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Abstract

Jointly estimating scene structure and camera parameters is a fundamental problem in
computer vision, which has recently been shown to benefit from direct, photometric methods.
We address the work Large Scale Photometric Bundle Adjustment by Woodford and Rosten,
which is dealing with the offline optimization of camera parameters and dense geometry.
Overall, the presented framework is capable of handling a large number of parameters and
a variety of lighting conditions and camera intrinsics, as could be found in a collection of
images downloaded from the internet. It deals with these challenges by utilizing a photometric
loss that is invariant to local lighting changes and a memory-efficient implementation of the
Variable Projection optimizer. The goal of this project has been to manually implement
the proposed framework and reproduce the evaluation results on the Tanks and Temples
dataset. We additionally compare the memory-efficient optimization method with standard
Levenberg-Marquardt.

1 Introduction

This project deals with the article Large Scale Photometric Bundle Adjustment [14] which presents
a framework for the reconstruction of camera parameters and dense scene geometry. The joint
estimation of camera parameters and scene structure is a fundamental problem in computer vision
with applications ranging from large-scale reconstruction of objects or buildings to online camera
pose estimation. The latter has been shown to greatly benefit from minimizing a photometric er-

Figure 1: Refined dense point cloud and camera poses

ror [10], rather than the geometric error of feature-based methods. Such direct methods measure
the error in the domain of pixel intensities, which can explain the significant improvements. The
standard approach for a large-scale dense reconstruction, however, consists of computing camera
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parameters and sparse geometry with feature-based structure from motion (SfM) [8] and a subse-
quent dense reconstruction with multi-view stereo (MVS) [9]. Such a method is used to generate
initial parameters for our framework, which performs a photometric refinement of geometry and
camera parameters to improve accuracy. It specifically deals with the challenges found in sets
of images downloaded from the internet, which include different lighting conditions and camera
intrinsics and a high volume of data.

Some methods have addressed jointly minimizing a photometric error over structure and cam-
era parameters. One offline method is [4], which represents dense geometry as a triangle mesh that
is regularized with a smoothness term to penalize variations of the surface normals. Optimization
is performed using a first-order gradient descent solver. A sparse and direct approach to monoc-
ular visual odometry is presented in [10]. The photometric error is minimized over a window of
recent frames using a second-order solver. It performs joint optimization of all model parameters,
including camera motion and intrinsics and geometry, which is represented as inverse depth in a
reference frame. The smoothness prior used in other methods is omitted and the algorithm does
not depend on keypoint detectors or descriptors.

Similarly, our approach uses an independent, ray-based landmark representation, additionally
modeling planes, and utilizes a second-order solver, but computes dense geometry. We employ
the Normalized Cross Correlation (NCC) photometric score [3, 7], which is invariant to affine
intensity variations over local patches, to deal with different lighting situations between images.
A memory-efficient implementation of the Variable Projection optimizer [6] is capable of jointly
optimizing thousands of camera parameters and millions of geometry parameters. Overall, the
presented framework is capable of handling a variety of lighting conditions and camera intrinsics
and a large number of parameters, as could be found in a large and diverse collection of images
downloaded from the internet.

The goal is to implement the proposed framework and evaluate its performance on the Tanks
and Temples training dataset [11]. Additionally, we compare the proposed optimization method
to standard Levenberg-Marquardt with higher memory requirements. We do not address the
reconstruction from internet images in this work.

2 Method

In this section, we describe the main optimization step in our framework. For this, we require
problem parameters, a photometric cost function, and the specific optimization methods we apply.

