and camera parameters are reflected by looking
at the Jacobian structure and Hessian structure.

For the Jacobian matrix J ∈ R2Nr×(9np+3nl), cameras contribute 9 columns (dim(P)),
landmarks contribute 3 columns (dim(L)), and each observation contributes 2 rows.
For each observation, only the position of the camera and landmark involved in the
corresponding reprojection residual will be non-zero. Accordingly, the Jacobian can be
rearranged as J =

(
Jp Jl

)
as shown in Figure 2.1.

With the rearranged Jacobian matrix, we can divide the Hessian matrix H ∈
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R(9np+3nl)×(9np+3nl) in (2.33) into four sub-blocks:

H =

(
Hpp Hpl
Hlp Hll

)
,

Hpp = J>p Jp ,

Hll = J>l Jl ,

Hpl = J>p Jl = H>lp ,

(2.37)

where Hpl ∈ R9np×3nl and Hlp ∈ R3nl×9np are sparse block matrices, Hpp ∈ R9np×9np

and Hll ∈ R3nl×3nl are invertible block diagonal matrices with block size R9×9 and
R3×3 respectively.

With the special structure of H, we can rewrite the normal equation (2.33) (damping
is omitted for simplicity) as a block-structured linear system:(

Hpp Hpl
Hlp Hll

)
︸ ︷︷ ︸

H

(
−∆xp

−∆xl

)
︸ ︷︷ ︸

∆x

=

(
bp

bl

)
︸ ︷︷ ︸

Jr

, (2.38)

where ∆x are Jr are both divided into camera related and landmark related parts:

bp = J>p r ,

bl = J>l r .
(2.39)

Given the special structure of H, Schur complement trick can be used to define:

H̃pp = Hpp −HplH−1
ll Hlp

b̃p = bp −HplH−1
ll bl .

(2.40)

Then (2.38) can be reduced to:

H̃pp(−∆xp) = b̃p . (2.41)

H̃pp is known the Schur complement of H or Reduced Camera System (RCS).
For optimal landmark update ∆x∗l , it can be solved in closed-form back substitution

with the optimal camera parameters update ∆x∗p:

−∆x∗l = H−1
ll (bl −Hlp(−∆x∗p)) . (2.42)

In a typical bundle adjustment problem, the number of landmarks is always tremen-
dously larger than the number of cameras. By using the Schur complement trick,
landmarks are eliminated from the original system and only cameras remain. The
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size of the system is significantly reduced from (9np + 3nl)
2 to (9np)2, Consequently

making larger problems tractable to solve on a single computer.
Moreover, only the block diagonal matrices Hpp and Hll are required to be inverted

in the progress. Unlike inverting general matrices, block diagonal matrices can be
inverted efficiently by inverting the small blocks independently instead of inverting the
whole matrix.

In this thesis, we solve a bundle adjustment problem by optimizing the RCS (2.41)
instead of the normal equations (2.33).

2.2.3 Preconditioned Conjugate Gradient

To solve the symmetric positive definite linear system (2.41), there are primarily two
options: direct and iterative methods. Direct methods usually first factorize the
linear system and solve it by back-substitution. They require space and time that can
scale quadratically to the number of parameter and the number can be considerably
large for bundle adjustment problems. Hence direct methods are only feasible for
small to medium problems. In contrast, iterative methods solve the linear system by
approximation. They need significantly less space for larger problems, hence they
are an appropriate choice for solving medium to large bundle adjustment problems
(typically 103 to 104 cameras or more).

Conjugate gradient is an iterative indirect method, it can solve a linear system by
only requiring matrix-vector multiplications with A:

Ax = b , (2.43)

where x ∈ Rn is an unknown solution of the system, b ∈ Rn is a know vector, and
A ∈ Rn×n is a known symmetric positive definite matrix.

However if A is poorly conditioned, it may result in very slow convergence rate. To
improve the performance, the problem can be replaced with a preconditioned system
by solving:

M−1Ax = M−1b , (2.44)

where M ∈ Rn×n is the preconditioner which should be a positive definite matrix and
an approximation of A. In addition, it should also be inexpensive to invert for overall
faster runtime.

Solving (2.44) leads to the Preconditioned Conjugate Gradient (PCG) algorithm,
which is shown in Algorithm 1. We omit the details of preconditioned conjugate
gradient. Interested readers are referred to [She+94].

As we aim to solve (2.41) with PCG, our target preconditioned system (2.44) becomes:

M−1H̃pp(−∆xp) = M−1b̃p . (2.45)
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Algorithm 1 Preconditioned Conjugate Gradient algorithm. t is a stopping threshold
and imax is the maximum number of iterations. We use a stopping criteria from [NS90;
Nas00] in this thesis for better termination, in which (qi+1 − qi) computes the change
in cost of the quadratic function defined by A and b.

procedure Preconditioned Conjugate Gradient(A, b, x0, M−1, t, imax)
r0 = b−Ax0

d0 = M−1r0

q0 = −x>0 (b + r0)

for i← 0 to imax do
αi =

r>i M−1ri

d>i Adi

xi+1 = xi + αidi
ri+1 = ri − αiAdi

βi+1 =
r>i+1M−1ri+1

r>i M−1ri

di+1 = M−1ri+1 + βi+1di
qi+1 = −x>i+1(b + ri+1)

if i(qi+1−qi)
qi+1

< t then
break

end if
end for
return xi+1

end procedure

In this work, M is a block diagonal matrix with the diagonal blocks of H̃pp, which is
also known as the Schur Jacobi preconditioner.

Solving (2.41) only requires matrix-vector multiplications with RCS at each LM itera-
tion. In Section 4.5, we introduce two options to perform matrix-vector multiplications
with H̃pp, which are explicitly and implicitly.

14



3 Methodologies

In this chapter, we explain the mathematical and implementation details of our solvers.
We begin by introducing the concept of factor grouping and the grouping algorithm,
and then discuss the differences between explicit and implicit RCS representations.
Following that, we will discuss the mathematical details of square root formulation and
its efficient implementation design. We present two new solvers: an implicit variant
of the proposed square root solver and a square root solver collaborated with factor
grouping scheme. Finally, we present a novel solver for solving RCS based on power
series approximation of the inverse of the reduced camera matrix.

3.1 Factor Schur Complement

Factor grouping [Car+14] examines the structure of the BA problem using a factor
graph. It demonstrates how to combine multiple factors into a single factor. Next, it
compares the computational cost of explicit and implicit representations of multiplying
with RCS, and then it demonstrates that a factor can be represented explicitly or
implicitly. Following that, it investigates the criteria of selecting the most efficient factor
presentation in terms of computing efficiency, allowing us to improve the multiplication
efficiency in PCG.

In this section, we first describe the explicit SC and the implicit SC solver, which solve
the reduced system using the explicit or implicit representation of RCS respectively.
Then we examine the computational complexity of the both representations. Next, we
briefly introduce the concept of factor graph in the context of bundle adjustment, then
present Factor SC solver. After that, we describe frequent pattern tree (FP-tree), which
is a data structure we used for grouping factors. Finally, we describe how Jacobian is
efficiently stored and used for SC solvers.

3.1.1 Explicit and Implicit Representation

As the names suggests, the explicit representation explicitly constructs the RCS matrix
H̃pp and it is stored in memory as a sparse matrix. In contrast, the implicit repre-
sentation does not need to construct the whole matrix, but only the diagonal blocks
for the PCG preconditioner and H−1

ll for multiplication. We refer to solving the RCS
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with the explicit representation as explicit SC solver and solving the RCS with implicit
representation as the implicit SC solver.

Matrix-vector multiplication is slightly different for these two representations. For
explicit SC, multiplication is performed with H̃pp directly. On the other hand, since
RCS is made up of sub-blocks of H (2.37), implicit SC performs multiplication by
sequentially accessing the sub-blocks of H:

x← J>p Jp︸︷︷︸
Hpp

− J>p Jl︸︷︷︸
Hpl

H−1
ll J>l Jp︸︷︷︸

Hl p

x . (3.1)

For maximum efficient, the multiplication is reordered as:

x← J>p (Jpx− Jl(H−1
ll (J>l (Jpx)))) , (3.2)

where we can reuse the result of Jpx twice, and multiply with J>p only once. In our
implementation, it is evaluated efficiently as a parallel sum over the contributions of all
landmarks.

3.1.2 Complexity Analysis of Explicit and Implicit Representation

In our experiments, multiplications with RCS during PCG typically consume the major-
ity of runtime while solving a BA problem, it is critical to evaluate the computational
complexity of both explicit and implicit representations.

Consider a BA problem with Np cameras and Nl landmarks, we assume every
landmark is observed by all cameras for simplicity. If two cameras observe at least one
common landmark, then the blocks associated with the two cameras in RCS will be
non-zero, therefore the RCS matrix is completely dense according to our assumption.

For explicit representation, a vector is multiplied directly with H̃pp. Since the size of
the matrix is Np × Np, the multiplication complexity is then O(N2

p).
For implicit representation, a vector is multiplied with the sequence of matrices in

(3.2). The complexity of multiplying with the block diagonal matrices Hpp and Hll
is O(Np) and O(Nl) respectively. For Jp and Jl , the complexity of multiplying with
them is both O(NpNl), which is the total number of observations. Consequently, the
multiplication of complexity is O(NpNl)

Based on the time complexity, if an RCS includes more landmarks than cameras, i.e.,
nl > np, explicit representation is preferred over implicit representation, and vice versa.

3.1.3 Factor Graph for Bundle adjustment

A factor graph is a bipartite graph represented by G = {F , Θ}, where F denotes a set
of factors and Θ denotes a set of variables. Each factor corresponds to a measurement,
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Figure 3.1: A factor graph on an example BA problem with 5 landmarks and 5 cameras
[Car+14]. Landmarks are shown as blue stars, cameras are shown as yellow
triangles.

p1

p2

p3

p4

p5

Figure 3.2: A factor graph of the problem in Figure 3.1 reduced by Schur complement
trick. [Car+14]

and each variable to an optimizable parameter. A factor graph can be used to describe
the BA objective function (2.22).

Figure 3.1 illustrates a factor graph of an BA example problem. In the context of BA,
camera parameters and landmark variables are represented by variables Θ, and the
observations are represented by factors F . According to the reprojection error (2.21),
each observation only involves a single camera and landmark. Consequently, a factor is
always connected to a camera and a landmark variable.

By applying the Schur complement trick, landmarks are eliminated and leaving
only the camera parameters in the reduced system (2.41). The factor graph depicting
the reduced system is illustrated in Figure 3.2. In the graph, the Schur complement
trick eliminates all the landmark variables and also the existing factors in the graph.
Meanwhile, for each eliminated landmark, a new factor is created that connects to all
camera variables observing that landmark.
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p1
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p3

p4

p5

Figure 3.3: A grouped factor graph of the problem in Figure 3.2. [Car+14]

By representing a BA problem as a factor graph, we can notice that each factor
independently contributes to the cost of the objective function (2.22). Subsequently, we
can show the result of matrix-vector multiplication with H̃pp is the sum of all factor
contributions:

H̃ppx =
nl

∑
i=1

H̃i
ppx , (3.3)

where H̃i
pp is a zero-padded matrix which includes the contribution of factor i, it is zero

everywhere except for the blocks corresponding to the cameras observing landmark i.
In Figure 3.2, there are three factors all connected to the same pair of cameras p1, p2.

