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Abstract

Direct Sparse Odometry (DSO) [1] is a state-of-art approach that proposes direct and sparse
solution to the monocular-based Visual Odometry (VO). In this work we have looked into
its initialization part and investigated a possibility to incorporate methods from indirect VO
solutions into its framework. In particular, we implemented an initialization module that uti-
lizes features and computes relative camera transformation based on their correspondences
analogous to ORB-SLAM work [2]. We further extended the solution by augmenting the
extracted features and estimating the depth map based on the probabilistic approach for-
mulated in [3]. A lot of attention was addressed to the optimization and map refinement by
means of bundle adjustment and outlier filtering. Evaluations based on EuRoC [4], KITTI
[5] and CARLA [6] image sequences have shown that the feature-based initialization outper-
forms the original approach proposed by DSO authors and increases overall robustness and
accuracy.
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1. Introduction

Among the core tasks of many autonomous systems like cars and unmanned aerial vehicles
(UAVs) lie exploration of the environment (mapping) and positioning (localization) in the con-
structed map, jointly called Simultaneous Localization and Mapping (SLAM). Since the position
of a vehicle depends on the map of the environment it navigates in, and, at the same time, the
map is constructed based on the information about the agent’s position, SLAM is considered a
“chicken and egg” problem. The method for solving this problem, that we are investigating in
this project, is monocular-based Visual Odometry (VO), real-time estimation of camera motion
from a sequence of images obtained from a single camera. Although cameras are cheap, versatile
and lightweight sensors, they impose a number of limitations in the environments with insufficient
illumination, dynamic scenes or lack of visual cues (texture) [7]. Moreover, monocular-based
VO suffers from scale uncertainty [5].
Direct Sparse Odometry (DSO) [1] proposes a robust and accurate VO method, which performs
a novel sparse sampling of points with sufficient image gradient, thus reducing computational
complexity of dense approaches, yet preserving the fine-grained 3D geometry [8]. Although DSO
shows state-of-art performance with the image sequences from TUM Mono dataset [9], we have
noticed that the initialization struggles for KITTI image sequences [5], where the depth range
and camera motion are relatively large.
The goal of the project is to implement a robust and accurate initialization module for DSO
system. In particular, we aim to implement a feature-based initializer proposed in ORB-SLAM
system [10], populate its sparse map with the technique proposed in [3], optimize the estimations
using robustified bundle adjustment and evaluate the results against the original method. Since
initialization plays an important role in accuracy and convergence of the algorithm, it is antici-
pated that this module can increase the robustness and practical applicability of the algorithm
and outperform the current solution, which uses uniform 3D structure initialization.
The rest of the report is organized as following: in section 2 ORB-SLAM and DSO initialization
solutions are briefly discussed. Section 3 describes the approach implemented in the scope of
the project, whereas in section 4 evaluation results of different metrics are presented, where the
proposed module has been compared with the original solution and a closely-related work from
the Master thesis by Xingwei Qu. Section 5 concludes the report with the remarks about future
work.

2. Related Work

A lot of recent work in Computer Vision and Robotics communities has been devoted to design
and implementation of robust and fast visual SLAM solutions. A resemblance between visual
odometry methods and incremental Structure-from-Motion (SfM) has been observed, indicating
the importance of good initialization for further map and pose optimizations [11]. In this section
we describe two initialization solutions proposed by ORB-SLAM and DSO systems, which offer
background to the work conducted in the scope of this project.

2.1. ORB-SLAM

ORB-SLAM [10] is a feature-based monocular SLAM system capable of real-time operation
in versatile environments ranging from indoor to outdoor, hand-held to car-recorded image
sequences. Moreover, it offers automatic map initialization, which attracts by its simplicity
and effectiveness as demonstrated in [10]. Initialization process begins with the ORB feature
extraction in the reference frame and feature matching in the target frame, which is followed
by a parallel computation of two models, homography and fundamental matrix, to offer the
relation between the correspondences. Model is selected based on its score and the proposed
heuristic. Since we use this approach in our work, we describe the computation and selection in
detail in section 3. Matrices are further decomposed into motion hypotheses and 3D positions
of extracted feature points are computed via triangulation. Valid camera pose is selected based
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Figure 1: Example of inverse depth map initialization with KITTI sequence 01 (red patches
indicate close to camera points, blue - far away ones).

on the number of points that appear in front of the camera, have sufficient parallax and small
reprojection error values. More detailed description is available in section 4 of the paper [10].

