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Abstract

This thesis addresses the problem of 3D Multiple Object Tracking for RGB-based sys-
tems. More specifically, we propose a method that performs sparse feature-based
object-level Bundle Adjustment for accurate object track localization. Using the Convo-
lutional Neural Network 2D object detector/tracker TrackR-CNN [117], we introduce a
procedure for stereo object detections and improve TrackR-CNN’s trained association
ability. We achieve superior association via a multi-stage association pipeline that
combines appearance and 3D localization similarity. Additionally, we leverage a priori
knowledge of object shapes and dynamics for both association and keeping a sparse
outlier-free point cloud representation of objects.

We evaluate our proposal on the KITTI [38] tracking dataset via the traditional
CLEAR [10] and the recently introduced HOTA [77] metrics. However, as the official
KITTI tracking benchmark only includes 2D Multiple Object Tracking evaluation, and
the extended 3D evaluation from [119] only supports CLEAR via 3D Intersection-
over-Union, we implement a customized tracking ability assessment. The evaluation
introduces a normalized 3D Generalized Intersection-over-Union [96] detection simi-
larity score to the official HOTA evaluation scripts 1. We compare our performance to
the Light Detection And Ranging-based AB3DMOT [119] for which 3D tracking results
are readily available and demonstrate promising results, especially w.r.t. association
and rigid, moving objects. Furthermore, we show the impact of various features of
our system on overall performance. The code for Bundle Adjustment for Multi-Object
Tracking and performance evaluation is publicly available 2.

1https://github.com/JonathonLuiten/TrackEval
2https://github.com/AnselmC/bamot
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1 Introduction & Contribution

1.1 Introduction

Kick-started by the first autonomous vehicle race - the 2004 DARPA Grand Challenge -
research and development in autonomous navigation for robots has seen substantial
advancement in the previous two decades. Research in this area encompasses a
multitude of domains. It includes accurately localizing a robot and mapping its
environment; understanding the scenery semantically and detecting and tracking
other participants in the robot’s surroundings is another crucial dimension - even
more so in safety-critical situations such as self-driving cars. Path planning, trajectory
prediction of detected objects, and motion control are additional essential tasks for
a truly autonomous system. Solutions to the subproblems mentioned above exist
for varying degrees of scene complexity, underlying sensor sets, and computational
resources. However, fundamentally, autonomous navigation remains an open research
problem.

Localization and map creation of the (static) environment (known as Simultaneous
Localization and Mapping (SLAM)) is among the most well-understood and explored
dimensions of the challenge at hand. The main formulations based on Sound Naviga-
tion And Ranging (Sonar) and Light Detection And Ranging (LiDAR) sensors were
introduced in the 1990s and then further analyzed and developed in the previous two
decades [17]. More recently, SLAM systems based on cheaper RGB-camera setups have
received increasing attention and several solutions have been proposed, both for dense
disparity maps [34] and sparse feature-based maps [33, 85]. While these procedures
work well for non-changing environments, they exhibit difficulties in highly dynamic
situations where the static world assumption no longer holds. This shortcoming has
incited research that detects moving parts in the sensor data and removes these before
running “traditional” SLAM culminating in more robust systems [126, 11, 101, 70]. This
function was substantially aided with the advent of highly performant Deep Learning
(DL) object detectors, e.g., [93, 47, 95, 121].

Detecting objects and associating detections across frames, termed Multiple Object
Tracking (MOT), is another subtask for any self-driving system (but also critical for
other applications, e.g., surveillance). While considerable research exists on tracking in
2D (i.e. in images), e.g., [63, 105, 104, 71], the requirement of 3D object localization for
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1 Introduction & Contribution

autonomous navigation scenarios has recently spawned numerous publications for this
task: although many depend on accurate but expensive LiDAR, e.g. [119, 8, 125, 23],
there also exist implementations that only utilize image data, e.g., [88, 76, 69, 49, 7, 123,
31].

Of these camera-based 3D multi-object trackers, [69, 49, 7, 123, 31, 76] combine 3D
MOT and SLAM. Such a synthesis comes naturally as both systems can benefit from
each other: detecting objects enables more robust SLAM in dynamic scenes as well as
a higher-level understanding of the environment. On the other hand, accurate robot
odometry and static-map knowledge from SLAM aids precise localization of objects in
3D space.

Due to the nascency of 3D MOT, most of the systems mentioned above do not evaluate
their performance w.r.t. 3D MOT. Instead, they evaluate their 3D Multiple Object
Detection (MOD) capabilities or revert to assessing their 2D MOT ability. Although
the work by Weng et al. [119] proposes an extension to 3D MOT evaluation for the
widely-used 2D MOT CLEAR [10] metrics, the authors use 3D Intersection-over-Union
(IoU) for calculating detection similarity. This measure, however, does not capture 3D
tracking performance well as it does not consider imprecise detections. While this is
less of a problem for LiDAR systems, detection accuracy for visual-trackers significantly
decreases with camera-object distance, and disregarding all of these detections does
not reflect the actual tracking performance. Moreover, Luiten et al. [77] recently
presented an argument against current MOT metrics (including CLEAR) and proposed
an alternative: Higher Order Tracking Accuracy (HOTA).

1.2 Contribution

This thesis focuses on stereo-based 3D MOT that is easily integrable with a static SLAM
system. For 2D object detection we employ TrackR-CNN [117]. Utilizing the tried-
and-tested Bundle Adjustment (BA) optimization technique abundant in SLAM, we
implement object-level BA based on sparse features to perform 3D object localization.
We also exploit a priori knowledge of object shapes and dynamics to aggressively cull
object landmarks, thus removing outliers and keeping a sparse object representation.
We achieve robust association of detections across frames via a multi-step association
pipeline: first, we compute similarity based on a novel combined appearance and 3D
localization score. For remaining detections, we corroborate the world-space motion of
appearance-based association from TrackR-CNN with available 3D information. In a
final association stage, only the Euclidean distance encodes the similarity of detections
and existing tracks.

We evaluate our system’s 3D MOT performance on the KITTI [38] tracking dataset

2



1 Introduction & Contribution

employing a normalized Generalized Intersection-over-Union (GIoU) similarity measure
and demonstrating results w.r.t. the CLEAR metrics as well as the newly introduced
HOTA. We compare our results to the LiDAR-based AB3DMOT [119] and demonstrate
promising results for rigid objects in motion. We also investigate the impact of various
high-level features of our system on overall performance. Additionally, we discuss
the capabilities and shortcomings of Bundle Adjustment for Multi-Object Tracking
(BAMOT) qualitatively.

3



2 Notations & Conventions

In this work, we denote scalars as lowercase characters, e.g. a, vectors as bold lowercase
characters, e.g. aT =

(
ax ay az

)
, and matrices as bold uppercase characters, e.g.

A =

a00 a01 a02

a10 a11 a12

a20 a21 a22

. The identity matrix of dimension n is expressed as In, the 3D

zero-vector as 0, and the n-dimensional zero matrix (all entries zero) as 0n. |a| =√
a2

x + a2
y + a2

z denotes the length of a vector a. Additionally, AT (aT) is the transpose of

a matrix (vector) A (a) and similarly the inverse of a matrix A is A−1. A matrix’s trace
(i.e. the sum of the elements of its main diagonal) is written as tr(A). The cross-product

of two vectors is denoted by “×” and the dot product by “·”: a× b =

aybz − azby

azbx − axbz

axby − aybx


and a · b = aTb, respectively. Furthermore, a bold uppercase character with indices in
the following manner express transformations (see Chapter 3) from coordinate system
Y to coordinate system X: X

Y T. If a time component t is involved, this expression is
enhanced: X

Y Tt. We denote a point/vector p given in a specific coordinate system X
as Xp. Further, non-recurring additions to this notation are explained as needed. All
coordinate systems are right-handed (see Fig. 2.1).

Figure 2.1: Two possible ways to represent coordinate systems. In SLAM one commonly
uses the right-handed coordinate system which we adopt for this thesis.

4



3 Theoretical Background

3.1 Multiple Object Detection and Tracking

Detecting objects in the sensory output of imaging systems (e.g., RGB images or LiDAR
scans) has been a cornerstone to Computer Vision (CV) research since its advent in
the mid-sixties of the 20th century [90]. It is fundamental to most robotics-related
applications today (e.g., surveillance systems or, possibly less dystopian, autonomous
driving). Typically, an object detection consists either of a bounding box (2D for RGB
images, 3D for RGB-D or LiDAR) around said object or, in more precise methods, of
pixel- or voxel-wise (for 2D and 3D input, respectively) detections. If an object detector
can detect more than one type of object, each detection is usually accompanied by a class
prediction (e.g., cat, dog, or car). Usually, a detector should also be capable of detecting
more than one object in its input domain. Furthermore, frequently merely detecting
objects does not suffice: being able to associate detections across multiple input frames
(e.g., a video stream) is paramount to understanding a dynamic environment. This
linking of single detections over time is known as object tracking.

3.1.1 Classical object detection

Some of the earliest research on object detection relates to finding humans (or their
faces) in images such as the “Eigenface” approach introduced in [107] and based on
Principal Component Analysis (PCA), a Histogram Of Oriented Gradients (HOG)
method patented in [80], or a ML-based system proposed in [116] known as the Viola-
Jones detector. All of these approaches extract lower-level image features (such as
edges, points, or statistical attributes) and then employ varying techniques (often
ML-based) to recognize objects based on specific features or clusters thereof. Fig. 3.1
exemplifies representations of feature spaces for some of these procedures. Although
these techniques work sufficiently well in specific scenarios (e.g., face detection based
on Viola-Jones), they are limited to a single (or very few) object classes, output imprecise
bounding boxes for detections, and often require extensive feature-engineering, i.e.,
how and which low-level characteristics are extracted from the input and fed to a
machine-learning algorithm for classification.

5



3 Theoretical Background

Figure 3.1: Top Left (A): Two example filters/features learned by a Viola-Jones detec-
tor for face detection [116]. Top Right (B, from left to right): An example
input image followed by its Histogram-of-Oriented-Gradients representa-
tion and two results of learned output weighting of the HOGs for people
detection [26]. Bottom (C): Various examples of eigenfaces used for face
detection and recognition (taken from https://scikit-learn.org/stable/
auto_examples/applications/plot_face_recognition.html).

3.1.2 Deep object detection

Another early object detection task was recognizing letters, a technique known as
Optical Character Recognition (OCR) [103]. These feature-engineering heavy systems
were revolutionized by the first automatic gradient-based image-filter Deep Neural
Network (DNN) [64], introducing a class of Neural Networkss (NNs) known today
as Convolutional Neural Networks (CNNs). CNN are multi-layered NN that utilize
learned shift-invariant filters to understand locally-correlated input data (e.g. images)
for a plethora of tasks including, first and foremost, object detection [58], [95], [93]).
Detailed overviews, explanations and discussions on DL and, more specifically, CNN,
can be found in [13], [48], and [40] for example. The above-cited object detection
networks produce bounding boxes and their respective class predictions. However,
pixel-level object detection networks such as [47] compute so-called segmentation
masks and class predictions per mask. Fig. 3.2 shows a comparison of bounding box
vs. segmentation mask detections.

This pixel-wise precision of object detections is instrumental and even necessary
when objects occlude each other or do not fill-out a rectangle very well (as is mostly the
case). 3D object detectors that work on LiDAR or RGB-D data as input have also been
proposed [59], [120], [91], [106]. The standard way to describe a 3D object detection is
by the seven Degree-of-Freedoms (DOFs) Object Oriented Bounding Box (OOBB). This
OOBB consists of a Euclidean location (x, y, z), the object’s dimensions (height, width,
length), and its rotation around gravity (more commonly referred to as its yaw). Note
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3 Theoretical Background

Figure 3.2: Rectangular bounding boxes are a poor fit for capturing a person’s geometry
- segmentation masks do this far better. Additionally, segmentation masks
are also superior when objects overlap.

that much like 2D bounding boxes in the image domain, this type of description does
not necessarily describe an object well, i.e., it assumes that objects travel along a fixed
plane, only rotate around a single axis, and nicely fill out a rectangular box.

3.1.3 Object Tracking

As previously mentioned, detecting objects is frequently accompanied by tracking
object instances over time. There exist two fundamental approaches to tracking: offline
and online tracking. Offline tracking tries to associate detections after-the-fact: given
an entire sequence of i images and nj detections for a given image, these methods try
to find the globally optimal tracks. One possibility to solving such global optimization
is to pose the tracking problem as a Minimum-cost Flow Problem (MCFP) [3] where
detections constitute nodes and the flow along a collection of nodes makes up a track
[71, 104, 63].

On the other hand, online tracking associates detections in a streaming fashion, i.e.,
by processing images and the detections in these images sequentially. Hence at every
step, detections need to be matched with existing object tracks; if the system doesn’t
match a given detection, it creates a new track. One generally formulates the matching
problem as a bipartite graph problem where one collection of nodes are the detections
Udetections and the other are the existing object tracks Vtracks (see Fig. 3.3).

The edges E between nodes i ∈ Udetections and j ∈ Vtracks of these two sets are
weighted by some similarity score S(i, j) and the optimization goal is to maximize the
total similarity by matching all nodes from the respective sets.

Hungarian Algorithm

The Hungarian Algorithm [60] solves the optimization problem of maximizing the
sum of the weights of a matching M between Udetections and Vtracks for the graph G =

7



3 Theoretical Background

Figure 3.3: The association problem stated as a bipartite graph where one set of nodes
are object detections, the other set are object tracks, and the weights of
the edges connecting nodes between these two sets are the similarities (or
dissimilarities) between each track-detection combination.

(Udetections, Vtracks, E). If minimizing similarity is the goal, one can trivially accomplish
this by multipliying similarities by −1 and then maximizing the total inverse similarity.

The algorithm introduces the notion of labels for nodes (denoted by l(.)) where
l(i) + l(j) ≤ w(i, j) and from this the equality graph Gl = (Udetections, Vtracks, El) where
El only includes edges whose weights are equal to the sum of the labels of the nodes,
i.e. wl(i, j) = l(i) + l(j). The central theorem of the Hungarian Algorithm is that
any perfect matching Ml in this equality graph maximizes the edge weights in the
original graph, and hence is an optimal matching M. A perfect matching is a matching
where all nodes from Udetections are matched to a single node in Vtracks and vice versa,
i.e., a 1-to-1 mapping. Of course, the number of elements of the node sets may be
unequal. Introducing “dummy” elements to the smaller set with similarity scores of
zero to all other elements in the other set can resolve this discrepancy. To initialize the
algorithm, the labels for nodes in Udetections are set to the maximum weight of outgoing
edges, whereas the labels for nodes in Vtracks start at 0. This labeling trivially fulfills
l(i) + l(j) ≥ w(i, j) and the algorithm now constructs El by adding edges for which
l(i) + l(j) = w(i, j) holds. Additionally, Ml initializes to the empty set.

The algorithm now improves Ml via two procedures: augmenting paths and improv-
ing labels. First, the algorithm searches for an augmented path, e.g., via Breadth-First
Search (BFS). An augmented path is a path that starts at a node u ∈ Udetections and ends
at a node v ∈ Vtracks both of which are not connected to an edge in Ml . Furthermore,
the edges in El connecting these nodes must alternately already belong to Ml and not

8



3 Theoretical Background

be part of it. The nodes visited by a path in Vtracks are cached as S ⊂ Vtracks and likewise
the nodes visited in Udetections are tracked in T ⊂ Udetections.

If an augmented path is found, the procedure adds the edges of the path that were
not in Ml to Ml . It also removes the edges that were previously in Ml from the matching.
On the other hand, if an augmented path is not found, the algorithm optimizes the
labels l(.) in such a way that existing edges of Ml remain in El , i.e. l(i) + l(j) = w(i, j).
It then adds new edges to El that fulfill this property. The algorithm avhieves this by
computing a δ based on visited nodes s ∈ S and unvisited nodes y ∈ Udetections \ T as
follows:

δ = min
s,y
{l(s) + l(y)− w(s, y)} (3.1)

From this one constructs a new labeling:

l′(n) =


l(n)− δ iff n ∈ S

l(n) + δ iff n ∈ T

l(n) else

(3.2)

This two-step process of finding augmented paths and improving the node labelling
repeats until all nodes of both sets are matched.

In scenarios such as object tracking, one doesn’t require a one-to-one matching. In
fact in many situations such a mapping is not desirable, e.g. when an old object leaves
the view and a new object enters it. Thus, a similarity threshold can help: a match
between two nodes u ∈ Udetections, v ∈ Vtracks is only valid if the similarity scores between
them are greater than an application-specific threshold, i.e. S(u, v) ≥ α. An alternative
implementation for solving the Hungarian Algorithm uses adjacency matrices.

Some examples of online 2D trackers include [117, 12]; instances of object trackers
operating in 3D space E3 (i.e. via OOBB) are [119, 88].

3.2 3D Geometry

3.2.1 Transformations in 3D space

An important part of any robotics-related application is describing rotations and
translations of rigid bodies in 3D. These transformations must preserve the following
properties [15] w.r.t. two vectors or points a, b ∈ R3:

1. their distance to each other, i.e. |a− b| = |q(a)− q(b)|

2. the orientation between them, i.e. q(a× a) = q(a)× q(b)

9



3 Theoretical Background

Given a fixed world coordinate frame, a three DOFs translation can be trivially
expressed by a 3D vector tT =

(
tx ty tz

)
.

A rotation in 3D Euclidean space also has three DOFs but has multiple representations
[79]:

1. as a unit-length rotation axis u and an angle θ around that axis (axis-angle
representation)

2. as a unit quaternion q = qr + qii + qjj + qkk with |q| = 1 and qi ∈ R where i, j, k
are imaginary and special mathematical properties apply

3. as R, a 3× 3 orthogonal(i.e. RRT = I [87]) rotation matrix with det(R) = 1 for
right-handed systems (and det(R) = −1 for left-handed systems)

4. as a combination of three successively applied rotations around three orthogonal
axes (Euler angles).