2.1 Problem Parametrization

The pose of each view is modeled by a Euclidean transformation Ti ∈ SE(3) consisting of a rotation
R ∈ SO(3) and translation t ∈ R3. For P images we thus obtain camera extrinsics {Ri, ti}Pi=1.
Contrary to [14] we assume shared intrinsics between views, which consist of calibration and
distortion parameters {fx, fy, cx, cy, l1, l2}. We use the standard linear calibration function

κ(x) =

[
fx 0
0 fy

]
x +

[
cx
cy

]
. (1)

The lens distortion ϕ describes a polynomial radial distortion model with two coefficients

ϕ(x) = x(1 + l1r
2 + l2r

4) r2 = ‖x‖2. (2)

With Θ̄ = {fx, fy, cx, cy, l1, l2} ∪ {Ri, ti}Pi=1 we denote the set of camera parameters. Projecting
a 3D-point X ∈ R3 from world coordinates into image j we obtain

x = κ(ϕ(π(RjX + tj))) (3)

with the projection function π([x, y, z]>) = [x/z, y/z]>. We additionally require the inverse func-
tions κ−1 and ϕ−1. The first can be determined straightforwardly, ϕ−1 is another polynomial
where we compute the first six coefficients in closed form according to [5].
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Intuitively, in our formulation, a landmark k is not only defined by its location Xk in 3D space
but also by a normal Nk modeling the surface orientation. We parametrize a landmark k as a
plane nk ∈ R3 relative to some source frame i = Ik and obtain

nk =
RiNk

(RiNk)>(RiXk + ti)
(4)

by transforming location and normal into the respective coordinate system. This formulation
encodes depth as well as orientation. Overall, the complete set of optimization variables is Θ =
Θ̄ ∪ {nk}Lk=1.

To unproject the coordinates xk of landmark k in image i onto its plane in world coordintes
we compute

Xk = R>i

(
x̄k

n>k x̄k
− ti

)
, x̄k =

[
ϕ−1(κ−1(xk))

1

]
. (5)

Overall, to reproject landmark k from view i to view j we calculate

xijk = κ(ϕ(π(RjR
>
i

(
x̄k

n>k x̄k
− ti

)
+ tj))). (6)

Extending this mapping to a grid of N points results in the function ΠΘ
ijk : R2×N → R2×N

depending on the model parameters Θ with k being the landmark and i and j the source and
target frame, respectively.

During the optimization we compute parameter update steps δΘ and generally denote the
update with Θ ← Θ ⊕ δΘ. Specifically, the update of pose a Ti, consisting of rotation Ri and
translation ti, is not done additively but parametrized as Ti ← exp(ξi)Ti where exp(·) converts a
6-vector into a Euclidean transformation. Additionally, we abbreviate the derivative of the update
∂/∂ξi|ξi=0 with ∂/∂Ri and ∂/∂ti. Details can be found in appendix B.2.

2.2 Cost Formulation

Having a mapping ΠΘ
ijk for pixels from one image into another, we can compare intensity values

between different views for each landmark. For this, we additionally require visibilities Vk and a
source frame Ik for each landmark k, which stay fixed during the optimization. As discussed in the
previous section, the landmark is parametrized relative to this source view, meaning it is anchored
to a specific pixel coordinate xk in the respective image. During the optimization, only its depth
and normal orientation change relative to this view. We construct a 4×4 grid Pk ∈ R2×N , N = 16
centered on xk, with the spacing between points being one pixel, and extract intensity values Ii(Pk)
from image i = Ik. When reprojecting this grid into different views, multiple such patches can

Figure 2: Grid coordinates and normalized patches from different views (after optimization)
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be sampled and compared, which is visualized in figure 2. As desired, the grid is projected onto
the plane and follows its orientation and the sampled patches have similar values despite different
lighting conditions. We define the least-squares cost accordingly

E(Θ) = ‖Ereg‖2 +
∑
k

∑
j∈Vk

ρ(‖Ejk‖2), ρ(s) =
s

s+ τ2
(7)

Ejk = Ψ(Ij(Π
Θ
ijk(Pk)))−Ψ(Ii(Pk)), i = Ik (8)

Ψ(̄I) =
Ī− µ̄I

σ̄I
σ̄I = ‖̄I− µ̄I‖ µ̄I =

1> Ī

N
(9)