In fact, it is possible to group those factors together into a single one as illustrated in
Figure 3.3, then this new factor now associates to three landmarks and two cameras.

According to (3.3), we can form an RCS representation for each factor. As a factor
can be associated with multiple landmarks and cameras, we can select the best RCS
representation of each factor based on time complexity introduced in Section 3.1.2.

For instance, as illustrated in Figure 3.3, the factor connected to p1 and p2 associates
with 3 landmarks and 2 cameras. According to our analysis, since the number of
landmarks is greater than cameras, explicit representation is preferred. On the other
hand, implicit representation is preferred for the other factors.

The core idea of factor grouping [Car+14] is to group the landmarks into a number
of factors. For the factors which associate with more landmarks than cameras, we
explicitly construct a RCS matrix. For the remaining factors, they are considered as
individual landmarks, and multiplication is performed via implicit representation.
Then the result of multiplication with H̃pp is computed by accumulating the result of
the factors and remaining landmarks as described in (3.3). As a result, by selecting the
optimal representation between explicit and implicit, multiplication with RCS can be
accelerated.
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Figure 3.4: On the left is a BA example with 6 cameras and 10 landmarks. The corre-
sponding grown FP-tree is shown on the right. [Car+14]

3.1.4 Frequent Pattern Tree

To group the factors, [Car+14] utilizes a data structure called frequent pattern tree (FP-
tree) [HPY00], which can be used to mine Frequent Itemsets [Han+07]. In the context
of Frequent Itemsets, each transaction can purchase a set of items. FP-tree can be used
to identify groups of items that are frequently purchased together in the transactions
database.

In our setting, a camera observes multiple landmarks, and we want to identify a list
of factors by recognizing the set of landmarks that the same set of cameras frequently
observes. Thereupon, cameras can be seen as items, and a landmark is a transaction
involving multiple cameras. Based on this insight, FP-tree can be used group landmarks
into factors.

As illustrated in Figure 3.4, FP-tree is a tree-like data structure. With the exception
of the root node, which is an empty node, a node is associated with a camera and
may contain zero or more landmarks. The path from root node to the node containing
a landmark represents the list of observations of that landmark. For example in the
figure, cameras p4, p5, p3 are the observation of landmark x7.

To grow the tree, the algorithm first sorts the list of observations of each landmark
according to the support of cameras, which is the total occurrence of a camera. Then
according to the camera support, a camera with larger support will be placed near the
root node. In our example, since p2 occurs more frequently than p1, it is placed higher
than p1 on the leftmost branch.

We implement the factor grouping algorithm according to [Car+14]. It is mainly
divided into two stages: identifying eligible factors, and trying to merge the remaining
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landmarks into existing factors. In the first stage, we iterate all the leaf nodes. For
each leaf node, we traverse up to the root and accumulate the landmarks along the
path. By checking if the number of collected landmarks is greater than the number of
cameras along the path, i.e. nl > np, we can determine whether a new factor can be
formed. At the second stage, we iterate each ineligible factor group from the first stage,
i.e. the group with nl ≤ np. For each such group, we try to find a factor where the
grouped landmarks are a superset of the ineligible group. If such a factor is found, the
landmarks of the ineligible group are merged into the factor. Finally, we can obtain a
list of factors that will employ explicit representation, and a list of remaining landmarks
that will employ implicit representation.

We illustrate the result of the algorithm with Figure 3.4. In the first stage, we can
form two factors: {x2, x3, x4, x5, x6} observed by {p1, p2, p3}, and {x8, x9, x10} observed
by {p5, p6}. At the second stage, we can notice that {p1, p2} is a subset of {p1, p2, p3},
therefore we can merge x1 into the factor group {x2, x3, x4, x5, x6}. At the end, we obtain
two factor groups: {x1, x2, x3, x4, x5, x6} and {x8, x9, x10}. During optimization, we use
explicit representation for these two factor groups, and use implicit representation for
the remaining landmark {x7}.

Unlike the implementation in [Car+14], which runs in a single thread, our implemen-
tation of FP-tree is designed for parallelism. Our result in Section 4.6.1 demonstrates
that our implementation is faster and is capable of efficiently operating on large BA
problems. However, it yields a different outcome compared to the paper.

3.1.5 SC Landmark block

As represented in Figure 2.1, the Jacobian matrix J has a very sparse structure. Instead
of storing the Jacobian as a dense matrix, it is stored compactly in landmark block to
reduce memory usage. As illustrated in Figure 3.5, the Jacobian blocks in the same row
which belongs to the same landmark, are stored in a dense matrix. For each landmark,
we allocate a landmark block, and store the corresponding Jacobian blocks Jp, Jl and
residual in the landmark block.

Modern computers, which typically have multiple CPU cores and support SIMD
instructions for efficient matrix operations. By utilizing landmark blocks, we can take
advantages from these feature. Since landmark blocks are independent from each others
during optimization, we can parallelize our operations over landmarks, e.g. construct
H̃pp, matrix-vector multiplication (3.2). Likewise, the operations performing on a land-
mark block can be supported by SIMD instructions as it is a dense matrix. Additionally,
when the computations are parallelized over landmarks, a single landmark block stores
all of the information necessary for solving via PCG and back-substitution closely in
the memory, which improves the memory access pattern when the computations are

20



3 Methodologies

Jp Jl r

Q⊤
2 Jp

Q⊤
1 Jp

Q⊤
2 r

Q⊤
1 rR

Jp Jl

0

(b)
Jp Jl r

(a)

Figure 3.5: Jacobian and residual (a) related to the landmark are stores in a landmark
block (b), which contains all the necessary information during optimization.
Given a landmark with n observations, then the size of the landmark block is
2n× (9+ 3+ 1). The camera blocks Jp which observes the current landmark
are placed in a 2n × 9 block. The landmark blocks Jl and residual r are
attached on the right. Adapted from [Dem+21].

parallelized over landmarks.
In the subsequent sections, we will refer this landmark block as SC landmark block

as it is designed for storing Jacobian for SC solvers.

3.2 Square Root Bundle Adjustment

Square Root Bundle Adjustment (
√

BA) [Dem+21], is an alternative method to the
Schur complement tick, which both aims to reduce the size of the normal equation
(2.33).

√
BA proposed a reformulation of (2.33), it relies on nullspace marginalization

of the landmarks by QR decomposition. Comparing to Schur complement, the numeric
stability is proved to be notable better than Schur complement in the experiments, thus
allowing solving large-scale BA problems accurately even in single precision floating
point format.

In the following sections, we introduce the mathematical and implementation details
of
√

BA. First, we provide a high-level overview of QR decomposition and Givens
rotations, which serve as the foundation for the new formulation. Following that, we
detail the new square root formulation together with nullspace marginalization. Then
we describe how the square root formulation is stored in memory during optimization.
Following that, we describe how damping is accomplished with the new formulation.
Finally, we present an implicit

√
BA and a factor variant which we call

√
IBA and
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√
FBA in short.

3.2.1 QR Decomposition

QR decomposition is a matrix decomposition method, which decomposes a matrix into
a product of an orthogonal matrix and upper triangular matrix. A ∈ Rm×n, where
m ≥ n, is a matrix with rank n. It can be decomposed into an orthogonal matrix
Q ∈ Rm×m and an upper triangular matrix R ∈ Rm×n:

A = QR = Q
(

R1

0

)
=
(
Q1 Q2

) (R1

0

)
= Q1R1 , (3.4)

where Q is divided into Q1 ∈ Rm×n and Q2 ∈ Rm×(m−n), and R1 ∈ Rn×n is an upper
triangular matrix. (3.4) implies the columns of Q2 form the left nullspace of A, i.e.
Q>2 A = 0.

Besides, Q is an orthogonal matrix, which means:

Q>Q = Im = QQ> , (3.5)

it can also be rewritten as:

Q1Q>1 + Q2Q>2 = Im. (3.6)

3.2.2 Givens Rotations

A Givens rotation is a rotation in the plane spanned by two coordinates axes. We denote
the orthogonal Givens rotation matrix as:

Gij(θ) =



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cos θ · · · sin θ · · · 0
...

...
. . .

...
...

0 · · · − sin θ · · · cos θ · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1


. (3.7)

Givens rotation Gij(θ) can be applied to a matrix A on the left, it rotates the ij-plane of
A, which only changes two rows in A. Furthermore, by choosing the value of θ, we can
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use a Given rotation to eliminate a entry Aij to zero :

cos θ =
ajj√

a2
jj + a2

ij

,

sin θ =
aij√

a2
jj + a2

ij

.
(3.8)

Thereupon, the QR decomposition of A can be obtained by applying Given rotation
matrices sequentially to A, such that all entries below the diagonal are zero.

3.2.3 Nullspace Marginalization

To construct the new square root formulation, we factorize the landmark Jacobian Jl and
project (2.32) onto the nullspace of Jl . Similar to the previous sections, for simplicity
we will omit the damping terms in the derivation.

We first construct the QR decomposition of Jl = QR. As Q is orthonormal, we can
multiply the term in (2.32) with Q without changing the cost:

‖r +
(
Jp Jl

) (∆xp

∆xl

)
‖2

=‖Q>r +
(
Q>Jp Q>Jl

) (∆xp

∆xl

)
‖2

=‖Q>1 r + Q>1 Jp∆xp + R1∆xl‖2 + ‖Q>2 r + Q>2 Jp∆xp‖2 .

(3.9)

Then we can solve ∆xp by optimizing the second term in (3.9):

min
∆xp

1
2
‖Q>2 r + Q>2 Jp∆xp‖2 . (3.10)

By constructing the normal equations of (3.10), we obtain:

J>p Q2Q>2 Jp(−∆xp) = J>p Q2Q>2 r , (3.11)

which can be solved by PCG to obtain an optimal ∆x∗p. Given ∆x∗p, we can solve ∆xl
using the first term in (3.9) by back substitution:

∆x∗l = −R−1
1 (Q>1 r + Q>1 Jp∆x∗p) . (3.12)

Similar to Schur complement, this formulation substantially reduces the size of
(2.32) by eliminating the landmarks. Additionally, (3.11) is proven to be algebraically
equivalence to Schur complement trick (2.41):

H̃pp = J>p Q2Q>2 Jp ,

b̃p = J>p Q2Q>2 r ,
(3.13)
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Figure 3.6: A
√

BA landmark block (a) stores the all necessary information during opti-
mization [Dem+21]. Landmarks can be marginalized by QR decomposition
(b). Given a landmark with n observation, the size of
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BA landmark block

is 2n× (9n + 3 + 1).
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Figure 3.7: Damping landmark with a
√

BA landmark block after marginalization
[Dem+21].

in which Q>2 Jp is the square root form of RCS. Similarly, the back substitution for
optimal ∆x∗p (3.12) is also algebraically equivalence to (2.42).

3.2.4 Damping with Levenberg-Marquardt

In Schur complement, damping λ is added to the RCS as:

H̃λ
pp = (Hpp + λD>p Dp)−Hpl(Hll + λD>l Dl)

−1Hlp (3.14)

b̃λ
p = bp −Hpl(Hll + λD>l Dl)

−1bl , (3.15)

where D>p Dp is the diagonal of Hpp and D>l Dl is the diagonal of Hll .
A possible solution for

√
BA is attaching a diagonal matrix λDl under Jl , and then

compute the QR decomposition on the augmented Jl . However, this will significantly
increase runtime, as QR decomposition has a time complexity of O(n3).

