Bundle Adjustment for Multiple Object Tracking - a Stereo-based Approach

Master's Thesis Presentation

Anselm Coogan

March 31st, 2021

Technische Universität München

BAMOT: Bundle Adjustment for Multiple Object Tracking

Demo

- vital for autonomous navigation \rightarrow dynamic map of environment
- static SLAM benefits from tight integration with 3D MOT

Related Work

- dynamic environments are difficult for classical SLAM systems
- solutions to improve static SLAM performance:
 - detect and remove non-static elements, e.g. RGBD-SLAM in Dynamic Environments¹
 - detect and track dynamic objects, e.g. CubeSLAM²

¹Li et al., "RGB-D SLAM in Dynamic Environments Using Static Point Weighting", *IEEE Robot. Autom. Lett.* 2017. ²Yang et al., "CubeSLAM", *IEEE Trans. Robot.* 2019.

- What constitutes a good tracker?
 - detection ability
 - detection accuracy
 - tracking accuracy
- Which tracker performance metrics exist?
 - CLEAR³: MOTA, MOTP
 - IDF1⁴ & Track-mAP⁵
 - HOTA⁶

 ³ Bernardin et al., "Evaluating Multiple Object Tracking Performance", EURASIP J. Image Video Process. 2008.
 ⁴ Ristani et al., "Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking", ECCV, 2016.
 ⁵ Russakovsky et al., "ImageNet Large Scale Visual Recognition Challenge", Int. J. Comput. Vis. 2015.
 ⁶ Luiten et al., "HOTA", Int. J. Comput. Vis. 2021.

- (dense) stereo-based systems
 - CIWT⁷
 - MOTSFusion⁸
 - use 3D info to improve 2D MOT
- AB3DMOT⁹
 - custom 3D MOT evaluation (+ LiDAR method)
- other LiDAR methods¹⁰

⁷Osep et al., "Combined Image- and World-Space Tracking in Traffic Scenes", ICRA, 2017.

⁸Luiten et al., "Track to Reconstruct and Reconstruct to Track", *IEEE Robot. Autom. Lett.* 2020.

⁹Weng et al., "3D Multi-Object Tracking: A Baseline and New Evaluation Metrics", *IROS*, 2020.

¹⁰Yin et al., "Center-Based 3D Object Detection and Tracking", arXiv:2006.11275 [cs], 2021; Chiu et al., "Probabilistic 3D Multi-Object Tracking for Autonomous Driving", arXiv:2001.05673 [cs], 2020.

Method

Overview

"Stereo" Object Detections

- pseudo-stereo detections via matched monocular
 2D detections from TrackR-CNN¹¹
- similarity
 - 2D location not applicable
 - appearance based \rightarrow match features

appearance based

IoU-based

¹¹Voigtlaender et al., "MOTS", CVPR, 2019.

Detection-Track-Association

- ORB features¹²
- PnP for object pose estimation
- object-level Bundle Adjustment w/ constant motion error term
- landmark culling based on known object shape

¹² Rublee et al., "ORB", *ICCV*, 2011.

Results

KITTI¹³

- 21 training scenes
- 29 testing scenes
- input: rectified stereo frames + ego motion

¹³Geiger et al., "Vision Meets Robotics", Int. J. Robot. Res. 2013.

Qualitative results: Example

Qualitative results: Improved tracking

Qualitative results: Pedestrians

Quantitative Evaluation procedure

- parameters optimized for HOTA
- LiDAR-based AB3DMOT¹⁴ as comparison
- similarity: Generalized Intersection-over-Union

¹⁴Weng et al., "3D Multi-Object Tracking: A Baseline and New Evaluation Metrics", *IROS*, 2020.

BAMOT vs AB3DMOT

- BAMOT
 - sparse feature point-based triangulation from 1.4 MP RGB cameras
 - triangulation accuracy decreases rapidly at approx. 20 times stereo baseline¹⁵ (\rightarrow 10m)
- AB3DMOT
 - dense LiDAR input (1.3 million points/sec)
 - 120m range
 - 2cm distance accuracy
 - 0.09 degree angular resolution

¹⁵Mur-Artal et al., "ORB-SLAM", IEEE Trans. Robot. 2015.

- Detection accuracy (DetA) \rightarrow detection ability
- Localization accuracy (LocA) \rightarrow detection precision
- Association accuracy (AssA) \rightarrow tracking ability

	HOTA	DetA	AssA	LocA
BAMOT (car)	40.7	35.8	48.2	66.6
AB3DMOT (car)	71.3	65.8	77.8	88.5
BAMOT (ped.)	19.7	22.7	18.4	65.0
AB3DMOT (ped.)	55.5	55.3	55.9	82.5

BAMOT vs AB3DMOT using IoU

	HOTA	DetA	AssA	LocA
BAMOT (car, IoU)	22.9	18.3	30.4	61.5
AB3DMOT (car, IoU)	66.3	63.3	70.4	82.1
BAMOT (car, GloU)	40.7	35.8	48.2	66.6
AB3DMOT (car, GIoU)	71.3	65.8	77.8	88.5

	HOTA	DetA	AssA	LocA
BAMOT (ped, IoU)	10.6	9.83	12.3	63.9
AB3DMOT (ped, IoU)	46.6	45.4	48.4	74.5
BAMOT (ped., GIoU)	19.7	22.7	18.4	65.0
AB3DMOT (ped., GIoU)	55.5	55.3	55.9	82.5