Ereg = 105

[
fx − fy
fx + fy

,
cx −W/2

max(W,H)
,
cy −H/2

max(W,H)

]>
. (10)

The Normalized Cross Correlation Ψ normalizes the patches to have zero mean and unit variance
making them invariant to affine intensity transformations. The Geman-McClure Kernel [2, 1] ρ
robustifies the cost with τ = 0.5 as lims→∞ ρ(s) = 1. Ereg forces the focal lengths to be similar
and the pixel offsets to be close to half the image width and height, respectively. This might be
less relevant for our formulation with shared intrinsics, but in the original method the individual
parameters for each view might be less well constrained.

2.3 Optimization

The optimization procedure involves computing Jacobians, the partial derivatives of the residuals
with respect to the optimization variables J = ∂E

∂Θ . We group Jacobians by landmark and separate
the derivatives for camera and landmark paramters. To incorporate the loss functions we peform
a weighting by the square-root of ρ′(s) = τ2/(s+ τ2)2. For landmark k we obtain the Jacobians

J̄k =

[√
ρ′(‖Ejk‖2)

∂Ejk

∂Θ̄

]
∀j∈Vk

Ĵk =

[√
ρ′(‖Ejk‖2)

∂Ejk

∂nk

]
∀j∈Vk

(11)

and the residual

Ek =

[√
ρ′(‖Ejk‖2)Ejk

]
∀j∈Vk

. (12)

Using the Gauss-Newton optimization for least squares problems we compute approximate Hes-
sians

HΘ̄ =

L∑
k=0

J̄>k J̄k + J>regJreg, Hnk
= Ĵ>k Ĵk, HΘ̄nk

= J̄>k Ĵk, (13)

with Jreg being the Jacobian for the intrinsics regularization, and the gradients

gΘ̄ =

L∑
k=0

J̄>k Ek gnk
= Ĵ>k Ek. (14)

We combine HΘ̄nk
into HΘ̄n and Hnk

into Hn for all k, where Hn is block-diagonal because
of independent landmarks. Overall, we obtain a linear system HδΘ = −g that is structured as
follows [

HΘ̄ HΘ̄n

H>
Θ̄n

Hn

] [
δΘ̄
δn

]
= −

[
gΘ̄

gn

]
. (15)

Solving this directly is prohibitively expensive due to the large number of landmark parameters,
but we can exploit the block-sparse structure of Hn. Evaluating the Schur complement, we solve
for δΘ̄ and construct a reduced camera system (RCS) to first determine the update step for the
camera parameters

δΘ̄ = −H−1
rcsgrcs Hrcs = HΘ̄ −HΘ̄nH−1

n H>Θ̄n grcs = gΘ̄ −HΘ̄nH−1
n gn. (16)

4



We note that this system can be constructed by summing over individual landmarks like the
original camera Hessian and gradient. Back-substituting the result into equation (15) we obtain

δn = −H−1
n (gn −H>Θ̄nδΘ̄) (17)

which can also be computed for each landmark individually.
To perform the Levenberg-Marquardt (LM) optimization step, we additionally apply damping

to the Hessian and choose its diagonal diag(H) as the default option but also use the identity
matrix in our experiments. This results in

δΘ̄ = −(Hrcs + λdiag(HΘ̄))−1grcs (18)

δnk = −(Hnk
+ λ diag(Hnk

))−1(gnk
−H>Θ̄nk

δΘ̄) (19)

where the RCS itself was constructed by applying damping to Hn.
The inconvenience that remains in this formulation is the off-diagonal block HΘ̄nk

that needs
to be stored for each landmark, with the size depending on the number of views from which it is
visible. Ignoring the correction term removes this necessity and yields the update step

δnk = −H−1
nk

gnk
(20)

that can also be expressed as δnk = −Ĵ+
k Ek, with J+ = (J>J)−1J> being the matrix pseudo-

inverse. This describes the situation of assuming fixed camera parameters and thus zero step δΘ̄.
In the Variable Projection optimizer (VarPro) this update is run repeatedly until convergence.
This means that for each outer iteration, that optimizes the camera parameters, multiple inner
iterations are performed which are called Embedded Point Iterations (EPIs). By default, VarPro
uses the identity matrix to damp the RCS but no damping for the landmark updates.