2.2. Direct Sparse Odometry (DSO)

The basis of this work, Direct Sparse Odometry (DSO), offers a direct and sparse solution to
monocular-based visual odometry. It relies on the photometric error optimization and enables
generation of a more complete representation of the scene without additional abstraction to
2D keypoints or corner-based features [1]. The initialization starts with the region-based point
selection, where an image is divided into sub-blocks and the adaptive region-based thresholds
are computed. Points with sufficient gradient are selected for future optimizations, their initial
inverse depths set to 1. Camera pose and inverse depths values are refined using Gauss-Newton
optimization in a coarse-to-fine fashion [1]. Initialization is considered successful if after the
last optimization the reprojection error of all candidate points is sufficiently low, otherwise the
initialization is re-started.
Although the system has shown successful performance on a wide range of image sequences
[1] and it has been used as a state-of-art approach in evaluation of many direct and indirect
SLAM solutions, we have noticed that its initialization module cannot always guarantee fast-
convergence and optimal solution of optimizations units. For instance, DSO requires to process
many frames and undergo 2-3 attempts before successfully initializating the system in case of
several outdoor sequences offered by KITTI dataset. As it can be seen in figure 1, the depth
initialization can be very inconsistent and erroneous, which can further lead to non-convergence
of the optimization pipeline and system failure. The importance of the initialization step has
served as a motivation for the current work, which is described in section 3.

3. Methodology

The project idea lies in the implementation and integration of a new module that is responsible
for the initialization of 3D structure and 2 keyframes, where the first one is always an identity
transformation. Since the design of a new unit is based on ORB-SLAM initialization, in the
scope of this work we call it ORB Initializer, whereas the original module is named Coarse
Initializer after its class name in (DSO code implementation).

3.1. Set-up routine

As soon as the system is launched, the ORB Initializer receives the reference frame from the
caller. Since we follow feature-based approach, feature points are extracted from the reference
frame and tracked in the following N frames using Lucas-Kanade optical flow approach (N = 4
has been experimentally chosen). In this work we consider features based on the most prominent
corners in the image [12]. The reference frame is reset if the number of tracked features drops
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Figure 2: Example of a feature point tracking 1! 2 ! 1

below a prede�ned threshold. For feature handling (extraction and tracking) we utilize func-
tions from OpenCV library[13], in particular, goodFeaturesToTrack and calcOpticalFlowPyrLK
methods.
The points are tracked in a frame-to-frame fashion, starting from the extraction in the reference
image. To improve robustness of the feature matching we look only for the points that can be
successfully tracked in both directions: from frame 1 to frame 2 and, back, from 2 to 1, and
consider only those features which pixels' positions in the image 1 land in the close vicinity to
the original value after completion of a tracking-loop (i.e. 1 ! 2 ! 1). Figure 2 demonstrates
the aforementioned concept.

3.2. Computation of a relative pose and geometric bundle adjustment

After tracking N - 1 frames we attempt to establish a relation between the features from the
reference image and their matches in the Nth frame. Here we directly follow the approach
proposed in ORB-SLAM by computing the homography (H sub-index) and fundamental matrix
(F sub-index) models and selecting the winner based on the heuristic (eq. 1).

Model =

(
Homography SH

SH + SF
> 0:4

Fundamental Matrix else
(1)

SH and SF are model scores, which are computed according to eq. 2, whered2
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symmetric transfer errors (eq. 4)[14],N - number of points, TH = 5 :99, TF = 3 :84 and � = TH .
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It is expected that the model based on homography matrix is able to explain the relations of
points that lie on (nearly) a plane or have low parallax, whereas a model based on fundamental
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Figure 3: Epipolar line search example with image sequence from carla dataset (left: reference
frame, right: current frame). Epipolar line is depicted in blue, matched point is emphasized
with yellow border.

