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Abstract

Autonomous driving relies on accurate and efficient state estimation. Owing to the fact
that sensors are becoming smaller, lighter and cheaper, the fusion of different kinds of
sensors becomes more applicable. Nowadays, these techniques have been used on obstacle
detection, path planning, autonomous driving, and even VR gaming.

Simultaneous localization and mapping, so-called SLAM, can be classified into direct
method and feature-based method: the former is based on optimizing the photometric
error and the latter is based on optimizing the reprojection error of features. Both meth-
ods have their own advantages. Direct method uses every pixel in images to estimate the
state and thus more accurate, and the feature-based method builds features on some local
sub-images and thus more robust to distortion and illumination.

In this thesis, a novel approach for state estimation by using visual inertial simultane-
ous localization and mapping (VI-SLAM) with multiple cameras is presented. It combines
the advantages of feature-based method with optical flow, and is able to operate in real
time. The major challenge is to find an efficient way to transmit the information from
visual-inertial odometry to the mapper in order to create a consistent gravity aligned map.
In this thesis, the corresponding method and the evaluation would be discussed in details.
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Chapter 1

Introduction

1.1 What is computer vision?

Figure 1.1: Human vision vs Computer vision

Computer vision is one of the important areas of computer science which aims to teach ma-
chine how to understand images and extract information from them. We hope that we can
use cameras and computers to replace human eyes and brains to do recognition, recitifica-
tion, relocalization, etc. By implementing algorithms (the knowledge or theory we deliver
to computer), which can turn measurements to another form of information such as depth
measurement to camera pose. The process of scene understanding is a hierarchy as follows.

Low-level vision: de-noising, bluring, de-bluring, edge detection, keypoints extrac-
tion. See fig 1.2

Mid-level vision: image segmentation, depth estimation, keypoint description, optical
flow estimation. See fig 1.3.

High-level vision: classification of segments, object recognition, mapping and local-
ization. See fig 1.4.



2 1. Introduction

Figure 1.2: left: origin, middle: Gaussian filter, right: median filter (Original image cour-
tesy of Mr.Joseph E. Pascente. Lixi, Inc)

Figure 1.3: Example of Optical flow[26]

Figure 1.4: Example of SLAM
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1.2 Physics and computer vision

Computer vision is also a science to understand the physical world through different kinds
of sensors (camera, radar, lidar, Inertial measurement unit (IMU)), therefore the idea and
the mathematics used in computer vision are very similar in the following aspects.

Loss function: In physics, equation of motion can be derived from loss function in-
cluding Klein Gordan equation for spin-0 particle, Dirac equation for spin-1

2
particle, etc.

In computer vision, we also construct loss function (error function) to find the best state to
minimize the error function. The state in computer vision can be poses of camera, intrinsic
parameters of camera, landmarks’ position, etc.

Triangulation: In physics, we always use it in measuring the distance between the Earth
and a star by parallex. The parallex is obtained by measuring the view of angle on one
day and on a day six months later. The difference of view of angle yields the distance.
It is similar in computer vision, we triangulate those features which exist in at least two
images yielding 3d points. Those 3d points can be used to localize new images.

Group theory-Lie group and Lie algebra: In physics, we use this to examine a
system if it has any symmetry. For example, If a Hamiltonian remains unchanged under
SO(3)/U(1) transformation, then the angular momentum/charge is conserved. We also
know that the eigen states are degenerated under the symmetry. In computer vision, Lie
group and Lie algebra are mainly used in finding optimizer of an error function.

Other physics concepts: For instance, the concept of torque is used in calculating
the orientation of an image patch in order to do feature matching correctly.

1.3 Motivation

One of the biggest challenges in robot navigation is how a robot navigates and localizes
itself in an unknown environment. One simple solution is dead reckoning, based on the
previous status and the current velocity to estimate the current status. Nowadays, peo-
ple use Inertial Measurement Unit (IMU) to measure the acceleration which makes dead
reckoning more accurate, however these techniques cannot avoid the error to accumulate
to the next state estimation, and the error becomes huge over time.

People add different measures in the calculation to reduce the drift such as positions of
significant landmarks. In ancient navigation, sailors would use different instruments to
determine the position of islands to correct the estimation of velocity.

We can either use the landmarks with global coordinate or the landmarks that have ob-
served in early times in order to remove the drift completely, just as sailors use lighthouses
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or stars to locate themselves, or in a maze, people remember the place and then recognize
that if they revisit it.

In this thesis, we will try to turn Basalt-vio to a slam system to remove drift by loop-
closure and extend it to online multi-camera localization based on the maps created by
those cameras.

1.4 Related work

Simultaneous Localization And Mapping (SLAM) is an algorithm to track the current
position while building a map at the same time for later use[7][2]. During 1986-2004,
probabilistic formulations for SLAM had been developed, for instance, Extended Kalman
Filter[10] and Particle Filter[1]. During 2004-2016, the slam research was focused on the
fundamental property of SLAM, such as observability, convergence and consistency. Today,
3d object detection using deep learning is becoming a hot topic.

Figure 1.5: Demotration of PTAM[17]

MonoSLAM[9], the first slam system was developed by Davison et al in 2003. It is a filter-
base slam. There is only one state vector to represent all positions of 3d points and all
poses, and keep updating by Extended Kalman Filter. As we can see, the size of the state
vector increases in proportion to the size of the map, thus MonoSLAM is not able to run
in real time. After that, Parallel Tracking And Mapping (PTAM)[17] was developed by
Georg Klein and David Murray in 2007. It is the first algorithm spliting the tracking and
the mapping into two different threads on CPU. To track the camera pose, 3d mappoints
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Figure 1.6: Structure of ORB-SLAM[20]

project on a 2d image to find corresponding pairs by matching the texture. To build or
update the map, it would triangulate unmatched points on the reference frame. It also
optimizes the mappoints by local bundle adjustment and optimizes all poses of keyframe
and mappoints by global adjustment. In 2015, ORB-SLAM[20] has been developed by Raul
Mur-Artalet al. Instead of two threads for tracking and mapping, it has three threads for
tracking, mapping and loop-closing. Without loop-closing, the slam system treats every
sence a new sence and thus it is deemed to drift over time. ORB-SLAM would detect
loops, close the loop and optimize all the poses by pose-graph optimization (it is very fast
comparing to BA, hence it can close the loop in real time). Furthermore, it is the first
algorithm to use oriented binary feature, which is much faster and capable of handling a
lot of keypoints in real time.

1.5 Outline

Chapter 2 will introduce the basic knowledge that we need for this thesis, including co-
ordinate system, feature detection and matching, Lie group and Lie algebra, probabilistic
theory and triangulation. In Chapter 3, we will discuss the contributions and provide
qualitative and quantitative testing results. Last but not least, Chapter 4 will summarize
this thesis.
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Chapter 2

Fundamentals

2.1 Lie group and Lie algebra

A group is a set ◦ : G×G→ G satisfying four properties,

1. Closure, ∀a, b ∈ G, a ◦ b ∈ G

2. Associativity, ∀a, b, c ∈ G, (a ◦ b) ◦ c = a ◦ (b ◦ c)

3. Identity element, ∃e ∈ G, s.t ∀x ∈ G, e ◦ x = x ◦ e = x

4. Inverse element, ∀a ∈ G,∃b ∈ G s.t e ◦ x = x ◦ e = x

Lie group is a group with continuous elements. A rigid body motion is composed of
translation and rotation. These are continuous motion in space, so that they can be
represented by lie group. Lie algebra is the generator of Lie group, which lives in the
tangent space of Lie group[11][27]. The adjoint of Lie algebra is used to transform the Lie
algebra from one tangent space to another. To define the adjoint of Lie algebra, suppose
that G is a Lie Group and L(G) is the Lie algebra associated with G, for R ∈ G and
Φ ∈ L(G), the adjoint of Lie algebra is showed as follows,

adRΦ = ln(RΦ∧R−1)∨ (2.1)

where ∧ changes the Lie algebra to the correspondent element in Lie Group and ∨
changes the element from Lie Group to its correspondent element in Lie Algebra.

From the above definition, the following equation hold for any Φ ∈ Rd, where d is the
degree of freedom of the Lie group.

ReΦ = eadRΦR (2.2)

To perform efficient optimization with Gaussian-Newton or Levenberg-Marquardt algo-
rithms, we need to define Jacobians that represent a linearization of the cost function.
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Since the addition of two elements from Lie group is not in Lie group, the traditional
definition of differentiation (f(x+∆x)−f(x)

∆x
) is not suitable for Lie group. Here, we will use

left-tangent space perturbation to define differentiation. We just need to be careful when
we update the minimizer after each iteration of optimization.

2.1.1 Rotation

The special orthogonal group, representing rotation,

SO(3) = {R ∈ R3x3|RTR = RRT = I, detR = 1} (2.3)

SO(3) is a non-commutive group, which means that R1, R2 ∈ SO(3) ; R1R2 = R2R1. We
can use exponential map to change Lie group to the corresponding Lie algebra and vice
versa.