Instead, we again work with the individual landmark blocks. We propose
√

BA
landmark block as shown in Figure 3.6, which is based on SC landmark block in Section
3.1.5. The only difference from SC landmark block is that the camera Jacobian blocks
are stored diagonally in the

√
BA landmark block. To perform marginalization with√

BA landmark block, we need to apply a sequence a Givens rotations to the landmark
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block in-place. We attach a 3× 3 sub-block to the bottom of Q>Jp, then a landmark
block can be eliminated by six Givens rotations as illustrated in Figure 3.7. We denote
the damped Q as:

Q̂ =
(
Q̂1 Q̂2

)
=

(
Q1 Q2 0
0 0 λI3

)
Qλ , (3.16)

where Qλ is the product of the six Givens rotations.
As shown in Figure 3.6, the six Givens rotations eliminate the bottom part of Jl to

zeros. After that, we can obtain then an upper triangle matrix R ∈ R3×3. Simultaneously,
as we apply Given rotations to the whole landmark block, we can also obtain Q̂>Jp and
Q̂>r at the end.

If LM algorithm rejects the update and increase the value of λ, we do not have
to discard the landmark blocks and recompute them with a new λ. Instead, we can
remove the old damping by applying the inverse of the six Givens rotations, then apply
a new damping with again six Givens rotations. Consequently, damping the landmark
is computationally cheap by applying on the individual landmark blocks.

For pose damping, we can just sum the multiplication with λD>p Dp from (3.16)
during PCG:

x← J>p Q̂2Q̂>2 Jpx + λD>p Dpx . (3.17)

3.2.5 Implicit Square Root Bundle Adjustment

In this work, we extend
√

BA with an implicit variant named as
√

IBA, which consumes
significant less memory than

√
BA. As illustrated in Figure 3.6, because the camera

Jacobian blocks are stored diagonally in the landmark block,
√

BA requires more
memory that scales quadratically to the number of observations of a landmark. As a
result, if a bundle project is dense, i.e. landmarks are observed by a large number of
cameras,

√
BA will consume significantly more memory.

For each LM iteration,
√

BA first linearizes the problem, then performs marginaliza-
tion. After that, for each PCG iteration, Q̂>2 Jp is recalled from the memory to perform
multiplications. In contrast,

√
IBA does not store Q̂>2 Jp but compute it on-the-fly per

PCG iteration with the SC landmark block introduced in Section 3.1.5.
For each LM iteration,

√
IBA linearizes the problem and store the Jacobian in SC

landmark blocks. Then, for each PCG iteration, we allocate a new
√

BA landmark block
and copy the data from the SC landmark block to it. Next, we dampen and marginalize
the new block, and use Q̂>2 Jp for multiplication in PCG.

To avoid reallocating memory for
√

BA landmark blocks per PCG iteration,
√

IBA
allocates a dedicated chunk of memory for marginalizing. At the beginning, we allocate
a volume of memory that can fit the largest

√
BA landmark block. Then for each PCG

25



3 Methodologies

iteration, the Jacobian is copied from the SC landmark to the dedicated memory, then
marginalization is performed there. Since the algorithm is run parallelized, we allocate
a chunk of memory for each thread. As a result, We avoid allocating a large chunk of
memory for

√
BA landmark blocks.

Note that we use Householder reflection method instead of Givens rotation for QR
decomposition. In our experiments, Householder is slightly faster than Given rotations.
This could be because Householder needs less computations. To decompose Jl per
landmark block, Householder requires only three transformations, whereas Given
rotations require three transformations per row in a landmark block.

3.2.6 Factor Square Root Bundle Adjustment

Furthermore, we also develop a variant called
√

FBA, it exploits the factor group
concept with the square root formulation. As introduced in Section 3.1, factor group-
ing allows grouping landmarks into factors, then we can represent the factors with
explicit RCS representation during optimization, and use implicit representation for the
remaining landmarks. It allows the landmark select the best representation in terms of
computation complexity.

For
√

FBA, we compute the RCS matrix according to square root formulation (3.13).
When explicit RCS matrix is used, the landmark blocks are only used when constructing
RCS matrix and back substitution. Hence same as

√
IBA, we store Jacobian in SC

landmark blocks to be memory efficient. On the other hand,
√

IBA is tested slightly
faster than

√
BA, therefore we also employ

√
IBA scheme for non factor landmarks.

In summary, same as
√

IBA,
√

FBA stores Jacobian in SC landmark blocks. For
each factors, we construct a RCS matrix for PCG multiplication using square root
formulation. For non-factor landmarks, we again use

√
IBA for multiplications in PCG.

3.3 Power Bundle Adjustment

In the previous sections, we describe the various iterative solvers, which all rely on
performing matrix-vectormultiplication with the RCS in PCG. Alternatively, inspire
from [ZXS21], we develop a solver that does not solve the reduce system using iterative
methods like PCG, but approximate the inverse of H̃pp using power series expansion.
We name the new solver as power BA [Web+22].

In the following, we first introduce the mathematical formulation of power BA, and
then the implementation details.
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3.3.1 Mathematical Formulation

Let M be a n× n square matrix. (I−M)−1 can be expressed as a power matrix series:

(I−M)−1 =
∞

∑
i=0

Mi , (3.18)

if all eigenvalues of M are strictly between −1 and 1.
We can reformulate the RCS (2.40) as:

H̃pp = Hpp −HplH−1
ll Hlp

= Hpp(I−H−1
pp HplH−1

ll Hlp) ,
(3.19)

then its inverse can be written as:

H̃−1
pp = (I−H−1

pp HplH−1
ll Hlp)

−1H−1
pp (3.20)

We can prove that the largest eigenvalue of H−1
pp HplH−1

ll Hlp is between −1 and 1,
which satisfies the condition to express as a power matrix series. We will skip the proof
here. We then can approximate the inverse Schur complement at order m:

H̃−1
pp ≈

m

∑
i=0

(H−1
pp HplH−1

ll Hlp)
iH−1

pp (3.21)

Accordingly, the optimal ∆x∗p can be approximated as:

∆x∗p ≈
m

∑
i=0

(H−1
pp HplH−1

ll Hlp)
iH−1

pp (−b̃p) , (3.22)

and then ∆x∗l can be solved by back substitution (2.42).

3.3.2 Implementation Details

Efficient computation

Although the equation (3.22) appears to involve with matrix-matrix multiplications
(H−1

pp HplH−1
ll Hlp)

i, we do not have to construct the matrix product explicitly. Similarly
to the implicit SC solver, we can solve ∆x∗p efficiently by performing matrix-vector
multiplications sequentially with the sub-blocks of H.

H̃−1
pp b̃p = H−1

pp b̃p+

(H−1
pp HplH−1

ll Hlp)H−1
pp b̃p+

(H−1
pp HplH−1

ll Hlp)
2H−1

pp b̃p + · · ·

(3.23)
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As demonstrated in (3.23), starting from the second term, each term can be computed
based on the result of the previous term. For instance, the second item can be obtained
by multiplying the first term with H−1

pp HplH−1
ll Hlp, which holds true for subsequent

terms as well. As a result, the approximation (3.22) is accumulated from the result of a
sequence of matrix-vector multiplication with the Jacobians.

Besides the efficient computation, different from implicit SC solver which can be
heavily influenced by preconditioner [Aga+10], power BA produces stable results
without a preconditioner as shown in Section 4.9. Since constructing the preconditioner
can consume considerable amount of runtime, this can be very advantageous to the
solvers relying on PCG.

Termination criteria

The order m is critical for both runtime and accuracy. If m is too low, the solution will
be inaccurate; if m is too high, additional runtime will be incurred.

It can be shown that the following sequence converges to zero:

{(H−1
pp HplH−1

ll Hlp)
iH−1

pp b̃p}∞
i=0 . (3.24)

We can utilize a straightforward technique for dynamically selecting m. When we
realize that increasing order has a negligible contribution to the solution, we can stop
increasing m. The following termination criteria can be adopted:

‖(H−1
pp HplH−1

ll Hlp)
iH−1

pp b̃p‖
‖H−1

pp b̃p‖
< ε , (3.25)

where ε is a given parameter.

28



4 Evaluation

In this work, we develop a total of seven solvers in order to examine their performance.
There are three main types of solvers: SC solvers (explicit, implicit, and factor SC)
which use Schur complement trick; square root solvers (

√
IBA,

√
BA, and

√
FBA)

which employ the square root formulation; power BA which approximates the inverse
of H̃pp as a power series.

We evaluate the performance of our solvers comprehensively on three selected
datasets. They cover a variety of BA problems, from small- to large-scale, and from
sparse to dense problems.

Our research is mostly centered on experiments executed in double precision. In our
experiments, we notice that repeatedly solving a problem in single precision yields
slightly different results each time, whereas the solvers are more numerically stable in
double precision, resulting in more reproducible results.

4.1 Datasets

We evaluate the performance of our solvers comprehensively on three distinct datasets,
they are from Bundle Adjustment in the Large (BAL) [Aga+10], 1DSfM [WS14], and
Multicore Bundle Adjustment (MCBA) [Wu+11] respectively. They are all constructed
using a collection of internet images.

Despite each dataset was stored in a specific format, they all adopted the same
camera model described Section 2.1.2. The BA problems in all dataset always contain
the following information:

• 3D landmark coordinates {Xi}nl
i=1,

• Camera parameters {Rj, tj, f j, kj}
np
j=1,

• The pixel location uij of landmark i observed by camera j,

• The list of observations of each landmark.
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4.1.1 Bundle Adjustment in the Large

Bundle Adjustment in the Large (BAL) dataset has a total 97 BA problems. They
are divided into different groups: Ladybug, Trafalgar, Dubrovnik, Venice, and Final.
We name a problem according to its group and number of cameras, e.g. final4585.
The problems in each group have slightly distinct characteristics. Ladybug problems
are captured by a moving Ladybug camera, thus they are sparser than other groups.
Trafalgar, Dubrovnik, and Venice are reconstructed using internet image collections,
each looking at a particular scene.

The problems in the aforementioned groups are reconstructed by Bundler [SSS06], it
reconstructs by incrementally adding images in each iteration. Trafalgar, Dubrovnik,
and Venice serve as the skeletons of the Final problems, which are built by adding
more images to the skeleton. As a result, the final problems often have a significantly
larger camera count and are denser than other groups.

BAL dataset contains small to large-scale problems, Table 4.1 shows the details of
some of problems. For the full list of problems, interested readers are referred to the
supplementary of [Dem+21]. BAL covers a wider range of problems than the other two
datasets thus more representative, therefore we mainly perform our analysis on this
dataset.

However, the problems in this dataset are relatively easy to solve. In our experiments,
all our solvers can reduce the cost with fewer iterations in comparison to the other two
datasets.

4.1.2 1DSfM

[WS14] proposes optimizing BA problems utilizing rotation and translation averaging.
A dataset is created to evaluate the performance of the proposed algorithm, we refer it
as 1DSfM dataset. Each problem in the dataset reconstructs a famous sight location
from around the world. The dataset contains 15 problems, which are mostly small-scale
problems. The details are shown in Table 4.2.

Since the dataset is stored as a different format, we utilize TheiaSfM [Swe] to convert
the problems to Bundler format via the global SfM pipeline, which can then be imported
into to our program.