In the following, we will deal with rotations in their axis-angle representation when
expressing incremental rotations. Otherwise, we will use their matrix representations
as this enables computationally efficient matrix-vector multiplication. Computing the
corresponding rotation matrix from a rotation axis u and an angle θ can be achieved
with Rodrigues’ formula [87]:

R = I + (1− cos(θ))u∧u∧ + sin(θ)u∧ (3.3)

u∧ in Eq. (3.3) is the skew-symmetric matrix representation of a vector: u∧ = 0 −uz uy

uz 0 −ux

−uy ux 0

. This skew-symmetric representation is useful as it linearizes the

cross-product between two vectors: a× b = a∧b. The property giving this representa-
tion its name is skew-symmetry: (u∧)T = −u∧.

Inversely, one can calculate the angle and rotation axis from a rotation matrix as
follows:

1. compute the angle: θ = arccos( tr(R)−1
2 )

2. solve the system of equations given by the following relation: Ru = u

The combination of rotation and translation is also a rigid body transformation T and
describes arbitrary transformations in R3. Such a transformation can be expressed as
the rotation of a vector/point followed by its translation: ã = Ra + t. However, ideally,
a transformation should be expressed by a single operation.

Fig. 3.4 gives an example of a rigid body transformation from an initial frame A to
the final frame B.

10
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Figure 3.4: A rigid body undergoes a transformation in Euclidean space E3 from frame
A to frame B.

3.2.2 Homogeneous Coordinates

Homogeneous coordinates are a standard tool for transforming points/vectors in a
linearized fashion via matrix multiplication [87]. Combining the rotational and transla-

tional part of a Euclidean transformation into a single 4-by-4 matrix T =

[
R t
0T 1

]
and

using the homogeneous representation of Euclidean vectors allows for such computa-
tionally desired multiplication (see Eq. (3.4)) forgoing the need of rotating a vector first
and then translating it as described previously. In homogeneous coordinates a scaling
factor w is added as the fourth dimension s.t. the vector aT =

(
x y z

)
is represented

as ãT =
(
x · w y · w z · w w

)
. To transform a homogeneous coordinate to Euclidean

space, one merely divides the homogeneous vector by w and discards the fourth di-
mension (which equals one after division). Inversely, to transform a Euclidean vector to
its homogeneous counterpart, one can simply multiply all elements by a scaling factor
w 6= 0 and add this factor as the fourth dimension to the vector. For simplicity, one
usually chooses w to be one. Observe that this results in the fact that homogeneous
vectors have infinite representations, whereas their Euclidean complements are unique.[

R t
0T 1

] (
v
1

)
=

(
Rv + t

1

)
(3.4)

3.2.3 Groups

Group theory is the study of so-called mathematical groups and plays a vital role in
algebra, the natural sciences, and engineering. A group is the combination of some set
G and a binary operator · for which the following four axioms must hold [87]:
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• Closure: combining two elements a, b ∈ G with the binary operator produces
another element which is part of the group, i.e. a · b = c ∈ G

• Associativity: ∀a, b, c ∈ G it must hold that (a · b) · c = a · (b · c)

• Identity: there must exist an identity element e ∈ G s.t. a · e = a ∀a ∈ G

• Invertibility: for every element a there must be a (unique) inverse element a−1 ∈ G
such that a · a−1 = e.

A basic example of a group is the set of integers Z under addition, and typical
examples of non-Groups are the set of integers under multiplication or the set of
natural numbers N combined with addition [62].

Lie Groups and Lie Algebras

So-called Lie groups are a subset of groups. These types of groups have the additional
unique property that they locally (i.e., close to an element’s identity) approximate
Euclidean space and, hence, allow one to perform Euclidean calculus such as differenti-
ation. Differentiation implicitly then allows parameterizing an element by the variable
being differentiated by, e.g., time.

This informal definition is more correctly described as Lie groups exhibiting the
attribute of being a smoothly differentiable manifold, or topological space [1].

One can investigate this local resemblance to Euclidean space via its tangent space.
The tangent space close to the identity of a Lie group is called the Lie algebra g. Its
vector space V (i.e., the space making up its elements) over some field F (i.e., the field
where its elements are defined) and a binary operator, its Lie bracket, [, ], characterize a
Lie algebra.

This Lie bracket is an alternating bilinear mapping that satisfies the Jacoby identity
given by Eq. (3.5) [43].

∀X, Y, Z ∈ V,

[X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] = 0
(3.5)

An alternating bilinear mapping is defined as a binary operator for which the
following assumptions must hold [43]:

• Closure: operations are closed under composition, i.e. ∀X, Y ∈ V → [X, Y] ∈ V.

• Bilinearity: the Lie algebra must satisfy the bilinear form as given in Eq. (3.6)

12
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• Alternativity: application of the operator on the element and itself must result in
the origin vector, i.e. ∀X ∈ V → [X, X] = 0.

∀X, Y, Z ∈ V ∧ u, w ∈ F

[uX + bY, Z] =

u[X, Z] + w[Y, Z]

∧
[Z, uX + wY] =

= u[Z, X] + w[Z, Y]

(3.6)

These axioms of an alternating bilinear map can be more succinctly denoted with the
syntax given in Eq. (3.7).

g× g→ g, (X, Y) 7→ [X, Y] (3.7)

A more rigorous and in-depth definition can be found in [43] or [35].

3.2.4 The Special Orthogonal Group SO(3) and its Lie Algebra so(3)

N-dimensional rotations, or more specifically for the case of 3D space, three-dimensional
rotations form a Lie group called the Special Orthogonal Group SO(n) and SO(3),
respectively. The Special Orthogonal Group are all elements of n× n matrices with
orthogonal columns and (in right-handed coordinate systems) a determinant of 1 (as
previously alluded to in Section 3.2.1). Eq. (3.8) gives the formal definition.

SO(n) = {R ∈ Rn×n|RRT = In, det(R) = 1} (3.8)

The proofs of the three axioms for (Lie) groups as described in Section 3.2.3 are
outside of this work’s scope but are demonstrated in [87] or [43].

We now consider the more specific Special Orthogonal Group in three dimensions
SO(3). Rotational matrices have the computationally desirable property that they lin-
earize rotating a vector. Linear operations are very efficient on modern CPUs. However,
a “problem” with rotation matrices is that there exists no notion of an infinitesimal
rotation matrix. Hence, they can’t be parametrized by time - which is crucial in any
dynamic (e.g., robotics) application. As mentioned earlier, the combination of a unit-
length rotation axis u and an angle around that axis θ can also describe a rotation. In
this representations there exist infinitesimal rotations, i.e. when dθ → 0. Thus, we
would like a transformation from rotation matrices to their corresponding angle-axis
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representation and vice versa. To get there, assume that we rotate some point p around
an axis u at constant unit velocity:

ṗ(t) = u× p(t) = u∧p(t) (3.9)

This gives us the velocity at point p at time t0 = 0 in the form of a time-invariant
Ordinary Differential Equation (ODE) whose solution is

p(t) = eu∧tp(t0) (3.10)

Here eA is the matrix exponential given by the Taylor’s Series eA = I + A + A2

2! +
A3

3! . . ..
Hence, rotating a point for θ units of time produces a functional relationship between
the resulting net rotation and the angle and axis of this rotation: R(θ, u) = eu∧θ = eφ

The skew-symmetric elements φ representing an angle-axis combination make up the
Lie algebra so(3) to the Lie group SO(3), formally defined in Eq. (3.11) [87].

so(3) = {φ ∈ R3×3|φ = φ∧, φ ∈ R3} (3.11)

The associated Lie bracket is [φ1, φ2] = φ1φ2 − φ2φ1. The derived functional
relationship between elements of so(3) and those in SO(3) is called the exponential
map and can be simplified as follows:

R(φ) = R(θu∧) = eθu∧ = I + (1− cos(θ))u∧u∧ + sin(θ)u∧ (3.12)

Eq. (3.12) is precisely the Rodrigues formula 3.3 mentioned in Section 3.2.1. The
inverse operation, mapping from rotation matrices to the corresponding axis-angle
representation φ, is the logarithmic map: φ(R) = ln(R) Eq. (3.13) shows how the angle
θ and axis u can be derived from a rotation matrix R. [87] describes the derivation in
full detail.

θ = arccos(
tr(R)− 1

2
)

u =
1

2 sin(θ)

r32 − r23

r13 − r31

r21 − r12

 (3.13)

3.2.5 The Special Euclidean Group SE(3) and its Lie Algebra se(3)

The Special Euclidean Group SE(3) is informally an extension of SO(3) that covers
arbitrary rigid-body transformations, i.e., combining a rotation and a translation. As
already noted, 4-by-4 matrices constructed from a rotation matrix R and a translational
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vector t also represent such transformations. The set of these transformations forms the

Special Euclidean Group: SE(3) = {T ∈ R4×4|T =

[
R t
0T 1

]
, R ∈ SO(3), t ∈ R3} As for

SO(3), there is an equivalent generalization to n dimensions.
Similarly to SO(3), we need a different representation that resembles Euclidean space,

enabling differentiation. Unsurprisingly, this space, the Lie algebra se(3), consists of
six-dimensional vectors, where three dimensions represent the translational component
ρ. The other three represent the rotational element φ ∈ so(3). Utilizing the ∨ (vee)
operator, which transforms a skew-symmetric matrix to its vector representation,
Eq. (3.14) formally defines this algebra.

se(3) = {ξ∧ ∈ R4×4|ξ =

(
ρ

φ∨

)
, ρ ∈ R3, φ ∈ so(3)} (3.14)

Analogously to SO(3) and following the example of [87], to get to a mapping between
SE(3) and se(3) consider rotating a point p around an axis u and translating the point
by t. We can describe the velocity of said point like so:

ṗ(t) = u× (p(t)− t) = u∧p(t)− u∧t. (3.15)

We now reformulate this using homogeneous coordinates and matrix-vector multiplica-
tion as (

ṗ
0

)
=

[
u∧ −u∧t
0T 0

]
p(t) =

[
u∧ ρ

0T 0

]
p(t) = ξ∧p(t). (3.16)

Again, we arrive at a differential equation whose solution is the exponential map:
p(t) = eξ∧tp(0). We then perform a rotation for θ units of time t to arrive at

T(θ, u, t) = eξ∧θ . (3.17)

ξ∧ is also known as the twist-parametrization of a rigid-body transformation.
Eq. (3.18) gives the closed-form solution [87].

T(θ, u, t) = eξ∧θ =

(
eu∧θ (I + 1−cos(θ)

θ u∧ + θ−sin(θ)
θ u∧u∧)ρ

0T 1

)
=

(
eu∧θ Jρ

0T 1

)
. (3.18)

Computation of the angle θ and rotation axis u from R is equivalent to the log map
of SO(3) (see Eq. (3.13)). Eq. (3.19) describes the recovery of the translational component
ρ from the translation t and the previously computed angle and rotation axis.

ρ(t, θ, u) = J−1t = (I− θ

2
u∧ + (1− θ(1 + cos(θ))

2 sin(θ)
)u∧u∧)t (3.19)
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These definitions for transformation in Euclidean space for rigid bodies in both
representations now allow us to compute transformations of rigid bodies efficiently
and likewise utilize their infinitesimal elements to e.g. calculate velocities at a given
moment in time. When these transformations describe a coordinate system’s relative
transformation attached to a rigid body w.r.t. some reference coordinate system, we
will interchangeably use the term pose and transformation.

3.3 Feature Points

Extracting and matching (that is, reidentifying) features or interest points from sensor
output - most commonly images, which we will restrict ourselves to here - is a common
task for many CV algorithms.

3.3.1 Extracting Features

Detected features should generally be invariant to any transformation of the image, in
particular to changes in the following properties:

• brightness and contrast of the image

• the 2D location and orientation of a feature in the image

• the relative scale of the feature in the image

• relative rotational change between image (camera) and 3D space

Feature detectors generally present a trade-off between their computational efficiency
and their invariance w.r.t. the properties mentioned above.

Different algorithms require varying features, e.g., a geo-mapping application may
want to detect edges in satellite images to infer roads or other structures. Popular edge
detectors are [20], [28], and [30].

Other typical features in images are corners. These have proven to be characteristic
and re-identifiable points in an image and, hence, are often interchangeably referred
to as interest points. Photography software uses such interesting points for stitching
images together to form panoramic photos, for example. They are also an essential
feature for the type of task at hand, i.e., motion tracking.

One of the most common corner detectors, the Harris-Corner detector [44], extracts
corners from images by computing the image gradients Ix and Iy at each pixel (i.e.,
the change in intensity) along both x and y image dimensions. Large gradients are an
indicator of edges in the image where the image intensity changes significantly, whereas
large gradients in both dimensions signal an edge at a given pixel. An “edge-response”
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function that captures these combined intensity changes together with non-maximum
suppression (i.e., filtering only local maxima of edge responses) constitute the Harris-
Corner detector.

Rosten and Drummond published a real-time capable detector (~ 20 times faster
than Harris) in 2006 [98], titled FAST. This detector looks at a circular area around a
pixel and checks whether a specific amount of contiguous pixels in this ring are above
or below a certain threshold level indicating a corner. Other “classic” interest point
detectors include [75, 74] and [108].

As DL has come to dominate many computer vision tasks, it has also made its
way into feature extraction. The main problem for learned features is creating the
dataset. Feature detectors typically extract thousands of features from images making
the creation of a hand-annotated dataset infeasible.

The current state-of-the-art feature point extractor in Deep Learning, SuperPoint [29],
combats this issue in a three-step approach. First, a base network, titled MagicPoint,
is trained to detect corners of various rendered shapes in a synthetic dataset with
known corner locations. MagicPoint uses an Encoder-Decoder architecture (see [6]
for a detailed review of so-called autoencoders) to extract feature points. Images
with arbitrary dimensions can pass through the network as it implements non-trained
up- and down-sampling. In a second step, the authors generate pseudo-ground
truth points for the target dataset of real images. They achieve this through their
process of Homographic Adaption - transforming an input image through several
(sensible/realistic) homographies and then feeding each image through MagicPoint.
Finally, the images (and the detected features) are transformed back to their original
state via the inverse homographies. The subset of overlapping features are the pseudo-
ground truth features. Finally, the SuperPoint network is trained on the training dataset
using the previously generated features as ground-truth locations. The SuperPoint net is
similar to MagicPoint. However, it has a second loss head for computing the descriptors
(see the following subsection).

Another DL-based feature detector is [124]. Although these types of feature detectors
can deal with different image sizes by up- or downsampling them before feeding them
through their learned network, they have the downside that the number of extracted
features is upper-bounded by their output dimension (in contrast to non-DL feature
detectors).

3.3.2 Creating Descriptors

As previously mentioned, it is often desirable not only to extract characteristic points
or features in an image but also to be able to reidentify the same feature across
multiple images (under different illumination, at varying scales, and from numerous
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viewing angles). Reidentification requires a matching procedure between features.
Such procedures so-called feature descriptors for interest point matching. For non-DL
features, the feature extraction methods usually create this descriptor by exploiting
information from the neighboring image region. For example, SIFT [74] uses oriented
gradients of the pixels in a square region around a feature pixel to compute 128-
dimensional descriptors demonstrably invariant to changes in viewpoint, illumination,
scale, rotation, and translation. SIFT can then calculate similarities of features by
taking the Euclidean distance between these descriptor vectors. The BRIEF descriptor
[52] is an alternative 256-bit binary vector based on intensity comparisons between
the feature pixel and randomly sampled neighboring pixels. Its main advantage is
that the comparison between descriptors is very fast as computing the Hamming
distance (vs. the Euclidean distance) is an efficient CPU-instruction-based operation.
[99] introduced a popular alternative to SIFT (arguably the most popular, due to the
only recently expired patent on SIFT) based on the FAST feature extractor and BRIEF
feature descriptors. These so-called ORB features extend the FAST extractor to compute
orientations of features alongside their location and, additionally, enhance the BRIEF
descriptor to be invariant to rotation of a given feature.

Other feature extraction combined with descriptor creation methods include [9] and
[4].

3.3.3 Matching Features

The descriptors of the extracted features need to be matched. As alluded to, this
matching is typically based on the appropriate, e.g., Euclidean or Hamming, distance
between vectors. The task is then to match two sets of descriptors (i.e., extracted
from two different images of the same scene). An obvious solution to this association
problem is the Hungarian algorithm described in Section 3.1.3. The similarity measure
is the distances between the descriptors (and the distance must be below a certain
threshold to be considered a good match). [74] introduced an extension to this matching
by requiring the ratio of the distance to the closest feature over the distance to the
second-closest feature to be above a certain threshold.

As with extracting features, DL-approaches that learn feature association also exist,
e.g., SuperGlue [102].

3.4 Stereo Vision

3D reconstruction is an area of CV that concerns itself with extracting 3D information of
objects or scenes from sensors, typically in the form of point clouds (i.e., a collection of
3D points) or three-dimensional shapes (i.e., arbitrary surfaces or shapes parametrized
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in E3). Reconstruction requires localization of sensor readings in 3D, i.e., a depth
component z in addition to 2D coordinates x and y (plus, optionally, other sensor infor-
mation such as color). This depth component can be either directly extracted if it’s part
of the sensor reading (e.g., LiDAR, Sonar, or RGB-D cameras) or be calculated indirectly.
Human vision is the underlying inspiration for the latter approach: depth information
is inferred from two cameras viewing the same scene. Such a process is called stereo
vision, and it is a sub-area of the more generalized method of inferring depth from
multiple images of the same scene or object (known as Multi-View Geometry). [46] and
[54] offer in-depth discussions and explanations on the varying methods whereas [82]
provides a briefer overview.

3.4.1 Camera Calibration

In the case of 2D RGB (or grayscale) cameras, the first step to reconstructing three-
dimensional points is understanding the projection of a point in Euclidean space to
the two-dimensional image plane. Frequently the Euclidean points are not given (or
desired to be known) in a coordinate frame attached to (and possibly moving with) the
camera but in a fixed reference coordinate system. Typically, this reference coordinate
system is called the world coordinate frame. Hence, transforming the point from world
coordinates to image plane coordinates entails two steps:

1. Transform the point w(orld)p to the camera coordinate system via the transforma-
tion w(orld)

c(am)
T ∈ SE(3) (see Section 3.2 for necessary background on rigid body

transformations)

2. project the resulting point c(am)p from the camera coordinate system to the 2D
image plane.