R = eΦ (2.4)

where R ∈ SO(3) and Φ ∈ so(3).

Φ is an anti-symmetric matrix, we can write it as a 3-vector φ. People use ∧ and ∨
to interchange these two forms of Lie algebra (only Φ = φ∧ satisfies the definition of Lie
algebra).

Φ = φ∧ =

 0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0

⇐⇒ φ = Φ∨ =

−Φ23

Φ13

−Φ12

 (2.5)

By expanding the exponential, we get a close-form transformation from φ to R so called
Rodrigues formula. Let a = φ

|φ| , we obtain

R = cosφ+ (1− cosφ)aaT + sinφ a∧ (2.6)

and its inverse

ln(R) =
θ

2 sin θ
(R−RT ) (2.7)

θ = arccos(
tr(R)− 1

2
) (2.8)

2.1.1.1 Adjoint

Adjoint of Lie algebra will be used when we calculate the derivative of relative rotation
with respect to an absolute rotation. For Φ ∈ so(3) and R ∈ SO(3), let Φ = wt, we take
derivative of eq.2.2 with respect to t and perform taylor expansion, we obtain

adR = R (2.9)
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2.1.1.2 Jacobians

Let p0 to be the original point, p = Rp0 is the transformed point ,then

∂p

∂R
≡ ∂p

∂φR
=

∂

∂w
ew
∧
Rp0|w=0 = −p∧ (2.10)

where φR = ln(R) and w ∈ R3.

REMARKS: When there is a derivative w.r.t a Lie algebra, we will change the symbol
of Lie algebra to its Lie group for convenience, for exmaple, ∂p

∂φR
≡ ∂p

∂R
.

To calculate the jacobian of relative rotation, let R2 = RT
1R0, R3 = R1R

T
0 and again

using left tangent space perturbation to define differentiation (eεR2 = R1e
w∧R0) and

R1e
w∧ = eadR1

wR1

∂R2

∂R0

=
∂ ln(RT

1 e
w∧R0R

−1
2 )

∂w
|w=0 = adRT1 = RT

1 (2.11)

∂R2

∂R1

=
∂ ln(RT

1 e
−w∧R0R

−1
2 )

∂w
|w=0 = −adRT1 = −RT

1 (2.12)

∂R3

∂R0

=
∂ ln(R3e

−w∧RT
3 )

∂w
|w=0 = −adR3 = −R3 (2.13)

∂R3

∂R1

=
∂ ln(ew

∧
R1R

T
0R
−1
3 )

∂w
|w=0 = I3x3 (2.14)

2.1.2 Rigid body transformation in 2D

The special Euclidean group represents the pose in 2-dimension. This will be used in
optical flow algorithm.

SE(2) = {S =

[
R t
0T 1

]
,∈ R3×3|R ∈ SO(2), t ∈ R2} (2.15)

SE(2) is a non-coummutive group. Each element is composed of 2d rotation and 2d trans-
lation. Again, we can use the exponential map to transform a Lie algebra element to its
corresponding Lie group element and vice versa. In order to do so, similar to the SO(3)
case, we first find the generators of the group by

Gi =
∂

∂αi
S (2.16)

where αi ∈ {ux, uy, θ}, u is the translation vector and the θ is the rotation angle.
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G1 =

0 0 1
0 0 0
0 0 0


(2.17)

G2 =

0 0 0
0 0 1
0 0 0


(2.18)

G3 =

0 −1 0
1 0 0
0 0 0


(2.19)

So, we define δ =
(
ux uy θ

)T
, such that

∆ = δ∧ = αiGi =

(
θσx u
0 0

)
(2.20)

where σx =

(
0 −1
1 0

)
.

By expanding the exponential, we get a close-form transformation from δ to S,

S =

(
eθσx V u

0 1

)
(2.21)

where V = 1
θ

(
sin θ −(1− cos θ)

1− cos θ sin θ

)
and its inverse

ln(S) = ln

(
R t
0 1

)
=

(
V −1t
θ

)
(2.22)

θ = arctan(
R21

R11

) (2.23)

2.1.2.1 Adjoint

Adjoint of se(2) is defined as follows,

Se∆ = eadS∆S (2.24)

Let ∆ = wt, take derivative with respect to t and perform taylor expansion, we can get,

adS =

(
R −σxt
0 1

)
(2.25)

2.1.2.2 Jacobians

Jacobians will be used to minimize the photometric error later in optical flow. Let p0 to
be the origin point and p = Sp0 the transformed point, then

∂p

∂S
=

∂

∂w
ew
∧
Sp0|w=0 =

(
I2×2 σxt

)
(2.26)
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2.1.3 Ridge body transformation in 3D

The special Euclidean group represents the pose in 3-dimension. This will be used in
bundle adjustment.

SE(3) = {T =

[
R t
0T 1

]
,∈ R4×4|R ∈ SO(3), t ∈ R3} (2.27)

SE(3) is also a non-coummutive group. Each element is composed of 3d rotation and
3d translation. Once again, we can use the exponential map to change Lie group to the
corresponding Lie algebra and vice versa. In order to do so, just like the SO(3) and SE(2)
case, we first find the generators of the group by

Gi =
∂

∂αi
S (2.28)

where αi ∈ {ux, uy, uz, w1, w2, w3}.

G1 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


(2.29)

G2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0


(2.30)

G3 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


(2.31)

G4 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0


(2.32)

G5 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0


(2.33)

G6 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


(2.34)

So, we define δ = [ux, uy, uz, w1, w2, w3]T = [u,w]T , such that

∆ = δ∧ = αiGi =

(
w∧ u
0 0

)
(2.35)

By expanding the exponential, we get a close-form transformation from δ to S.

T =

(
R V u
0 1

)
(2.36)

where θ = |w|, V = I + sin θ
θ
w∧ + 1−cos θ

θ2
(w∧)2 is the Rodrigues formula and V = I +

1−cos θ
θ2

w∧ +
1− sin θ

θ

θ2
(w∧)2 and it inverse just

ln(T ) = ln

(
R t
0 1

)
=

(
V −1t
lnR

)
(2.37)

where lnR can be calculated by eq.2.7
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2.1.3.1 Adjoint

Adjoint of se(3) is defined as follows,

Te∆ = eadT∆T (2.38)

Let ∆ = wx, take derivative with respect to x and perform taylor expansion, we can get,

adT =

(
R t∧R
0 R

)
∈ R6×6 (2.39)

2.1.3.2 Jacobians

Jacobians will be used to optimize the relative poses (for example T−1
wt Twh) later in the

section of optical flow. Let p0 to be the origin point, pt = Tthph the transformed point,

∂p

∂T
=

∂

∂w
ew
∧
Tp0|w=0 =

(
I3×3 −p∧

)
(2.40)

For calculating the jacobian of relative pose, let Tth = T−1
wt Twh and T ′th = TtwT

−1
hw , note

that even Tth = T ′th, their jacobians are not the same due to the fact that we use left
tangent space perturbation to define derivative of poses, and again use the left tangent
space perturbation to define differentiation, Tew

∧
= eadTw

∧
T and T−1

wt TwhT
−1
th = I4x4

∂Tth
∂Twh

=
∂ ln(T−1

wt e
w∧TwhT

−1
th )

∂w
|w=0 = adT−1

wt
(2.41)

∂Tth
∂Twt

=
∂ ln(T−1

wt e
−w∧TwhT

−1
th )

∂w
|w=0 = −adT−1

wt
(2.42)

∂T ′th
∂Twh

=
∂ ln(TtwT

−1
hw e

−w∧T ′−1
th )

∂w
|w=0 = −adTth (2.43)

∂T ′th
∂Twt

=
∂ ln(ew

∧
TtwT

−1
hwT

′−1
th )

∂w
|w=0 = I6×6 (2.44)

2.2 Inertial measurement unit (IMU)

Inertial measurement unit, also known as IMU is composed of a gyroscope and accelerom-
eter. Gyroscope is used to measure the angular velocity with respect to its own IMU
coordinate. Accelerometer is then used to measure the linear acceleration.

A gyroscope measurement can be split into three parts, the ground true angular
velocity (w), bias (bg) and zero Gaussian noise (ηg).

w̃ = w + bg + ηg (2.45)
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Figure 2.1: IMU coordinate

where ηg = N(0, σ2
gyro).

An accelerometer measurement can be split into four parts, the acceleration of IMU
in world coordinate ( aw ), the gravity acceleration in world coordinate ( gw ), bias ( bb a) and
(3) zero Gaussian noise ( ηb a).

ãb = Rbw( aw − gw ) + bb a + ηb a (2.46)

where b and w denote quantities in IMU coordinate and world coordinate respectively, and
ηa = N(0, σ2

acc).