4.1.3 Multicore Bundle Adjustment

[Wu+11] examines how parallelism on multiple CPU cores or GPU improves the
performance of implicit Schur complement. The Multicore Bundle Adjustment (MCBA)
dataset is built to evaluate the proposed solver.
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#cam #lm #obs sparsity #obs / cam #obs / lm
(np) (nl) (Nr) (0 in H̃pp) mean mean std-dev max

ladybug73 73 11,022 46,091 28% 631.4 4.2 3.7 40
ladybug539 539 65,208 277,238 71% 514.4 4.3 4.7 142
ladybug1723 1,723 156,410 678,421 92% 393.7 4.3 5.0 145
trafalgar126 126 40,037 148,117 62% 1,175.5 3.7 3.0 29
trafalgar170 170 49,267 185,604 67% 1,091.8 3.8 3.5 41
trafalgar257 257 65,131 225,698 76% 878.2 3.5 3.2 42
dubrovnik88 88 64,298 383,937 13% 4,362.9 6.0 6.0 65
dubrovnik173 173 111,908 633,894 37% 3,664.1 5.7 6.7 84
dubrovnik356 356 226,729 1,254,598 46% 3,524.2 5.5 6.4 122
venice89 89 110,973 562,976 7% 6,325.6 5.1 5.9 62
venice744 744 542,742 3,054,949 58% 4,106.1 5.6 8.6 205
venice1778 1,778 993,101 4,997,555 84% 2,810.8 5.0 7.1 232
final93 93 61,203 287,451 0% 3,090.9 4.7 5.8 80
final394 394 100,368 534,408 6% 1,356.4 5.3 10.6 280
final871 871 527,480 2,785,016 60% 3,197.5 5.3 9.8 245
final961 961 187,103 1,692,975 1% 1,761.7 9.0 29.3 839
final1936 1,936 649,672 5,213,731 3% 2,693.0 8.0 26.9 1293
final3068 3,068 310,846 1,653,045 79% 538.8 5.3 12.6 414
final4585 4,585 1,324,548 9,124,880 83% 1,990.2 6.9 12.6 535
final13682 13,682 4,455,575 28,973,703 86% 2,117.7 6.5 18.9 1748

Table 4.1: Size of the bundle adjustment problem for an exemplar subset of the BAL
dataset.

#cam #lm #obs sparsity #obs / cam #obs / lm
(np) (nl) (Nr) (0 in H̃pp) mean mean std-dev max

trafalgar 5,032 388,924 1,826,007 88% 362.9 4.7 11.1 327
alamo 571 151,084 891,299 22% 1,560.9 5.9 12.4 317
ellisisland 234 29,163 130,901 33% 559.4 4.5 5.6 121
gendarmenmarkt 706 93,667 364,019 81% 515.6 3.9 4.7 104
madridmetropolis 346 55,628 255,885 50% 739.6 4.6 6.0 143
montrealnotredame 459 158,002 860,110 40% 1,873.9 5.4 10.4 264
notredame 547 273,588 1,534,743 23% 2,805.7 5.6 11.1 308
nyclibrary 338 74,248 303,953 59% 899.3 4.1 5.3 93
piazzadelpopolo 335 37,605 195,008 43% 582.1 5.2 8.6 159
piccadilly 2,289 209,489 999,848 81% 436.8 4.8 8.9 283
romanforum 1,063 265,044 1,292,750 83% 1,216.1 4.9 7.4 151
toweroflondon 483 151,327 797,020 71% 1,650.1 5.3 6.2 90
unionsquare 796 46,057 230,793 86% 289.9 5.0 6.8 91
viennacathedral 836 265,553 1,333,279 70% 1,594.8 5.0 8.5 218
yorkminster 422 152,589 701,985 60% 1,663.5 4.6 6.0 126

Table 4.2: Size of the bundle adjustment problem for each instance in the 1DSfM dataset.
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#cam #lm #obs sparsity #obs / cam #obs / lm
(np) (nl) (Nr) (0 in H̃pp) mean mean std-dev max

01biltmore 26 5,215 20,901 0% 803.9 4.0 3.2 23
02notredame 71 16,793 78,734 13% 1,108.9 4.7 4.8 45
03notredame 1,290 35,324 614,978 18% 476.7 17.4 53.3 743
04liberty 9,022 23,910 1,681,838 24% 186.4 70.3 221.9 4213
05liberty 9,025 34,209 2,024,119 18% 224.3 59.2 200.4 4751
06bandenburger 4,652 31,194 1,889,850 2% 406.2 60.6 202.3 3232
07berlin 5,333 34,961 2,201,273 2% 412.8 63.0 227.4 3612
08rome 8,140 21,536 2,387,050 2% 293.2 110.8 377.1 6372
09rome 6,983 49,983 3,078,434 54% 440.8 61.6 141.1 1752
10sanmarco 10,338 65,326 3,416,834 67% 330.5 52.3 149.6 3126

Table 4.3: Size of the bundle adjustment problem for each instance in the MCBA dataset.

MCBA has a total of 10 problems, which are mostly large-scale problems as demon-
strated in Table 4.3. Given the larger scale of this dataset, the efficiency of a solver
can be highlighted by evaluating on it. Additionally, the average number of landmark
observations is substantially higher than in the other two datasets. If a solver involves
quadratic-complexity operations, it can be extremely slow on this dataset.

4.2 Experiment Setup

We adopt the configuration specified in [Dem+21], all our experiments use the same
configuration if not specific stated. We apply preliminary preprocessing prior to
optimizing a problem. A small amount of noise is added to the state for perturbation,
and then invalid observations and under-constraint landmarks are removed.

For each problem, our solvers run 20 LM iterations, all solvers except power BA
run a maximum of 500 PCG iterations per LM iteration. Power BA always solves
a problem with order of 10. The damping parameter λ has an initial value of 10−4,
and it is adjusted according to the ratio of actual and estimated cost decrease per LM
iteration. PCG terminates if the stopping criteria described in Algorithm 1 are satisfied.
All solvers except power BA solve problem via PCG, we use the diagonal blocks of
H̃pp as preconditioner [Aga+10]. On the other hand, power BA does not require any
preconditioner because it does not use PCG to solve a problem.

All experiments are run on an Ubuntu 18.04 desktop. It equips with an Intel Xeon
W-2133 CPU with 12 virtual cores running at 3.60GHz, along with 64GB of RAM. All
major operations in our implementation are parallelized by using Intel TBB [Phe08],
and for the dense linear algebra operations we relied on Eigen [G+10] compiled with
the support of SIMD vectorization.
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4.3 Performance Profiles

Given that the selected datasets are constructed using images retrieved from the internet,
it is impossible to determine the ground truth of a reconstruction. Instead, we use the
BA optimization cost (2.22) as an indicator of optimization accuracy. Given that the
objective function should reflect the quality of our reconstruction, a lower cost often
implies a better optimization result.

Performance is typically a trade-off between accuracy and speed for optimization
solvers. Furthermore, given problems with different characteristic, a solver may per-
form better on some problems and worse on others. To provide an overview of the
performance of multiple solvers, we use performance profiles [DM02] to visualize the
accuracy and runtime of different solvers on multiple problems.

We provide a quick overview of performance profiles in the following. Let P be a
set of BA problems, S be the set of solvers we evaluate on P . Given a problem p ∈ P
and a solver s ∈ S , we define f (p, s, t) as the function of minimum cost achieved by the
solver at time t. We denote the initial cost of a problem p as f0(p). The minimum cost
accomplished across all solvers in any time is defined as:

f ∗(p) := min
s,t

f (p, s, t) . (4.1)

Then, we define the cost threshold corresponding to a given accuracy tolerance
τ ∈ (0, 1) as:

fτ(p) := f ∗(p) + τ( f0(p)− f ∗(p)) . (4.2)

For instance, f0.1(p) defines the cost value that has been reduced by 90% from the initial
cost to the lowest possible cost.

The runtime of a solver s reaching cost of an accuracy tolerance fτ(p) is denoted as:

tτ(p, s) := min{t | f (p, s, t) ≤ fτ(p)} ∪ {∞} , (4.3)

where infinity is included since a solver may never reach the accuracy tolerance.
Finally, the performance profile of a solver s is defined as:

ρτ(s, α) :=
|{p |tτ(p, s) ≤ α mins tτ(p, s)}|

|P| · 100 , (4.4)

which essentially means the percentage of problems that solver s has reduced to the
tolerance τ, at time α mins tτ(p, s) for individual problems.

Figure 4.1 shows such performance profiles. Consider the tolerance plot with tau =

0.1 on the left, power BA (power-64) is the fastest solver for reducing the cost with 90%
of the problems by looking at α = 1. On the other hand,

√
IBA is hardly the fastest
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Figure 4.1: Performance profiles evaluated on BAL problems in double precision. X-axis
is the percentage of problems that has reached the accuracy tolerance, y-axis
is the relative time α.

solver, it only achieves the tolerance for 50% of the problems using twice the runtime
(α = 2) compared with fastest solver on the individual problems.

If the curve of solver is further to the left (lower α), this indicates the solver has
a faster run time in terms of cost reduction. If the curve is closer to the top (higher
percentage), it means the solver achieves the tolerance on more problems.

Note that we only illustrate the relative time α up to a certain number in the
performance profiles. Thus, if the curve of a solve does not reach 100% in the plots, it
either indicates the solver reaches the accuracy threshold beyond the maximum relative
time of the plot, or it never reaches the threshold.

4.4 Performance Overview

4.4.1 Experiments on the BAL dataset

Double precision Figure 4.1 shows the performance profiles evaluated on BAL prob-
lems in double precision. In the following, we summarize the performance of each
solver at each tolerance level.

At high tolerance τ = 0.1, we can see power BA is overall the fastest solver, where the
curve is close to 100% at α = 1. Compared to power BA, implicit SC requires around
20% to 30% more time to accomplish the same tolerance. Following that, the speed√

IBA closely matches implicit SC on 40% of the problems, but it is around 60% slower
than implicit SC on the remaining problems on average. Furthermore, the curve of√

IBA is lower than the ones of power BA and implicit SC, which indicates it cannot
achieve the same level of precision on several problems as power BA and implicit SC
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Figure 4.2: Performance profiles evaluated on BAL problems in single precision.

even after a long time.√
BA,
√

FBA, and explicit SC solver reach a similar accuracy as
√

IBA but at a slower
rate. While factor SC solver has a similar runtime to these three solvers, it accomplishes
a higher accuracy as power BA and implicit SC after certain time. At tolerance τ = 0.01,
the situation is similar to the previous plot, except that

√
IBA is notably slower and

factor SC is comparably faster.
At low tolerance τ = 0.001, the landscape is different from the previous tolerances.

High tolerance emphasizes more on the speed of a solver, and low tolerance emphasizes
more on accuracy. At α = 1, implicit SC is the best performer, closely followed by
power BA and explicit SC.

Compared to higher tolerance, power BA only achieves the accuracy on only 50% of
the problems. This either suggests that power BA has a lower accuracy, or require a
higher order to solve a problem precisely, given the order was fixed at 10, which could
be inadequate for low tolerance.

The performance of factor SC,
√

FBA, and explicit SC solvers perform noticeably
better at lower tolerance. In Section 4.5, our investigation shows explicit representation
has a cheaper multiplication, and PCG requires more iterations at low tolerance. As
a result, solvers using explicit representation gain more benefits at lower tolerance.
Similarly, in Section 4.7, we demonstrate that multiplication of

√
IBA is more expensive

than
√

BA, therefore
√

IBA is also slower at low tolerance.
In our results, power BA and implicit SC are overall the fastest solvers. In Section 4.8,

we discuss the performance impact of a better memory access pattern, which could be
the reason why they have an excellent performance. In Section 4.9, we examine the
performance of power BA and compare it to implicit SC solver.
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Single precision The performance of solvers in single precision is illustrated in Figure
4.2. In comparison to double precision, solving in single precision is numerically less
accurate and contains more randomness in the result. As a result, solving a problem in
single precision challenges the numerical properties of a solver.