The process of finding w
c T is known as extrinsic camera calibration and needs to

be re-estimated if the relative pose of the camera changes w.r.t. the reference frame.
Section 3.4.5 describes a possible procedure to finding such a pose. For now, let’s
assume 3D points are in camera-coordinates s.t. only the projection function π(.) onto
the image plane resulting in pixel-coordinates is of interest. The most straightforward
projective relationship is given by modeling the camera as a so-called (lense-less)
pinhole camera resulting in a linear projection (Fig. 3.5 illustrates this model).

In its simplest form, the only parameters determining this function are the focal point
of the camera f (the distance from the image screen to the point where the camera
bundles light), and the principal point of the image c (the point at which the lens axis
intersects the image). Note that for digital images, the projected point needs to be
mapped to the pixel-grid of the image plane (the coordinate frame spanned by u and
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optical axis

principal point 

Figure 3.5: The pinhole camera model results in a linear projection function, but typ-
ically this simplification comes at the cost of accuracy. The u, v axes are
the pixel-coordinate system whereas the Ximg, Yimg coordinate system is in
world units and has its origin at the principal point c where the optical axis
intersects the image plane.
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v). The pixel dimensions px, and py are necessary to compute the focal length and
principal point coordinates from world units (i.e., meters) to image plane units (i.e.,
pixels) and hence discretize the projections. The resulting focal length and principal
point components in pixel coordinates are denoted by subscripts of x and y. Eq. (3.20)
shows this linearized projection:

cam pz

pu

pv

1

 =

 fx 0 cx

0 fy cy

0 0 1

cam px
cam py
cam pz

 (3.20)

Note that the z-coordinate of the Euclidean point scales the resulting image point
in pixel coordinates. This scaling factor is a result of the fact that all points along
the projective line connecting camp to imgp result in the same projected point imgp.
Consequently, this entails that one cannot recover the Euclidean point’s depth from a
projected point.

A model that allows for non-rectangular pixels introduces a skew-coefficient s =

fx tan(α) where α is the angle between the x and y axes of the pixels (or, equivalently,
the image) - see Fig. 3.6 for a visualization of the skew coefficient. The following
equation extends the pinhole model to allow for a non-zero skew-coefficient:

cam pz

pu

pv

1

 =

 fx s cx

0 fy cy

0 0 1

cam px
cam py
cam pz

 (3.21)

Figure 3.6: The skew coefficient s measures the non-rectangularity of the pixels of a
camera. Typically it is assumed to be 1 (i.e. pixels are rectangular). fx is the
x-component of the focal length vector in pixels.

Of course, this pinhole camera model is a highly idealized version of a projection
function - real cameras do have lenses that result in various non-linear aberrations.
[115] presents an overview of camera models in use in real-world applications today.
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We will, however, only discuss the camera model utilized by this work. This model is
an extension of the pinhole camera allowing for radial and tangential distortion (see
Fig. 3.7) and is implemented by the computer vision library OpenCV1 which we work
with in this thesis.

Figure 3.7: Left: No distortion - lines in the coordinate grid are equally spaced. Middle:
Radial distortion - image lines converge outside of the image to form a
barrel-like effect in the resulting image. Right: Tangential distortion - image
lines diverge outside of the image resulting in a “pincushion”-type effect.

As these two types of distortions introduce non-linearity into the projection function
π(.), they can’t be succinctly computed via matrix-vector multiplication but require the
following steps:

p′x =
c px
c pz

p′y =
c py
c pz

r2 = p′2x + p′2y

p′′x = p′x
1 + k1r2 + k2r4 + k3r6

1 + k4r2 + k5r4 + k6r6 + 2t1 p′x p′y + t2(r2 + 2p′2x )

p′′y = p′y
1 + k1r2 + k2r4 + k3r6

1 + k4r2 + k5r4 + k6r6 + 2t2 p′x p′y + t1(r2 + 2p′2x )

pu = fx p′′x + cx

py = fy p′′y + cy

(3.22)

In Eq. (3.22) the radial distortion is influenced by the parameters ki, i ∈ [1, 6] and

1https://www.github.com/opencv/opencv
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the tangential distortion parameters by t1 and t2. Overall these parameters can be
combined to dT =

(
k1 k2 k3 k4 k5 k6 t1 t2

)
.

The process of determining the parameters of the projection function (in our case,
the intrinsic parameters A - the focal length and principal point - and the distortion
parameters d) of an assumed camera-model is called camera calibration. As the internal
camera parameters typically do not change (for non-photographers), one needs to
perform this process only once.

To calibrate a camera, one uses a so-called calibration object or rig. This calibration
object is equipped with features easily extracted from and recognized in its projected
image representation by pattern matching techniques not further discussed here. The
calibration object is typically planar (s.t. it is entirely spanned by two of the three
dimensions) with repetitive patterns (see Fig. 3.8 for an example of such an object)
where the relative distance between elements of the pattern is known.

Figure 3.8: Multiple images from different perspectives taken of a chessboard
pattern used as a calibration object (images are freely available
at http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/calib_
example/index.html)

The object’s origin is then either a uniquely recognizable feature or at some unique
location w.r.t. the entire pattern. This association process results in 2D-3D correspon-
dences with known Euclidean points in the calibration object frame. One now jointly
estimates the extrinsic parameters (the camera pose w.r.t. the object frame), the intrinsic
and distortion parameters (of the projection function) by projecting the calibration
points to the image plane and minimizing the distance of the projected points to the
extracted feature locations. This distance is referred to as the reprojection error. Note
that when using such planar calibration objects, at least two images of the object are
necessary, and the accuracy of the estimated parameters increases with the number of
images.

Also, note that while a closed-form solution exists, noise in the projection and simpli-
fications inherent to the model make a non-linear optimization objective preferrable
[128]. This non-linear least-squares objective is as follows and can be solved using an
appropriate method, e.g. the Levenberg-Marquadt algorithm [68, 78]:
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w
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∑
i=0

n f eatures

∑
j=0
||
(

f ij
u

f ij
v

)
− π((w

c Ti)
−1wpij, d, A)||22 (3.23)

f ij
{u,v} in Eq. (3.23) are the feature coordinates of feature j in image i, wpij is the

associated object point, and w
c Ti the relative camera-object pose at image i.

Minimization of this objective then leads to a known projective function necessary for
the following steps of recovering 3D scene information. The inverse of the projection
function π(.) “back-projects” a point from the image plane to camera coordinates and
is the ray through all Euclidean points which project to the same image points.

3.4.2 Epipolar Geometry

Now that we have calibrated cameras, the remaining piece enabling 3D reconstruction
is the geometry between these two cameras. The intrinsic parameters of both cameras
as well as the relative rigid body transformation r

l T ∈ SE(3) from the left to the right
camera entirely define this relationship. Fig. 3.9 shows a general configuration of such
a stereo setup.

Note that the given configuration and following discussion assumes a pinhole-camera
model (as described in the previous section) where both cameras have the same intrinsic
matrix A. Additionally, the virtual image plane (upright, between object and camera) is
considered instead of the real, inverted image plane behind the camera (as was done in
Fig. 3.5).

When projecting some arbitrary scene point wp (seen by both cameras) to the left
and right image planes, this results in two 2D points pl and pr, respectively. Due to the
linearity of the projection function, the line, or ray, passing through the 3D point and
the respective image points also passes through the camera’s corresponding optical
centers Ol and Or. As these rays are (for objects at finite distances) not parallel and,
generally, Ol 6= Or, all points along these rays through O{l,r} project to a single point
in the corresponding image plane: p0

{l,r}. However, on the respective other image, the
points along these rays r{l,r} project to a line l{r,l}. This line is called the epipolar line.
All epipolar lines on one image plane intersect at the epipolar point e{l,r}. One can also
construct these epipolar points by projecting one camera’s optical center to the other’s
image plane. Furthermore, these two projection rays coincide, i.e., there is a line going
through both optical centers and both epipolar points. This line is often referred to as
the baseline b. The plane constructed from the baseline and the rays r{r,l} is called the
epipolar plane. From the notion of an epipolar line, the so-called epipolar constraint
follows [46]: if one knows the geometry between two cameras and wants to find a given
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Figure 3.9: The epipolar geometry between two pinhole-cameras. A point projects via
the optical centers to the image planes of both cameras.
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point from the left image in the right image, one can restricts one’s search to the right
image’s corresponding epipolar line. Put differently, transforming the left ray rl to the
right coordinate system (i.e. r

l Rrl +
r
l t) and taking the cross-product of this transformed

ray and the baseline (which is identical to r
l t) produces a vector normal to the epipolar

plane:
r
l t× (r

l Rrl +
r
l t) =

r
l t× (r

l Rrl). (3.24)

Thus, taking the dot-product of this vector and the right ray must be zero (as these
must also be perpendicular):

rr · (r
l t× r

l Rrl) = 0 (3.25)

As the projected points are proportional to the rays (and utilizing the cross-product
to skew-symmetric transformation introduced in Section 3.2.1) the previous equation
simplifies to:

pT
r (

r
l t
∧r

l R)pl = pT
r Epl = 0 (3.26)

E in Eq. (3.26) is called the essential matrix and captures the relative transformation
between the two cameras.

The epipolar constraint formulated by Eq. (3.26) now allows estimating the essential
matrix given sufficient point correspondences between the left and right images. This
estimation can be done with the Eight-Point Algorithm [73, 45] given - as the name
suggests - at least eight point pairs.

Typically, one calibrates the intrinsic parameters of each camera and the relative
extrinsic calibration between cameras conjointly.

A special case of the epipolar geometry is the so-called epipolar standard configura-
tion (see Fig. 3.10): here, both image planes lie in the same plane, s.t. all epipolar lines
are parallel to each other (and the baseline), and the epipoles lie at infinity.

This configuration is especially desirable when searching for the corresponding point
in the other image by exploiting the epipolar constraint: the configuration constrains
the search to a single row in the image plane for which efficient implementations
exist. Additionally, if one has a calibrated stereo camera system, one can compute the
rotation matrices necessary to transform both image planes to the epipolar standard
configuration. From this, one can also transform the images so that they display the
desired configuration, and their epipolar lines are parallel. [46] explains this process
known as image rectification.

3.4.3 Stereo Triangulation

Knowing the intrinsics of both cameras and the relative transformation between them
now allows us to recover the lost depth information from a left-right pair of projected
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Figure 3.10: In the epipolar standard configuration, both image planes lie in the same
plane, making the epipolar lines parallel as the epipoles lie at infinity.

points. This procedure is known as triangulation: given two corresponding points pl
and pr from left and right images, respectively, the point where the “back-projected”
rays rr and lr intersect is the underlying 3D point cp. However, due to many noise
sources (discretized image plane, lenses, etc.), these rays mostly do not intersect
(Fig. 3.11 illustrates this). In the most general sense (i.e. when the projection functions
π{l,r}(.)) of the cameras are non-linear) one can solve triangulation by posing the
problem as a non-linear least squares problem and using e.g. Gauss-Newton [14] to
minimize the reprojection errors:

min
wp ∑

i∈{l,r}
||pi − π(i

wTwp)||22 (3.27)

wp is really the point in the left camera coordinate system as we only know the
relative transformation l

rT s.t. w
l T = I4 and w

r T = l
rT.

If the projection functions are linear (i.e. given by the extrinsic camera poses and
intrinsic camera matrices), one can also pose triangulation as a regular least-squares
problem.

3.4.4 RANSAC

Dealing with noise is a challenge for any task that involves real-world data from
imperfect sensors or applies simplified assumptions about said’s data underlying
model. Estimating a model’s parameters using noisy data will especially result in
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Figure 3.11: In the presence of noise, the two projection rays for a pair of projected
points do not intersect. An estimate of the 3D location is then the middle
of the shortest path connecting these two rays.

errors if the noise is not uniform across all data points. Under this assumption,
one can divide the data points into two subsets: data supporting a model (within a
certain noise threshold), dubbed inliers, and outliers - data corrupted by extreme noise
which holds no information about the parameters to be estimated. Random Sample
Consensus (RANSAC) is a popular method developed in the early 1980s for robust
model estimation [36]. RANSAC is an iterative process that consists of the following
two steps and terminates when a stopping criterion is met:

1. Randomly select a minimum amount of n points (hypothetical inliers) from the
data from which the model parameters can be estimated and fit the model to
these

2. Determine the number of points that support this model (the consensus set), i.e.,
their deviation w.r.t. the model falls within a given threshold

The stopping criteria are: the consensus set must reach a threshold, or the number
of iterations must exceed some maximum. The values of these criteria are application-
specific. Typically, if the procedure reaches the maximum number of iterations without
crossing the inlier ratio (i.e., inliers over total points), the estimation is considered failed.
If, however, the process finishes successfully, the model can then be re-estimated on the
entire consensus set leading to more robust parameters.

Generally, there is no guarantee that RANSAC finds the inlier set. At every iteration,
n points are selected uniformly from the entire dataset. Given a ground truth inlier
ratio ti =

ni
n where ni are the number of inliers, the probability of selecting n inlier
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points in a single iteration is (ti)
n and, conversely, the probability of selecting at least

one outlier is 1− (ti)
n. Assuming for simplicity that a single outlier in the hypothetical

inlier set will result in a model that doesn’t reach the required inlier ratio, it follows
that the probability of selecting non-inlier sets for k consecutive iterations is (1− (ti)

n)k.
This result now allows one to set the maximum iterations kmax by choosing a probability
p for successful completion of the process. The converse probability of failure is then
1− p and equating the previously deduced probability of failure after k iterations to
this, i.e.

(1− (ti)
n)k = 1− p (3.28)

we get

kmax =
log(1− p)

log(1− (ti)n)
(3.29)

As previously mentioned, this deduction assumes that a single outlier in an inlier set
will distort the resulting model to the point of failure. Therefore, kmax can be seen as an
upper bound. Additionally, the inlier threshold ti is generally unknown s.t. it makes
sense to use a low estimate for this (and consequently compute a larger kmax).

An example of a (for simplicity, single iteration) RANSAC scheme for fitting a linear
function is given in Fig. 3.12.

ground truth
est. using all data
est. using only inliers

Figure 3.12: Left: A single iteration of a RANSAC scheme on a dataset distorted by
outliers (gray) assuming a linear model. Two points (red) are used to
estimate the model (red line) and the consensus set (green) are all points
within a certain threshold (green area). Right: The same set and the
underlying ground truth function (blue), the estimated function using the
entire consensus set (green) and the estimated function using all datapoints
(red). Best viewed in color.
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3.4.5 Perspective-n-Point Camera Pose Estimation

Given a set of known 3D points and their corresponding projected points on an
image plane, the extrinsic pose w

c T ∈ SE(3) can be estimated via a process known as
Perspective-n-Point (PnP) [72]. Generally, the problem is similar to the triangulation
problem described in Section 3.4.3, the difference being that we only have a single
camera with an unknown pose and multiple Euclidean points with known coordinates.
Still, for n 2D-3D correspondences the generalized non-linear minimization objective
looks familiar:

min
c
wT

n

∑
i
||pi − π(c

wTwpi)||22 (3.30)

The desired pose has six DOFs and, hence, a non-linear solver for Eq. (3.30) requires
a good initialization for convergence.

However, several linear solutions exist, the earliest dating back as far as 1841 [72]. At
a minimum, PnP needs three points to solve the problem. This approach is called P3P
[122]. However, using three points results in four feasible solutions. Adding a fourth
point can resolve the ambiguity. A linear approach using Direct Linear Transform (DLT)
as a solver exists as well.

The arguably most common procedure for solving the PnP problem is Efficient
Perspective-n-Point (EPnP) and was published in 2008 by Lepetit et al. [67]. This
method solves the non-linear least-squares from Eq. (3.30) via Gauss-Newton but
initially estimates the rotational and translational components by expressing the world
points as linear combinations. The factors are shared across points and termed virtual
points. The resulting problem is that of estimating these control points on the image
plane.

As outliers (i.e., incorrect 2D-3D correspondences) are a common problem in the PnP
scenario, one commonly applies a RANSAC scheme to the estimation (as detailed in
Section 3.4.4).

3.5 SLAM

SLAM is the process by which a robot, car, or even hand-held device uses its sensors to
build a model of its surroundings and to localize itself in it simultaneously - without
having any a priori information of its environment.
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3.5.1 Early SLAM solutions

That is, the SLAM problem consists of an ego or camera trajectory made up of n
poses w

c Ti ∈ SE(3) with i ∈ [1, n] and m Euclidean points (so-called landmarks l =

{l1, l2, ..., lm}) that describe the map.
Each landmark li, in turn, has k measurements or observations oi = {oi

1, oi
2, ..., oi

k}
associated with it.

The set of all observations is then o = {o1, o2, ..., om}. Additionally, landmarks
may hold supplementary information (e.g. an RGB-color value or a descriptor - see
Section 3.3).

Generally, the problem for a single time-step t can be stated probabilistically as the
following posteriori probability encompassing the ego-pose and landmarks:

P(w
c Tt, l|wc T0, o0:t) (3.31)

In Eq. (3.31), o0:t denotes all landmark observations made up until the current
time-step.

The first SLAM systems were developed by the mobile-robotics community in the
1990s and early 2000s, e.g. [66, 41, 42, 81].

These early approaches solve the SLAM problem either via linear-filtering [66] (i.e.
with Extended Kalman Filters (EKFs) - see [16] for a discussion on Kalman filters), non-
linear filtering (i.e. with Rao-Blackwellized particle filter [81]), or through Maximum
Likelihood Estimates (MLEs) [17]. Generally, these formulations encode the system
state (poses & landmarks) in a single vector and extended the formulation given in
Eq. (3.31) to include knowledge of a robot’s control inputs u = {u1, u2, ..., un}:

P(w
c Tt, l|wc T0, o0:t, u0:t) (3.32)

A central realization of research of the SLAM problem conducted in the wake of the
success of these early systems was that the errors of landmarks observations and pose
estimates for a single timestep are highly correlated and, hence, result in a much more
sparse, and thus numerically superior, problem than initially assumed [17].