To transform the measurements of IMU into pose and velocity, we use the kinematic
equations,

Rwb(t+ ∆t) = Rwb(t) e
(w(t)∆t)∧ (2.47)

v(t+ ∆t)w = v(t)w + a(t)w ∆t (2.48)

s(t+ ∆t)w = s(t)w + v(t)w ∆t+
1

2
a(t)w ∆t2 (2.49)

To use the measurements for predicting the next state, we insert eq. 2.45 and eq. 2.46 into
kinematic equations,

Rwb(t+ ∆t) = Rwb(t) exp(((w̃(t)− bg(t)− ηg(t))∆t)∧) (2.50)

v(t+ ∆t)w = v(t)w + gw ∆t+Rwb(t)( ˜a(t)
b

− bb a − ηb a)∆t (2.51)
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s(t+ ∆t)w = s(t)w + v(t)w ∆t+
1

2
gw ∆t2 +

1

2
Rwb(t)( ˜a(t)

b
− bb a − ηb a)∆t

2 (2.52)

2.3 Camera models and Calibration

A camera is an electronic device to project a 3D world into a 2D plane, we will introduce
several camera models.

2.3.1 Coordinate system

We need different kinds of coordinate in a bid to represent locations of landmarks, poses
of cameras and keypoints in images. Camera models are the ways to transform coordinate
between these coordinate systems.

Figure 2.2: World, camera and pixel coordinate

2.3.1.1 World coordinate

The world coordinate can be fixed by given a prior map or using the first frame as reference
frame if there is no prior coordinate system.

2.3.1.2 Camera coordinate

The origin of the camera coordinate is located at camera center and one of the axes is
aligned to the principal axis. The transformation between world coordinate and camera
coordinate is a rigid body transformation.

2.3.1.3 Image coordinate

The image coordinate is obtained by projecting corresponding camera coordinate onto an
image plane.
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2.3.2 Camera models

We will represent pixel coordinate as u = [u, v, 1]T = [ũ, 1]T ∈ P2 and 3D points in camera
coordinate as X = [X, Y, Z, 1]T = [X̃, 1]T ∈ P3. Also, camera models are mapping from
camera coordinate to pixel coordinate π : P3 → P2, its inverse π−1 : P2 → P3 unproject
image coordinate to the bearing vector.

There are several famous camera models, which are based on different theories and have
different numbers of degree of freedom, for example, pinhole camera model (4 DoF), field-
of-view camera model (5 DoF), unified camera model(5 DoF), extended unified camera
model (6 DoF)[16], double sphere camera model (6 DoF)[32] and Kannala-Brandt camera
model (6 or 8 DoF)[15]. In this section, we will have a brief introduction to the pinhole
camera model and double sphere model, the former is the simplest camera model and the
latter will be used in this thesis.

2.3.2.1 Pinhole camera model

Figure 2.3: Pinhole camera model

Pinhole camera model is a linear transformation between image coordinate and pixel co-
ordinate, which has four degree of freedom i = [fx, fy, cx, cy] with the projection function
below,

u =

uv
1

 = π(X̃, i) ◦X =

fx 0 cx 0
0 fy cy 0
0 0 1 0



X
Y
Z
1

 (2.53)

2.3.2.2 Double sphere camera model

Double sphere camera model is a non-linear transformation between camera coordinate and
pixel coordinate. It has a close-form inverse and six degree of freedom i = [fx, fy, cx, cy, ξ, α],
while the extra two degrees of freedom are used to deal with the image distortion created
by the camera, for example, fish eye camera. The projection function is defined as,
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Figure 2.4: Double sphere camera model[33]

u =

uv
1

 = π(X̃, i) ◦X =

fx X
αd2+(1−α)(ξd1+Z)

+ cx
fy

Y
αd2+(1−α)(ξd1+Z)

+ cy
1

 (2.54)

d1 =
√
X2 + Y 2 + Z2 (2.55)

d2 =
√
X2 + Y 2 + (ξd1 + Z)2 (2.56)

2.4 Features detection

Features are special subset of the image which contains more information, so they are easily
described and robust to view of angle, for example, corners, lines and blobs etc. There are
two types of feature detection, indirect and direct method.

2.4.1 Indirect method

An image is composed of a matrix of brightness or colours (red, blue and green). One of
the common ways to compare two images is to find several representative points in both
images, and turn the brightness around those representative points into another mathe-
matical representation which can be compared to each other easily. A good mathematical
representation for a feature should fulfill requirements below.

1. Distinctiveness: Different features should have distinct feature descriptor.

2. Invariance: The same feature can be found across the images and it should be re-
gardless to the geometric (translation, rotation, affine, projective transformation)
and photometric (brightness) changes. See Fig 2.5
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(a) Geometric change[30] (b) Photometric change

Figure 2.5: Geometric and photometric changes

3. Robustness: The feature descriptors are robust to noise, blur, quantization and etc.

4. Efficiency: The number of features should be much smaller than the number of pixel
in the image.

5. Locality: The features are created by the pixels nearby the feature corners, which
make the feature robust to clutter and occlusions.

There are many features extraction algorithms developed, such as Scale-invariant feature
transform (SIFT)[19], Speeded up robust features (SURF)[4], Oriented Features from Ac-
celerated Segment Test (FAST)[23] and Binary Robust Independent Elementary Features
(BRIEF)[8]. In the following, we will briefly introduce Oriented FAST corner detection
and BRIEF descriptor which are used in our thesis.

2.4.1.1 Oriented FAST corner detection

The first step to construct features is finding ”interesting points” in the image. The FAST
corner detector[23] was originally developed by Edward Rosten and Tom Drummond in
2006. It has been widely used in many computer vision tasks because of its computational
efficiency. It is faster than many other well-known feature extraction methods, such as (1)
Difference of Gaussians (DoG) which requires to apply gaussian filter for several times to
the image and (2) Harris corner detectors which needs to calculate the derivative of x- and
y-direction for each pixel in order to calculate Harris score.

In the contrary, computing FAST corner score does not require to calculate any derivative
but just compare the brightness with its neighbour. The steps are as follows:

1. Assume its brightness is Ip ∈ [0, 255] for a selected pixel p.

2. Set a threshold T to distinguish the testing pixel being inside or outside the corner.
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Figure 2.6: Fast corner detection[23]

3. Draw a circle centered at pixel p with radius 3 pixels, there are 16 pixels on the
circumstances.

4. If there are at least N contiguous pixels that are either all T brighter or T darker
than Ip, than we consider pixel p a feature corner, we usually take N=12.

5. Apply the above steps to every pixel in the image.

To make the algorithm faster, we can apply an high-speed test for rejecting non-corner
points. For N=12, we test only the pixel 1, 4, 9, 13. Pixel p can only be a corner if and
only if at least 3 out of 4 sampling pixels that are all brighter or darker than Ip. Moreover,
since the neighbour of a pixel should also have similar FAST corner score to some extent,
it would lead to too many feature corners in a small region of the image. In order to tackle
this problem, we apply non-maximal suppression to filter some feature corners based on a
few criteria.

We calculate the orientation of a keypoint by calculation of an Intensity Centroid. There
is an analogy between Intensity Centroid and calculating center of mass in physics. The
step of Intensity Centroid for sub-image S, is as follows,

1. The torque in x-direction (τx) is
∑

x,y∈S x · I(x, y).

2. The torque in y-direction (τy) is
∑

x,y∈S y · I(x, y).

3. The total intensity (I) is
∑

x,y∈S I(x, y).

4. The center of intensity (Cx,Cy) is ( τx
I
, τy
I

).
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5. The orientation of subset S is defined as arctan(Cx
Cy

) = arctan( τy
τx

).

Note that the steps above works are suitable for any 2d coordinate system.

2.4.1.2 BRIEF descriptor

Figure 2.7: Five different approaches to choosing the pairs of points[8]

After extracting N ”interesting” points, we need to describe those points. BRIEF is a
binary feature descriptor[8], which is usually a 128 bit to 512 bit string. Since it is stored
as a vector with elements only 0 or 1, it is easy to compute and do matching with other
descriptors, which makes it extremely fast while having high repeatabilty at the same time.

To construct a binary feature vector for an image patch, we first select n pairs of points
based on different kinds of sampling method and perform binary test (t), so the BRIEF is
vector of the responses of the binary test. Assume p(i,n) be the n-th element in the i-th
pair, the i-th element of binary feature vector (v[i]) is calculated by the following equation,

v[i] =

{
1 p(i, 0) > p(i, 1)

0 else
(2.57)

2.4.2 Direct method

Instead of constructing feature descriptor for each corner, the main idea of direct method
is to use the intensity directly. Direct method has become a hot research topic due to
several reasons.

1. Compared to indirect method which construct thousands features, direct method
take all pixel in the image into account, and thus make sure that no information is
missing.



20 2. Fundamentals

2. Indirect method detects corners and creates descriptors. For a scene with no obvious
texture, direct method can perform better.

2.5 Features matching

After creating features for each image in the sequence, we will find those features that also
exist in other images. The idea of matching features is basically testing the similarity of
two feature descriptors through their inner product, If it is smaller than the threshold,
then it is considered as a match. However, it is expensive to perform bruce force matching
to all features in those two images, hence we filter some candidates that do not match the
geometric constraint. Here are two examples.