Algorithm 1 summarizes the optimization procedure. λ0 depends on the damping type used,
we choose 10−6 for diag(H) and L for the identity matrix I. The specific landmark update depends
on the chosen optimizer, the outer iteration is repeated with higher damping when the performed
updated increases the cost.

Algorithm 1: Optimization

1 λ← λ0 ; ω ← 10 ;
2 S0 ← E(Θ0);
3 for t = 1 : 10 do
4 Θt ← Θt−1 ;
5 for k = 1 : L do
6 for j ∈ Vk do
7 Linearize Ejk ;

8 Add Landmark k to Hrcs and grcs ;

9 Θ̄t ← Θ̄t ⊕ δΘ̄ ; /* Update camera parameters */

10 for k = 1 : L do
11 nkt ← nkt + δnk ; /* Update landmark parameters */

12 St ← E(Θt) ;
13 if St < St−1 then
14 λ← λ/10 ; ω ← 10 ; /* Reduce damping */

15 else
16 λ← λω ; ω ← 2ω ; /* Increase damping */

17 goto 9 ; /* Retry */

3 Preprocessing

This framework is designed to jointly optimize camera parameters and scene structure from an ex-
isting reconstruction. We use Colmap [8, 9] with default settings (colmap automatic reconstructor)
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Figure 3: Sparse reconstruction with camera poses in Colmap

which produces camera parameters and a dense point cloud including normals. The reconstruc-
tions typically include a significant amount of background clutter and are thus manually cropped
to the object of interest.

We require the visibilities Vk and source view Ik per landmark. Points can be projected into
each view to check if they are located on the respective image. Additionally, we need to consider
occlusions. For this, we utilize the mesh generated by the poisson mesher included in Colmap and
render depth maps for each view. If the rendered depth deviates from the depth of a landmark
by less than 1% it is regarded as visible.

Figure 4: Colamp dense reconstruction and poisson mesh

The source view is chosen as the frame whose patch is closest to the robust mean of all patches
across visible views, in order to avoid selecting a photometric outlier. We construct and equally-
spaced 4 × 4 grid Xj ∈ R3×N in 3D space centered at the position of the landmark and facing
the direction of the normal. The grid is scaled in such a way that the projected points have an
average distance of 1 pixel across all views. The optimization

Ik = arg min
j∈Vk

‖̄Ij − µ‖2 (21)

µ = arg min
µ̂∈RN

∑
j∈Vk

ρ(‖̄Ij − µ̂‖2) (22)

Īj = Ψ(Ij(κ(ϕ(π(RjXk + tj))))) (23)

is started from the unrobustified mean. Discarded are landmarks with insufficient texture where
the patch of the determined source view has variance ‖̄IIk − µĪIk

‖ < 8, with 256 gray levels.
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4 Implementation Details

The preprocessing has been implemented in Python to make use of easy visualization and im-
plementation. This includes a graphical interface to inspect and crop the supplied point cloud.
Unfortunately, the optimization in Python is only sufficient to reliably handle smaller datasets
or initialization with Colmap on low settings. As such, the computation of the robust mean is
additionally implemented in Ceres [15] using auto-differentiation. The main optimization is also
implemented in C++ with the Jacobians being computed analytically. Outputs are stored as
simple text files.

Linearization, Schur complement, and landmark updates are parallelized using OMP. Land-
marks are grouped by source view for the construction of the RCS. The Jacobians as well as the
Schur complement are computed with respect to relative poses TjT

−1
i similar to [12]. Derivates

for absolute poses are determined subsequently from relative derivatives with details in appendix
B.2.