3.5.2 Solving SLAM via MAP

The current standard solution (leaving out control inputs for simplicity) to solving
SLAM is via Maximum A Posteriori (MAP):

w
c T∗t , l∗ = argmax

w
c Tt,l

P(w
c Tt, l|wc T0, o0:t) (3.33)
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Combining poses and landmarks to a single state-vector χt, applying Bayes’ Theorem
and assuming non-correlated measurements between timesteps, we arrive at

χ∗t = argmax
χt

P(χt)
t

∏
k=1

P(o0:k|χk) (3.34)

Further assuming zero-mean Gaussian distribution of measurement noise, an under-
lying function h(.) mapping landmarks-poses combinations to the measurement space,
and utilizing the fact that maximizing a Gaussian-distributed function is equivalent to
minimizing the negative log of it, we arrive at the following least-squares problem (see
[17] for a step-by-step derivation):

χ∗t = argmin
χ

t

∑
k=0
||h(χk)− o0:k||22 (3.35)

As with previously presented least-squares problems (see Section 3.4.1 and Sec-
tion 3.4.3), non-linear solvers such as Gauss-Newton or Levenberg-Marquardt can solve
this. Many implementations exploit the sparsity, as mentioned earlier, of the problem
to solve it more efficiently.

Another critical aspect of SLAM is global map consistency. The process of ensuring
such consistency is known as loop-closure and entails recognizing previously-seen
places and updating the map once such a closure is detected. Loop-closure is necessary
for accurate map and pose estimates as even minor estimation errors will accumulate
over time to result in large so-called drift errors. Fig. 3.13 illustrates such a drift and
the result of a successful loop-closure.

Figure 3.13: Loop closure enables globally consistent maps via place recognition (left)
and consequent map and pose adjustments (right).
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3.5.3 Visual SLAM

Although SLAM has its origin with robots equipped with LiDAR or SONAR sensors,
the success of recreating 3D representations of scenes from a collection of unordered
images taken from different viewpoints [2] (known as Structure from Motion (SfM))
motivated the use of RGB-cameras as input for SLAM systems. Different approaches
exist here as well: either utilizing pixel-intensity data directly [34, 33] or via indirect
feature points (see Section 3.3)[84, 85] extracted from the images. For the later approach
this leads to the following updated optimization objective from Eq. (3.35) (where om

t is
the image point associated to/measured as landmark lm at timestep t):

w
c T∗t , lt = argmin ∑

t,m
||om

t − π(o
cTtolm)||2 (3.36)

Eq. (3.36) is very similar to the optimization procedure in SfM known as BA. However,
it differs in that SfM does this optimization globally, whereas SLAM is inherently
iterative - optimizing at each step. Nonetheless, we will refer to this optimization in
visual SLAM as BA.

A final important measure for SLAM systems is that they aim to operate in real-time.
Although the problem is sparse, the number of variables grows exponentially with the
number of frames, and, hence, one must apply techniques to constrain the optimization
problem’s dimensionality. One typically achieves this by choosing measurements to
keep or discard and running the optimization only on a subset of the measurement
data, e.g., by removing redundant or outlier poses and landmarks. The arguably most
notable addition to visual SLAM systems is ORB-SLAM [84, 85]. This system introduces
a so-called covisibility graph to “window” the optimization by only considering local
frames. Informally, at some time t only poses and landmarks are included in the
optimization if they are part of or see, respectively, the local scene viewed by the camera
at time t.
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This work builds upon state-of-the-art DL object detection (see Section 3.1) and the
tried-and-tested graph-optimization technique, i.e., BA, from SLAM (see Section 3.5 and
Section 3.5.3). Although this work’s focus is on 3D MOT, the “bigger-picture” goal is to
incorporate the proposed system with a static SLAM system to facilitate dynamic scene
understanding. Thus, this chapter will review systems that have incorporated object
detection or object tracking to improve SLAM performance without implementing a
MOT system. Next, the chapter discusses metrics that try to quantify MOT performance,
and finally, existing 3D MOT (with and without SLAM incorporation) are presented.

4.1 Dynamic SLAM

Classical SLAM systems fail to differing degrees in highly dynamic environments
based on a static-world assumption. However, the capability of dealing with such
surroundings is paramount in moving towards robust autonomous navigation outside
of empty factory floors. There exist several approaches which either detect objects, e.g.,
[126, 11, 101], or more generally, dynamic parts of the environment, e.g., [70], and then
remove the associated areas from the sensor input to improve ego-tracking and static
map creation.

[101] introduce an “object-oriented” approach to SLAM for environments with a
priori knowledge of object types that are likely present in a given scene. The RGB-D
system then detects objects and matches them via Iterative-Closest-Point (ICP) to 3D
models in a database. The proposed systems removes object areas of the RGB-D frame
from the static map pose-graph optimization. The authors claim improved performance
compared to previous systems, especially w.r.t. scene geometry; however, they only
show qualitative results. Li and Lee [70] presents a system that divides an RGB-D depth
map into static and dynamic points. The authors accomplish this by transforming
the previous map to its expected representation via an estimated ego-motion. They
then perform ICP between this estimated map and the current depth map and discard
collections of points whose Euclidean distance is greater than some threshold (they call
these “dynamic edges”). The authors evaluate their system on the indoor TUM dataset
[111] and compare their ego-tracking to the current state-of-the-art RGB-D-based visual
odometry (i.e., no loop-closure) systems [56, 57] and show significant improvement
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of ego-tracking in highly dynamic environments. Additionally, they exhibit improved
performance compared to the at-the-time state-of-the-art non-real-time RGB-D SLAM
system [113].

Another system that excludes objects from the SLAM optimization problem is
DynaSLAM [11]. The authors present monocular, stereo and RGB-D flavors of their
system. In their proposal, the authors detect objects via the state-of-the-art object
detector MaskR-CNN [47]. In the RGB-D case, they additionally use multi-view
geometry assumptions to enhance the detected object (e.g., the book a person is holding
is included in the final dynamic object although it was not part of the MarkR-CNN
detection). The system then excludes those dynamic parts of the frame when optimizing
the ego-pose and static map. Furthermore, they estimate the masked frame-parts from
the existing static map and output an “inpainted” frame without the dynamic objects.
The authors evaluate their system on the TUM [111] and KITTI [38] datasets and
compare ego-tracking of their system to ORB-SLAM [84]. DynaSLAM proves to be
much more robust than ORB-SLAM in dynamic environments.

DS-SLAM [126] follows a similar approach to DynaSLAM. Yu et al. extend ORB-
SLAMv2 [85] to more robustly handle dynamic environments. The authors achieve this
by introducing a semantic segmentation network (SegNet [5]) which detects objects.
They then exclude the detected objects from the input frame for ORB-SLAMv2. Addi-
tionally, for detected features, they perform an optical-flow-based check to determine
whether a feature has moved significantly between frames and if so, regard the feature
as an outlier. They then compare their system to “vanilla” ORB-SLAMv2 on the RGB-D
TUM dataset [111] and show one order-of-magnitude improvement in ego-tracking
accuracy for highly dynamic scenes.

The relatively recent ClusterSLAM [50] assumes no a priori knowledge of object
types or topologies. Instead, it clusters objects based on groups of landmarks that
show similar relative motion between frames. This procedure results in clusters for
each object as well as a cluster for the static map. All landmarks clusters are then
optimized via BA independently; ego-motion is estimated from the static cluster. The
authors show that disjunct optimization of clusters outperforms a single optimization
objective that combines all clusters. Although objects are tracked, the authors only
show improved ego-tracking and landmark location estimates compared to [85, 11, 92,
86] on synthetic indoor and outdoor scenes created via [110] and [32].

Another issue specific to monocular visual SLAM is that of scale ambiguity. RGB-D
systems or stereo cameras do not suffer from this as they either directly (RGB-D)
or indirectly (the baseline between stereo cameras) deduce world points in meters.
However, [37] shows that detecting objects with a known scale can diminish this scale
ambiguity for monocular setups. The presented system detects and tracks cars by
detection (based on [127] and [39]) of 2D bounding boxes. It represents objects by a
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center point and a fixed dimension (i.e., a cube around a center point). This center is
then included in the graph-optimization problem to recover scale. Additionally, points
in regions of detected objects are not used as static map features. Note that the system
is only able to deal with stationary objects and fails to track moving vehicles. The
authors compare performance on the KITTI dataset [38] of their SLAM system with and
without including objects in their graph-optimization. They show that the inclusion of
this prior scale knowledge immensely reduces the scale error.

The presented research unambiguously demonstrates that a 3D MOT system that
can mask sensor input for an existing static SLAM system will result in the latter’s
improvement.

4.2 Combining SLAM and Multi-Object Tracking

There exist several works which combine visual SLAM and MOT [69, 49, 7, 123, 31].
Dong et al. [31] propose a system that decouples the SLAM and the MOT subsystems.

For performing ego-tracking and static map creation, the authors utilize [114] for
their non-real-time and [84] for their real-time capable version. Their implementation
describes objects by a pose ∈ SE(3) and an a priori assumed shape. The authors detect
and track objects via an EKF, a combination of a DL object detector (SubCNN [121] for
the non-real-time version and YOLO [93] otherwise) and the object’s class and pose.
The resulting system is evaluated on 3D object detection (not tracking) accuracy on the
KITTI dataset [38] and compared to “vanilla” SubCNN [121] which it outperforms.

In contrast to the previous system, CubeSLAM [123] proposes a sparse feature-based
approach that tightly couples SLAM and MOT s.t. both systems benefit from each
other. First, objects are detected via [93] for indoor scenes or [19] for outdoor scenes.
Concurrently, a static SLAM system based on ORB-SLAMv2 [85] estimates the ego-
pose. Detections are associated with existing object tracks by estimating existing tracks’
positions via optical flow and performing 2D IoU on the projected bounding box and
the detected object bounding box. The authors then formulate a graph-optimization
objective that includes static points and object landmarks. Separately, for each object,
a 9 DOFs bounding box is first estimated from its 2D bounding box and viewing
point and then regressed towards the optimized object landmarks’ locations. The
authors evaluate ego-tracking performance as well as 3D object detection on the KITTI
[38] and SUN RGBD [109] datasets. They show that in many (dynamic) cases, their
system is more robust than existing non-dynamic SLAM implementations (e.g., [85])
and performs comparably or better in 3D object detection to comparable feature-based
object detectors. However, the DL 3D detector Deep3D [83] shows superior performance
based on 3D IoU.
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A non-feature-based system that aims to couple MOT and SLAM to create object
tracks, as well as dense scene representation, was presented by Barsan et al. [7]. In their
work, the researchers propose a stereo-based system that separates its environment
into moving objects, potentially moving objects (e.g., stationary vehicles), and the static
map. They achieve this by first computing visual odometry (i.e., the ego pose) from a
sparse scene flow. Additionally, they use [25] for multi-object detection and associate
detections across frames via simple IoU. Object motion is estimated from scene flow
between detections of consecutive frames. The authors mask the input images with
the detected objects and use them for the static map. Moreover, for reconstructing
objects as well as the map, they compute dense depth maps from the stereo input and
then use InfiniTAM [55] for volumetric fusion. To analyze performance, the authors
assess the accuracy and completeness of the reconstructed static map and objects on
the KITTI dataset [38] using the provided LiDAR point clouds as ground truth. They
show that explicitly separating dynamic parts and the static map leads to more accurate
reconstruction for both the static map and dynamic objects.

Like our proposal, Li et al. [69] present a system that performs object-level bundle
adjustment. They use the Faster R-CNN [95] object detector to extract 2D bounding
boxes around objects. The authors then have a network that infers the viewpoint of
the object from the 2D bounding box. From this, they calculate the corresponding
3D bounding box based on a priori dimension assumptions. Li et al. associate object
detections to tracks via IoU between the projected 3D bounding boxes of existing
tracks and the 2D bounding boxes of detections. Feature points are then extracted for
each object detection and the remaining static part of the image. The static map and
ego-pose are estimated via PnP and BA. They also formulate each object track as a
BA problem and introduce a constant motion assumption to the graph-optimization.
Finally, the system aligns the inferred 3D bounding box with the optimized 3D object
landmarks to improve their estimate. The resulting system is then evaluated on KITTI
[38] and Cityscapes [24]. Similar to the works discussed in Section 4.1, the authors
show that their resulting ego-tracking is an improvement over ORB-SLAMv2 [85] in
these dynamic environments. Additionally, they show their superior object detections
compared to the 3D object detector 3DPO [21] based on the IoU accuracy of birds-eye-
view projected 2D bounding boxes. They do not analyze object tracking performance or
object detection based on 3D bounding boxes (i.e., the height and elevation of bounding
boxes is neglected).
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4.3 Metrics for Multi-Object Tracking

As explained in Section 3.1, the task of MOT consists of detecting objects in sequential
data (e.g., a stream of RGB or LiDAR frames) and associating detections across frames
to form tracks. Generally, there are three types of tasks a tracker must accomplish
[65]: first, the system must detect ground truth objects in a frame (True Positive (TP)
detections) without making incorrect detections (False Positive (FP) detections) or
missing any ground truth objects (False Negative (FN) detections). Second, the tracker
must localize the TP detections as accurately as possible, and, finally, the detections
must be correctly associated across multiple frames, i.e., grouped into tracks. The first
two tracker-qualities demonstrate a systems’ detection capability, whereas the third
encodes the ability to “connect-the-dots” over time. Thus, evaluating MOT systems
requires metrics that rank a tracker along these dimensions.

Principally, there exist two approaches to evaluating a tracker: either by associating
detections per frame, computing detection performance, and then computing association
performance; or by associating entire tracks and then measuring association and detection
performance. Both approaches constitute an assignment problem that the Hungarian
Algorithm explained in Section 3.1 can solve. Hence one needs a similarity score
S, either between detections for every frame or between trajectories across an entire
sequence, respectively. S should be maximal if ground truth and estimate perfectly
overlap and minimal if they are maximally dissimilar. Additionally, typically a minimal
similarity α is required for an association to be considered valid.

4.3.1 Matching Techniques

Matching By Detection

When matching by detection ground truth and estimated detections need to be as-
sociated for every frame. For 2D tracking, a common similarity measure S is the
aforementioned IoU between the 2D bounding boxes or, more precisely, via the respec-
tive segmentation masks (see [117] for a discussion on the superiority of segmentation
masks over bounding boxes).

A significant problem with IoU is that if there is zero overlap, the measure does not
differentiate between close and far away detections (both have a similarity score of 0),
although intuitively, a far away detection should be penalized more heavily and vice
versa. A remedy for this is GIoU as introduced in [96]. GIoU scores similarity between
-1 and 1 (compared to 0 and 1 for regular IoU). This is achieved by first computing the
minimal surrounding bounding box C around both bounding boxes A and B and then
determining the similarity score as follows:
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GIoU(A, B) = IoU(A, B)− |C \ (A ∪ B)|
|C| (4.1)

Consequently, as A and B move further apart, their area w.r.t. C decreases, and
similarity decreases as well, converging towards -1. On the other hand, if A and B are
tangent to each other, their computed similarity is 50% of the maximum (compared to
0% as in regular IoU). Both these similarity scores can be straightforwardly extrapolated
to 3D bounding boxes (i.e., OOBB): IoU is the intersection volume between boxes A3D

and B3D. C3D is the minimal surrounding bounding box necessary for GIoU.
Of course, if a similarity score S is required to be between 0 and 1, normalization can

easily accomplish this.

Matching By Track

Matching a set of ground truth tracks to a group of estimated tracks requires a similarity
score between tracks. Typically, for a given estimated track Test and a ground truth
track Tgt, similarity is computed for detections in every overlapping frame and then
averaged over the length of the ground truth track. Again, IoU or GIoU can achieve
this or, if trajectories for tracks are computed, as the Euclidean distance between points
on these trajectories. If a ground truth track is split into two or more estimated tracks
by the system, track matching procedures usually only keep the most similar part as a
correct association.

4.3.2 CLEAR: MOTA and MOTP

[10] introduced the CLEAR metrics to standardize MOT evaluation. Several tracking
benchmarks use them, e.g., KITTI [38] and the MOT-Challenge [27]. The CLEAR
metrics match detections (not tracks). The authors define a TP detection as an estimated
detection matched to a ground truth detection with a similarity score S smaller than
some threshold α. A FP is an estimated detection that couldn’t be matched to a ground
truth detection; a FN is a ground truth detection for which no corresponding estimated
detection exists. Finally, a so-called Identity Switch (IDSW) occurs when a tracker
associates two TP detections to different tracks while the corresponding ground truth
track ID remains the same or vice versa when the tracker does not switch IDs while the
ground truth track does.

From these definitions, the authors then introduce several scoring metrics.
First, Multi-Object Tracking Precision (MOTP), the detection precision of a tracker

based on the set of TP detections {TP} where S(c) is the calculated similarity measure
for a given TP detection.
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MOTP =
∑c∈{TP} S(c)
|{TP}| (4.2)

Unlike MOTP, Multi-Object Tracking Accuracy (MOTA) tries to capture the tracking
capability of a tracker and is defined as follows (where {IDSW} is the set of all IDSWs
and {GT} is the set of all ground truth detections over all frames):

MOTA = 1− |{FN}|+ |{FP}|+ |{IDSW}|
|{GT}| (4.3)

Other miscellaneous metrics belonging to the CLEAR collection are: Mostly Tracked
(MT) and Mostly Lossed (ML) (the number of trajectories where the number of TP
exceeds or falls below thresholds αMT = 0.8 and αMT = 0.2, respectively) and the
number of fragmentations (i.e., where tracks are “interrupted” or fragmented by
missing detections). Partly Tracked (PT) are trajectories that are neither mostly tracked
nor mostly lost.