2.5.1 Epipolar constraint

Given the keypoint position in one frame and the relative pose between two frames, we
can draw an epipolar line on the second frame and the corresponding feature must lie on
the line, see Fig 2.8a

Assume x1 (in homogeneous coordinates) be the keypoint position in image coordinate
of the first frame, X be the corresponding 3d position, R be the rotation from 1st camera
coordinate to 2nd camera coordinate, -T is the displacement from 2nd camera center to
1st camera center. Therefore, we have,

λ1x1 = X (2.58)

λ2x2 = RX + T = λ1Rx1 + T (2.59)

(a) Epipolar constraint (b) Reprojection constraint

Figure 2.8: Visualization of geometric constraint



2.6 Probability theory in visual navigation 21

To remove addition by multiplying with T̂ where T̂ =

 0 −Tz Ty
Tz 0 −Tx
−Ty Tx 0

,

λ2T̂ x2 = λ1T̂Rx1 (2.60)

Then we project the above equation to x2, since λ1 and λ2 are not equal to 0,

xT2 T̂Rx1 = 0 (2.61)

Owing to noise, pixel quantization and etc, it is very likely that there are no x1 and x2

satisfying eq 2.61. We would set a threshold ε, which means that the set of x2 does not
need to lie on the epipolar line but just nearby it. Therefore, the epipolar constraint should
be rewritten as,

|xT2 T̂Rx1| < ε (2.62)

2.5.2 Reprojection constraint

Given the 3d position of the feauture and the absolute pose of the second frame, we can
shrink the search area into a small circle, see Fig 2.8

2.6 Probability theory in visual navigation

There are many good methods to calculate close-form solution of poses given the 3D
position of feature points and the corresponding points in the image, for example, PnP-
ransac, 5-points and 8-points algorithm up to scale. However, every measurement contains
noise, and there are problems like that

1. the algorithm is noise sensitive

2. no information about how accurate the solution is

3. how to update the solution while there are more observations made

Instead of calculating a close-form solution, which is the best solution the algorithm can
give us, we calculate the probabilistic representation of the estimated solution, which is a
probabilistic distribution over the space of all possible solution. With probabilistic repre-
sentation, the uncertainty and degeneracy of the solution can be written in a mathematical
way.

2.6.1 Gaussian distribution

The Gaussian distribution is widely used because
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1. it is governed by only two parameters (mean and variance) which can be easily
obtained from data,

2. the mathematics is simple and well defined

The 1D Gaussian distribution and multivariate Gaussian are

G(x− µ, σ2
x) =

1√
2πσ2

x

exp(−(x− µ)2

2σ2
x

), (2.63)

G(x− µ,Σ) =
1√
|2πΣ|

exp(−1

2
(x− µ)TΣ−1(x− µ)). (2.64)

2.6.2 Maximum likelihood (MLE) and Maximum a posteriori
(MAP)

If we want to find the probabilistic distribution of a ”state variable” x, we can do some
observation z. We can consider that z is a transformation of x that we can measure,

z = f(x) + ε, (2.65)

where f is the response function and ε ∼ G(x − µ, σ2
x) is stochastic a variable used to de-

scribe noise.

Likelihood is the probability distribution of measurement (z) given the true value f(x),

P(z|x) =

∫
dε P(z, ε|x) =

∫
dε P(z|ε, x)P(ε|x) = G(z − f(x), σ2

x) (2.66)

The posterior is the probability distribution of true value f(x) given the measurement
(z). By using Bayes rule, we obtain the posterior by combining likelihood and prior of x
as follows:

P(x|z) =
P(z|x)P(x)∫
dy P(z|y)P(y)

. (2.67)

There are many ways to define the ”best guess” of a state (x) given measurement (z).
One of the popular ways is to find x∗ such that it maximizes the a posterior, this is called
Maximum a posteriori (MAP),

x∗MAP = argmax
x

P (x|z) = argmax
x

P (z|x)P (x) (2.68)

Note that if we have a flat prior on x, the solution of MAP is equal to MLE.
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2.6.3 The Hamitonian (Energy) to minimize

Let state x = {x1, x2, ..., xN , y1, y2, ..., yM}, where the state contains N camera poses and
M mappoints, and u = {u1, u2, ..., ut=N} is the control data which carry information about
the changes of state, for example ut contains the change of state from time t-1 to time t,
and z = {zi,j|i ∈ {1, 2, ..., N}, j ∈ {1, 2, ...,M}} contains all the measurements, zi,j can
understand as the measurement of mappoint j with camera pose i. With all these variables,
we can represent the probability distribution of a state as

xt = f(xt−1, ut) + εf (2.69)

zt,j = h(xt, yj) + εh (2.70)

P (x |z ,u) (2.71)

where εf ∼ G(0, F ) and εh ∼ G(0, H), F and H are the covariances of the Gaussian distri-
butions.

The information E is defined as the negative ln to the posterior. The result is as fol-
lows,

ri = xi − f(xi−1, ui) (2.72)

ri,j = zi,j − h(xi, yj) (2.73)

E =
1

2

∑
i

rTi F
−1
i ri +

1

2

∑
i,j

rTi,jH
−1
i,j ri,j (2.74)

The first term is error term from measurement of speed and the second term is the repro-
jection error, flat prior has been used here.

2.6.4 Optimization scheme

In order to find the MAP estimator x∗ by minimizing eq.2.74, we can only solve it with
numerical method. We update the state (δx) at each iteration until the Hamitonian con-
verges to a local minimum (Since the residual is usually non-linear, and it is not guaranteed
that the local minimum is the global minimum).

2.6.4.1 Gradient descent

Gradient descent is a first order iteration method. By taylor-expanding the response func-
tion ‖ f(x + δx) ‖2 up to first order,

‖ f(x + δx) ‖2≈‖ f(x) ‖2 +J(x)T δx (2.75)

We can update the state along with the direction of negative gradient −J(x) with step size
λ according to

x→ x− J(x)λ. (2.76)
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2.6.4.2 Newton method

When using Gradient descent, we need to determine the step size λ at each iteration. In
order to set the λ automatically, we taylor-expand the response function f(x) around x up
to second order,

‖ f(x + δx) ‖2≈‖ f(x) ‖2 +J(x)T δx +
1

2
δxTH δx. (2.77)

We differentiate the above equation with respect to δx, let LHS to be zero and rearrange
the δx as subject, to obtain

x→ x−H−1J(x) (2.78)

2.6.4.3 Gaussian Newton method

Calculating second order derivative is expensive. Instead of expanding ‖ f(x + δx) ‖2, we
expand f(x + δx)

‖ f(x + δx) ‖2≈‖ f(x) + J(x)δx ‖2=‖ f(x) ‖2 +2f(x)TJ(x)δx + δxTJ(x)TJ(x)δx (2.79)

We differentiate above equation with respect to δx, let LHS to be zero and rearrange the
δx as subject, we obtain

x→ x− (J(x)TJ(x))−1J(x)T f(x) (2.80)

2.6.4.4 Levenberg-Marquardt method

Levenberg-Marquardt method is a hybrid method of Gradient descent and Gaussian New-
ton method. The idea of this method is that if Gaussian Newton method cannot optimize
the energy in the right way, it would slightly turn the model into Gradient descent by
increasing λ

x→ x− (J(x)TJ(x) + λdiag(J(x)TJ(x)))−1J(x)T f(x) (2.81)
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2.7 Keypoints triangulation

Figure 2.9: Obtain depth through triangulation

Keypoints on images are represented by 2d-homogeneous coordinate. To obtain the depth
information of keypoints, we find correspondences between images by indirect feature
matching or optical flow and etc.

Given two corresponding points x1, x2 on two different images and together with the
relative pose, we can triangulate keypoints as follows. Let pc1 = s1x1 and pc2 = s2x2 to be
the 3d position of the same mappoint with different camera coordinates, where s1 and s2

are the scale for homogeneous coordinate. So that x1 and x2 are related by the following
equation,

s1x1 = pc1 = R(s2x2) + t (2.82)

Multiply both sides with x∧1 (a∧b = a× b) to find s2,

s2 = − |x∧1 t|
|x∧1Rx2|

(2.83)

Note that due to the noise, the preimages of the correspondence may not intersect, and
this method no longer works. We have to solve it by least square method (used in our
work).
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Chapter 3

Approach

3.1 3D to 2D Sparse Optical flow

The estimation of an optical flow is based on the pattern of brightness. The advantage of
using optical flow is that we don’t need to calculate descriptor. However, since the concept
of an optical flow is based on the assumption of constant brightness, the error function of
the difference of brightness for a sub-image is highly non-convex and sensitive to reflection.
Therefore, optical flow can only works well under the condition of small baseline and good
initial guess of the optimizer are provided. To improve the accuracy of features tracking
by optical flow, we use the reprojection of the 3d mappoints on the next frame as initial
guess, and use Gauss-Newton method to optimize the keypoint position.

3.1.1 Purposed structure

3.1.1.1 Building new mappoints

Figure 3.1: Patch of a keypoint[33].

To create new mappoints (in our case, we create new mappoints when inserting a new
keyframe), we use FAST corner detector to detect a sparse set of keypoints, then we find
the corresponding points on the right frame by using optical flow. Specific patch pattern
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has been used to describe keypoints, such as Ω = {x1, ..., xN}, where xi is the offset from
the keypoint corner and the patch (Ω) is composed of N points, see fig 3.1.