The optimization is run on half size images first and then at full size with landmark grids
scaled accordingly. Images are sampled with bicubic interpolation. In VarPro, structure is initially
optimized alone wiht EPIs, before starting algorithm 1. We perform a maximum number of 5 EPIs
per landmark and stop optimizing when the relative change of the cost is smaller 10−3.

The main optmization was also implemented in Ceres with automatic and analytic gradients.
Unfortunately Ceres is limited in the number of residuals a problem can consist of, which means
that the given datasets need to be subsampled to far below a hundred thousand points.

5 Evaluation

We evaluate the presented optimization methods on the Tanks and Temples [11] training datasets.
Table 1 shows the size of our reconstructions. The ground truth was collected with a laser scanner
and is publicly available for the training sets. For the evaluation, reconstructed and ground truth
point clouds are aligned. After computing the distance of each reconstructed point to the ground
truth, a global precision score can be obtained given a specific distance threshold. Similarly, a
recall score can be determined after computing the distance of the ground truth points to the
reconstruction. Default distance thresholds τ are provided for each dataset.

Truck Ignatius Meetingroom Barn Caterpillar Church
Cameras 251 263 371 410 383 507

Landmarks [M] 1.51 1.69 5.35 4.40 4.77 2.92
Observations [M] 122.42 148.56 325.95 358.94 462.09 373.75

Table 1: Dataset properties after preprocessing

5.1 Quantitative Evaluation

Table 2 and 3 show AUC scores between 0 and 2τ for precision and recall capturing more in-
formation than scores at a single τ . We evaluate the Colmap output and the point cloud after
preprocessing separately to distinguish the effects from the main optimization step. Specifically,
discarding landmarks with insufficient texture significantly decreases recall scores, whereas the op-
timization yields slight improvements. The preprocessing also improves precision scores slightly.

Overall, Levenberg-Marquardt delivers a small improvement over the Varialbe Projection op-
timizer. The mean precision and recall scores are additionally visualized in figure 5.
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Truck Ignatius Meetingroom Barn Caterpillar Church Mean
LM 0.612 0.695 0.451 0.408 0.372 0.556 0.516

VarPro 0.579 0.691 0.435 0.395 0.357 0.560 0.503
Preprocessing 0.555 0.613 0.426 0.385 0.348 0.555 0.480

Colmap 0.564 0.608 0.384 0.379 0.357 0.530 0.470

Table 2: Precision-AUC

Truck Ignatius Meetingroom Barn Caterpillar Church Mean
LM 0.424 0.627 0.204 0.409 0.433 0.218 0.386

VarPro 0.407 0.632 0.204 0.409 0.424 0.222 0.383
Preprocessing 0.399 0.618 0.201 0.385 0.442 0.211 0.376

Colmap 0.477 0.640 0.291 0.481 0.544 0.255 0.448

Table 3: Recall-AUC

Figure 5: Mean precision and recall

5.2 Resource Requirements

Table 4 shows the memory consumption for the different datasets with the largest requiring over
100GB with LM. VarPro typcially requires about half the memory.

Truck Ignatius Meetingroom Barn Caterpillar Church
LM 33.23 38.41 79.74 87.39 109.00 101.54

VarPro 16.99 19.26 36.41 39.88 47.49 51.73

Table 4: Memory [GB]

The runtime is displayed in table 5. VarPro takes roughly double the time as LM with the
longest optimization taking over 2 days. The increased runtime is in part caused by a higher
number of backtracking steps, which might be alleviated by further fine-tuning of the damping
parameters.

Truck Ignatius Meetingroom Barn Caterpillar Church
LM 4.53 7.07 15.47 15.47 23.47 36.18

VarPro 11.82 23.58 24.80 32.00 48.13 58.77

Table 5: Runtime [h]

An overview over the entire pipeline is depicted in table 6. A significant amount of time
is required by the Colmap reconstruction while still being shorter than the main optimization
step. At this point, calculating visibilites and 3D grids is only implemented in Python and not
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multithreaded which also adds to the overall duration. Computing the robust mean in C++ has
much lower runtime.