There exist several problems with MOTA and MOTP. First, they do not take the
confidence for a given detection into account. This non-varying confidence leads to the
fact that authors of trackers that compute confidences evaluate them using different
confidence thresholds to filter detections and consequently maximize MOTA. Thus,
[119] suggests an enhancement to MOTA and MOTP that evaluates the metrics over
various thresholds and averages them. This enhancement amounts to a discretized
integration approximation over confidence thresholds from 0 to 1. Second, similar to
confidence thresholds, the evaluation is also very dependent on the similarity threshold
α, which determines the minimal required similarity for an estimate-ground truth
detection pair to be considered valid. As every non-matched detection counts both
as FN and a FP, using a single threshold α can have a detrimental effect on perceived
performance. Third, the CLEAR metrics provide no single metric which captures all
tracker errors equitably and enables straightforward comparison between different
methods. Fourth, MOTA is defined in (−∞, 1] and not in [0, 1] resulting in unintuitiv
results. Finally, the CLEAR metrics value detection over association [77].

4.3.3 IDF1 & Track-mAP

IDF1 [97] was initially introduced for multi-camera settings but has gained in popu-
larity for single-camera trackers [77]. Assuming matched ground truth and estimated
trajectories, IDF1 introduces the following measures: Identity True Positive (IDTP),
the number of detections belonging to a matched trajectory whose similarity score is
below some threshold w.r.t. to the associated ground truth trajectory. Similarly, Identity
False Positive (IDFP) are detections of the estimated trajectory which do not have a
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corresponding ground truth detection, and, finally, Identity False Negative (IDFN)
are missed ground truth detections or estimated detections that exceed the similarity
threshold. From this, the ID-Recall, ID-Precision, and IDF1 scores follow:

ID-Recall =
|{IDTP}|

|{IDTP}|+ |{IDFN}| (4.4)

ID-Precision =
|{IDTP}|

|{IDTP}|+ |{IDFP}| (4.5)

IDF1 =
|{IDTP}|

|{IDTP}|+ 0.5|{IDFN}|+ 0.5|{IDFP}| (4.6)

Track-mean Average Precision (mAP) [100], on the other hand, matches tracks based on
trajectory similarities (notice that, in contrast to IDF1, detections with low similarity
that belong to a TP track are not removed). Matched trajectories result in TP tracks,
whereas unmatched trajectories create FP tracks. If there are n TP tracks, then the recall
and precision for some value i ≤ n are (where the length of the associated ground truth
track is denoted as |GT|):

Pri =
|{TP}i|

n
(4.7)

Rei =
|{TP}i|
|GT| (4.8)

Track-mAP then interpolates the precision score:

InterPri = max
j≥i

(Prj) (4.9)

The final score is the area-under-the-curve of InterPri vs. Rei.
Contrary to the CLEAR metrics, both IDF1 and Track-mAP overvalue association

and undervalue detection (see [77] for a rigorous discussion).

4.3.4 HOTA

To combat many of the flaws of the CV community’s current metrics (CLEAR, IDF1,
and Track-mAP as mentioned above), Luiten et al. [77] recently suggested an improved
measure for MOT which the authors call HOTA. HOTA is a single metric (HOTA) cap-
turing the previously mentioned tracking performance dimensions in equal measures.
Like MOTA, HOTA implements a per-frame detection-based association. Although
HOTA is a single score, it can be broken down into separate metrics which encode the
three dimensions of tracking performance: detection, localization, and association.
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The authors also address the problem of the dependency between tracker perfor-
mance and similarity thresholds. Similar to the approach by [119] which integrates
performance over confidence thresholds, one integrates HOTA (and the derivative
metrics) over the entire range of similarity thresholds α via discretized approximation.

The first metric (not actually captured by the single HOTA score) measures the local-
ization accuracy based on the similarity scores between a ground truth detection and
its associated detection over all TP detections integrated over all similarity thresholds α:

LocA =
∫ 1

0
LocAαdα =

∫ 1

0

1
|{TPα}| ∑

c∈{TPα}
S(c)dα (4.10)

The second metric measures detection accuracy. Again, integrating over all similarity
thresholds, detection accuracy is given as follows:

DetA =
∫ 1

0
DetAαdα =

∫ 1

0

|{TPα}|
|{TPα}|+ |{FNα}|+ |{FPα}|

dα (4.11)

This can be further separated into detection precision and detection recall:

DetPr =
∫ 1

0
DetPrαdα =

∫ 1

0

|{TPα}|
|{TPα}|+ |{FPα}|

dα (4.12)

DetRe =
∫ 1

0
DetReαdα =

∫ 1

0

|{TPα}|
|{TPα}|+ |{FNα}|

dα (4.13)

The introduction of the final submetric, association accuracy, requires an explanation
of the novel True Positive Association (TPA), False Negative Association (FNA), and
False Positive Association (FPA). These measures are all defined for a single TP detection
c. TPA(c) is the set of TP detections with the same track ID as c and are associated
with the same ground truth track as c. Similarly, FPA(c) is the set of FP detections with
the same track ID as c and TP detections with the same track ID as c but which are
associated with another ground truth track. Lastly, FNA(c) is the set of FN detections
with the same track ID as c and all TP detection with a different track ID as c but
associated to the same ground truth track.

From these three values, one can compute the association accuracy, precision, and
recall like so:

AssA =
∫ 1

0
AssAαdα =

∫ 1

0

1
|{TPα}| ∑

c∈{TPα}

TPA(c)
TPA(c) + FNA(c) + FPA(c)

dα (4.14)

AssPr =
∫ 1

0
AssPrαdα =

∫ 1

0

1
|{TPα}| ∑

c∈{TPα}

TPA(c)
TPA(c) + FPA(c)

dα (4.15)
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AssRe =
∫ 1

0
AssReαdα =

∫ 1

0

1
|{TPα}| ∑

c∈{TPα}

TPA(c)
TPA(c) + FNA(c)

dα (4.16)

The single HOTA metric is then defined as the geometric mean of the detection and
association accuracies:

HOTA =
∫ 1

0
HOTAαdα =

∫ 1

0

√
DetAα ·AccAαdα (4.17)

The authors of HOTA show that the proposed metric balances association and
detection more reasonably than the common de-facto standards CLEAR, IDF1, and
Track-mAP, while the sub metrics allow for comparison along the different tracking
dimensionalities.

4.4 3D Multi-Object Trackers

Having defined metrics for 2D/3D MOT, we now present an overview of 3D MOT
trackers.

Ošep et al. [88] present a MOT which combines 2D and 3D information to produce
3D OOBBs. At each step, the proposed system creates 2D object detections based on [39]
and [118] from input images. Concurrently, the system generates 3D object proposals
from a pair of stereo frames based on their previous work [89]. 2D and 3D detections
are then fused via MAP. The authors associate these so-called observations across time
via a novel EKF implementation, which uses both 2D and 3D information in its state.
As no 3D MOT benchmark was available, they evaluate their porposal on the KITTI [38]
2D tracking benchmark via the CLEAR metrics. The authors show that performance is
comparable to both state-of-the-art MOT for pedestrians and cars. Additionally, the
authors give quantitative assessments on the improvements of detection precision when
2D information is enhanced by knowledge of the object in 3D space.

Another vision-based 3D MOT was introduced by Luiten et al. [76]. In this approach,
the researchers estimate ego motion (and static map creation) via ORB-SLAMv2 [85].
They detect objects by first creating 2D bounding box detections from an out-of-the-box
tracker (both [117] and [94]). They feed these bounding boxes through a custom CNN,
which outputs segmentation masks. To associate tracks to detections, the authors warp
the mask from the previous frame to the current frame using optical flow and then
associate these warped masks to the current detection via IoU and the Hungarian
Algorithm. They then fuse stereo-based depth maps and the resulting mask to generate
OOBBs and finally merge the dynamic tracks with their dense static map reconstruction
to create a time-dependent “4D-semantic-map”. Luiten et al. evaluate their proposal on
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KITTI [38] via the 2D MOT CLEAR metrics. They demonstrate superior performance
to the previously described CIWT [88] and to the up to that point state-of-the-art 2D
tracker BeyondPixels [105].

In [119] Weng et al. propose both a LiDAR-based 3D multi-object tracker and tools
to evaluate 3D-enabled CLEAR metrics. Additionally, as mentioned in Section 4.3, the
authors present adjustments to the metrics that integrate over all possible confidence
scores for object detections. Their 3D tracker is straightforward: they use a point
cloud-based object detector [106] and then estimate and update the state of existing
object tracks via a Kalman filter. Finally, the researchers match tracks to detections using
3D IoU of their OOBBs combined with the Hungarian Algorithm. The authors show
that their simple approach is faster than all existing 2D and 3D trackers. Compared to
2D/3D trackers on the 2D tracking challenge of the KITTI dataset [38], the proposed
solution is only slightly outperformed by [105], which is, however, two orders-of-
magnitude slower. Weng et al. also compare their solution to the ten-times slower 3D
tracker FANTrack [8] on the adjusted 3D CLEAR metrics and demonstrate superior
performance.

Very recently, Yin et al. proposed a LiDAR-based 3D multi-object tracker, CenterPoint,
[125], inspired by the successful 2D tracker CenterTrack [130]. The system uses a
backbone network that encodes the LiDAR point clouds into M × N f-dimensional
feature vectors. This output is then fed through a custom 2D CNN network, which
has several regression heads; the first predicts object locations for k classes w.r.t. the
bird-view of a map. Additional regression heads learn the velocity, the dimensions,
the height-above-ground, as well as the yaw of the object. Features around a given
center prediction are then passed through a second-stage Multi-Layer Perceptron (MLP)
classifier, which predicts refined bounding boxes as well as confidence scores. To
associate detections to existing tracks, the researchers suggest a straightforward L1-
distance-based similarity score where the velocity of the detection for a track from
the previous frame is used to estimate its location in the current frame. The authors
evaluate their system on nuScenes [18] and the Waymo dataset [112] and compare
their system w.r.t. 3D object detection as well as 3D multi-object-tracking. The system
exhibits state-of-the-art performance in 3D object detection; it also outperforms [119]
and the previous state-of-the-art 3D multi-object-tracker [23] using the 3D CLEAR
metrics.

4.5 Conclusion

SLAM systems that treat the world’s dynamic and static parts separately are more
robust in dynamic environments. Additionally, several approaches have been published

44



4 Related Work

that not only exclude dynamic features of the environment but go further and aim to
track these objects over time; however, few of these systems evaluate their tracking
performance. Instead, they exhibit improved ego-tracking and sometimes show their
3D detection capabilities. However, 3D MOT is a highly active research area, although
often decoupled from SLAM. Several vision-based 3D trackers exist; however, they are
only evaluated on 2D tracking, unable to demonstrate their 3D tracking ability. [119]
introduced a method to extend the popular CLEAR metrics to 3D evaluation, and quite
a few LiDAR-based trackers have emerged with impressive performance. However, [77]
shows that the de-facto standards in 2D/3D MOT evaluation, the CLEAR, IDF1, and
Track-mAP metrics, suboptimally evaluate MOT performance. Due to its very recent
publication, HOTA has not been adopted as a standard metric in common benchmarks.
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The goal of MOT in 3D is to detect objects in sequential sensor frames (e.g., RGB images
or LiDAR scans) and associate the resulting detections over time to create object tracks.

We use three types of coordinate systems:

1. the static world coordinate system through which the camera (ego vehicle) and
other objects move

2. the ego poses at time t w.r.t. the world frame: w(orld)
c(am)

Tt

3. the object poses at time t for object i w.r.t. the world frame: w
o(bject)i

Tt

The world coordinate system is initialized as the first camera pose at time t = 0, i.e.
w
c T0 = I4. Estimating the camera poses is not part of the task at hand s.t. these poses
are (alongside the stereo camera frames) the input to the system (coming, e.g., from
a separate visual odometry system). The coordinate systems’ orientation is based on
the KITTI dataset, as this is the basis for evaluation. A visualization of the coordinate
systems is given in Fig. 5.1.

As mentioned in Section 3.1, a 3D object is typically expressed by an OOBB This
OOBB comprises the object location wt in world coordinates, the object’s dimensions
(height, width, length) and its yaw (i.e., rotation around its vertical y-axis). We give a
visualization of such an OOBB in Fig. 5.2. We estimate the OOBB for each time step.
Connecting the object’s locations over time forms a 3D trajectory.

5.1 System Overview

The proposed method for 3D MOT, termed BAMOT, combines several techniques from
related problems: 2D Object Detection (OD) and tracking (see Section 3.1), and visual
SLAM (see Section 3.5). The suggested overarching system is a composition of the

46



5 Method

Figure 5.1: An illustration of the different coordinate systems/poses at a given time t.
The world frame is initialized to the first camera pose and kept fixed. The
other poses are updated every frame.

   

length

height

width

Figure 5.2: The OOBB typically describes objects for the 3D MOT task. Note that this
state simplification does not allow a pitch rotation and hence assumes level
roads.

47



5 Method

following functionalities:

1. stereo multi-object detection

2. detection-track association

3. 3D object tracking

The division of BAMOT into these loosely-coupled subsystems allows easy inter-
changeability of all subsystems with updated procedures, e.g., an improved 2D object
detector, a different method for associating tracks with detections, or other feature
point extraction or matching techniques. The boundaries between the subsystems allow
these types of changes and facilitate incremental development and improvements along
any of these three dimensions. A rough qualitative overview of the proposed system is
given in Fig. 5.3.

Note that the sensors used as input to the system potentially create further inter-
dependencies and requirements for the subsystems.

Stereo 2D object
detection

Detection-track
association

v

(Rectified) stereo images Stereo object detections

Existing object tracks Associated tracks

3D object tracking

v

Updated tracks

Figure 5.3: A coarse sketch of BAMOT. The proposed process consists of three steps: 2D
stereo object detection, detection-track association, and 3D object tracking.
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5.2 Sensors

In this work, two stereo-calibrated RGB cameras are the sensory input in form of a
stream of rectified images. This rectification is not principally necessary: one can
also achieve 2D object detection, feature point extraction and matching, and stereo
triangulation using non-rectified (but calibrated) cameras. However, we evaluate this
thesis on the popular KITTI dataset (see Section 6.1), which provides rectified images.

5.3 Stereo 2D Multiple Object Detection

The first step in BAMOT is detecting objects from both stereo images, Il , and Ir, in 2D
and associating left and right object detections. The resulting detections are now 2D
stereo object detections. The object detector used in BAMOT is the deep-learning-based
TrackR-CNN introduced in [117] which extends MaskR-CNN [47] with association
capabilities. This 2D tracker outputs pixel-wise segmentation masks and object classes
per detection. Both left and right images pass through the detection network. The result
is two collections of segmentation masks, Mi

l and Mj
r, of sizes sl and sr, respectively.

 
 

Figure 5.4: The Jaccard Index comes from set theory, but one often uses it as a similarity
measure in object detection and association tasks. In this context, it is more
commonly known as the Intersection-Over-Union measure.

Since the left and right masks are in different image domains and there is no way
to transform a mask from the left image onto the right image without any depth
information, a simple area-based similarity score such as the widely-used Jaccard Index
[53] or, its more common name in CV tasks, Intersection-over-Union (see Fig. 5.4), will
produce erroneous associations, especially with many neighboring objects (see Fig. 5.5
as a qualitative example).
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Thus, we use an appearance-based heuristic in addition to the IoU score. Feature
points (see Section 3.3) encode appearance and we already use these in the subsequent
track-detection association and 3D multi-object tracking steps. Hence, we exploit this
redundancy by using such features in multiple parts of the system and caching results
in between steps. We compute the appearance score as follows: first, we detect ORB
[99] features in both images. This results in two sets of feature points fl and fr with
sizes nl and nr, respectively. Next, we match these features as described in Section 3.3.
This then leads to to nm stereo matches. Finally, the “normalized” matched features
score λ f is:

λ f =
nm

max(1, min(nl , nr))
(5.1)

This score is zero if there are no feature matches and maximized to 1 if at least
one collection of features (left or right) is matched perfectly (unless there are zero
matches in either the left or right image). This score puts more weight on the number
of matched features per object than on the number of matched features in total and
allows to match objects that are occluded or truncated in one image but not (or less so)
in the other. Putting more weight on the total number of matches would, for example,
result in Eq. (5.2). Note that as an additional measure, detections with different class
predictions receive a score of 0.

λ f =
nm

max(1, max(nl , nr))
(5.2)

Using the former equation vs. the latter empirically proved to result in superior
associations. The resulting final score is in the range of [0, 2]:

λ = λ f + IoU(Mi
l , Mj

r) with IoU(a, b) =
|a ∩ b|
|a ∪ b| (5.3)

After association, there may still be unmatched detections in both the left and the right
image. To keep these potentially correct detections, we “transform” the segmentation
mask of an unmatched detection in the left or right image to the respective other
image. This transformation is simply a dilation of the mask followed by a removal of
pixels that they are already part of a different detection. The resulting set of masks are
thus non-overlapping. The introduced system dilates the mask by a dynamic number
of pixels. This amount is inversely proportional to the mask’s size ms. The notion
behind this heuristic is that as the object becomes smaller, the likelihood of correctly
“hitting” parts of the object in the other image becomes smaller and vice versa. Setting
the proportionality factor to 2% of the image area A = h · w works well empirically.
Additionally, we set the dilation to be at least 1px and at most 5% of the smaller image
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Figure 5.5: Left: Left-right object association is done using the similarity measure from
Eq. (5.3). Right: Using only IoU as a similarity measure results in bad asso-
ciations as areas from different image domains cannot be compared. Note
that in this qualitative example unmatched detections that are “extrapolated”
into the other image domain are left out for simplicity.

dimension ds = min(h, w). Again, we determined these values experimentally. The
resulting number of pixels pd the system dialates mask is then:

pd = min(b0.05 · dsc, max(1, b0.02 · h · w
ms

c))) (5.4)

If the dilated mask is empty (because other detections fully occlude it), the detection
remains unmatched, and the system subsequently discards it. A flow diagram of the
2D stereo object detection process is given in Fig. 5.6.