3.1.1.2 Mappoints tracking

We find the keypoint correspondence on another image by using nonlinear optimization.
We set up an error function and find a 2d pose Ti ∈ SE(2) for keypoint i such that it
minimizes the following error function[33],

E(ξ) =
∑
pi∈Ω

‖ resi,Ω(ξ) ‖2=
∑
pi∈Ω

‖ It+1(eξ
∧
pi)

It+1,Ω(ξ)
− It(pi)

It,Ω(0)
‖2 (3.1)

where It,Ω(0) ≡ 1
|Ω|
∑

pi∈Ω It(pi) and It+1,Ω(ξ) ≡ 1
|Ω|
∑

pi∈Ω It+1(eξ
∧
pi)

To calculate δξ for each iteration, we will use Gauss-Newton method to do so. First,
we calculate the jacobian

Ji(ξ) =
∂resi,Ω(ξ)

∂ξ
=

∂

∂ξ
(
It+1(expξ

∧
pi)

It+1,Ω(ξ)
) =

∂

∂p′
(
It+1(p′)

It+1,i(ξ)
)
∂p′

∂ξ
|p′=expξ∧pi (3.2)

By using chain rule, we have

Ji(ξ) =
∂

∂p′
(
It+1(p′)

It+1,i(ξ)
)
∂p′

∂ξ
|p′=eξ∧ (pi+x) (3.3)

∂p′

∂ξ
|p′=eξ∧pi can be calculated by eq.2.26 and the updated ξnew is as follows,

ξnew = ξold − (
∑
i

Ji(ξold)(Ji(ξold))T )−1(
∑
i

Ji(ξold)T resi,Ω(ξold)) (3.4)

3.1.1.3 Increase efficiency and robustness

To speed up the algorithm, we calculate the jacobian around the point p on It so that we
don’t need to update the jacobian after each iteration. To make this trick work, we need
to make sure that the baseline of two images is small enough. Initial position is required
for iterative optimization. In Basalt, they use the position of the last frame as the initial
position, we have changed to use the reprojection of the keypoint and no correspondence
has been found if the optimized position is T more pixels away from the reprojection (T=5
in our case). To filter more outliers, we remove mappoints which do not have enough
observations after N frames pass.

3.2 Basalt-SLAM

For Basalt-VIO, a local map of the frames in sliding window is built for local bundle
adjustment to increase the stability and accurary. However, all the VIO algorithms are
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deemed to drift due to lack of the ability to recognize the place where it has been. In this
task, we will build a global map based on ORB-features and rectify the VIO path while
loop has been detected.

3.2.1 Purposed structure

Figure 3.2: Purposed structure of Basalt-SLAM

Basalt-VIO only keeps keyframes in the sliding window. It would marginalize a keyframe
out[33] when a new keyframe is created. Some information of the marginalized keyframe
are saved, including

1. the pose of the marginalized keyframe,

2. the relative poses to all the frames in the sliding window,

3. the information matrices of the relative poses,

4. the information matrices of the orientation.
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The structure is similar to ORB-slam[20], showed in Fig 3.2. The slam system incorperates
three threads namely tracking, mapping, and loop-closing, which launch in parallel. We
have built several classes to make the structure of the system clearer.

3.2.1.1 Data structure

Camera contains the calibrated interanl parameters. It also contains functions such as
projection and unprojection which are used to perform transformation between camera
coordinate and pixel coordinate.

Frame is a basic data unit. It contains frame id, camera id (Left or right), timestamp,
frame state (frame pose + velocity + gyroscope bias + accelerator bias), image, features,
observed map points. Furthermore, it also defines many functions, such as ”get features in
selected area”, ”mappoint is visible” and etc.

KeyFrame is similar to Frame except having mMapperID. This is used to represent which
sequence the keyframe belongs to.

MapPoint is also a basic data unit. It contains mappoint id, location, frame obser-
vation, keyframe observation, mean viewing direction, descriptor of last observation (for
tracking) and the best (mean) descriptor (for local mappoint projection). Apart from that,
it defines many functions, such as ”add observation”, ”erase observation”, ”set bad flag”
and etc.

Map manages all the mappoints, adding or erasing new frames, keyframes and mappoints.

3.2.1.2 Linearization and optimization

Figure 3.3: Factor graph of a mappoint and its observer.
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We can optimize the error function after finding the linearization H and b. We have
stored the observation of mappoints in the structure showed in Fig3.3, where Pi = Tih.
To calculate Habs, it is easier to calculate the H and b w.r.t the relative pose for each
mappoint m, then transform them into absolute pose.

Hm
rel =


Hm
P1P1

Hm
P1m

Hm
P2P2

Hm
P2m

. . .
...

Hm
PnPn

Hm
Pnm

Hm
mP1

Hm
mP2

· · · Hm
mPnm

Hm
mm

 (3.5)

where each matrix element can be obtained by using different M-estimator and different
optimization scheme, see Sec2.6.4.

Since the number of mappoint is much larger than the number of pose, the Habs will
be very large. However, it is easy to show that it is a sparse matrix. We can reduce the
matrix size by using marginalization. The marginalized H̃m

rel and b̃mrel for mappoint m can
be calculated by Gaussian elimination and is showed as follows,

H̃m
relPiPj

= Hm
relPiPj

−Hm
Pim

Hm
mm
−1 Hm

mPj
(3.6)

b̃mrelPi
= bmrelPi

−Hm
Pim

Hm
mm
−1 bmm (3.7)

We can calculate H̃abs and b̃abs with chain rule,

[H̃abs]ij =
∑
m

∂res(m)

∂Ti

T ∂res(m)

∂Tj

=
∑
m

(
∑

l∈rel(m)

∂res(m)

∂Pl

∂Pl
∂Ti

)T (
∑

k∈rel(m)

∂res(m)

∂Pk

∂Pk
∂Tj

)

=
∑
m

∑
l∈rel(m),k∈rel(m)

∂Pl
∂Ti

T ∂res(m)

∂Pl

T ∂res(m)

∂Pk

∂Pk
∂Tj

=
∑
m

∑
l∈rel(m),k∈rel(m)

∂Pl
∂Ti

T

H̃m
relPlPk

∂Pk
∂Tj

(3.8)
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[b̃abs]i =
∑
m

∂res(m)

∂Ti

T

res(m)

=
∑
m

(
∑

l∈rel(m)

∂res(m)

∂Pl

∂Pl
∂Ti

)T res(m)

=
∑
m

∑
l∈rel(m)

∂Pl
∂Ti

T ∂res(m)

∂Pl

T

res(m)

=
∑
m

∑
l∈rel(m)

∂Pl
∂Ti

T

b̃mrelPl

(3.9)

where res(m) =
∑

t∈all frames rmt, rmt is defined as eq3.13, the ∂Pl
∂Ti

can be calculated by us-
ing eq2.41, and rel(m) is the set of relative pose of mappoint m from host frame to target
frame, see Fig3.3.

The incremental update of poses (δξ) is calculated as follows,

δξ = H̃abs

−1
b̃abs (3.10)

and the incremental update of position of mappoint m (δpm) is calculated as follows,

δpm = Hm−1
mm (bmm −

∑
i

∂res(m)

∂pm

T ∂res(m)

∂ξi
δξi)

= Hm−1
mm (bmm −

∑
i

∂res(m)

∂pm

T ∑
j∈rel(m)

∂res(m)

∂Pj

∂Pj
∂ξi

δξi)

= Hm−1
mm (bmm −

∑
i

∑
j∈rel(m)

Hm
mPj

∂Pj
∂ξi

δξi)

(3.11)

3.2.1.3 Tracking thread

Tracking thread is used to localize the latest frame and insert marginalized keyframe into
mapper. First, it performs the optical flow from the previous image. By using IMU
measurement as the initial guess of the pose, we perform local bundle adjustment within
the sliding window. To decide if inserting a new keyframe, we check whether more than 30
% of all the mappoints can not be observed by the current frame and more than 6 frames
have been passed after the latest keyframe. Once we decide to take a new keyframe, we
triangulate all the features which have no corresponding mappoint. Before triangulating
a new mappoint, we check whether the feature pairs satisfying the epipolar constraint to
filter some wrong matching pairs. To keep the system capable of running in real time, we
maintain the size of the sliding window as a constant. To do so, we marginalize a keyframe
in the window out based on the following criteria similar to DSO[12],
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1. We always keep the last keyframe.

2. Keyframes with less than 5% of the features have the corresponding mappoint.

3. If still no keyframe is considered as bad keyframe, we marginalize the one which
maximizes the ”distance score” s(Ii), defined as follows,

s(Ii) =
√
d(i, 1)

∑
j∈[2,n]lbracei}

(d(i, j) + ε)−1, i 6= 1 (3.12)

where d(i,j) is the Eulidean distance between keyframes Ii and Ij, and ε is a small con-
stant which is used to prevent the score being too larger, when some keyframes in sliding
window are very close together.