Compared to result in double precision, power BA is no longer the top performer,
the accuracy is significantly degraded across all tolerances. At tolerance τ = 0.1, it is
always slower than implicit SC indicated at α = 1 and only solves 80% of the problems
to the tolerance, which is the lowest among all solvers. This suggests Schur complement
and square root formulation have better numerical properties than power BA, thus
running power BA with single precision is less preferable. Moreover, power BA solves
only 20% of problems to the tolerance τ = 0.001, which suggests the fixed order of 10
may not have sufficient accuracy to solve a problem.

In contrast,
√

BA and
√

IBA perform considerably better compared to result in
double precision. As demonstrated in [Dem+21], the square root formulation has a
more favorable numerical properties, and hence suffers less from the drawbacks of
single precision. For

√
FBA, since most of the landmarks are explicitly represented as

a RCS matrix, therefore it receives similar accuracy limitations as the SC solvers.

Performance on problems with varied characteristic

The performance profile summarizes the performance of our solvers, but does not
provide insight into their performance on a particular type of problem. In Figure 4.3,
we examine the performance on problems with varied sparsity and problem scale.

All plots draw the same set of problems, each of which is either denoted by a colored
dot, red diamond, or a pink cross. If a solver is the fastest to reduce the cost of a
problem to a tolerance, then the problem in the corresponding plot is marked with a
red diamond. If a solver is unable to solve a problem to the specified tolerance due to
its accuracy limitation, or it runs out of memory during optimization, then the problem
is indicated by a pink cross. Otherwise, we indicate the convergence rate of a solver
solving a problem by a colored dot, which encodes the relative time α up to 3.0. The
same problem is compared with other solvers at the same tolerance. Illustrated with
the color scale on the right, a problem is shown in purple if the speed is the fastest, and
in yellow if it is slower.

In the figure, as with the performance problem, power BA converges very quickly
at higher tolerances τ = {0.1, 0.01}, but it is not able to solve most problems accuracy
at low tolerance τ = 0.001. Implicit SC performs fairly similar to power BA, it is very
close to power BA across all tolerance levels. At tolerance τ = 0.001, it becomes fastest
on larger problems as power BA is less accurate at low tolerance.

On the other hand, explicit SC performs overall better on small to medium-scale
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Figure 4.3: Solvers performance in double precision on BAL problems characterized
by the number of cameras and RCS sparsity. Each column corresponds to a
solver; the rows represent different accuracy tolerances τ = {0.1, 0.01, 0.001},
where the plots in the same row have the same tolerance. In each plot, x-axis
shows the number of cameras in log scale, y-axis shows the RCS sparsity
in fraction. Each plot corresponding to the performance of a solver and
an accuracy threshold, in which each problem is shown as either diamond
(first to achieve the threshold), pink cross (never achieve the threshold), or a
colored dot (encoding the relative time α up to 3.0).

problems, in particular at lower tolerances which require many PCG iterations. We
investigate the performance difference on problems of different scale and sparsity in
Section 4.5.

Factor SC has a pattern similar to both explicit and implicit SC solvers. It acts more
similar to explicit SC at higher tolerance, where the performance is worse on larger
problems, and it has similar performance as implicit at low tolerance. We explain
this phenomena in Section 4.6.2. In short, factor SC combines the advantages from
both solvers. Factor grouping improves the runtime required to build the explicit
representation, and mitigate the drawback of constructing explicit representation
on large-scale problems by using implicit representation. However, grouping the
landmarks requires additional time, which is amortized only at high accuracy threshold
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Figure 4.4: Memory usage on the BAL datasets in double precision. x-axis is the peak
memory in GB, y-axis is the number of observations of the problems.

where more PCG iterations are required.
For the square root solvers, they are overall competitive on small to medium-scale

problems at higher tolerances, but noticeably worse than other solvers at lower tolerance.
In Section 4.7, we investigate the runtime spent on each component of the solvers. In
summary,

√
BA is more expensive for preparing the linear system before solving with

PCG;
√

IBA has a slightly more expensive multiplication but cheaper preparation
compared to

√
BA. In Section 4.5, we show PCG often requires more iterations at

lower tolerance, hence
√

IBA is better than
√

BA at high tolerance. Similarly, as explicit
representation also has a cheaper multiplication, the performance of

√
FBA becomes

better at low tolerance.

Memory usage

Memory consumption is another critical aspect of a solver. In Figure 4.4, we illustrate
the peak memory used by the solvers during optimization. The memory usage grow is
approximately linear with the number of observations in a problem.

Except for
√

BA, all solvers store the Jacobian in the more compact SC landmark
blocks (Figure 3.5). In contrast,

√
BA stores the Jacobian in the larger

√
BA landmark

blocks (Figure 3.6). Landmark blocks always allocate the most amount of memory
in our experiments. Since

√
BA utilizes the less compact landmark block, it always

consumes the most memory as evidenced by the result. There are several problems that√
BA requires significant more memory: final961, final1936, and final4585. The major

distinction of these problems is the maximum number of observations per landmark.
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Typically, the number of BAL problems is between 100 to 200, but the numbers of these
problems are 839, 1293, and 535, respectively.

As the camera Jacobian blocks are stored diagonally in the
√

BA landmark block,
it needs significant more memory that scales quadratically with the number of ob-
servations of the landmark compared to the SC landmark block. For instance, the
largest problem final13682, which is shown as the rightmost problem in Figure 4.3,
has a maximum of 1748 observations in all landmarks.

√
BA runs out of memory for

allocating landmark blocks on this problem in our experiment.
To analyze the memory consumption of other solvers, we can inspect the memory

usage on the largest problem, which demonstrates a more obvious difference. Both
implicit SC and power BA require the lowest amount of memory. Beside the SC
landmark blocks, implicit SC needs memory to allocate the block diagonal matrix H−1

ll
and the diagonal blocks of H̃pp for the preconditioner. On the other hand, power BA
needs memory for H−1

ll and H−1
pp . All of those are block diagonal matrices which require

only little memory.
On the other hand, explicit SC allocates considerably more memory on the largest

problem final13682, which is due to extra memory is required to store H̃pp. Despite
final13682 is a sparse problem, it still scales quadratically with the number of cameras.
This also stands for factor SC and

√
FBA, where each factor allocates a dense Hessian

block. However, because the number of cameras in each block is far less than the total
number of cameras of the problem, the memory use of these two solvers is considerably
less affected by the quadratics complexity.

Compared to
√

BA which marginalizes on the landmark block,
√

IBA and
√

FBA
allocate a dedicated block of memory for marginalization. This requires fewer memory
than

√
BA as demonstrated in the result.

4.4.2 Experiments on the 1DSfM dataset

In Figure 4.5, we demonstrate the performance profiles evaluated on the 1DSfM
problems in double precision, where the result is generally similar to the BAL dataset
with a few exceptions.

As previously stated, 1DSfM dataset comprises of mostly small problems. Compared
to the result on BAL,

√
FBA, explicit SC, and factor SC solver are substantially benefited

from the explicit representation. Furthermore, implicit SC maintains good accuracy
and speed, which explains why it is the de facto choice for bundle adjustment solvers.

On the other hand, the accuracy of power BA considerably drops compared to the
BAL result, particularly at lower tolerances. As previously mentioned, 1DSfM problems
are often more difficult to solve, which is reflected by the higher number of iterations of
the other solvers. As demonstrated in Table 4.4, the final cost of power BA on average is
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Figure 4.5: Performance profiles evaluated on 1DSfM problems in double precision.

more than the cost of other solvers, indicating that power BA has insufficient order for
estimating an accurate solution. This emphasizes the significance of a good termination
criteria for a solver.
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final cost (relative) 0.999 0.999 1.001 1.000 1.000 1.004 1.189
time (relative) 2.969 2.236 1.828 2.057 1.000 0.820 0.456
#Iterations 511 531 464 488 481 484 198

Table 4.4: Solvers summary of 1DSfM result. It shows the average relative runtime, the
relative final cost, and the total number of inner iterations. For power BA
solvers, the inner iterations refer to the approximation order, while for other
solvers, inner iterations refer to the number of PCG iterations.

4.4.3 Experiments on the MCBA dataset

MCBA primarily comprises of large-scale and dense problems with a high number
of observations per landmark, therefore it places an emphasis on the efficiency of a
solver. It is used to evaluate our most runtime and memory efficient solvers,

√
IBA,

implicit SC, and power BA. Given the scale of the problems, other solvers would take
significant more time to optimize.

The performance profiles run in double precision are shown in Figure 4.6. At high
tolerance τ = 0.1, power BA is approximately 50% to 100% faster than implicit SC on
half of the problems. However, power BA is unable to achieve the tolerance on more of
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Figure 4.6: Performance profiles evaluated on MCBA problems in double precision.
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Figure 4.7: Memory usage on MCBA datasets in double precision.

problems than implicit SC does at low tolerance τ = 0.001. It once again indicates that
the currently used order of power BA is insufficient to obtain an accurate result. At
higher tolerances τ = {0.1, 0.01}, power BA is up to two times faster than implicit SC.
In Section 4.9, we show that power BA has a better convergence rate than implicit SC.

Across all tolerances,
√

IBA solve only two small problems. While
√

IBA is capable
of solving all problems without running out of memory, it is unable to solve the large-
scale problems even to the highest tolerance in the given time. In the result, it takes
substantially longer to solve the large-scale problems, which is why it is not depicted
in the figure.

Compared to BAL problems, MCBA problems have a much higher high maximum
number of observations per landmark. As a result,

√
IBA requires significantly more
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Figure 4.8: Runtime of each individual phase of explicit and implicit SC solver on four
BAL problems with different characteristics evaluated in double precision.
In each plot, a solver is represented by two bars. The left stacked bar shows
the total runtime of the individual phases spent in all 20 LM iterations (left
axis); the right bar indicates the total number of PCG iterations (right axis).

memory and runtime for marginalization. Figure 4.7 shows the memory consumption
of the evaluated solvers. This result again demonstrates that square root solvers are
less advantageous for large-scale problems.

4.5 Comparison of Explicit and Implicit SC Solver

4.5.1 Performance Analysis

We demonstrate that the explicit SC solver outperforms the implicit SC solver on small
to medium-sized problems in Section 4.4.1. To investigate the properties of two solvers
in detail, we break each solver down into its different phases, and then measure the
runtime spent on each phase. We categorize the computation into the following 7
phases:

42



4 Evaluation

preprocess Allocate SC landmark block.

linearize Linearize the problem (2.30), then store the Jacobians in the landmark blocks.

scale Scale the Jacobians as described in Section 2.2.1.

prepare Prepare the linear system for solving via PCG, e.g. prepare H̃pp and b̃p.

preconditioner Compute the preconditioner, i.e. the diagonal blocks of H̃−1
pp .

multiplication Solve the reduced system via PCG.

update Update the landmarks and camera parameters according to the solution.

evaluate Evaluate the actual cost reduction with the updated parameters.