Truck Ignatius Meetingroom Barn Caterpillar Church
Colmap (SfM+MVS) 3.25 4.00 6.38 7.00 6.67 5.68

Prep I (Python) 1.92 1.13 4.05 6.57 3.97 3.08
Prep II (C++) 0.30 0.30 1.02 1.60 1.87 0.93

Table 6: Pipeline Runtime [h]

5.3 Qualitative Evaluation

Figure 6 visualizes reconstructed models with indivudal points being colored according to the
distance to the ground truth. Darker colors encode larger distances with white being 0 and black
being 3τ . Improvements can easily be observed for the Truck and Ignatius datasets. Typically the
improvements affect distinct parts of the surface which comes along with a decrease in smoothness
that is expected due to the lack of surface regularization. VarPro reconstructions for the objects
located outdoors show a large number of significantly diverged landmarks.
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Figure 6: Precision

Figure 7 shows ground truth models where the color visualized the distance to the respective
reconstructed point cloud. Visible are the gaps caused by the selection in the preprocessing.
Improvements for Truck and Ignatius are located in similar areas as for the precision.
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Figure 7: Recall

5.4 Ablation Studies

We evaluate four datasets with different damping types for LM and VarPro. The matrices used
are either the identity matrix I or the diagonal of the hessian diag(H) where we either apply the
damping to all parameters Θ or just to the camera parameters Θ̄ without landmarks.

Tables 7 and 8 and figure 8 show the results for LM with λ diag(HΘ) being the default setting.
Damping landmarks and camera parameters shows better performance than damping just cameras.
The default setting has the best mean score for precision whereas the identity is slightly better
for recall.

Truck Ignatius Meetingroom Barn Mean
λ diag(HΘ) 0.612 0.695 0.451 0.408 0.541
λ diag(HΘ̄) 0.593 0.696 0.445 0.408 0.535

λI|Θ| 0.583 0.707 0.445 0.409 0.536
λI|Θ̄| 0.557 0.691 0.447 0.396 0.523

Preprocessing 0.555 0.613 0.426 0.385 0.495

Table 7: Precision-AUC for LM ablation experiments

Truck Ignatius Meetingroom Barn Mean
λ diag(HΘ) 0.424 0.627 0.204 0.409 0.416
λ diag(HΘ̄) 0.412 0.629 0.204 0.408 0.413

λI|Θ| 0.407 0.643 0.205 0.414 0.418
λI|Θ̄| 0.392 0.623 0.206 0.397 0.404

Preprocessing 0.399 0.618 0.201 0.385 0.401

Table 8: Recall-AUC for LM ablation experiments
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Figure 8: Mean precision and recall for LM ablation experiments

Tables 9 and 10 and figure 9 show the results for VarPro with λI|Θ̄| being the default setting
presented in [14]. Damping all parameters with the diagonal of the hessian shows slightly better
precision scores. The recall scores are best for the full damping with the identity matrix. Overall,
it is not clear here that the default option is the best choice.

Truck Ignatius Meetingroom Barn Mean
λI|Θ̄| 0.579 0.691 0.435 0.395 0.525

λ diag(HΘ̄) 0.572 0.691 0.423 0.391 0.519
λI|Θ| 0.577 0.671 0.433 0.389 0.518

λ diag(HΘ) 0.601 0.676 0.437 0.396 0.527
Preprocessing 0.555 0.613 0.426 0.385 0.495

Table 9: Precision-AUC for VarPro ablation experiments

Truck Ignatius Meetingroom Barn Mean
λI|Θ̄| 0.407 0.632 0.204 0.409 0.413

λ diag(HΘ̄) 0.402 0.632 0.199 0.406 0.410
λI|Θ| 0.410 0.643 0.206 0.414 0.418

λ diag(HΘ) 0.420 0.625 0.203 0.408 0.414
Preprocessing 0.399 0.618 0.201 0.385 0.401