The score function is designated to keep more keyframes being close to the current keyframe
and at the same time prevent keyframes are very close together. While there are keyframes
being marginalized, it will send to the mapper for building a global map by ORB features.

3.2.1.4 Mapping thread

Mapping thread processes new keyframes and optimizes the mappoints which can be ob-
served in the current keyframe (we do not update the poses in the map). When mapper
receives a new keyframe, it would first build orb keypoints and match them with the pre-
vious keyframe. We then project map points created by covisible keyframes of the last
keyframe (covisible keyframes are the keyframes sharing at least 15 features of the target
frame) to build connection to the keyframes nearby.

3.2.1.4.1 Feature extraction

Figure 3.4: Image pyramid[21]
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(a) Scale-aware feature without non-maximal subpression

(b) Scale-aware feature with non-maximal subpression

Figure 3.5: With/without non-maximal subpression
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In order to create features in different scales, for each new keyframe, we construct the
image pyramid, see Fig 3.4, and then extract orb features from it. Since we create features
in different scale, some corners may generate more than one feature (features in different
scale), this may lead to some features with higher weight than the others (features are
not evenly distributed), and the pose estimations may contain bias. We have implemented
non-maximal subpression to solve this problem. We keep the feature with highest score
and discard others in a small region, see Fig 3.5.

3.2.1.4.2 Feature tracking

To track features, we reproject local mappoints on the current keyframe. We also build new
mappoints by triangulating unmatched keypoints on the current frame and the connected
frames of the previous frame.

3.2.1.4.3 Mappoints Optimization

Since the pose of the newly created keyframe is determined by Basalt, it is already very
accurate locally, we then only optimize the positions of mappoints which can be observed
by the newly created keyframe. Comparing to local bundle adjustment (a few thousands
mappoints and dozen of poses), we optimize at most few hundreds mappoints which are
much faster than local bundle adjustment, while keeping high accuracy. The optimization
is done by minimizing the reprojection error. When a point i which is hosted in frame h,
is detected in target frame t at pixel coordinate zpixi,t , the residual is defined as[33],

resi,t = zpix
i,t − πt(T−1

wt P
w
i ) (3.13)

where πt is the projection function of frame t and Pw
i is the world coordinate of point i.

Then we can construct an error function by using different M-estimator and solve it by
using different optimization schemes, including Newton-Gaussian method and LM method.
Finally, we minimize the error function with respect to Pw

i .

3.2.1.4.4 Recent map points culling

All newly created map points are just considered as temporary mappoints. In order to be
retained in the global map, it has to be observed during the first n keyframes (n=3 in our
case) after creation. This test is used to make sure that the mappoints are trackable and
created correctly.

3.2.1.4.5 Create more map points

After projecting local mappoints (hosted by covisiable frames of previous frame) on current
frame, new edge between current and older frames have been created. After that, we
triangulate more mappoints between the current frame and its covisiable frames (share at
least 15 mappoints).
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3.2.1.4.6 Pass to Loop-closer

After updating the global map, we pass the keyframe to loop-closer to detect if there are
loops between the map and the new keyframe.

3.2.1.5 Loop-closing thread

Loop-closing thread is used to search for loops with newly created keyframe. If a loop
is found, compute the relative pose between the new keyframe and the loop keyframe by
PnP-ransac, then project mappoints owned by the loop keyframe and its covisibility graph,
and vice versa, to build loop edges. After that merge the deprecated mappoints. The next
step is to update all poses in the map with loop information.

3.2.1.5.1 Bag of Words (BoW)

In order to detect loop, we should compare the keypoints in the current keyframe to all the
keyframes in the global map. However, feature matching is expensive, especially we need
to perform ransac to remove outliers. Instead of comparing the current keyframe to ev-
ery keyframe, we compute the bag of words vector first to obtain loop candidate keyframes.

As mentioned before, each binary feature descriptor is a vector composed of 0 and 1.
In our case, each binary feature describtor is 256-bit. We use a hash function to hash it
into 32-bit vector (called word). The idea is, if some descriptors are similar, they should
hash to the same word. The i-th letter in a word is defined as,

hash word[i] = descriptors[P (i)] (3.14)

where P is a permutation function, for example P (i) = j ∈ {0, ..., 255}

The bag of word vector for one image is defined as,

BoW = {(wordi,
ni
Nf

)|i ∈ index of all words} (3.15)

where ni is number of wordi appeared in the image and Nf is the number of keypoint
of frame f.
To compute the similarity of two keyframes, let Ω to be a set of word index that both two
BoW vectors contain. The similarity score can be visualized in Fig 3.6 and is defined as,

score(f1, f2) =
∑
i∈Ω

min(
nf1,i
Nf1

,
nf2,i
Nf2

) (3.16)

The range of the score is
0 ≤ score(f1, f2) ≤ 1 (3.17)
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Figure 3.6: Concept visualization of calculating BoW similarity.

score(f1, f2) = 1 means two keyframes having exactly the same word with the same weight.
In the contrary, score(f1, f2) = 0 means two keyframes sharing no word. Then, loop
candidate keyframes for current keyframe can be selected as follows,

candidates = {kf | score(curr kf, kf) ≥ Tscore ∧ ∼ kf ∈ covisiable kf of curr kf} (3.18)

where Tscore is the threshold.

Since Tscore can vary for different keyframes, one way to define Tscore for frame i is,

Tscore(kfi) = min({score(kfi, kf)|kf ∈ covisiable kf of kfi}) (3.19)

We discard all those query results whose score is lower than Tscore. This action can signif-
icantly reduce the number of loop candidate keyframes.

3.2.1.5.2 Loop detection

To detect loops, we take the following steps together with an example Fig 3.7

1. Query the hashbow database for loop kf candidates, keeping the candidates with
loop score larger than min score. The min score is the smallest inner product of
BoW between the current keyframe and its connected keyframes. See Fig 3.7b.

2. Form consistent groups for current keyframe. A consistent group consists of loop kf
candidates and its connected keyframes. Calculate the accummulated score for each
consistent group (sum over all scores in the group). In order to limit the number of
loop kf candidates, we keep only loop kf candidates with the score larger than 0.75*
best accumulated score. See Fig 3.7b.

3. Keep the consistent group if (1) the loop score of the loop kf candidates is the largest
in the group and (2) consistent group intersects at least one of the previous consistent
group. Consistent score is used to trace the age of one consistent group. See Fig
3.7c, Fig 3.7d.

4. Loop kf candidates will be considered as loop kf if its consistent score is larger than
or equal to 2 (sometimes is 3).
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(a) Without loop detection. (b) At time t, four query results with loop score
0.7 (red), 0.6 (green), 0.3 (blue) and 0.3 (black)
respectively. The best accumulated score is 1.3,
so the keyframes in red, green and blue are
good loop kf candidates

(c) At time t+1, two consistent groups with
consistant score 1, two new loop keyframe can-
didates (red, green).

(d) At time t+2, two consistent groups with
consistent score 1 and consistant score 2 re-
spectively, two new loop keyframe candidates
(red and green).

Figure 3.7: Steps of loop detection.

3.2.1.5.3 Relocalization

After getting a set of keyframe candidates for loop-closing (we will call them loop keyframe
candidates), we then calculate their relative pose. There are two different methods to do
so, (1) 3D-3D and (2) 3D-2D.

(a) Before (b) After

Figure 3.8: Concept visualization of ICP

(1) 3D-3D, use Iterative Closest Point (ICP) method[22] to align two local maps (one
is constructed by current frame and its covisiable keyframe, another other is constructed
by kf candidate and its covisiable keyframe),see Fig 3.8. This method is usually used in
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lidar slam. However, in our case, the maps are not dense, so the result of this method is
not guaranteed to align two maps correctly.

Figure 3.9: Concept visualization of RANSAC

(2) 3D-2D, use Perspective-n-Point (PnP) method[34] to estimate the pose of a cam-
era given a set of 3D points in world coordinate and their corresponding bearing vector.
However, PnP method is sensitive to outliers. Thus, we use RANSAC to make the solution
more robust. RANSAC is an iterative method to estimate parameters that the samples
contain outliers. It would keep sampling n points for PnP to estimate the pose until it
passes the test (for example, more than 20 inliers). It can also filter outliers at the same
time, see Fig 3.9. Note that RANSAC is a non-deterministic algorithm which only pro-
vides us a solution which passes the test, so we still need to minimize the reprojection error.

In our thesis, we will use the second method to find the relative poses between current
keyframe and loop keyframe candidates.

3.2.1.5.4 Pose graph optimization

A global bundle adjustment is the most accurate way to update the map, however, it is
slower when the map is getting larger and it is no longer able to be a real-time algorithm.
Instead of performing global bundle adjustment, we perform pose graph optimization which
only takes the relative pose edge (from basalt nonlinear factor) and loop edge into account.
The residual is defined as,

resh,t = ln(T−1
wt TwhT

edge
ht ) (3.20)

During the optimization, in order to fix the gauge freedom, we need to fix the pose of first
keyframe. In order to merge the loop, we also need to fix the nodes (connected by the loop
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(a) without loop edge (b) with loop edge

Figure 3.10: Pose graph with/without loop edge.

edge) or the relative pose between them to get rid from the local minimum of the error
function. We have used ceres to optimize the error function.