5.4 Detection-Track Association

As the name suggests and as previously mentioned, the object detector we employ in
Section 5.3, TrackR-CNN, is in fact a two-stage 2D multi-object tracker that extends
the 2D multi-object detector MaskR-CNN. In its first stage, TrackR-CNN detects seg-
mentation masks and encodes the appearance of each object. The association step of
TrackR-CNN happens in the second-stage of the network. In this stage, the network
learns to associate the encoded appearance vectors of the detected objects from the
first stage. For many cases, this works well; however, several scenarios exist where this
process fails, e.g., for objects that look similar (resulting in false positives) or for those
that change their subjective appearance resulting from a substantially different viewing
angle (false negatives). Another error source is partial (or complete) occlusions and
truncations and their effect on the encoded appearance.
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TrackR-CNN 
(or MaskR-CNN)

TrackR-CNN 
(or MaskR-CNN)

IoU & appearance
based association

Stereo object detections

Left & right object detections(Rectified) stereo images

Figure 5.6: First, left and right images pass through a 2D object detector. Then the
system associates the resulting detections between the two images using a
similarity measure consisting of a proposed combination of the classical IoU
and a “normalized” matched feature ratio score.

Additionally, as the network learns this association, it adds another non-explainable
component to possibly safety-critical applications (unlike, say, associations based on
IoU). Fortunately, our proposed system has additional 3D information that it can utilize
to supplement or altogether replace the learned associations from TrackR-CNN. The
proposed detection-track association consists of several consecutive association steps:

1. association based on the combination of appearance and 3D location

2. 3D corroborated 2D association (optional, only if the object detector is an object
tracker such as TrackR-CNN)

3. association using only 3D location

Note that the proposed system discards track-detection combinations for the first
and second step where the track’s object class does not match that of the detection.
Additionally, we remove out-of-view tracks: track for which no landmarks can be
projected to valid left image coordinates.
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5.4.1 Association via Combined Appearance & Location

Tracking based either entirely on appearance or the location (both 2D and 3D) of objects
is sub-optimal. Appearance changes or is non-unique (to a certain degree), projected
2D positions (e.g., masks or bounding boxes) lose valuable depth information, and both
2D and 3D locations can become ambiguous when objects appear close to one another
(especially at greater distances). Therefore, combining these two similarity measures
is desirable as it presumably leads to a more robust association less susceptible to
either measure’s shortcomings. One approach to a unified measure would be to
calculate the similarity of appearance and location separately and then merge these
two scores in some fashion. However, this merging into a single similarity measure
for an association is not straightforward and requires some underlying parameterized
model. BAMOT uses such a scheme for stereo object association (see Section 5.3) in
2D which works sufficiently well in practice; however, in the case at hand, associations
are not merely snapshot-based (i.e., objects only have to be matched between a single
left and a single right image) but detections have to be robustly re-matched to tracks
that have potentially become occluded for several frames (and conversely, detections
of new tracks should not wrongly be associated to existing tracks which have become
occluded). Hence, it is preferable to use a measure that incorporates appearance and
3D location “out-of-the-box”.

One such procedure is PnP (see Section 3.4.5): PnP estimates a transformation given
a set of 2D-3D correspondences. Typically (i.e., in Visual Odometry (VO) or SLAM), the
3D points are landmarks in a static map, the 2D points are observations of these points
on an image plane of a camera, and the resulting transformation is the camera pose
w.r.t. the static map. In the proposed implementation, the 3D points are landmarks
of an object w.r.t. that object’s coordinate frame, and the resulting transformation is
the object pose w.r.t. the fixed world frame. The reasoning behind adopting PnP (over,
say point cloud alignment via 3D-3D correspondences using, e.g., ICP [22]) is that we
already employ this procedure in the following 3D object tracking step. See Section 5.5
for a full description of the adjusted PnP method. Hence, we can reuse the computed
poses. PnP uses appearance (feature points-landmark matches) and 3D information
(object landmarks and the resulting pose cam

o Tt ∈ R3). As mentioned above, we cache
the feature points per object detection from the previous 2D stereo object detection step.
We match these with the landmarks of each existing track. The following Section on 3D
object tracking (Section 5.5) explains our features-landmark matching method.

PnP doesn’t directly result in a similarity measure that the system can employ for
associations. However, it does output a normalized ratio of success: the inlier ratio
λi =

ni
n from the underlying RANSAC scheme (see Section 3.4.4) where ni is the number

of inliers, and n is the total number of points used in the estimation (i.e., the number of
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2D-3D matches). Nonetheless, we cannot use the inlier ratio directly as a measure of
similarity: take, as a concrete example, an object-track combination with five 2D-3D
correspondences and an inlier ratio of 1.0 vs. an object-track combination with 100 2D-
3D matches and an inlier ratio of 0.99. Adding a third object-track combination with 200
2D-3D correspondences and an inlier ratio of 0.5 illustrates that using the raw number
of inliers also doesn’t work as a proxy for similarity. Thus, we need to normalize
the number of inliers in some other way. Two factors limit the maximum number of
inliers nmax, or, equivalently, the maximum number of 2D-3D correspondences. First,
the number of landmarks nl of an object, and second, the number of features n f in a
detection. Consequently, nmax = min(nl , n f ). This allows for both occluded objects (nl
will be high, but n f small) and objects coming into view (nl will be low, but n f high).
Thus, the resulting similarity measure is:

λ =
ni

nmax
(5.5)

If the pose estimation fails, we set the measure to 0.
As an additional criterion to check the success of the pose estimation, our system

assesses the validity of the translational component. We consider a pose estimate valid
if the relative object translation w.r.t. the previous pose at time t− 1 is within a certain
distance dmax:

|trel | <= dmax with (c
oTt)

−1c
oTt−1 = ot

ot−1
T =

[
Rrel trel
0T 1

]
(5.6)

If this “motion” is deemed invalid, we set the similarity measure to 0.
Three parameters influence the heuristical function behind dmax:

1. the object type (i.e., a pedestrian is slower than a car)

2. the distance of the object from the camera dc (i.e., the accuracy of pose estimation
decreases with distance to the camera)

3. the number of consecutive frames that BAMOT was not able to associate a track
to a detection (see the following Section 5.5)

Each object-type i has a fixed maximum expected speed of vi. This speed multiplied
by the frame rate T gives a baseline maximum translation d̃max = T · vi. This baseline
defines the radius of a sphere around the previous location that an object is expected
to maximally travel between two frames. We multiply this radius by a factor which
conceptually acts as a measure of uncertainty (as determined by parameters two and
three of the preceding listing) of the previous location, e.g., if the ambiguity of the last
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position is high, this factor is greater than 1. The uncertainty arising from the distance
to the camera dc stems from fewer features detected on a smaller object (hence the
pose estimation can use fewer 2D-3D associations as well). Additionally, triangulation
accuracy decreases with distance. The authors of ORB-SLAM [84, 85] empirically
determined that up until a distance of ~20 times the baseline b of the stereo cameras
(see Section 3.4.2) triangulation is accurate. For this reason the distance component fd
is as given in Eq. (5.7) where it is 1 for distances beneath the threshold db = 20 · b and
the distance divided by db for greater distances.

fd(cd) =

{
1, if dc < db
dc
db

, else
(5.7)

The third parameter, the number of frames nbad for which no 2D stereo detections
exist, is another source of uncertainty of the object location. BAMOT incorporates
this into the final multiplicative factor by multiplying nbad by a factor fbad and adding
one to the fraction (s.t. the multiplier doesn’t become zero when the object’s location
uncertainty is due to its distance from the camera and not due to missing detections).
Additionally, the multiplicative factor is limited by a constant fmax to restrict the possible
locations and avoid false-positive associations. This cutoff essentially gives an upper
bound to the maximally acceptable uncertainty of an object’s location when associating
it to detections. Overall, the resulting allowed distance is:

dmax = f · d̃max = min( fmax, fd(cd) · ( fbad · nbad + 1)) · T · vi (5.8)

A complete flow diagram of this process is presented in Fig. 5.7.

5.4.2 3D Corroborated 2D Assocations

This next step is employed when the object detector is, in fact, a 2D object tracker such
as TrackR-CNN. The idea behind this association step is to supplement the given 2D
information (by the 2D tracker) with the available 3D information. We achieve this
merging by corroborating (or discarding) 2D associations with the 3D location of a given
detection and the associated object track as follows: First, for every stereo detection,
our system uses the stereo feature matches from the stereo detection association step
(see Section 5.3) to localize the object in 3D space. The proposed system accomplishes
this localization by triangulating each stereo feature (see Section 3.4.3) to compute a
point cloud for a given detection. If we cannot successfully triangulate any points (and,
hence, have no 3D information), the 2D association is discarded. Otherwise, the median
point of the resulting point cloud is the location estimate. The median is more robust
to outliers s.t. the accuracy of the resulting location will not suffer from few badly
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Figure 5.7: A flowchart of the detection-track association step based on PnP as described
in Section 5.4.1.

56



5 Method

triangulated (because badly matched) features. We then check whether the relative
translation between the current location t0 and the estimated location t−1 from the
previous frame (see Section 5.5) is valid:

|trel | = |t− t−1| ≤ dmax (5.9)

The preceding association step does an equivalent validation when it verifies the
PnP-estimated pose’s resulting translational component. If the translation is acceptable,
we adopt the association emanating from the 2D tracker. Lastly, if the 2D tracker
initializes a new track, we respect this, and the system creates a new track. Again, we
provide a flowchart of this process in Fig. 5.8.

5.4.3 Association via 3D location

The association pipeline’s final step is to associate tracks and detections using only their
respective locations in 3D space. For each detection-track combination, the similarity
measure used by the Hungarian algorithm (see Section 3.1.3) is the 3D distance between
the estimated track and the detection. We estimate the location for a given detection
via its point cloud’s median point. As in the previous step, we create the point cloud
by triangulating the stereo matches. In line with the preceding stages, the distance
between a detection-track pair needs to fall within a threshold dmax (see Eq. (5.8)) to be
considered a successful association. Fig. 5.9 shows an overview of this final phase.

BAMOT creates new tracks from detections that remain unmatched after this three-
step association pipeline.

5.5 3D Object Tracking

The proposed 3D object tracking amounts to object-level SLAM with modifications
rooted in a priori knowledge of the object types’ geometry and dynamics. Landmarks
of a given object are defined w.r.t. its coordinate system, i.e., its current pose. Every
landmark can have multiple observations, i.e., 2D feature points matched to this
landmark. For each frame, we estimate an object’s pose w.r.t. the world frame. Initially
(i.e., when BAMOT initializes an object track), the object pose coincides with the current
camera pose. Additionally, each object has a location associated with it. As in the
association pipeline, an object’s location is its median landmark. This location is always
given in the current frame at time t w.r.t. the world coordinate frame. The previous
locations make up an object’s trajectory and we use it to compute an object’s OOBB.

Three track categories exist after associating 2D detections to existing tracks: un-
matched tracks, matched tracks, and new tracks.
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step in the association method corroborates the 2D associations using 3D
information. This flow diagram depicts this procedure.
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5.5.1 Extrapolating Motion For Unmatched Tracks

For unmatched tracks, i.e., tracks with no corresponding 2D detection, BAMOT extrap-
olates the locations. This extrapolation rests on a constant (local) motion assumption
across a span of nrel frames. That is, for a track with np poses we take the previous
poses w

o Tt−1 and w
o Tt0 from time t− 1 and t0 = t−min(nrel , np), and then determine

the average relative translation between these:

trel =
tt−1 − tt0

min(nrel , np)
(5.10)

We then compute the next pose w
o Tt by keeping the rotational component w

o Rt−1 equiva-
lent and adding trel to the previous translational vector tt−1:

w
o Tt =

(w
o Rt−1 (tt−1 + trel)

0T 1

)
(5.11)

For tracks with only a single pose we have no translational estimate so the extrapolated
pose is kept equivalent to the previous pose (w

o Tt = w
o Tt−1). Additionally, we consider

these unmatched tracks as poorly tracked and record the number of consecutively
poorly tracked frames per object. If this counter goes above a certain threshold tbad, we
consider the track inactive, remove it from future association steps, and do not record
its OOBB.

5.5.2 Object Pose Estimation

The tracking procedure is broadly equivalent for new and matched tracks and we
henceforth describe it for a single track. First, the system resets the badly tracked
frames counter to zero. Then it estimates the current pose. For matched tracks, the
pose extrapolation procedure explained in Section 5.4 is the initial pose guess. We then
refine this guess using PnP estimation in a RANSAC scheme (see Section 3.4.5 and
Section 3.4.4, respectively). However, we reframe the typical PnP problem as we are
interested in the object and not in the camera motion. Note that our system assumes
the camera pose w

c Pt to be given. In addition to the camera pose, we require the feature-
landmark matches for this. These are available from the preceding detection-track
association step (see Section 5.4). Also, notice that as the system performs four-point
PnP (and not, e.g., the underdetermined P3P [122]), our initial pose guess remains
unchanged if there are fewer than four matches. Usually, PnP estimates the camera pose
w.r.t. landmarks of a static map. However, in this application, each object is its own
static map, i.e., landmarks are in object coordinates. The poses that BA optimizes are
the relative poses between the camera and the object. Eq. (5.12) gives the corresponding
optimization objective of minimizing the reprojection loss function.
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min
c
oT

n

∑
i
||pi − π(c

oTopi)||22 (5.12)

If PnP successfully estimates a transformation, and the inlier ratio is greater than
λpnp, the system re-runs the procedure on the entire inlier set from the initial RANSAC
optimization. Additionally, as in the first stage of the detection-track association
procedure (see Section 5.4), the translational component of the optimized pose is
verified to be less than dmax from Eq. (5.8). If the optimization is unsuccessful, has
an inlier ratio below λpnp, or the relative translation is too great, the initial guess
(extrapolated pose) remains unchanged.

5.5.3 Adding Landmarks and Observations

We utilize stereo matches (see Section 5.3) and interest point-landmark matches (see
Section 5.4) to create new landmarks of an object and add observations of existing
landmarks, respectively. As explained in Section 3.3, we require a descriptor for each
landmark to perform descriptor matching between landmarks and (left) features. Our
descriptor calculation for a landmark with n observations is inspired by ORB-SLAM
[84, 85]: for each observation, we compute the distance of its descriptor to all other
observations. Then, we determine the median of those distances per observation.
Finally, we choose the observation’s descriptor with the smallest median distance
to all other observations as the landmark’s representative descriptor. Unlike ORB-
SLAM, there is no concept of “keyframes”: BAMOT considers all frames for a given
track. Consequently, landmarks may have many more observations than in a SLAM
setting. Since the descriptor computation mentioned above has a runtime of O(n2), the
proposed system limits the number of descriptors used for comparison ñ to nmax. We
sample the ñ ≤ nmax descriptors uniformly from all available n observations. Once (left)
features have been matched to landmarks, we can add the features as observations.
However, these features must fulfill two criteria: first, when transforming the matched
object landmark to the current camera pose, the point must not be behind the camera,
and, second, its distance must not exceed a given threshold dc

max. The system adds a
stereo observation of the landmark if there exist a corresponding right feature point
(i.e. the feature is also a stereo match) and if the left-right feature correspondence does
not violate the epipolar constraint (as detailed in Section 3.4.2).

After the preceding step, the system triangulates new landmarks (see Section 3.4.3)
from stereo matches (feature-feature matches from the left and right camera frames)
that it did not yet add as observations to existing landmarks in the preceding step.
Several conditions must hold for these newly created landmarks to be valid as well:
they need to fulfill the epipolar constraint, the triangulated point must not lie behind
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the cameras, and finally, the distance of the point to the cameras may not exceed the
threshold of dc

max. Fig. 5.10 shows the process of adding observations and landmarks.
The set of newly created landmarks and observed landmarks, termed the current

landmarks, are then used to remove stale landmarks in the following manner: first, the
center of the current landmarks is their median. Then, we mark all landmarks that are
further from this center than an object-specific threshold as invalid and consequently
delete them. This object-specific threshold is the maximum expected object dimension
for a given type (e.g., the length for cars and height for pedestrians). Such a threshold
ensures that even if the current landmarks are at the very edge of an object, the process
does not remove existing landmarks at the object’s opposing edge. This thresholding-
based culling process proves to be a simple and powerful way to remove outlier
landmarks based on known object dimensions. This is a deviation from regular SLAM
systems as they do not have such geometric knowledge of the static map a priori.

As mentioned above, we set the object’s initial pose to the current camera pose.
However, once the object contains landmarks, we translate the coordinate system, so
its origin lies at the median of the object’s point cloud. This translation is necessary to
limit the effect of camera rotation on motion estimates for far away objects. Finally, if
the system did not create more than lmin landmarks, it discards the newly created track.
This conservative track creation ensures more robust initialization at the potential cost
of later than necessary initialization.

5.5.4 Object-level Bundle Adjustment

The classical SLAM problem consists of simultaneously finding the world positions
of a collection of landmarks and the world poses of a set of camera poses where each
pose observes some subset of the landmarks. One approach to solve this problem is
through Bundle Adjustment (see Section 3.5), a graph-based solution.