We present the runtime of both solvers on four distinct problems in Figure 4.8. In
the result, the runtime of prepare, preconditioner, and multiplication vary greatly in
between problems. The reason is that the solvers perform different computations in
each phase. Apart from computing b̃p during prepare, the explicit SC solver constructs
the sparse block matrix H̃pp, whereas implicit SC simply constructs the diagonal matrix
H−1

ll , which involves less computation. This is reflected in the result, as explicit SC
spends significantly more time than implicit SC on all problems during prepare.

In the result, prepare consumes the most time for explicit SC, which is because build-
ing H̃pp explicitly is computationally inefficient. Given a landmark with n observations,
to compute the sub-blocks of H̃pp associated to the landmark, we need to build a double
for loop that iterates the camera Jacobian blocks R2×9 in the landmark block, which
has a time complexity of O(n2). Implicit SC, on the other hand, only needs to compute
H−1

ll ∈ R3×3 with J>l Jl for each landmark, which has a time complexity of O(n). As a
result, explicit SC spends substantially more time on prepare than implicit SC. This is
also indicated in Figure 4.8, where explicit SC performs particularly worse on dense
and larger problems.

Implicit SC takes significantly longer than explicit SC for preconditioner. While
implicit SC needs to build the diagonal blocks of H̃pp then inverting them, explicit SC
just has to computes H̃−1

pp by inverting the diagonal blocks of H̃pp computed in the
previous phase. Nonetheless, the time complexity of implicit SC only scales with the
number of observations O(Nr), which is still overall inexpensive.

For multiplication, as implicit SC involves more computations to multiply with
the sub-blocks of Jacobians per PCG iteration (3.2), explicit SC typically outperforms
implicit SC. However, explicit SC is less advantageous on larger problems demonstrated
in Figure 4.8, where multiplication becomes expensive on problems with increasing
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Figure 4.9: Performance of explicit and implicit SC solver on BAL trafalgar215 in double
precision. The cost and the number of PCG iteration at every LM iteration is
shown in (a). The gray dashed lines indicate the cost of difference tolerance
τ = {0.1, 0.01, 0.001}. The total runtime of individual solvers are shown in
(b).

number of cameras. On the smaller problems (Figure 4.8a and 4.8b), multiplication of
explicit SC is faster than implicit SC, but slower on large problem shown in Figure 4.8d.

In summary, explicit SC has a quadratic complexity in terms of constructing H̃pp

matrix, yet multiplication with the matrix is rather cheap. As a result, explicit SC
is faster on larger problems than on smaller problems due to the quadratic time
complexity. The operations of implicit SC has a linear complexity. on larger problems,
it typically outperforms explicit SC, and it is especially advantageous on large-scale
dense problems.

4.5.2 Tolerance

Previously, we present the performance of our solvers in Figure 4.3, it demonstrates a
tendency toward improving explicit SC performance with lower tolerances. We show
the reason is because PCG requires more iterations to approximate the solution at low
tolerance by Figure 4.9.

Figure 4.9a illustrates the convergence state of both solvers. On the left is the cost
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Figure 4.10: Performance profiles of Ceres and our implementation of explicit and
implicit SC, evaluated on BAL problems in double precision.

at each LM iteration, and on the right is the number of PCG iterations at each LM
iteration. Both solvers achieve tolerance τ = 0.01 within the first few iterations, and the
remaining LM iterations try the reduce the cost to the lowest tolerance τ = 0.001. After
achieving tolerance τ = 0.01, both solvers conduct more PCG iterations compared to
the prior LM iteration.

Figure 4.9b demonstrates the runtime spent on each phase. Despite the expensive
prepare, explicit SC overall outperforms implicit SC with its much cheaper multiplica-
tion. The reason is because both solvers have a higher number of PCG iterations on this
problem, which allows the slow prepare to be traded off for the faster multiplication.

While implicit SC consistently beats explicit SC on medium- to large-scale problems,
the performance of the explicit SC solver is ultimately a trade-off between prepare
and multiplication, which is dependent on the characteristics of the problem. To
summarize, explicit SC can perform well in the following situations:

• Solving Small-scale problems, where the advantage of cheap multiplication
outperforms the expensive prepare.

• Solving small- to medium-scale problems at lower tolerances, where the negative
effect of prepare is less prominent and the efficiency of multiplication becomes
crucial due to the high number of PCG iterations.

4.5.3 Performance comparison with Ceres

Ceres solver [AMT22] is a popular open source C++ library for solving non-linear
least squares problems. With its excellent code quality and speed, it is widely used in
computer vision and robotics areas. Although Ceres can be used a general-purpose
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solver, it is also specially designed for large-scale BA problems, which is an interesting
baseline to compare with our implementation. Ceres can solve a BA problem with PCG
also providing the options to solve explicitly (ceres-explicit) or implicitly (ceres-implicit).
We compile Ceres with Eigen and multithreading support. Our results are evaluated
using the same configuration as in [Dem+21], which closely matches the our custom
solver setting for fair comparison.

We evaluate the performance of Ceres and our implementation of explicit and implicit
SC in Figure 4.10. Across all tolerances, our implicit SC implementation outperformed
other solvers by a margin. With higher tolerances τ = {0.1, 0.01}, our implicit SC solver
was around 4 to 5 times faster than Ceres implicit SC solver. Likewise, our explicit SC
solver was also faster than Ceres at high tolerance τ = 0.1, and had a similar at lower
tolerances τ = {0.01, 0.001}.

On the other hand, Ceres’ explicit and implicit SC implementations eventually
achieved the same accuracy as our approach, but took significantly longer time. At
low tolerance τ = 0.001, Ceres implementations do not accomplish the same level of
accuracy in the plot, indicating that Ceres requires substantially more time to obtain
the same level of accuracy.

Our implementation is optimized for bundle adjustment and is built leveraging highly
parallelized computation and vectorized operations. Additionally, the adoption of the
SC landmark block enables more efficient memory consumption and a more predictable
memory access pattern. While Ceres makes use of multithreading, its general-purpose
implicit SC solver, in particular, cannot take advantage of parallelism to the extent that
our custom can. Given Ceres is a general purpose solver, the superior performance
of our implementation demonstrates the importance of custom implementation for
specific problems.

4.6 Factor SC Solver

In [Car+14], factor grouping is proposed to apply on BA problems to reduce the
runtime of multiplications during PCG. It aims to improve the time complexity of the
vector-matrix multiplication with RCS by grouping landmarks and selecting the best
representation for each group. The authors validate the improvement on a subset of
BAL problems, which are all small- to medium-scale. In this section, we study each
component of factor SC solver in detail, and evaluate its performance on a variety of
problems using multiple visualizations.

To begin, we study the grouping results and performance of FP-tree. Then, we
evaluate the performance of factor SC on the entire BAL dataset. It is compared to
both explicit and implicit SC since it is a hybrid of the two. Following that, we study
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the benefits of factor grouping by examining the runtime of its individual phases.
Lastly, we compare the performance of our factor SC implementation to the result
demonstrated in the paper.

4.6.1 FP-tree

problem grouping time (s) #factors #grouped landmarks #implicit landmarks
dubrovnik150 0.2 2656 53502 42319
dubrovnik182 0.23 3122 73516 43254
ladybug1118 0.2 4733 86154 32230
ladybug1469 0.25 5895 106869 38330
trafalgar170 0.06 1652 35988 13279
trafalgar215 0.08 1841 42195 13715
final4585 3.3 39576 767695 556887
final13682 11.41 155494 2572637 1883480

Table 4.5: Performance of our FP-tree implementation and statistic on selected BAL
problems. The table shows the time to group factors, number of factors, num-
ber of grouped landmarks, and the number of implicit landmarks (landmarks
which do not belong to any factor and use implicit representation).

We reimplement the FP-tree described in the paper [Car+14], and we parallelize the
tree operations as much as possible in our implementation. Given that this is a different
implementation from the one in the paper, it is interesting to compare the result. But
note that the hardware on which we conduct the experiments should be far recent than
the hardware used in the paper.

In Table 4.5, we evaluate our FP-tree implementation on the same set of problems in
the paper, as well as 2 large-scale problems. Our implementation is faster than the result
demonstrated in the paper. Furthermore, the number of factors and grouped landmarks
are slightly different than the ones in the paper. Given the slightly faster grouping
runtime and comparable grouping result, our factor SC solver should demonstrate
similar performance shown in the paper.

In Figure 4.11, we visualize the grouping result by our FP-tree. Figure 4.11a shows
the landmarks and camera poses correspond to one of the factor groups. Landmarks
and cameras in the group are highlighted in green. As previously described, FP-tree
groups landmarks that are convisible by the same set of cameras, and the number of
landmarks is always greater the number of cameras in a factor group.

In Figure 4.11b, we illustrate the structure of a small problem. Each row represents a
landmark, and each column represents a camera. The cameras observing each landmark
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(a)
(b)

Figure 4.11: Visualizations of the FP-tree grouping result. Figure (a) shows the cameras
poses (polygon) and landmarks (points) of BAL trafalgar257, where the
cameras and landmarks belonging to the largest factor are indicated in
green. Figure (b) shows the structure of a reduced BAL ladybug49 problem,
where each row encodes a landmark. The landmarks do not belong to any
factor group are indicated by gray at the bottom, and landmarks belonging
to the same group are indicated by the same color.

are color-coded in the corresponding row. The landmarks which do not belong to any
factor group are indicated by gray at the bottom, and the landmarks belonging to the
same factor group are placed together and indicated by the same color.

At the bottom, we can notice the landmarks which do not correspond to a group
have considerably more observations compared to the grouped landmarks. This is
because landmarks with many camera observations are more difficult to group than
those with only a few observations. Additionally, they are more challenging to merge
into existing factor groups, as their camera observations are rarely a subset of any
group. As a result, implicitly represented landmarks typically have more observations
than explicitly represented landmarks.
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Figure 4.12: Performance of explicit, implicit, and factor SC evaluated in double preci-
sion on BAL problems characterized by the number of cameras and RCS
sparsity.

4.6.2 Performance analysis

Figure 4.12 shows the performance comparison of the explicit, implicit, and factor SC
solvers evaluated on BAL dataset. Across all tolerances, we can see factor SC solver is
clearly a blend of explicit and implicit SC. In Section 4.5, we conclude that explicit SC
performs better on smaller problems but worse on larger problems compared to implicit
SC, and factor SC performs competitive on both small- and large-scale problems. In
other words, factor SC solver achieves a much more stable performance on varied
kinds of problems, it consistently scores close to the fastest solver on every problems,
particularly at lower tolerances τ = {0.01, 0.001}, where the overhead to compute the
factor grouping can be better amortized.

Figure 4.13 shows the runtime evaluated on four distinct problems solved with 20
LM iterations. Alongside with allocation time, preprocess now also includes time for
factor grouping by our FP-tree. As illustrated in Figure 4.13a and 4.13b, factor grouping
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Figure 4.13: Runtime comparison of explicit, implicit, and factor SC solver on four BAL
problems with distinct characteristics evaluated in double precision.

consumes very little extra runtime, which only has a small impact on solver overall
performance. Note that the figure shows the total runtime, hence it primarily reflects
the performance at low tolerance. Since factor grouping is performed once before the
optimization, the impact on performance will be more noticeable if a solver runs only a
few iterations.

Across all problems in Figure 4.13, the runtime spent in the prepare phase of factor
SC is significantly reduced compared to explicit SC. In Section 4.5, we conclude that
constructing H̃pp explicitly has a quadratic time complexity, and hence prepare phase of
explicit SC consumes an extraordinary amount of runtime on dense or larger problems,
demonstrated again in Figure 4.13.