3.2.1.5.5 Global Bundle Adjustment + Non-linear factor

Figure 3.11: Visualization of non-linear factor extraction

In tracker thread, we marginalize keyframe which is outside the optimization window. We
can recover the measurements and the corresponding uncertainties from the information
matrix and save it for later use[33]. In theory, we can extract the uncertainty of absolute
position, roll, pitch and yaw from the information matrix. However for VIO, absolute
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position and yaw can not be determined but pitch, due to the gravity, is always constant
and downward. Instead of extracting the absolute position and its covarience, we recover
the measurement of relative pose of marginalized keyframe to the rest of the keyframe in
the optimization window.

The information matrix of extracted factor can be divided into two ways and both methods
obtain the same closed-form solution. The first way is to minimize the Kullback-Leibler di-
vergence (KLD) between the recovered distribution and the original distribution[33]. The
second way is to linearize the target residual function to obtain the Jacobian (Jtarget) first
and propagate the uncertainty of poses to target function by

Σtarget = JtargetΣposesJ
T
target (3.21)

Then, the information matrix (Htarget) is, is Σ−1
target

Htarget = Σ−1
target (3.22)

To recover relative pose factor and pitch factor between marginalized keyframe and all
other keyframes in the optimization window, we define the residual functions for relative
pose and roll pitch,

rrel(s, z
i,j
rel, i, j) = ln(zrelT

−1
j Ti) (3.23)

rrp(s, zirp, i) = ln(zrpR
T
i (0, 0, 1)T ) (3.24)

Then, the information matrix for rrel(s, z
i,j
rel, i, j) and rrp(s, zirp, i) can be in the following,

Hrel(i, j) = (
∂ri,jrel

∂s
Σposes

∂ri,jrel

∂s

T

)−1 (3.25)

Hrp(i) = (
∂rirp
∂s

Σposes

∂rirp
∂s

T

)−1 (3.26)

The
∂ri,jrel
∂s

can be calculated in a way similar to deriving eq 2.41 and eq 2.42, see appendixA.1
and appendixA.2 for the derivation.

∂ri,jrel

∂s
=
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06×6 ... 06×6
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i,j
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∂si
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∂r
i,j
rel

∂sj
06×6 ... 06×6

)
(3.27)

∂ri,jrel

∂si
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(
RT
i 0

0 RT
i

)
(3.28)

∂ri,jrel

∂sj
= J−1

r,decoupled

∂si
∂sj

(
RT
i 0

0 RT
i

)
(3.29)

The
∂rirp
∂s

can be calculated by eq 2.40, see appendixB.1 for the derivation,



42 3. Approach

∂rirp
∂s

=
(

06×6 ... 06×6
∂rirp

∂si
06×6 ... 06×6

)
(3.30)

∂rirp
∂si

=

(
−R01 R00 0
−R11 R10 0

)
(3.31)

Since the optical flow features built in the tracker thread and the ORB features extracted
in Mapper thread are statistically independent, this allows us to reproject error function
(Ereproj(s)) as defined in eq 3.13, together with the error term (Enfr(s)) from the recovered
non-linear factors yields the objective function,

Etotal(s) = Ereproj(s) + Enfr(s) (3.32)

Ereproj(s) =
∑

i∈P,t∈obs(i)

(ritreproj)
TΣitr

it
reproj (3.33)

Enfr(s) =
∑

(i,j)∈R

(ri,jrel)
TH i,j

relr
i,j
rel +

∑
i∈K

(rirp)TH i
rpr

i
rp (3.34)

P is a set of all mappoints in map, R is a set of all pairs of relative pose factor and K is a
set of all pitchs factor.

The global bundle adjustment together with non-linear factor runs in an extra thread
(not in Tracker, Mapper and LoopCloser). Since Mapping was active during the global
bundle adjustment, which means that there might be new keyframes not included in the
global bundle adjustment so these new keyframes are not consistent with the updated map.
We correct these new keyframes by multiplying the change of the pose of the last keyframe
in the global bundle adjustment.

3.3 Basalt-SLAM for Multi-cameras

If cameras are in the same place, they will share the same scene. In this work, we detect
loops in maps built by different maps and merge them if loops are detected, and all cameras
share the same global map so they update the same map and at the same time use the
same map to do localization.

3.3.1 Purposed structure

The purposed structure is showed in Fig 3.12.

1. Each camera has its own tracker, mapper, and loopcloser, but shares the same global
map. Each keyframe has its own sequence id in order to distinguish where it comes
from.
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Figure 3.12: Purposed structure of multi camera slam

2. Every newly created keyframe detects loop keyframe candidates by Hashbow. This
prevents to perform expensive feature matching to every keyframes in th global map.

3. If loops are detected, compute the Euclidean transformation [R|t] for the new keyframe.

4. Pause all sequences’ mapper.

5. Wait until all mapper have been paused, then perform pose graph optimization and
set the poses of new keyframe, loop keyframe and its first frame as constant during
the pose graph optimization.

6. Run global bundle adjustment in parallel.

7. Resume all sequences’ mapper.
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Chapter 4

Evaluation

To evaluate our new method, we perform experiments on two stereo + IMU datasets, (1)
the well-known EuRoC dataset[6] and the TUM VI Benchmark[25]. All experiments have
been conducted on an Intel Core i7-8850H running at 2.6GHz with 32GB RAM.

We compare our new approach to Basalt-VIO[33] and Basalt-SLAM[33]. We will use
absolute trajectory error (ATE)[29]. Let Pi to be the estimated pose at time step i, Qj

to be the ground truth trajectory at time step j, then pose error (Fi) for time step i is
computed as follows,

Fi(S) ≡ Q−1
i SPi (4.1)

The root mean square error (RMSE) for the trajactory is,

RMSE(F1:n(S)) ≡ (
1

n

n∑
i=1

‖ trans(Fi(S)) ‖2)
1
2 (4.2)

where trans(P) returns the translation of P.

The ATE of the trajectory is defined as,

ATE = minS(RMSE(F1:n(S))) (4.3)

EuRoC dataset was recorded by hex-rotor helicoptor with a front-down looking stereo
camera with 200Hz and synchronized IMU measurements with 200Hz. The datasets took
place in small working space (called V1 and V2) and in large machine hall (called MH).
All EuRoC datasets at least come with 3D position ground truth.

The Machine hall dataset contains five sequences with different difficulties. MH 01 and
MH 02 are ”easy”, these sequences are bright and with good texture. MH 03 is ”medium”,
it contains fast motion. MH 04 and MH 05 are ”difficult”, these sequences contain not only
fast motion, but also the scenes being relatively dark. Each small working space dataset
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(V1 and V2) contains 3 sequences. V1 01 and V2 01 are ”easy”, these sequences con-
tains only slow motion and the scenes are bright. V1 02 and V2 02 are ”medium”, these
sequences were recorded with a lot fast motions. V1 03 and V2 03 are ”difficult”, these
sequences contain fast motion and motion blur. V2 02 is excluded in our evaluation, it is
because there are more than 400 frames can not be traced due to strong motion blur.

4.0.1 Proposed VIO and Basalt-SLAM

4.0.1.1 Accuracy

Sequence MH 01 MH 02 MH 03 MH 04 MH 05 V1 01 V1 02 V1 03 V2 01 V2 02
Basalt VIO,stereo[33] 0.09 0.05 0.09 0.11 0.11 0.04 0.06 0.07 0.04 0.06
Proposed VIO,stereo 0.09 0.06 0.08 0.11 0.08 0.04 0.04 0.05 0.05 0.04
Basalt VI Mapping,stereo, KF[33] 0.08 0.06 0.05 0.11 0.09 0.04 0.03 0.03 0.03 0.02
Proposed SLAM (PGO),stereo, KF 0.08 0.05 0.05 0.09 0.09 0.05 0.04 0.05 0.05 0.05
Proposed SLAM (GBA),stereo, KF 0.07 0.05 0.05 0.09 0.09 0.04 0.03 0.05 0.04 0.04

Table 4.1: RMS ATE of the estimated trajectory in meters on the EuRoC dataset.

The resulting ATE is listed in Table 4.1. We use exactly the same parameters for both
MH, V1 and V2 datasets in the evaluation.

Our proposed VIO vs Basalt-VIO. For the MH dataset, the accuracies of MH 01,
MH 02, MH 03 and MH 04 are similar comparing to Basalt-VIO. However, MH 05 has
been improved significantly (∼ 25%), it is because there are many reflections in these se-
quences leading to false tracking on optical flow keypoints, the new approach can make sure
that the tracked keypoints fulfill the geometric constraint. For the V1 and V2 datasets,
the accuracies of V1 01 and V2 01 are similar comparing to Basalt-VIO. For V1 02, V1 03
and V2 02 have been improved considerably (∼ 30%), it is because these sequences contain
strong motion blur, the new method can provide good initial position to track the feature
in the next frame. See Table 4.1 and Fig 4.1 for more details and visualization.