	HOTA	DetA	AssA	LocA
BAMOT (car, TrackR-CNN)	40.7	35.8	48.2	66.6
BAMOT (car, GT masks)	43.7	37.3	53.0	67.8
BAMOT (ped., TrackR-CNN)	19.7	22.7	18.4	65.0
BAMOT (ped., GT masks)	27.7	24.6	31.9	65.1

Ablation study

	HOTA	DetA	AssA	LocA
BAMOT (car)	40.7	35.8	48.2	66.6
no impr. assoc. (car)	37.2↓	35.9 ↑	41.2↓	66.4↓
no const. motion (car)	40.4↓	36.1↑	47.1↓	66.9 ↑
no track retention (car)	39.1↓	35.8 -	44.8↓	<mark>66.9</mark> ↑
no robust init. (car)	39.1↓	35.9 ↑	44.6↓	66.0↓
none of the above (car)	35.0↓	34.9↓	37.3↓	65.6↓
BAMOT (ped.)	19.7	22.7	18.4	65.0
no impr. assoc. (ped.)	20.7 ↑	24.3 ↑	18.1↓	64.2↓
no const. motion (ped.)	13.7↓	11.5 ↓	17.0↓	63.6↓
no track retention (ped.)	11.6↓	11.4↓	12.5↓	65.4 ↑
no robust init. (ped.)	14.6↓	12.0↓	18.6 ↑	63.5↓
none of the above (ped.)	15.5↓	12.4↓	19.8 ↑	64.0↓

Conclusion

- contribution
 - sparse, vision-based 3D MOT system
 - promising results w.r.t. static objects
 - 3D MOT evaluation (HOTA + 3D GIoU)
- future work
 - 3D MOT comparison against other vision-based methods necessary
 - integration with static SLAM system

Thank you! Thesis + code: github.com/AnselmC/bamot

- Bernardin, Keni et al. "Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics". en. In: EURASIP J. Image Video Process. 2008 (2008), pp. 1–10. ISSN: 1687-5176, 1687-5281. DOI: 10.1155/2008/246309.
- Chiu, Hsu-kuang et al. "Probabilistic 3D Multi-Object Tracking for Autonomous Driving". en. In: arXiv:2001.05673 [cs] (Jan. 2020). arXiv: 2001.05673 [cs].

- Geiger, A et al. "Vision Meets Robotics: The KITTI Dataset". en. In: Int. J. Robot. Res. 32.11 (Sept. 2013), pp. 1231–1237. ISSN: 0278-3649, 1741-3176. DOI: 10.1177/0278364913491297.
- Li, Shile et al. "RGB-D SLAM in Dynamic Environments Using Static Point Weighting". In: IEEE Robot. Autom. Lett. 2.4 (Oct. 2017), pp. 2263–2270. ISSN: 2377-3766, 2377-3774. DOI: 10.1109/LRA.2017.2724759.
 - Luiten, Jonathon et al. "HOTA: A Higher Order Metric for Evaluating Multi-Object Tracking". en. In: Int. J. Comput. Vis. 129.2 (Feb. 2021), pp. 548–578. ISSN: 0920-5691, 1573-1405. DOI: 10.1007/s11263-020-01375-2.

- Luiten, Jonathon et al. "Track to Reconstruct and Reconstruct to Track". In: IEEE Robot. Autom. Lett. (Apr. 2020). DOI: 10.1109/LRA.2020.2969183. arXiv: 1910.00130.
- Mur-Artal, Raul et al. "ORB-SLAM: A Versatile and Accurate Monocular SLAM System". In: IEEE Trans. Robot. 31.5 (Oct. 2015), pp. 1147–1163. ISSN: 1552-3098, 1941-0468. DOI: 10.1109/TR0.2015.2463671. arXiv: 1502.00956.
- Osep, A. et al. "Combined Image- and World-Space Tracking in Traffic Scenes". In: ICRA. May 2017, pp. 1988–1995. DOI: 10.1109/ICRA.2017.7989230.

- Ristani, Ergys et al. "Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking". In: ECCV (Sept. 2016). arXiv: 1609.01775.
- Rublee, Ethan et al. "ORB: An Efficient Alternative to SIFT or SURF". en. In: ICCV. Barcelona, Spain, IEEE, Nov. 2011, pp. 2564–2571. ISBN: 978-1-4577-1102-2 978-1-4577-1101-5 978-1-4577-1100-8. DOI: 10.1109/ICCV.2011.6126544.
 - Russakovsky, Olga et al. "ImageNet Large Scale Visual Recognition Challenge". In: Int. J. Comput. Vis. 115 (Jan. 2015), pp. 211–252. arXiv: 1409.0575.

- Voigtlaender, Paul et al. "MOTS: Multi-Object Tracking and Segmentation". en. In: CVPR. Long Beach, CA, USA, IEEE, June 2019, pp. 7934–7943. ISBN: 978-1-72813-293-8. DOI: 10.1109/CVPR.2019.00813.
- Weng, Xinshuo et al. "3D Multi-Object Tracking: A Baseline and New Evaluation Metrics". In: *IROS* (2020).
- Yang, Shichao et al. "CubeSLAM: Monocular 3D Object SLAM". en. In: IEEE Trans. Robot. 35.4 (Aug. 2019), pp. 925–938. ISSN: 1552-3098, 1941-0468. DOI: 10.1109/TR0.2019.2909168. arXiv: 1806.00557.
- Yin, Tianwei et al. "Center-Based 3D Object Detection and Tracking". en. In: *arXiv:2006.11275* [cs] (Jan. 2021). arXiv: 2006.11275 [cs].