Despite the factor SC solver also constructs the explicit representation of the RCS for
some landmarks, factor grouping aids in mitigating the impact of quadratic complexity.
As illustrated in Figure 4.11b, the landmarks which have more observations mostly do
not belong to any factor group, therefore those landmarks are expressed as implicit
representation, which has a linear complexity. As a result, we are able to avoid building
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the costly explicit representation of those landmarks with many observations. On dense
or large-scale problems, as illustrated in Figure 4.13c and 4.13d, the runtime of prepare
is significantly improved compared to explicit SC.

Furthermore, the runtime spent in preconditioner of factor SC is also noticeable
improved. As shown in Figure 4.11b, the majority of landmarks are grouped, thereby
expressing as explicit representation. Consequently, the preconditioner phase of factor
SC is faster than implicit SC because building the preconditioner with the explicit
representation is relatively cheaper.

In Section 4.5.1, we reveal that multiplication with the explicit representation is often
slower on larger problems, which holds true for the factor SC solver as well. In Figure
4.13, the multiplication phase of factor SC also becomes less advantages on problems
with increasing scale compared to implicit SC.

Similarly, because factor SC incorporates the implicit representation as well, the ad-
vantage of cheaper multiplication with explicit representation is diminished compared
to explicit SC on smaller problems. As shown in Figure 4.13a, multiplication is a
substantial fraction of the total runtime.

On the other hand, the shortcoming of both representations are mitigated by factor
grouping. Compared to the explicit SC, multiplication phase of factor SC constitutes
only a small factor of the total runtime on large problems demonstrated by Figure
4.13d. In Section 4.5.1, we conclude that explicitly constructing RCS matrix H̃pp has a
quadratic complexity in the number of cameras. With factor grouping, the number of
cameras in each factor group is significantly lower than the total number of cameras of
the problem. As a result, a lower camera count in each group minimizes the impact of
quadratic complexity when constructing the explicit representation, which prevents the
explicit representation severely hindering the performance on larger problems.

In the results shown in Figure 4.12, the explicit and the implicit SC solver only
perform competitively on small- or large- scale problems. By applying factor grouping,
factor SC now produces competitive result across problems with different scale and
sparsity. This demonstrates that factor grouping allow factor SC overcoming the
weakness of explicit and implicit SC solvers while absorbing their strengths.

However, as our results demonstrate, factor SC is often not the fastest solver, where it
is slower on smaller issues than explicit SC and slower on larger problems than implicit
SC as demonstrated in Figure 4.12. This is a downside of combining two solvers. As
one solver is often faster than the other on certain problems, when the two solvers are
combined, the benefits of using the faster solver will be slightly compromised. However,
factor SC becomes an all-round solver that is competitive on all types of problems, it has
consistent performance on problems with different characteristics across all tolerances.

According to our findings, we suggest factor SC for solving small- to medium-scale
problems because it performs consistently regardless of the sparsity of a problem. It
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(a) Explicit SC (b) Implicit SC

Figure 4.14: Total runtime improvement of factor SC over explicit SC (a) and implicit SC
(b) on the same set of problems in [Car+14], solved with 20 LM iterations
and evaluated in double precision. Let t f and t as the total runtime of
factor SC and the comparing solver on a problem respectively, then the
runtime improvement using factor grouping is computed as (t− t f )/t.

is especially recommended if a precise solution is desired, as factor grouping is more
advantageous at lower tolerances.

4.6.3 Performance Comparison with the Original Implementation

Given that we reimplement the factor grouping method in our framework, it is in-
teresting to compare our implementation to the performance of the one in the paper.
We evaluated the explicit, implicit, and factor SC solvers on the same set of problems,
which are small- to medium-scale problems. Because the number of PCG iterations
varies across solvers due to numerical instability, it is better to compare the general
pattern rather than particular problem in our result.

We compare the performance of factor SC to explicit and implicit SC in Figure
4.14. When the bar of a problem is positive, it indicates factor SC outperform the
corresponding solver on that problem, and vice versa. The solvers are evaluated on
a subset of BAL problems, which include small-scale problems from dubrovnik and
trafalgar, and medium-scale problems from ladybug.

In Figure 4.14a, the performance of factor SC is compared to explicit SC. Factor SC
overall performs worse on small-scale problems and outperforms explicit SC only on
medium-scale ladybug problems. In comparison to implicit SC, factor SC is better at
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solving small-scale problems but falls short at solving medium-scale problems in Figure
4.14b. Our result coincides with our previous conclusion regarding the performance of
factor SC.

However, the implementation of factor SC in the paper outperforms implicit SC on
all the selected problems, while our implementation outperforms implicit SC only on
small-scale problems. Given the disparity on the medium-scale ladybug problems, it is
possible that there could be major differences between our and the authors’ factor SC
implementations. Either their implementation of explicit representation is significantly
faster on larger problems, or our implicit SC implementation is faster on smaller
problems.

In additional to the paper, we demonstrate that the time complexity of construct-
ing RCS representations is as critical as the complexity of PCG multiplication. We
thoroughly evaluate the performance of factor SC on the full BAL dataset. Compared
to implicit SC, factor grouping only demonstrates improvement on smaller problems
while not on the larger problems in our result.

4.7 Square Root Solvers

In this section, we compare the performance of the
√

BA,
√

IBA, and
√

FBA solvers.
First, we evaluate the performance of the three solvers on the BAL dataset. Then, we
analyze the runtime of the individual phases of the solvers. Finally, we discuss the
impact of memory consumption on runtime.

4.7.1 Performance Analysis

We demonstrate the performance difference of the square root solvers on the BAL
dataset in Figure 4.15. In short,

√
IBA is overall the fastest solver at high tolerance,

while
√

FBA is faster at low tolerance, and the performance of
√

BA is a blend of these
two solvers. On average, the performance difference between the square root solvers is
relatively small on varied problems compared to SC solvers.

Since
√

IBA repeatedly marginalizes landmarks in every PCG iteration,
√

IBA con-
ducts more floating point operations than

√
BA, therefore

√
IBA should be slower

than
√

BA. But in practice,
√

IBA demonstrates overall better performance at higher
tolerances τ = {0.1, 0.01} and similar performance at low tolerance τ = 0.001.

For
√

FBA, as it uses the explicit RCS representation for some of the landmarks, the
performance shows a similar trend as factor SC solver, where it becomes relatively
faster at lower tolerances. As a result, it is the fastest solver at tolerance τ = 0.001. It
indicates multiplication with the explicit RCS matrix is faster than multiplying two
times with Q>2 Jp.
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Figure 4.15: Performance of square root solvers evaluated in double precision on BAL
problems.

In Figure 4.16, we show the runtime of individual phases of the square root solvers. In
comparsion to SC solvers, square root solvers involve two additional phases: marginal-
izing landmarks using QR decomposition and damping the landmark variables. They
are denoted as marginalize_qr and damp_lms in the figure.

Because
√

IBA and
√

FBA must copy the Jacobian to a dedicated memory block and
then execute multiple phases sequentially without interruption, we group the individual
phases and categorize them stage1 and stage2. stage1 includes linearize and scaling
Jl in the landmark blocks. stage2 includes scaling Jp, damp_lms, marginalize_qr,
prepare, and preconditioner. In our study, we treat stage1 and stage2 as a whole.

Furthermore, as QR decomposition is performed once per PCG iteration at the land-
mark blocks for

√
IBA and

√
FBA, the operations performed during multiplication

are slightly different between square root solvers.
Across all problems in our result, the

√
BA phases before solving the linear system

contribute a significant amount of the total runtime. By comparison, stage1 and stage2
of other two solvers only consume around half the time that

√
BA does. In our result
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Figure 4.16: Runtime of individual phases of
√

IBA,
√

BA, and
√

FBA solvers evaluated
in double precision.

shown in Figure 4.16a, solely the sum of linearize and scale of
√

BA surprisingly
surpasses the runtime of stage1 and stage2 of

√
IBA combined.

As illustrated in Figure 4.16a, solely the sum of linearize and scale of
√

BA sur-
prisingly surpasses the runtime of stage1 and stage2 of

√
IBA combined. Particularly,

despite the fact that stage1 of
√

IBA does more computations than linearize of
√

BA,
stage1 is still substantially faster than linearize. Furthermore, since multiplication of√

IBA performs marginalization once per PCG iterations, one would expect it takes
up significantly more time compared to

√
BA. However, in our results, it is only more

slightly expensive for
√

BA.
We believe that this is because

√
IBA has a more efficient memory access pattern

than
√

BA. Compared to
√

BA,
√

IBA utilizes a more compact SC landmark block.√
BA stores the camera Jacobian blocks diagonally within the

√
BA landmark blocks,

whereas
√

IBA stores the Jacobian block vertically within SC landmark blocks, where
the blocks are placed closer in the SC landmark block than

√
BA.

Since we access the Jacobian block by block within a landmark block, the target
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memory location of the operations is then close to each other, which leads to a better
cache spatial locality. As a result, linearize using the SC landmark block should have
fewer write misses than the

√
BA landmark block, which results in a shorter runtime

despite the same number of floating point operations.
Similarly, multiplication of

√
IBA is only slightly more expensive than

√
BA across

the selected problems. As
√

BA marginalizes on each
√

BA landmark blocks, the CPU
needs to recall a large amount of memory to the cache. In contrast,

√
IBA copies the

Jacobian blocks from the compact SC landmark block to the dedicated memory blocks,
then marginalizes the landmarks on the memory blocks. As a result, most operations
of
√

IBA are performed on the dedicated memory blocks during optimization, which
leads to a better temporal locality than

√
BA.

Since the number of floating point operations of RCS multiplication (3.17) is the same
for
√

IBA and
√

BA, it implies marginalizing landmarks is only slightly most costly
than recalling the

√
BA landmark blocks from memory as demonstrated in Figure 4.16.

This highlights the importance of memory locality on the performance of a solver.
Moreover, since stage1 and stage2 group multiple phases together, the landmark

blocks of
√

IBA and
√

FBA are recalled less frequently compared to
√

BA, where it
recalls all landmark blocks once for each phase. Consequently,

√
IBA and

√
FBA have

a more efficient memory pattern than the corresponding phases of
√

BA, demonstrated
by the faster runtime in our result.

In Figure 4.15 at low tolerance and Figure 4.16, the multiplication phase of
√

FBA is
often faster than the other two square root solvers. Similar to factor SC, it again benefits
from the cheaper explicit RCS multiplication.

We also compare the performance of
√

FBA and factor SC in Figure 4.17a. In the
result, factor SC solver in general outperforms

√
FBA across all tolerances, while

√
FBA

only achieves competitive runtime on small problems. For a
√

BA landmark block, the
size scales quadratically to the number of observations of the landmark. Due to the
fact that multiplication is performed using

√
IBA landmark blocks, both the number of

floating point operations and the amount of memory to be recalled are increased in
comparison to the factor SC solver.

For a
√

BA landmark block, the size and floating point operations scale quadratically
to the number of observations of the landmark. This is also applied to

√
FBA, therefore

the amount of memory to be recalled and the number of floating point operations are
jointly increased. Consequently, multiplication of

√
FBA is more expensive than factor

SC as illustrated in Figure 4.17b.
Given that factor grouping tends to group landmarks with fewer observations,

landmarks with more observations are processed similarly to how
√

IBA works in
the
√

FBA solver. As previously mentioned, the number of floating point operations
scales quadratically to the number of observations, this leads to a worse multiplication
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Figure 4.17: Comparison of
√

FBA and factor SC solvers in double precision on BAL
problems is shown in (a). Runtime of individual phases on dubrovnik135
is illustrated in (b).

speed as shown in Figure 4.17b. As demonstrated by our results, factor grouping is
less suitable for square root formulation than the Schur complement trick.