Our proposed SLAM vs Basalt-VIO. For the MH dataset, the accuracy is similar
for MH 02 and has been improved significantly for MH 01, MH 03, MH 04 and MH 05 for
18% - 45%. For the V1 and V2 datasets, the accuracies of V1 01 and V2 01 are similar
comparing to Basalt-VIO. For V1 02, V1 03 and V2 02 have been improved significantly
(∼ 40%). See Table 4.1 and Fig 4.2 for more details and visualization.

Our proposed SLAM vs Basalt-Mapping. For the MH dataset, MH 01, MH 02
and MH 04 have been improved a little (∼ 20%), and remain unchanged for MH 03 and
MH 05. For the V1 and V2 datasets, V1 01 and V1 02 provide similiar results, however,
the accuracies of V1 03, V2 01 and V2 02 have decreased around ∼ 50%. This results
suggest that our orb feature tracking in the mapper thread does not perform as good as
the feature matching in Basalt-Mapping. V1 and V2 datasets are recorded in a small
working space, so the triangulated mappoints are closed to the camera, small error on the
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position of mappoints could lead to a large error on reprojection, which leads to failure
on the feature tracking. The above situation would not appear on Basalt-mapping since it
matches features by comparing all image pairs.
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Figure 4.1: Comparison of the results from Basalt-VIO stereo to proposed VIO stereo (new
method)
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Figure 4.2: Comparison of the results from Basalt-VIO stereo to Basalt-SLAM stereo (new
method)

(a) view 1 (b) view 2

Figure 4.3: TUMVI dataset result
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4.0.1.2 Runtime

MH 01 MH 02 MH 03 MH 04 MH 05
Basalt-VIO (Tracker thread) 20.2 19.6 21.5 19.8 19.9
Mapper (Mapper thread) 122.8 89.6 81.6 70.1 69.1
-Feature tracking 65.9 (54%) 48.2 (54%) 44.4 (54%) 35.3 (50%) 35.8 (52%)
-Mappoints creation 34.9 (28%) 24.8 (28%) 22.2 (27%) 18.7 (27%) 19.5 (28%)
-Mappoints optimization 23.1 (19%) 16.5 (18%) 15.1 (19%) 16.1 (23%) 13.7 (20%)
Loop Closer(LoopCloser thread) 179.0 166.4 142.9 189.8 214.8
-Loop detection 15.4 (1%) 21.4 (2%) 19.1 (2%) 24.8 (2%) 9.1 (1%)
-Compute E3 161.1 (9%) 142.2 (13%) 120.3 (13%) 161.1 (13%) 203.6 (4%)
-Correct loop 179.0 (90%) 166.4 (85%) 142.9 (84%) 189.8 (85%) 214.8 (95%)

Table 4.2: Average runtime in mini-second on EuRoC MH dataset

MH 01 MH 02 MH 03 MH 04 MH 05
Tracker rate 49.5 51.1 46.5 52.1 50.4
-Keyframe rate 5.9 6.2 5.6 6.5 6.0
Mapper rate 8.1 11.2 12.6 14.3 14.5
Loop Closer rate 5.6 6.0 7.0 5.3 4.7

Table 4.3: Running rate in Hz on EuRoC MH dataset

To test the real-time capabilities, we measure the runtime in ms and running rate of differ-
ent functions in different threading. The result is showed in Table 4.2 and Table 4.3. The
tracker runs in a separated thread with around 50Hz, so the tracker can run in real-time.
For mapper, it handles new keyframe with frequency around 12Hz, and the keyframe gen-
eration rate is around 6Hz, which means mapper can also run in real-time. For loop-closer,
it runs in around 6Hz, and it is not likely that there are more than 6 completely new loops
being detected in every second, which also means that the loop-closer is able to run in
real-time.

One thing worths to mention is that the runtime of optimization in mapper is only around
20ms and it is around 500ms in orb-slam. It is because we use the result of Basalt-VIO to
estimate the pose and we only optimize mappoints in the mapper instead of local bundle
adjustment.
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4.0.2 Basalt-SLAM for Multi-cameras

(a) Before loop detected (b) After loop detected

Figure 4.4: Visualization of loop merging.

When a loop is detected, it would close the loop and perform pose graph optimization. See
Fig 4.4. The blue line denotes camera 1 and the red line denotes camera 2. The green line
is the ground true of camera 1 and camera 2.

Quantitative and qualitative result

To evaluate multi Basalt-SLAM with EuRoC dataset, there are 10 combinations for 2-
camera case and 3-camera case and 5 combinations for 4-camera case. We won’t test
5-camera case due to limited computational resources. The results are listed in Table 4.4.

# of camera MH 01 MH 02 MH 03 MH 04 MH 05
1 0.070 0.05 0.05 0.09 0.09
2 MH 01 02 MH 01 03 MH 01 04 MH 01 05 MH 02 03
2 0.069 0.099 0.096 0.091 0.067
2 MH 02 04 MH 02 05 MH 03 04 MH 03 05 MH 04 05
2 0.089 0.086 0.080 0.072 0.106
3 MH 01 02 03 MH 01 02 04 MH 01 02 05 MH 01 03 04 MH 01 03 05
3 0.072 0.079 0.089 0.081 0.088
3 MH 01 04 05 MH 02 03 04 MH 02 03 05 MH 02 04 05 MH 03 04 05
3 0.104 0.073 0.076 0.108 0.084
4 MH 01 02 03 04 MH 01 02 03 05 MH 01 02 04 05 MH 01 03 04 05 MH 02 03 04 05
4 0.080 0.098 0.098 0.094 0.091

Table 4.4: RMS ATE for multi Basalt-SLAM

All testing sequences set can detect and close the loops. Without global bundle adjust-
ment (only pose graph optimization), the accuracy of case of 2-camera and 3-camera has
decreased 20% comparing to 1-camera case, the case of 4-camera has decreased 30%. See
Table 4.5. See Fig 4.5, Fig 4.6, Fig 4.7 and Fig 4.8 for more visualization on multi Basalt-
SLAM.
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# of camera mean of RMS ATE (m)
1 0.070
2 0.085
3 0.085
4 0.092

Table 4.5: Mean of RMS ATE vs number of camera.
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Figure 4.5: Visualization on multi Basalt-SLAM (birdeye)
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(a) Before loop detected (b) After loop detected

Figure 4.6: MH02-MH03-MH05

(a) Before loop detected (b) After loop detected

Figure 4.7: MH02-MH03-MH04-MH05

(a) Before loop detected (b) After loop detected

Figure 4.8: MH01-MH02-MH03-MH04-MH05
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Conclusion

This thesis presents a visual-inertial SLAM approach for multi-camera systems. This new
method combines the strengths of highly accurate visual-inertial odometry with loop de-
tection.

Unlike other existing approaches, we estimate the mean and the information matrix of
the set of non-linear factors, which best represents the marginalized keyframe from visual-
inertial odometry. Then, these non-linear factors serve as a prior in the mapper thread
for building a new keyframe. The mappoints, which are observed in the newly created
keyframe, will be optimized. Pose-graph optmization is performed when a loop is de-
tected. In our proposed method, there is no big difference between the result with and
without global bundle adjustment. Moreover, our method also supports more than one
device at the same time, as a result, all devices can be used and updated on the same map
simultaneously.

We evaluate the performance of our method regarding the accuracy and the runtime.
Compared to Basalt-Mapping[33], our method shows better trajectory estimation on the
EuRoC Machine Hall dataset. The runtime analysis shows that the tracker thread among
three threads is the bottle neck of the system. Compared to other slam systems such as
orb-slam, our method can reduce the computational cost of frame tracking and optimiza-
tion by decreasing the number of variables and thus it is suitable for large-scale mapping
and loop detection.

Finally, this method can be used to provide a good initial guess of the pose for other
systems, including direct slam or extremely accurate mapping. Since it is able to recognize
the relative poses between different devices, it can be applied to various areas such as
multi-player VR gaming and path-planner of multi-robot cleaner. One of the research
directions in the future is to add more sensors into the system. We can apply this system
to RGB-D cameras to build a dense reconstruction and thus it can be used for 3D object
detection and obstacle detection in autonomous driving. To make the system more robust
to motion blur, we can use an event camera to measure the local brightness change with
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higher frame rate.



Appendix A

The Jacobian of relative pose error

Express the full left increment by decoupled right increment

δξl = log(T ∗ expd(δξdr ) ∗ T−1)
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(A.1)

and express the full left increment by basalt left increment
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δξl = T ⊕ ξbal 	 T
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Compare A.1 and A.2, we obtain

δξl =

(
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0 1

)
δξbal =

(
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R 0
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δξdr (A.3)
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(
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δξdr (A.4)

To calculate ∂f(T )
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,
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A.1 Calculate ∂res
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A.2 Calculate ∂res
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Appendix B

The Jacobian of roll pitch error

B.1 Calculate
∂rirp
∂si

Similar approach as AppendixA.1,
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