In the proposed system, each object k has nk landmarks that are fixed w.r.t. the
object’s coordinate frame under the rigidity assumption. Also, each object has tk
pose estimates w.r.t. the fixed world frame. In order to simultaneously optimize
the landmark positions and the object poses, we need to make some mathematical
adjustments s.t. the problem can be solved via Bundle Adjustment. Since the pose of
the camera at time t is given as w

c Tt, estimating the relative pose between the camera
and the object k at time t ok

c Tt results in the desired pose:

w
ok

Tt =
w
c Tt(

ok
c Tt)

−1 (5.13)

Thus, we introduce a Bundle Adjustment scheme where both landmarks and camera
poses are optimized w.r.t. the object frame. Since the camera poses w.r.t. the world
frame are known, the system can deduce the needed object poses and landmarks w.r.t.
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Figure 5.10: The qualitative process of adding new observations to existing landmarks
from feature matches between the left camera and landmarks and creating
new landmarks from matches between the left and right camera frames.
Section 5.5.3 explains the procedure in detail.
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the world frame. Eq. (5.14) displays the adjusted objective function for a single object k
with n landmarks tracked over t frames with known camera poses over these frames.
Note that π(.) is the known projection function, pn

t is the observed feature point for
the landmark n at frame t, and ρ(.) is the robust Huber kernel [51]. The Huber kernel
limits outliers’ influence: their residual is linear instead of quadratic.

min ∑
n,t

ρ(||pn
t − π(o

cTtoPn)||2) (5.14)

We further adjust this objective function via the addition of an error term that pe-
nalizes non-smooth trajectories. The idea is that objects are expected to have constant
velocity, at least locally, and further that adding this requirement has a positive regular-
izing effect on the optimization problem. We express this constant motion requirement
as follows: for three poses at times t, t− 1, and t− 2, the relative object motion from
t− 2 to t− 1 and from t− 1 to t must be identical. The equality from Eq. (5.15) shows
that the necessary poses are o

cTt̃ and w
c Tt̃ for t̃ ∈ {t − 2, t − 1, t}. o

cTt̃ are the poses
that the BA procedure optimizes and w

c Tt̃ are the known camera poses that we use as
constants in the graph-optimization.

ot−1

ot−2 T = ot

ot−1 T
o
wTt−1(

o
wTt−2)

−1 = o
wTt(

o
wTt−1)

−1

o
cTt−1(

w
c Tt−1)

−1(o
cTt−2(

w
c Tt−2)

−1)−1 = o
cTt(

w
c Tt)

−1(o
cTt−1(

w
c Tt−1)

−1)−1

o
cTt−1(

w
c Tt−1)

−1w
c Tt−2(

o
cTt−2)

−1 = o
cTt(

w
c Tt)

−1w
c Tt−1(

o
cTt−1)

−1

(5.15)

To arrive at an error term from the equality condition given in Eq. (5.15), a notion of
infinitesimal deviation must exist. As explained in Section 3.2 for Lie groups (such as the
transformations at hand from the Special Euclidean Group SE(3)), a Lie group’s tangent
space at the identity, its Lie algebra, represents elements in a Euclidean-like space
where differentiation is possible, and a notion of distance between two transformations
exists. As shown in Section 3.2.5, the so-called log map transforms an element T from
SE(3) to its element in se(3) ξ. The resulting representation can be parametrized by
ξ ∈ R6. Transforming the identity transformation to its Lie algebra representation
results in the zero vector and thus the length of the vector can be seen as the residual e:

et = |εt| = | log((ot

ot−1 T)−1ot−1

ot−2 T)| (5.16)

The first three entries of ξ encode translation and rotation whereas the last three
entries are linked to rotation only (see Section 3.2.5 for details). This is an important
property as the error stemming from rotation is bounded by 2 · π but the translational
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error is prinicpally unbounded. Furthermore, the velocity of an object influences the
translational error. Let us assume two objects traveling at speeds v1 and v2 > v1,
respectively. If both objects deviate by x% from the constant motion assumption (i.e.
they exhibit non-zero acceleration between frames) this will result in two translational
errors et

1 and et
2 > et

1. However, if we want to treat both errors as identical (to their
identical relative deviation), we need to employ some form of normalization. 1 The
proposed system uses the ratio of the estimated object velocity vi

est for object i over
the maximum expected speed of a given object type j, vj

max, for normalization. Thus,
the normalized velocity equals one when the object is moving at maximum speed and
0 when it is standing still. We derive the estimated object velocity by computing the
median translation between frames over the previous nv frames and multiplying this
by the camera system’s frame rate. To avoid this ratio reaching either zero or exceeding
one (if an object is moving faster than the maximum expected velocity), it is smoothed
to arrive at a normalizing factor λc for the translational residual as given in Eq. (5.17)
and visualized in Fig. 5.11.

λc =
1
2
(tanh(

4 · |vi
est|

vj
max

− 2) + 1) (5.17)

vj
max

|vi
est|
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Figure 5.11: The result of evaluating this function for an estimated object velocity is used
as the normalizing factor for the translational residual from the constant
motion assumption.

1On the other hand, one may also argue that a deviation at a higher velocity must be penalized more
heavily than a relatively identical deviation at a lower speed.
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We make another adjustment to the objective function: as every landmark-feature
pair creates a residual for a given frame, but there exist only a single constant motion
residual, we scale the constant motion residual proportionally to the number of obser-
vations in a frame (or vice versa, the residuals of each observation needs to be inversely
scaled by the number of total observations ot in frame t). Finally, we multiply both the
translational and the rotational residual of the constant motion assumption by fixed
object-specific (for object i) constants ci

t and ci
R, respectively. Eq. (5.18) gives the final

objective function for the Bundle Adjustment optimization.

min ∑
n,t

1
ot

ρ(||pn
t − π(o

cTtoPn)||2) + λc · ci
t · |
[

I3 03

03 03

]
εt|+ ci

R · |
[

03 03

03 I3

]
εt| (5.18)

We employ the open-source framework g2o [61] for our object-level graph optimiza-
tion. BAMOT adapts a sliding window approach to limit the number of parameters
in the optimization problem: the proposed system only performs BA on the past nw

frames for a given object while it is active. The optimization keeps the oldest pose in
this sliding window fixed s.t. the resulting trajectory remains connected. Limiting the
number of parameters, in turn, decreases runtime.

5.5.5 Estimating OOBBs

At every step, we estimate OOBBs in an online fashion, which we use for later per-
formance evaluation. As previously mentioned, an OOBB consists of a 3D location,
the dimensions of an object, and the object’s orientation w.r.t. its height (assumed to
be parallel to gravity). To estimate an object’s location, we compute the entire object
point cloud median and the current landmarks’ median. We then take the mean of
these two medians. We use the object pose and landmark locations after BA to benefit
fully from this optimization result. For objects that the system did not detect in a
given frame, we only use the median of all existing landmarks as no notion of “current”
landmarks exists. To calculate the orientation, we use the direction of an estimated
velocity vector. We base this velocity vector on the previous nv frames: similar to our
motion extrapolation method, we compute the relative translation in the current ego
frame between the current frame and frame at time t0 = t−min(nv, np) where np are
the number of detections of an object (i.e., the length of the track). We then project the
resulting velocity vector onto the x,z-plane of the current camera coordinate system.
Finally, we calculate the angle between the projected velocity vector ṽ and the x-axis of
the ego frame:

ry = arccos(
(
1 0

)
· ṽ) (5.19)

This angle ry is the OOBB orientation.
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We do not estimate object dimensions. Instead, we employ constant dimensions
per object class. We set these dimensions to roughly match the median dimensions of
objects in the dataset we evaluate on.
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The Appendix tabulates the system’s hyperparameters’ configuration (as discussed in
Chapter 5) for the following results. The code is publicly available.1

6.1 KITTI Dataset

The KITTI benchmark suite [38]2 encompasses datasets and evaluation procedures for
various computer vision applications, including odometry, 3D object detection, and
2D multi-object tracking. The datasets are created by driving around a car through
Karlsruhe (Germany), surrounding suburban areas, and highways. The result is a
variety of real-world situations with alternating amounts of other traffic participants
(e.g., cars, pedestrians, and cyclists). The vehicle is equipped with two grayscale
cameras, two RGB cameras, a GPS sensor, an IMU sensor, and a LiDAR (see Fig. 6.1
for the setup). The authors calibrate the car’s cameras and provide both raw and
rectified (see Section 3.4.2) image data and the corresponding calibration parameters.
Additionally, the datasets include the LiDAR data and the ego vehicle’s ground truth
poses (derived from the GPS and IMU sensors). Different datasets provide further data
specific to the task at hand.

We evaluate the proposed system on the multi-object tracking dataset.3 The dataset
encompasses 21 training scenes, each of which includes ground truth object detections
for every frame. Each detection consists of a track ID (s.t. ground truth tracks are
available), the OOBB for the detection, the class of the detected object, the 2D bounding
box around the detection, and (in its multi-object tracking and segmentation extensions)
2D segmentation masks. There are also 29 scenes for testing for which only the input
data (i.e., images and LiDAR) are openly available. Performance on this test set can
only be evaluated by uploading results to the official KITTI benchmark servers.

1https://github.com/AnselmC/bamot
2http://www.cvlibs.net/datasets/kitti/index.php
3http://www.cvlibs.net/datasets/kitti/eval_tracking.php
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Figure 6.1: The car setup for the KITTI dataset [38].

6.2 Quantitative results

Although KITTI provides OOBB for detections and includes a benchmark for 3D MOD
and 2D MOT, evaluation for 3D MOT is notably absent. As mentioned in Chapter 4,
[119] introduced a benchmark for this purpose which is based on KITTI and uses
adjusted CLEAR metrics (see Section 4.3.2) with a 3D IoU similarity score. Nonetheless,
as such a non-generalized IoU doesn’t take distance of non-overlapping bounding
boxes into account (see Section 4.3.1 for an explanation) we adopt a normalized 3D
GIoU [96] to calculate similarity:

S(dgt, dest) =
1 + IoU(dgt, dest)−

|C\(dgt∪dest)|
|C|

2
(6.1)

In Eq. (6.1), dgt is a ground truth detection in a given frame, dest is an estimated
detection, and C is the minimal OOBB which includes both dgt and dest.

We evaluate system performance w.r.t. cars and pedestrians on both HOTA [77] and
CLEAR [10]. However, we set the system parameters to optimize for HOTA. We then
compare the results of BAMOT to the LiDAR-based method AB3DMOT [119] as the
authors readily provide 3D tracking results. We compare performance on the validation
scenes of the learned system AB3DMOT from KITTI: {1, 6, 8, 10, 12, 13, 14, 15, 16, 18, 19}.
Because AB3DMOT depends on confidence threshold filtering, we evaluate using the
confidence threshold that maximizes performance for the given metric.

We evaluate via the official scripts of HOTA4 with a custom implementation for
3D OOBB with the above mentioned normalized 3D GIoU.5 The official 2D KITTI

4https://github.com/JonathonLuiten/TrackEval
5based on work from Nikita Korobov (https://github.com/nekorobov/HOTA-metrics)
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HOTA DetA AssA DetRe DetPr AssRe AssPr LocA
[119] (car, α ≥ 0.5) 74.4 72.5 76.9 79.1 83.8 79.9 91.0 89.0
[119] (car, α ≥ 0.25) 74.5 72.6 76.8 79.1 83.9 79.9 90.9 89.0
[119] (car, α ≥ 0.1) 74.3 72.5 76.6 79.2 83.7 79.9 90.7 88.9
[119] (ped., α ≥ 0.5) 55.5 55.3 55.9 59.9 76.0 57.5 84.4 82.5
[119] (ped., α ≥ 0.25) 55.5 55.3 55.9 59.9 76.0 57.5 84.4 82.5
[119] (ped., α ≥ 0.1) 55.5 55.4 55.9 59.9 76.0 57.5 84.3 82.4

Table 6.1: Adjusting the preprocessing similarity threshold α for filtering FP to match
the new setting (i.e., normalized 3D GIoU vs. 2D IoU) also has a slightly
positive effect on AB3DMOT

.

evaluation removes “acceptable” FP detections in crowded areas or smaller than 25
pixels. The script determines these FP detections by matching estimated and ground-
truth detections and considering all matches with IoU scores below 0.5 as unmatched
and potential FP. This removal arguably makes sense in 2D (but it also originates from
the fact that the original CLEAR metric evaluation only counts a detection with an
IoU greater than 0.5 as a TP). However, for small (i.e., far away) detections, the depth
estimates are less accurate than their 2D projections. Thus, considering detections with
normalized 3D GIoU similarities below 0.5 as unmatched and then deeming them
as FPs if they fall slightly below the 25-pixel height harms performance. Since this
preprocessing step is supposed to be a positive contribution to overall performance
in its original application, and this is not the case by one-to-one application in 3D,
we adjust the threshold to be 0.25 vs. 0.5. Table 6.1 shows that this has a positive, if
negligible, effect on the method we compare against w.r.t. to the primary evaluation
metric HOTA.

The confidence thresholds determined to maximize AB3DMOT performance on 3D
GIoU are 2.34 for cars (both HOTA and MOTA) and 1.50 (HOTA)/2.0 (MOTA) for
pedestrians (note that AB3DMOT does not normalize confidences).

6.2.1 HOTA

Table 6.2 tabulates a performance comparison between AB3DMOT and BAMOT. As
to be expected, the LiDAR-based method outperforms our vision-based method. This
superiority arises from the fact that the underlying depth data from LiDAR is far more
accurate than triangulated landmarks from RGB data. Additionally, the discrepancy
in accuracy increases with distance. Finally, the LiDAR input density compared to
feature-based landmarks’ sparsity allows for more accurate location and shape estimates
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and thus inferred bounding boxes. This not only affects the location accuracy LocA
(Eq. (4.10)) but also on the detection accuracy DetA (Eq. (4.11)), association accuracy
AssA (Eq. (4.14)), and thus on HOTA (Eq. (4.17)). This widespread effect comes from
the similarity score (in our case given in Eq. (6.1)) upon which all metrics are based.
The maximally achievable similarity Smax of a given MOT system gives an upper bound
for HOTA and its derivative metrics. This is easily shown. For a given threshold α,

LocAα =
∑c∈{TPα} S(c)
|{TPα}|

≤ Smax. (6.2)

Additionally, for α > Smax,

LocAα>Smax = 0. (6.3)

This inequality follows from assuming (at best) constant similarities Smax for all TP
detections. Integrating over α to calculate LocA, then yields

LocA =
∫ 1

0
LocAαdα ≤ S2

max. (6.4)

Similarly, for DetA the upper-bound for a single threshold α is 1:

DetAα =
|{TPα}|

|{TPα}|+ |{FNα}|+ |{FPα}|
≤ 1. (6.5)

Again, assuming a maximally attainable similarity score Smax, it follows that

DetAα>Smax = 0 (6.6)

and thus

DetA =
∫ 1

0
DetAαdα ≤ Smax. (6.7)

The same inequality holds for AssA and HOTA, i.e. AssA ≤ Smax and HOTA ≤ Smax.
In practice, LocA is larger than the other measures as it disregards FNs and FPs.

Nonetheless, the presented inequalities give a sense of how high similarity scores
strongly influence all evaluation metrics’ dimensions.

When comparing our system for the car object class to AB3DMOT, one also sees that
while the detection accuracy decreases by 65.8−35.8

65.8 ≈ 46%, association accuracy merely
decreases by 77.8−48.2

77.8 ≈ 38%. This indicates that BAMOT comparatively improves
association. Another key insight is that tracking performance w.r.t. pedestrians is
considerably worse. This inferiority has two reasons. First, our sparse feature-based
approach detects fewer features on smaller objects which negatively affects both local-
ization accuracy and robust association. Second, people violate our model’s non-rigidity
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HOTA DetA AssA DetRe DetPr AssRe AssPr LocA
BAMOT (car) 40.7 35.8 48.2 40.9 49.0 53.8 59.9 66.6
[119] (car) 71.3 65.8 77.8 83.1 71.5 81.5 90.0 88.5
BAMOT (ped.) 19.7 22.7 18.4 27.2 39.6 21.2 46.0 65.0
[119] (ped.) 55.5 55.3 55.9 59.9 76.0 57.5 84.4 82.5

Table 6.2: As expected, the LiDAR-based AB3DMOT is superior to our vision-based
approach. However, the superiority especially stems from more accurate
localization. Because we implement a feature-based approach for both 3D
localization and association, the resulting sparsity makes it harder to track
smaller, non-rigid pedestrians than cars.

assumption, i.e., landmarks detected on arms and legs change their location w.r.t. the
fixed object coordinate-frame. Non-static landmarks lead to either estimating wrong
object poses via PnP or removing such landmarks, thus increasing pedestrian point
clouds’ sparsity. Hence, unless pedestrians are fully visible (i.e., landmarks on the
more-or-less rigid torso can be redetected and used for localization and association)
or stationary, our system has trouble tracking them over time. It often loses track of
the pedestrian and reinitializes a new object track. This instability results in a lower
association accuracy vs. detection accuracy for pedestrians. For cars the opposite is true:
association accuracy is higher than detection accuracy. Additionally, the localization
accuracy (i.e., average similarity score for TP detections at a given similarity threshold)
for pedestrians is only slightly below that of cars (65.0 vs. 66.6).

Table 6.3 tabulates how various parts of BAMOT influence overall performance. We
alternately “switch-off” the following characteristics:

• improving TrackR-CNN’s association with our three-step association pipeline
detailed in Section 5.4

• initializing tracks only when the number of successfully triangulated landmarks
surpasses a threshold

• the local constant motion error term in object-level BA (see Section 5.5.4)

• keeping tracks in memory and thus, “re-matchable”, after not being successfully
localized for a specified number of frames

For cars, our association pipeline’s effect is a ~16% improvement in association
accuracy, translating to a ~9% increase in the resulting HOTA score. This improvement
comes at a slight (arguably negligible) cost in localization accuracy and, thus, in
detection accuracy.
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However, our association pipeline hurts pedestrian tracking. While association
accuracy increases slightly (the number of FPAs significantly decreases, leading to
much higher association recall), detection accuracy decreases. This is because we are
often unable to successfully associate a detection to a track in 3D and, thus, forgo
adding the detection. Using the image-based associations from TrackR-CNN will not
result in this behavior leading to a performance increase of ~5% for HOTA. This is not
surprising and another effect of our sparse object representation approach.

The constant motion error term in object-level BA penalizes non-smooth trajectories.
This has a significant effect on pedestrians since they contain a larger outlier ratio w.r.t.
feature-landmark associations because of their non-rigidity. This mainly manifests itself
in the resulting detection accuracy, which increases by ~97%. Thus, they benefit from
this regularizing error term. For cars, the effect is negligible.

The removal of robust initialization (i.e., initializing new objects once the system
triangulates a single landmark) results in overall more but inaccurate detections. Com-
paratively, for low similarity thresholds, this increases TPs and decreases FNs leading
to higher detection recall. However, for higher similarity thresholds, such inaccurate
detections lead to FPs and FNs, resulting in lower detection precision and lower recall
(compared to robust initialization). Thus, although both metrics are affected, the effect
on detection precision is more severe in total as it is not counter-balanced by the
improved recall at lower α. We plot the impact of the different number of minimum
landmarks for initializing cars in Fig. 6.2.