4.7.2 Numerical Properties

As mentioned in the original paper, the square root formulation is more numerically
stable than the Schur complement. In Figure 4.18, we demonstrate the numerical
stability of both formulations in single precision on 1DSfM dataset. With the increased
number of LM iterations, a solver is expected to return a more accurate solution, where
the accurate is then only limited by the numerical properties of the solver.

Compared to BAL dataset, 1DSfM problems are usually more difficult to solve. In our
experiments, our solvers can usually reduce the BAL problems to tolerance τ = 0.1 in 1
or 2 LM iterations, while 5 iterations are required for the 1DSfM problems, therefore it
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Figure 4.18: Performance profiles of
√

IBA,
√

BA and implicit SC. It is evaluated on the
1DSfM problems with single precision, and the number of LM iterations is
increased to 100.

is a good candidate for testing the accuracy of a solver.
With high tolerance τ = 0.1, the implicit SC solver outperforms both square root

solvers with its faster multiplication. However, at tolerance τ = 0.01, implicit SC
reaches the accuracy for only 4 problems, while the square root solvers both achieve
a much higher accuracy. Moreover, at the lower tolerance τ = 0.001, implicit SC can
not reach the accuracy on any of the problems. This result emphasize the superior
numerical properties of the square root formulation.

4.8 Memory access pattern

In the last section, we discuss the impact of the better memory access pattern on perfor-
mance. Although

√
IBA requires more floating operations than

√
BA, it outperforms√

BA with better cache spatial and temporal locality. In this section, we provide more
evidence to demonstrate the importance of good memory access pattern.

Compared to
√

BA,
√

IBA marginalizes landmark variables on a dedicated chunk
of memory. In Figure 4.19, we demonstrate the performance difference between pre-
allocating the memory once before multiplications, and re-allocating the memory for
each landmark per multiplication. In our result, re-allocating the memory is on average
10% slower across all tolerances. The reason of the slower performance could be twofold.
As mentioned previously, since marginalization is always performed on the same chuck
of memory, it leads to a better temporal locality. Moreover, allocating and deallocating
memory usually consume noticeable amount of runtime, therefore real-time programs
usually pre-allocate the required memory upfront.

In Section 4.7, we demonstrate the runtime different between
√

IBA and
√

BA.
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Figure 4.19: Performance profiles of
√

IBA with pre-allocated and re-allocated memory
for marginalizing, evaluated on BAL dataset with single precision. Note
that pre-allocating version is used as default in other sections.
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Figure 4.20: Performance profiles of implicit SC solver with different multiplication
orders, evaluated on BAL dataset in double precision.

The main difference between
√

IBA and
√

BA is the method they obtain Q>2 Jp for
multiplication. We show that the cost of recomputing Q>2 Jp on demand is only slightly
higher than recalling it from memory. Similarly, we study the cost of recalling matrices
from memory with implicit SC solver in Figure 4.20. implicit-cache constructs J>p Jl , then
the matrix is recalled from memory for vector-matrix multiplication in (3.1). In contrast,
implicit-on-the-fly computes J>p Jl for each multiplication.

The implementation of prepare and multiplication between
√

IBA and
√

BA are
largely different. In contrast, the only difference between the solvers in Figure 4.20
is the multiplication order, this can better illustrate the cost of recalling matrix from
memory.

In the result, implicit outperforms the others, where it does not form J>p Jl . The
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reason is because the time complexity of vector-matrix multiplication is better than
matrix-matrix multiplication. Given a square matrix of size n× n, the complexity of
vector-matrix multiplication is O(n2) and matrix-matrix multiplication O(n3). Despite
the cost of reallocating memory for J>p Jl , on-the-fly variant noticeably outperforms cache
variant. This experiment indicates that retrieving computed data from memory might
be more costly than computing it. This is something to consider while implementing a
BA solver, which is also suggested in [Wu+11].

4.9 Power BA

As previously demonstrated, the power BA solver is substantially faster than the other
solvers. In this section, we compare power BA to another competitive solver, implicit
SC solver.

4.9.1 Performance Analysis

The upper plot in Figure 4.21 shows the time spent in each inner iteration, and the
lower plot shows the residual reduction of each inner iteration within one LM iteration.
We disable the termination criteria in this experiment and set both the number of LM
and inner iterations to 20 for a more accurate one-to-one comparison.

As illustrated in the upper plot, the average duration of inner iterations is relatively
similar for both solvers. This implies that if the number of inner iterations is identical,
the total runtime spent in the multiplication phase for both solvers should be similar.
We perform matrix-vector multiplication twice per 10 iterations in our PCG imple-
mentation to increase convergence rate. As a result, the runtime of implicit SC solver
occasionally spikes. Nonetheless, it should have a negligible impact on the overall
runtime of a solver.

The lower plot depicts the residual reduction achieved during each iteration of the
LM, where the current residual (2.22) is evaluated at every inner iteration. Ideally, if a
solver consistently reduces the residual at each inner iteration, the curve will decline
monotonically from 1 to 0 for every 20 inner iterations.

As illustrated in the plot, power BA constantly decreases the residual value during
inner iterations. Both solvers achieve a greater reduction in residuals in the first few
inner iterations of early LM iterations, as evidenced by the sheer drop following the
first inner iteration of each LM iteration. Compared to power BA, the curve of implicit
SC sometimes oscillates at some inner iterations. It means if implicit SC stops a few
iterations earlier, the residual decrease could be dramatically different. This implies
power BA is far more stable for reducing the residual compared to implicit SC. This
phenomenon is also often observe in other problems, and it can be more dramatically
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than this plot shown. Consequently, the solution computed by implicit SC after a
LM iteration may sometimes be higher than initial residual, and the update will be
rejected by LM algorithm. In our experiments, the solution computed by power BA is
considerably less likely to be rejected by LM than implicit SC.

We demonstrate the runtime of individual phases of power BA and implicit SC
solvers in Figure 4.22. Due to the fixed order of power BA, it usually has less inner
iterations than the other solvers. Yet, as illustrated in the previous figure, the two
solvers should have a similar runtime for multiplication when the number of inner
iterations is identical.

On the other hand, power BA has significant runtime benefits in the result because
it does not need to compute the preconditioner. For power BA, the runtime spent in
prepare is significantly less than the sum of the prepare and preconditioner phases for
the implicit SC solver, despite the fact that the prepare phase of power BA is slightly
more expensive due to the additional computation for the diagonal blocks of Hp p−1.

The performance profiles of the power BA and implicit SC solvers are shown in
Figure 4.23. The LM and inner iterations are again both set to 20, thus the total number
of inner iterations for both solvers is the same. At higher tolerances τ = {0.1, 0.01},
power BA outperforms implicit SC, as it is less likely to be rejected by LM and benefits
from the absence of a preconditioner. However, given the same number of inner
iterations and a low tolerance τ = 0.001, it cannot reach the same level of accuracy as
implicit SC. This may indicate that the approximation computed by power BA is less
accurate than implicit SC.

In summary, power BA can converge significantly faster than implicit SC to a less
accurate solution during the early LM iterations. However, it is less accurate than
implicit SC since it cannot achieve the same level of accuracy on most BAL problems as
demonstrated in our experiments.
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Figure 4.21: Visualization of the inner iterations runtime (a) and reprojection residual
reduction (b) of power BA and implicit SC solvers evaluated in double
precision on venice1544. The number of LM iterations and inner iterations
are both set to 20, hence 400 inner iterations in total. Figure (a) shows the
runtime per inner iteration. Figure (b) illustrates the reprojection residual
(2.22) reduction per LM iteration. For each inner iterations, we show the
percentage of reduction between the error at the start of LM iteration, and
the minimal achieved residual across the 20 inner iterations of that LM
iteration. 100% indicates no reduction at the current inner iteration, and
0% indicates the error is reduced to the minimal across 20 iterations. The
percentage is capped at 1.1 since the error can be larger than the initial
error value.
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Figure 4.22: Total runtime of the individual phases of power BA and implicit SC solvers
on four selected BAL problems with different characteristics evaluated in
double precision.
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Figure 4.23: Performance profiles of power BA and implicit SC. It is evaluated on
the BAL dataset in double precision, and the number of LM and inner
iterations are fixed to 20.
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5 Conclusion

In this work, we revisit the idea of using factor grouping to accelerate solving BA
problems. We propose a new solver by combining factor grouping with the square root
formulation. In addition, we present two new solvers: a solver which uses the implicit
representation of the square root formulation, and a solver which approximates the
solution of the linearized BA problem by power series.

We evaluate and compare the performance of seven different solvers. For fair
comparison, we develop an efficient implementation of all solvers that is parallelized
and supplemented by SIMD vectorization. The implementation of our solvers is
extensively evaluated on three datasets, which cover small- to large-scale and sparse to
dense problems.

We study the performance details of the solvers from different perspectives through
multiple visualizations. Our research demonstrates that the time complexity of the
operations of a solver has a significant impact on performance. Our examination of
explicit, implicit, and factor SC solvers reveals that different the time complexity can
result in a significantly different runtime.

Based on experiments with multiple settings, we reveal that the memory access
pattern of a solver is another influential factor to the performance, which is usually
opaque in the result and difficult to verify. As demonstrated in our results, although
our implicit square root solver

√
IBA involves many more floating point operations

than
√

BA, it is typically faster or has similar overall performance with
√

BA. The cost
of the extra floating point operations in

√
IBA is offset by the better memory access

pattern.
The characteristic of the factor grouping system is thoroughly investigated. In

particular, we study the grouping result of the FP-tree as well as the time complexity
of explicit and implicit RCS representation. We reveal the influence of the grouping
result to the performance of factor grouping scheme in terms of time complexity. While
authors of factor grouping focus solely on the time difficulty of PCG multiplication, we
find that the time complexity of preparing the linear system has an equivalent impact
on performance. We demonstrate that although factor SC is very competitive on a
variety of problems, we find that it is often slightly slower than explicit SC on small
problems and implicit SC on large ones.

After analyzing the result produced by FP-tree, we notice that factor group scheme
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5 Conclusion

is less suitable for square root formulation as compared to Schur Complement trick.
Because landmarks with more observations are treated in the same way as

√
IBA in√

FBA, the disadvantage of quadratic complexity of marginalization by QR decomposi-
tion becomes more apparent.

In summary, we observe that for large-scale problems, the implicit SC solver is still the
de facto choice. For small- to medium-scale problems, we recommend factor SC solver.
Although it is slightly slower than explicit SC on smaller problems, it has consistently
competitive performance on dense problems, where explicit SC is extremely slow.

For solving a problem in single precision, we recommend the implicit square root
solver

√
IBA. In our results,

√
IBA is generally faster than

√
BA and

√
FBA. Square

root solvers have superior numerical properties to SC solvers, which enables them to
compute a more precise solution in single precision at similar speed.

Power BA is recommended for those that can perform optimization in double
precision and value speed over accuracy. It is significantly faster than other solvers but
has lower accuracy.

Finally, we extensively analyze the influence of time complexity and memory access
pattern on performance. They have a significant impact on the performance as demon-
strated by our experiments. When designing a BA solver, caution should be exercised
to these two aspects.
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