matrix should take care of other spatial distributions [10].
After selecting the model, the motion hypotheses are retrieved. We utilizedecomposeHomog-
raphyMat function from OpenCV library to obtain the transformation proposals. In case of a
fundamental matrix model we �rst recover the essential matrix with E = K T FK and decom-
pose it with decomposeEssentialMatfrom OpenCV library. To select the most-likely camera
relative pose we adopt the approach proposed in the original ORB-SLAM paper and look for
the hypothesis that is supported by the most number of points that lie in front of the camera and
have su�cient parallax [10]. Geometric bundle adjustment is further performed to re�ne the 3D
structure and camera poses for every frame that has been used to track the features. This way we
aim to establish the baseline for further steps of structure population and motion optimization
described in the next subsections 3.3 and 3.4. Bundle adjustment is followed by outlier removal,
where points with large reprojection error (aka \severe" outliers) are removed. We iterate with
the optimization and outlier removal scheme until all severe outliers are removed. After all such
points are removed we check for \normal" outliers, i.e. points that have a reprojection error less
than 3 pixels, and eliminate them too. This way we make sure that the poses are well-re�ned
and points are reliable for further steps based on the photometric information.

3.3. Semi-dense reconstruction using epipolar line search

To improve the initialization quality and bridge the gap between our indirect initialization
module and the direct system, we extract additional points in the same way the PointSelector
in DSO works [1]. Initially, the region-based thresholds are computed by splitting the reference
image into 32� 32 blocks as�t i + T, where �t i is the median absolute gradient in i-th block and
T = 7. The selection is performed in 6� 6 image patches by choosing the pixel points with
maximum absolute gradient value in the patch that exceeds the corresponding region threshold.
After obtaining additional points we seek to reconstruct their 3D position following the approach
proposed in [3]. We adopt the probabilistic inverse depth map representation and the way of
re�ning the values by propagating them in a frame-to-frame fashion. Depth map of the feature
points serves as a prior distribution.
Based on the estimated camera transformations we can compute the equations for an epipolar
line and search for point correspondences using Sum of Square Di�erences (SSD) cost measure
over a window of pixels. The point with the lowest SSD cost is considered as a match (see
�gure 3). Having the best matching position (i.e. disparity � ) we can compute the inverse
depth d by considering two types of errors: a geometric error� � (�;� ) caused by noise on relative
orientation � and projection function � together with a photometric disparity error � � (I ) . The
computation of the geometric error follows eq. 6, wherel is an epipolar line direction, g is image
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gradient (normalized), � l - standard deviation of the Gaussian-distributed noise� l imposed on
the epipolar line l , which is approximated by the norm of the absolute image gradient at the
matching point position.

� 2
� (�;� ) =

� 2
l

hg; li 2 (6)

Photometric error can be computed according to eq. 7, wheregp is an image gradient along the
epipolar line, � 2

i - variance of the image intensity noise, which is taken as a constant parameter
and equals to 4� camera pixel noise with camerapixel noise = 10.

� 2
� (I ) =

2� 2
i

g2
p

(7)

According to [3] the observational variance of the inverse depth becomes

� 2
o = � 2

�
� 2

� (�;� ) + � 2
� (I )

�
(8)

where � represents a pixel to inverse depth ratio and can be computed as

� =
� d

� �
(9)

with � d being the length of a searched inverse depth interval and� � - the corresponding length
of the searched epipolar line. Please refer to the original paper [3] for the derivations of the
aforementioned equations.
Since the inverse depth has a probabilistic nature, we assume that every pixel can be represented
by a Gaussian distribution, which is updated from frame to frame via multiplication of a prior
and a noisy observation distributions:
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:

Observational inverse depthdo is computed via triangulation and � 2
o is computed as in eq. 8.