Lastly, retaining tracks after they are lost has a more significant effect on association
vs. detection. This comparative improvement in associating detections is because
BAMOT can reassociate such lost tracks to detections in the future, increasing the TPAs
for a given detection (i.e., avoiding an identity switch). Fig. 6.3 shows the effect of
retaining a car track for a differing number of frames before removing it from the
system. While the outcome is positive for both cars and pedestrians overall, one can
see that the detection and association precision, as well as the localization accuracy
improves when we delete tracks quickly. This is because we have less false positive
detections that result from not being able to track an existing track and, thus, estimating
its position in a given frame incorrectly. However, if we continuously reinitialize tracks,
we can more accurately localize each detection as the localization is unconstrained from
past detections (and associated landmarks and object poses).

6.2.2 MOTA

For completeness, we also evaluate 3D MOTA. Table 6.4 and Table 6.5 show results
based on the CLEAR [10] metrics (see Section 4.3.2). The 2D CLEAR metrics deem a
detection a TP if its IoU is at least 0.5. Unlike HOTA, the CLEAR metrics only evaluate
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Figure 6.2: Robustly initializing objects with a minimal number of required landmarks
leads to improved association and, thus, improved HOTA. However, as
the number increases, the TP detection count decreases along with perfor-
mance. This plot shows how the number of minimum landmarks affects
our system’s car tracking performance. Best viewed in color.
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Figure 6.3: Keeping tracks after the system cannot associate a 2D detection to it (e.g.,
because the object is occluded), allows us to associate future detections to
a track. Again, there is a trade-off: if we keep tracks too long in memory,
we increase the likelihood of erroneously matching detections of new tracks
to old tracks. This plot shows how this trade-off manifests itself in the
performance for 3D multi-object tracking for cars. Best viewed in color.

75



6 Results

HOTA DetA AssA DetRe DetPr AssRe AssPr LocA
BAMOT (car) 40.7 35.8 48.2 40.9 49.0 53.8 59.9 66.6
no impr. assoc. (car) 37.2 ↓ 35.9 ↑ 41.2 ↓ 41.6 ↑ 47.7 ↓ 52.6 ↓ 52.5 ↓ 66.4 ↓
no const. motion (car) 40.4 ↓ 36.1 ↑ 47.1 ↓ 40.7 ↓ 50.3 ↑ 52.7 ↓ 60.4 ↑ 66.9 ↑
no track retention (car) 39.1 ↓ 35.8 - 44.8 ↓ 39.8 ↓ 51.2 ↑ 49.2 ↓ 61.8 ↑ 66.9 ↑
no robust init. (car) 39.1 ↓ 35.9 ↑ 44.6 ↓ 42.7 ↑ 46.0 ↓ 50.2 ↓ 57.9 ↓ 66.0 ↓
none of the above (car) 35.0 ↓ 34.9 ↓ 37.3 ↓ 40.2 ↓ 46.3 ↓ 49.0 ↓ 48.5 ↓ 65.6 ↓
BAMOT (ped.) 19.7 22.7 18.4 27.2 39.6 21.2 46.0 65.0
no impr. assoc. (ped.) 20.7 ↑ 24.3 ↑ 18.1 ↓ 30.7 ↑ 36.4 ↓ 29.4 ↑ 27.6 ↓ 64.2 ↓
no const. motion (ped.) 13.7 ↓ 11.5 ↓ 17.0 ↓ 12.9 ↓ 35.6 ↓ 19.3 ↓ 44.4 ↓ 63.6 ↓
no track retention (ped.) 11.6 ↓ 11.4 ↓ 12.5 ↓ 12.0 ↓ 45.0 ↑ 13.3 ↓ 59.0 ↑ 65.4 ↑
no robust init. (ped.) 14.6 ↓ 12.0 ↓ 18.6 ↑ 13.4 ↓ 36.0 ↓ 20.9 ↓ 45.9 ↓ 63.5 ↓
none of the above (ped.) 15.5 ↓ 12.4 ↓ 19.8 ↑ 13.7 ↓ 37.0 ↓ 28.8 ↑ 30.7 ↓ 64.0 ↓

Table 6.3: An ablation study comparing how different high-level notions of our system
influence its overall performance. Overall BAMOT benefits from a ∼ 17%
(cars) and ∼ 27% (pedestrians) performance increase from using improved
associations, robustly initializing new tracks, assuming constant local motion
in object-level BA, and keeping lost tracks in memory s.t. BAMOT can
redetect them.

a single similarity threshold. If we keep this threshold for 3D GIoU, our vision-based
method performs very poorly as many estimated detections “fall under the table” and
get counted as both a FP and a FN. However, if we count detections with a similarity
score of at least 0.25 (S ≥ α = 0.25), this paints a very different picture. For cars
and pedestrians, the MOTA score increases by large margins: from −0.0954 to 69.4
for cars and from −18.5to31.6 for pedestrians. This is because, at a lower minimally
required similarity, many more estimated detections can be matched to their ground
truth counterparts, thus increasing TPs. At the same time, both MOTP scores drop.
This is because MOTP measures the average similarity of TPs detections. At a high
minimum similarity threshold, this is necessarily higher, as only very precise detections
are considered. Pedestrians exhibit fewer such precise OOBBs compared to cars. This
leads to both lower MOTA and MOTP performance. Disabling the minimum similarity
score altogether still increases MOTA; however, it also decreases MOTP to the same
degree, arguably rendering that final step inconsequential. The effect for AB3DMOT is
less severe as its OOBB estimates are decidedly more accurate due to the precision of
LiDAR.
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MOTA MOTP MT (%) PT (%) ML (%) IDSW FRAG
BAMOT (α = 0.5) -0.0954 62.2 4.9 54.6 40.5 21 421
[119] (α = 0.5) 81.0 88.1 71.9 27.0 1.08 22 149
BAMOT (α = 0.25) 69.4 52.1 53.5 38.4 8.11 39 92
[119] (α = 0.25) 81.1 87.6 71.9 27.1 1.08 29 147
BAMOT (α = 0) 76.6 48.9 61.1 34.1 4.86 67 72
[119] (α = 0) 83.0 81.9 77.8 22.2 0 129 159

Table 6.4: Comparison of cars’ performance on the KITTI dataset via the detection-
biased CLEAR metrics using 3D GIoU as a similarity measure. When setting
the minimum threshold α to 0.5, the evaluation disregards many detections.
The CLEAR metrics then count each unmatched detection both as a TP and
as a FN, resulting in a low MOTA score.

MOTA MOTP MT (%) PT (%) ML (%) IDSW FRAG
BAMOT (α = 0.5) -18.5 61.0 4.23 45.8 50 259 497
[119] (α = 0.5) 66.7 80.5 44.4 40.8 14.8 85 235
BAMOT (α = 0.25) 31.6 48.2 21.1 60.6 18.3 366 355
[119] (α = 0.25) 66.9 79.9 45.1 40.8 14.1 88 233
BAMOT (α = 0) 58.7 33.1 33.1 53.5 13.4 326 242
[119] (α = 0) 68.8 69.6 48.6 39.4 12.0 156 251

Table 6.5: For pedestrians, the effect of setting the minimum threshold α below 0.5
has a similar effect as it does for cars. Overall, pedestrian tracks are often
incorrectly tracked, as can be seen in the large number of IDSWs.
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6.3 Qualitative results

This section discusses and illustrates the qualitative results of this work. We create
visualizations with Open3D [129] 6.

As stated above, BAMOT can track cars significantly better than small, non-rigid
people. However, as our system orients bounding boxes based on the object’s velocity
vector, the orientation and detection accuracy increase as an object continues to be
tracked for multiple frames and has an estimated velocity. Additionally, the localization
depends on the accuracy of triangulated landmarks and the object’s distance from the
camera. Fig. 6.4 shows how the orientation estimate improves for both close and far
away objects as the system tracks them for a longer time; the figure also demonstrates
how the camera’s distance influences localization accuracy.

The dependency of orientation estimates on accurate velocity vectors results in a
problem for stationary objects: here, the estimated movement of the object in 3D space
is small but present, s.t. orientation estimates are erroneous, resulting in imprecise
OOBBs. Aligning OOBBs based on the geometry of the point cloud could result in
improved alignment in such cases. Fig. 6.5 gives examples of the difficulties BAMOT
has with parked cars. Incorrect velocity vectors are less of an issue for pedestrians since
OOBB orientation consists only of the yaw (i.e., rotation w.r.t. gravity) and pedestrians
have similar dimensions in the relevant axes.

Fig. 6.6 illustrates how the system can handle varying degrees of difficulties in MOT.
Objects in the image domain (and potentially also detected by the object detector) are
not initialized by the system if not enough landmarks can be successfully triangulated.
Even for initialized objects, one can see the landmark count’s significant influence on its
localization accuracy. Furthermore, for objects with several frames-long trajectories, the
orientation of the sliding-window velocity vector accurately estimates the ground truth
orientation. Additionally, even if objects leave the image domain, BAMOT continues to
know their estimated locations in 3D space. This memorization has the negative side
effect of FP detections. Although we do not record not-in-view detections, objects leave
our field-of-view typically after KITTI considers them gone.

Fig. 6.7 visualizes several other examples of our system’s tracking capabilities w.r.t.
different traffic scenarios for cars.

As explained above, the sparsity of the proposed system and pedestrians’ non-
rigidity make it more difficult for BAMOT to accurately track pedestrians compared
to cars. To track pedestrians well, enough of their nearly-rigid torso must be visible
across frames to precisely localize and associate them. Compared to cars, single frame
localization is also less precise since BAMOT creates fewer landmarks on smaller objects.

6http://open3d.org
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Figure 6.4: This figure demonstrates how the length of an object track and its distance
to the camera influences the accuracy of OOBBs. t0 is the first frame
containing the object detection. t2 and t7 show the object two and seven
frames after initialization, respectively. Ground truth OOBBs and ground
truth trajectories are drawn in black, estimated OOBB and trajectories in
color. Top (A): For close objects (approx. up to 20 times the stereo camera
baseline), the localization of triangulated landmarks is precise. Additionally,
as the system observes the object for several frames, the orientation of the
bounding box improves. Bottom (B): For far-away objects (~30m in this
example), BAMOT triangulates fewer and less-precise landmarks resulting
in an inaccurate OOBB. Still, the estimate improves as more observations of
the object are added. Best viewed in color.
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Figure 6.5: Estimating orientation from a velocity vector does not work for stationary
objects. Ground truth OOBBs and trajectories are in black; their estimated
counterparts are in color. Best viewed in color.

Fig. 6.8 shows some examples where the system is capable of localizing and tracking
pedestrians. Fig. 6.9 displays weak tracking ability scenarios; instead, pedestrians are
either localized imprecisely or lost and created as new tracks.

The combination of appearance and 3D information for associating existing tracks to
stereo detections improves association in several situations compared to the appearance-
only procedure from TrackR-CNN. One such example is shown in Fig. 6.10.

Despite the discussed problems, BAMOT works well in many cases, especially when
considering localization only (i.e., object trajectories vs. OOBB). Fig. 6.11 and Fig. 6.12
illustrate such cases of accurately estimated trajectories. They also depict difficult
situations such as parked cars or scenarios where IDSWs can occur. Fig. 6.13 showcases
how localization accuracy decreases with distance from the camera. The Figure,
however, also shows how this is less of an issue if the track is first localized close to the
camera and then moves away from it. Localization accuracy further declines when the
landmark count decreases. For the trajectory figures, we match estimated trajectories to
ground truth trajectories based on the average distance between detections weighted by
the number of frames that tracks overlap.

80



6 Results

Figure 6.6: Top: The current frame including the detected object segmentation masks
and the associated object track IDs. Additionally, we draw the extracted ORB
features onto the image. Bottom: A 3D visualization of the ego-vehicle (a)),
the ground truth OOBBs and trajectories (black), and the estimated object
tracks (colorized). b) Even if the object leaves the image domain (no ground
truth box exists) BAMOT continues to track it for several frames and can
reassociate it. c) A non-occluded object that isn’t too far away and has been
tracked for several frames is accurately (for vision-based systems) estimated,
whereas objects with fewer landmarks exhibit less precise localization (d)).
e) If we cannot triangulate enough landmarks, the system does not initialize
an object even if detected in the image domain. Best viewed in color.
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Figure 6.7: Several examples of BAMOT’s ability to track cars. Each example consists
of the RGB image and 2D detections above the 3D visualization of object
tracks. Ground truth objects are in black; estimated tracks in color. Best
viewed in color.
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Figure 6.8: When pedestrians are not occluded, BAMOT can create enough landmarks
to localize them accurately. Additionally, if they remain unoccluded for
several frames, the system can track landmarks on their torso over time.
Best viewed in color.
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Figure 6.9: The non-rigidity of pedestrians combined with our sparse approach makes
association difficult. Often, pedestrian tracks are also not initialized because
they are heavily occluded, and hence, our proposal cannot match enough
features between the left and right image. This figure illustrates some
difficult examples. Best viewed in color.
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Figure 6.10: Top (A): Associations by TrackR-CNN are only appearance-based. Hence,
associations between two frames t0 and t1 that make no sense in 3D
are possible (far-left, purple bounding box). Bottom (B): Our association
pipeline does take 3D information into account and, hence, the erroneous
association from TrackR-CNN does not occur. Also, note the motion (and
absence thereof) of the far-left (blue) bounding box: our system filtered a
second incorrect association from TrackR-CNN in previous frames. Best
viewed in color.
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Figure 6.11: Our system performs well for moving cars as exemplified by these trajecto-
ries. However, parked cars at a distance often lead to jagged trajectories
rather than points. One can also see how estimates become more accurate
(and trajectories smoother) as we track the object for a longer period of
time. Best viewed in color.
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Figure 6.12: When an object is not tracked for several frames and far from the camera,
our system allows for larger 3D motions. Generally, this improves perfor-
mance. However, in some cases this can lead to IDSWs as exemplified by
some of the inconsistent trajectories. Best viewed in color.
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Figure 6.13: For most of the time, the ego-vehicle is at the left of this plot. This figure
shows how the distance of objects w.r.t. the camera affects localization
accuracy. Notice that the system can track trajectories longer than KITTI
expects them to. However, in this scenario this does not count negatively
towards the evaluation as both HOTA and CLEAR ignore objects that are
smaller than 25 pixels in the image domain. Best viewed in color.
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7 Conclusion & Future Work

7.1 Conclusion

In this thesis, we present a stereo-based approach for 3D MOT. Employing object-level
BA on sparse point clouds, a DL-based object detector, a novel hierarchical association
pipeline that combines the objects’ appearance and 3D information, and a priori
assumptions about objects’ shapes and dynamics, we show encouraging results w.r.t.
moving cars: object localization benefits from multi-frame tracking, as does orientation
estimation leading to accurate OOBBs. Additionally, our association pipeline removes
erroneous appearance-based associations by exploiting the available 3D knowledge our
system keeps of objects.

We compare our system to the LiDAR-based AB3DMOT [119] on the KITTI dataset
[38]. Since there exists no official 3D MOT benchmark for KITTI, and the adjustments
presented in [119] use the CLEAR [10] metrics with the flawed similarity measure of
3D IoU, we evaluate using a normalized 3D GIoU on the recently introduced HOTA
[77] metrics. We also present the corresponding CLEAR results.

While [119] can more accurately localize objects due to the superior depth estimates
of LiDARs vs. stereo-cameras, we show a possible comparative advantage when it
comes to tracking. Furthermore, we explore the impact of various implementation
aspects of BAMOT. Due to our sparse approach and pedestrians’ non-rigidity, BAMOT
demonstrates its capability to a greater degree for larger, rigid objects, namely cars. The
system’s ability is most profound when the cars are moving (vs. parked) and initialized
at not too-great distances (below ~20 times the stereo setup baseline).

7.2 Future Work

Several approaches are possible to improve performance further. First, orientation
estimates for slow objects or those that haven’t been detected in sufficiently many
frames to estimate velocity accurately should be revised. Applying PCA to determine
the dominant landmark point cloud axes may achieve this improvement in the before-
mentioned situations. Second, there exists considerable research on extracting OOBBs
from point clouds, e.g., [91, 106]. While these approaches assume dense LiDAR point
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clouds, their results hint at the possibility of successfully training a similar network on
sparse-point clouds. Adding our current OOBB estimates as initial guesses from which
the network regresses may prove invaluable.

Also, comparing our approach to a dense stereo-based system, e.g., an adjusted
MOTSFusion [76] that stores OOBBs, should be insightful. Ultimately, KITTI adding a
3D MOT benchmark will allow us to compare against a wide variety of proposals.

As discussed in Chapter 4, static SLAM systems benefit from removing dynamic
parts of the sensor input, so integrating our work with an existing visual SLAM
implementation is another possible direction of work. For such integration to make the
most sense, it is necessary to make BAMOT real-time capable first.
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sentation and two results of learned output weighting of the HOGs for
people detection [26]. Bottom (C): Various examples of eigenfaces used for
face detection and recognition (taken from https://scikit-learn.org/
stable/auto_examples/applications/plot_face_recognition.html). 6
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5.5 Left: Left-right object association is done using the similarity measure
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6.3 Keeping tracks after the system cannot associate a 2D detection to it (e.g.,
because the object is occluded), allows us to associate future detections to
a track. Again, there is a trade-off: if we keep tracks too long in memory,
we increase the likelihood of erroneously matching detections of new
tracks to old tracks. This plot shows how this trade-off manifests itself in
the performance for 3D multi-object tracking for cars. Best viewed in color. 75
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6.8 When pedestrians are not occluded, BAMOT can create enough land-
marks to localize them accurately. Additionally, if they remain unoc-
cluded for several frames, the system can track landmarks on their torso
over time. Best viewed in color. . . . . . . . . . . . . . . . . . . . . . . . . . 83
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ized because they are heavily occluded, and hence, our proposal cannot
match enough features between the left and right image. This figure
illustrates some difficult examples. Best viewed in color. . . . . . . . . . . 84
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