Table 10: Recall-AUC for VarPro ablation experiments
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Figure 9: Mean precision and recall for VarPro ablation experiments

6 Conclusion and Future Work

We have compared the Variable Projection optimizer with standard Levenberg-Marquardt for
which we have obtained slightly better quantitative and qualitative results. Resource requirements
at twice the speed and double the memory can be seen as comparable.

Further modifications can be made to the Levenberg-Marquardt method. The off-diagonal
Hessian block could also be discarded after the construction of the RCS and then recomputed for
the update of the landmark parameters. This reduces the memory consumption and increases the
runtime. It would be interesting to see how this trade-off compares to the resource requirements
of VarPro. The implementation could benefit from further improvements. As the images are
sampled from a video, landmarks are typically observed from consecutive views which could lend
itself to a memory-efficient encoding. Results could possibly be stored in binary files instead of
simple text files. Cache-efficiency might be improved when storing landmark Hessians.

The paper also evaluates running the MVS of Colmap with the optimized camera parameters to
obtain a dense point cloud with better recall. This could also be tested for the LM reconstruction
to specifically compare the accuracy of the camera parameters.

Modifications could also be made to the preprocessing stage. The low recall after this step could
be improved by selecting a lower threshold for discarding landmarks, which could in turn negatively
affect precision. Additionally, views with extreme angles towards a landmark might be removed
from its visibilities and the computation of the robust mean. This could make the optimization
more robust by filtering out extremely slanted patches. Alternatively, the corresponding residuals
could be weighted during the main optimization.
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A NCC

For N sampled intensity values Ī and the Normalized Cross-Correlation

Ψ(̄I) =
Ī− µ
σ

σ = ‖̄I− µ‖ µ =
1> Ī

N
(24)

we obtain the jacobian

∂Ψ(̄I)

∂ Ī
=

∂

∂ Ī

Ī− 1> Ī
N√(̄

I− 1> Ī
N

)> (̄
I− 1> Ī

N

)
=

1

σ

(
IN − 11>

1

N

)
+

(̄
I− 1> Ī

N

)
1

−σ2

1
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(̄
I− 1> Ī

N

)>(
IN − 11>

1

N

)
=

(
1

σ
IN −

1

σ3

(̄
I− 1> Ī

N

) (̄
I− 1> Ī

N

)>)(
IN − 11>

1

N

)
(25)

with IN being the N ×N identity matrix and 1 being the N -dimensional vector of ones.

B Source to Target Frame

B.1 Plane

The derivative of the reprojection with respect to plane n is

∂

∂n
RjR

>
i

(
x̄

n>x̄
− ti

)
+ tj = RjR

>
i

x̄x̄>

−(n>x̄)2
. (26)

B.2 Poses

Rotations are stored as quaternions q = v + w where R(q) is the corresponding rotation matrix.

B.2.1 Quaternion Vector Transformation

Rotating a ∈ R3 according to q results in

R(q)a = v + 2w(v × a) + v × 2(v × a)

= v + 2w(v × a) + 2
(
(v>a)v − (v>v)a

)
.

(27)

B.2.2 Quaternions

The Jacobian of a rotated vector with respect to the quaternion is

∂R(q)a

∂q
= 2

[
v>aI3 + va> − 2av> − w[a]× | v × a

]
∈ R3×4 (28)

with [a]× being the skew symmetric matrix with entries according to a. The Jacobian of the
quaternion inversion is

∂q−1

∂q
=
∂ q̄
‖q‖2

∂q
=
∂q̄

∂q

1

‖q‖2
− q̄q>

2

‖q‖3
. (29)

and the Jacobian of the quaternion conjugation is

∂q̄

∂q
=


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (30)
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Jacobians of the reprojection into a target camera coordinate system with respect to the involved
quaternions are obtained as the derivative of a vector rotation