3.4. Photometric Bundle Adjustment and Outlier Removal

As an additional step to re�ne the poses and the 3D structure we have included photometric
bundle adjustment (PBA) step. The main idea behind PBA lies in the photo-consistency as-
sumption, i.e. the pixel value should remain similar when we reproject it from one image frame
to another. This gives rise to a residualr i for 3D point x i , which is de�ned as the di�erence of
the pixel brightness between image 1 and image 2 that is warped with relative transformation
� 12.

r i (� 12; x i ) = I 2(� (� 12x i )) � I 1(� (x i )) (10)

Similarly to [1], the optimization problem is de�ned as a weighted Sum of Squared Di�erences
(SSD) over all points x i 2 P hosted in the reference keyframe and observed in framej 2
obs(x i ). Moreover, each point is represented by a small patch of pixels � 2 N (p i ), where point's
projection serves as a central pixelp i (�gure 4). The latter is extracted from the reference frame
I and projected to the target frame I j (eq. 11).

min
f � j gj =1 ::: jCj ;f x i gi =1 ::: jPj

jPjX

i =1

X

j 2 obs(x i )

X

� 2N (p i )

jj I j (� (� j (x i + � � 1�))) �  I (� x i + �) jj 
 (11)

Optimization is performed over camera poses� j and inverse depth values of each pointx. To
account for the outliers, Huber norm jj � jj 
 is used. Moreover, since the mean intensity values of
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Figure 4: Neighborhood pattern used to compute the objective cost in PBA ([1]).

the patches in two images can di�er, we normalize the values with an additional factor , which
corresponds to eq. 12. In case a part of the patch lies outside the image frame, the values on
the border are repeated.

 =

P
� 2N (p) I j (� T j (x + � � 1�))

P
� 2N (x ) I (� x + �)

(12)

If we look into the optimization (eq. 11) from the probabilistic perspective and represent the
residuals (eq. 10) as a distribution, then, according to [15, 16], adopting the assumption of the
Gaussian nature of such distribution, where very low and high residuals are very unlikely, will
not portrait the real data with many outliers very well. Nevertheless, it has been shown in [15]
that �tted t-distribution with its heavy tails matches better the residual distribution (�gure
5). In comparison with two parameters, mean� and variance � 2, of a Gaussian distribution,

Figure 5: Left: probability density functions �tted to accumulated residual histogram (fr2/desk
sequence) [16], right: residual histogram example (MH03 medium sequence).

t-distribution is parameterized by degrees of freedom� which value we assign to 5 as in [15]. In
our experiments we �rst �lter the residuals assuming the underlying normal distribution with
zero mean and standard deviation as de�ned in eq. 13 using the Median Absolute Deviation
(MAD) estimator, where c = 1 :4826 [16].

� MAD (x) = c � median(jx � median(x)j) (13)

The pixels with standard deviation j� j < 3� � MAD are used to �t the distribution. The \�tting"
is performed by iterative approximation of the scale parameter (until its convergence) based on
eq. 14 from [16]. Each point that is observed in an image contributes 8 residuals (patch pattern
as in �gure 4).

� 2
k+1 =

1
n

nX

i

� + 1
� + r 2

i =� 2
k

r 2
i (14)

It should be noted that we �t t-distribution in every image of our initialization sequence (i.e.
from the reference to the current frame). Alternatively, one can collect the residuals from all
frames and approximate only one distribution. As it is mentioned in section 4, we have not ob-
served signi�cant di�erences in the quality of estimations between �tting one or one-per-frame
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distributions.
As the last step, we would like to use the scale parameters and �lter out the residuals that
lie outside the 90% percentile of the kth image �tted distribution, i.e. jr i j < 2:571� � k

1. The
observation of a point in kth frame is removed if more than half of the contributed residuals are
discarded during the �tting. A 3D point is removed if it is observed in less than two frames.
In our pipeline, the t-distribution �tting is performed after the �rst photometric bundle adjust-
ment. The �ltered 3D pointcloud together with the camera poses are then passed to PBA for a
�nal re�nement.

3.5. Method overview

To summarize, a high-level representation of the underlying process is presented in algorithm 1.
Please note the comments regarding ORBInitializer v1 - v3 for the discussion in section 4.

Algorithm 1: trackFrame routine in ORBInitializer
keypoints new  ; ;
# set-up and subroutine explanations in 3.1
num successful trackFeatures (keypoints prev f rame; keypoints new);
if num successful< MIN NUM MATCHES then

map.clear();
resetRefFrame();
return FAILURE;

map.updateCameraInformation(keypoints new, frame);
if jframe.frame id - ref frame idj � MIN NUM FRAMES then

# as described in 3.2
success map.computeRelativeTransform(frame, ref frame);
if successthen

do
map.performGeometricBA();
severeOutliers map:removeSevereOutliers();

while severeOutliers> 0;
# as described in 3.3
map.populateStructure3D();
# until here ! ORBInitializer v 1
do

map.performGeometricBA();
severeOutliers map:removeSevereOutliers();

while severeOutliers> 0;
# as descibed in 3.4
if map.performPhotometricBA() then

# until here ! ORBInitializer v 2
map.removeOutliers();
map.performPhotometricBA();
# until here ! ORBInitializer v 3

return SUCCESS;

return FAILURE;

4. Evaluation

The evaluation has been done using image sequences and odometry ground truth from 2 datasets:
EuRoC [4] and KITTI [17]. Since there is no ground truth for the reconstructed 3d maps, we

1The factor of 2.571 is taken from the table of common t-distribution values (link to the table)
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also considered a sequence generated from CARLA simulator [6]. For every image sequence we
performed 5 forward and 5 backward runs, where we recorded an initial pose that is provided
by an initializer (i.e. not considering its future optimization by DSO BA), number of frames
taken for the initialization and, if applicable, 3d pointcloud. In addition, all keyframe poses are
recorded in order to observe the impact of the initialization on the whole system. To test the
robustness of the initialization pipeline each forward and backward pass has a different starting
frame.
To illustrate the development of our ORBInitializer and evaluate the impact of each additional
component as described in section 3, we additionally present the results from ORBInitializer
v1 (plotted in yellow line), v2 (blue line) and v3 (green line) compared with results from the
original CoarseInitializer (red line). Firstly, we performed only geometric bundle adjustment of
tracked features and sampling of the additional points (ORBInitializer v1). Secondly, we ex-
tended ORBInitializer v1 with the photometric bundle adjustment of all points (ORBInitializer
v2). Finally, we added fitting of the t-distribution into residuals to the second version with the
subsequent photometric bundle adjustment (ORBInitializer v3).
For evaluations with image sequences from KITTI we have asked Xingwei Qu to provide the
results of the version of ORBInitializer from his Master thesis (plotted in magenta). In his work
Xingwei extracts ORB features in the reference frame and matches them in the target frame,
or, if there are not enough matching pairs, performs optical flow to find the correspondences.
Afterwards, similar to our approach, he finds a relative transformation between reference and
target frames by, firstly, computing the homography and fundamental matrices in parallel and
then decomposing the one which model has the most number of inliers. Based on the trans-
formation he populates the extracted points and refines their depth by epipolar line search. In
case the system fails on any of the steps, the initialization is restarted from the beginning and
a new pair of frames is probed.

4.1. Metrics

Firstly, we looked into relative pose error (RPE) for the keyframe pose obtained from an initial-
izer. For this purpose, the relative pose error RPE can be defined as in eq. 15

Ei;j = (Q�1
i Qj)

�1(P�1
i Pj) (15)

where Qi and Qj are ground truth global poses, Pi and Pj - estimated global poses [18]. More-
over, for EuRoC dataset the poses are linearly interpolated, since not all the image timestamps
have a corresponding ground truth pose.
From the relative error (eq. 15) we extracted the translational part (eq. 16) and considered all
pose pairs with ∆ = 1. According to [18] it is sufficient to evaluate only translational part of
the transformation, since the rotational error is correlated.

Ete = jjtransl(Ee)jj22 (16)

ATE metric is defined in eq.18, where n being the number of keyframes, Fi (eq. 17) is the
absolute trajectory error after their Sim(3) alignment.

Fi = Q�1
i SPi (17)

ATE1:::n =

 
1

n

nX
i=1

jjtransl(Fi)jj22

! 1
2

(18)

As for the evaluation of the RPE, we evaluated the translational error as proposed in [18] and
defined in eq. 19.

RPE1:::n =

 
1

n� 1

n�1X
i=1

jjtransl(Ei;i+1)jj22

! 1
2

(19)

For all results we normalized the error by the distance traveled, therefore all values are repre-
sented per meter.
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