∂

∂qj
RjR

>
i

(
x̄

n>x̄
− ti

)
+ tj =

∂R(qj)
(
R>i

(
x̄

n>x̄
− ti

))
∂qj

∂

∂qi
RjR

>
i

(
x̄

n>x̄
− ti

)
+ tj = Rj

∂R(q−1
i )

(
x̄

n>x̄
− ti

)
∂q−1

i

∂q−1
i

∂qi
(32)

where qi and qj are the quaternions for rotation Ri and Rj , respectively. The Jacobians with
respect to the translation vectors are

∂

∂tj
RjR

>
i

(
x̄

n>x̄
− ti

)
+ tj = I3 (33)

∂

∂ti
RjR

>
i

(
x̄

n>x̄
− ti

)
+ tj = −RjR

>
i . (34)

B.2.3 Pose Increments

For a twist ξ ∈ R6 with the first three components representing the translational part and the last
three representing the rotation vector and exp : R6 → SE(3) we obtain the jacobian [13]

∂ exp(ξ)a

∂ξ
= [I3 | −[a]×] ∈ R3×6. (35)

For T ∈ SE(3) with rotation R and translation t appearing inverted

∂(exp(ξ)T)−1a

∂ξ
=
∂T−1 exp(−ξ)a

∂ξ
=
∂R−1 exp(−ξ)a− t

∂ξ
=
[
−R−1 | R−1[a]×

]
∈ R3×6. (36)

B.2.4 Relative Poses [12]

Formally, with T⊕ ξ = exp(ξ)T and T1 	T2 = log(T1T
−1
2 ), log : SE(3)→ R6 we define

∂f(T)

∂T
= lim

ξ→0

f(T⊕ ξ)	 f(T)

ξ
(37)

for some f : SE(3)→ SE(3). With

Adj(T) =

[
R [t]×R
0 R

]
, exp(Adj(T)ξ) = T exp(ξ)T−1 (38)

we compute the relative to absolute pose derivatives

∂T1T
−1
2

∂T2
= lim

ξ→0

log(T1(exp(ξ)T2)−1(T1T
−1
2 )−1)

ξ

= lim
ξ→0

log(T1T
−1
2 exp(−ξ)(T1T

−1
2 )−1)

ξ

= lim
ξ→0

log(exp(−Adj(T1T
−1
2 )ξ))

ξ

= lim
ξ→0

−Adj(T1T
−1
2 )ξ

ξ

= −Adj(T1T
−1
2 )

(39)

∂T1T
−1
2

∂T1
= lim

ξ→0

log(exp(ξ)T1T
−1
2 (T1T

−1
2 )−1)

ξ

= lim
ξ→0

ξ

ξ

= I6.

(40)
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C Camera Intrinsics

C.1 Perspective Projection

With X = [x, y, z]> the Jacobian for the perspective projection is

∂π(X)

∂X
=

[
1/z 0 −x/z2

0 1/z −y/z2

]
. (41)

C.2 Distortion

For the radial distortion

ϕ(x) = x(1 + l1r
2 + l2r

4) r2 = ‖x‖2 = x>x = x2 + y2 (42)

the Jacobian with respect to x is

∂ϕ(x)

∂x
=

[
1 + l1(2x2 + r2) + l2(4x2r2 + r4) 2xyl1 + 4xyr2l2

2xyl1 + 4xyr2l2 1 + l1(2y2 + r2) + l2(4y2r2 + r4)

]
= I2(1 + l1r

2 + l2r
4) + x(2l1x

> + 4l2r
2x>)

= I2(1 + l1r
2 + l2r

4) + xx>(2l1 + 4l2r
2)

and the Jacobian with respect to l = [l1, l2]> is

∂ϕ(x)

∂l
= [xr2,xr4].
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