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Abstract

Camera systems are one of the mainstays of contemporary computer vision and es-
sential for a multitude of applications. Increasing accuracy of the employed hard-
and software and ensuring the reproducibility and genuineness of the retrieved data
is a never-ending process in this field. Fisheye lenses provide an easy tool to re-
trieve visual data at a wide opening angle in a single frame. These lenses however
often suffer from strong vignetting in the edges, reducing the degree of veritableness
towards these regions. Accurate photometric calibration is in particular important
for algorithms assuming brightness-constancy for world points seen from different
views, for example so-called direct methods for visual SLAM and 3D reconstruction.
They rely on direct comparison of pixel-intensities and have recently demonstrated
great performance in particular when carefully calibrated. This work proposes a
vignette calibration procedure for fisheye lenses from a single image sequence. The
main focus is the implementation of a radially symmetric vignetting model, utiliz-
ing camera projection models well-suited for fisheye lenses, and the integration of
a robust marker detection for camera pose estimation under partial observations.
Unlike the previous methods this work is based on, this does not rely on undistor-
tion and 4-point-homography calculation of the detected markers, but instead avoids
undistortion and uses the PnP algorithm with non-linear refinement to accurately
estimate camera poses based on all detected marker points. This approach is evalu-
ated on a variety of different lenses and conditions, which shows that the assumption
of a radial vignette model fits these lenses well and that the used projection models
are suitable. The evaluation moreover demonstrates that a radial model improves
the resulting vignette compared to a full model by averaging out local inconsisten-
cies as well as requiring less data for calibration. This has the potential to allow
vignette calibration based on existing images for intrinsic camera calibration instead
of requiring special vignette calibration sequences.
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Chapter 1

Introduction

In modern computer science, computer vision has risen to an invaluable tool for
retrieval, processing and analysis of visual data. Recording high quality images and
videos within a wide range of various parameters makes great demands on the em-
ployed hardware as well. This includes the recording tools consisting of a variety of
camera systems in different sizes with different sensors and lenses. A lens type allow-
ing extra-ordinarily wide angle shots are so-called fisheye lenses exceeding an opening
angle of 180 degrees retrieving image information even from behind the sensor plane.
This type of lenses can be particularly useful in some computer vision fields like mo-
tion estimation (Rituerto et al., 2010; Zhang et al., 2016). To ensure reproducibility
of results, one is reliant on high accuracy of the gathered data which requires hard-
ware and software to be as error-free as possible.

A common issue for wide-angle lenses that fisheye lenses also suffer from is an effect
called ”vignetting” (see Figure 1.1) where the light reaching the camera sensor is
the more attenuated the greater its angle relative to the optical axis is. This evokes
the need of a software side calibration to compensate for these attenuations and
produce realistic images where the image information is independent on the angle
under which light from an object entered the camera. This is in particular true
for algorithms assuming brightness-constancy for world points seen from different
views, for example so-called direct methods for visual SLAM and 3D reconstruction.
They rely on direct comparison of pixel-intensities and have recently demonstrated
great performance in particular when carefully calibrated (Engel et al., 2018, 2016;
Yang et al., 2017). This thesis seeks to improve upon previous work by implement-
ing better suited camera models and removing the need to undistort the recorded
images for pose estimation, which is problematic for wide-angle lenses approaching
a field of view of 180◦ or more. A radially symmetric model is employed to reduce
the amount of data needed for a decent vignette calibration as well as canceling out
local inconsistencies. Furthermore, a more robust variant for marker detection has
been implemented to make use of April marker grids instead of finding a homog-
raphy based on four points of a single Aruco marker on undistorted images. The
pose estimation was realized via the UPnP algorithm (Kneip et al., 2014) and subse-
quent non-linear refinement with pose-only bundle adjustment, utilizing all detected
marker points.
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Chapter 1 Introduction

Figure 1.1: Image without (left) and with Vignetting effect (right). (Image from
(Heeling, 2018))

This chapter gave a short introduction to the matter. In the second chapter, this
thesis will give a brief overview over different camera models and presents the afore-
mentioned fisheye lenses whereas the Chapter 3 explains the vignetting effect. In the
fourth and fifth chapter we describe the process of vignette calibration and present
the results on different image sequences. The last chapter then gives a conclusion
and short outlook.
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Chapter 2

Camera models and lenses

2.1 Camera models

2.1.1 Simple Pinhole Camera model

The exact behavior and path of a light beam from its entrance at the front of the
camera lens to its impact on the sensor chip is a complicated physical phenomenon.
To simplify calculations and approximate the behavior, a simple camera model that
assumes the camera works like a pinhole model has become used in most disciplines
dealing with image recordings via cameras. The basic assumptions of this model is
that Light beams enter the camera through a single point (pinhole) and travel in
a straight line until hitting the sensor in the back of the camera case. The pinhole
as well as the center point of the imaging sensor are assumed to be on the optical
axis. This makes for a very simple geometric model that eliminates the complex lens
behavior while sacrificing a small amount of accuracy. The first cameras before the
usage of lenses for imaging used this pinhole effect to produce images. This model
only has four parameters fx, fy, cx and cy where f is the focal length and c the
principal point with their respective x and y components. These so-called intrinsic
parameters are often accumulated in the camera matrix K that can be used for
projections:

K =

fx 0 cx
0 fy cy
0 0 1


This camera model, while giving a good estimate for simple applications, is insuf-
ficient in the case of fisheye lens cameras since the field of view is limited to 180
degrees. Light rays originating from behind the pinhole plane cannot enter the
camera through the pinhole. Another simple model that only employs a single ad-
ditional parameter for distortion, the Field-of-view camera model (Devernay and
Faugeras, 2001), was shown to not be accurate enough for fisheye lenses (Usenko
et al., 2018).

Since accuracy is an important factor in producing reliable results in the computer
vision domain, different models where proposed to better approximate the actual
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Chapter 2 Camera models and lenses

Figure 2.1: Pinhole model concept image. This is the original variant of the pinhole
camera without a lens. If the model is just a simplification for a lens camera, the
image plane is technically between pinhole and object. Compare also to Figures 2.2
and 2.3

behavior of light in the imaging process. Two models in particular will be presented
here, the Extended Unified Camera Model and the Kannala-Brandt model. Both of
these were found to describe fisheye lenses with a high accuracy (see e.g. (Usenko
et al., 2018)).

2.1.2 Extended Unified Camera Model

The Unified Camera (or Projection) Model (Geyer and Daniilidis, 2000) employs
a slightly different approach than the simple pinhole camera model. Instead of
the light rays falling through a pinhole they are assumed to be projected twice,
once onto a unit sphere and then again onto the imaging plane. The center of the
unit sphere is positioned in front of the imaging plane by a distance ξ. For better
numerical properties (Usenko et al., 2018) has shown that it is worthwile to rewrite
the parameter

ξ =
α

1− α
.

With
d =

√
(x2 + y2 + z2)
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2.1 Camera models

Figure 2.2: EUCM concept image. The distortion of the ellipsoid is controlled by the
parameter β, with β = 1 being the spherical UCM case. The distance between the
center of the ellipsoid and the imaging plane is ξ = α

1−α .

the projection (xπ, yπ) of a point (x, y, z) can then be calculated as follows:

xπ = fx
x

αd+ (1− α)z
+ cx, (2.1)

yπ = fy
y

αd+ (1− α)z
+ cy, (2.2)

and the unprojection:

x = τmx (2.3)

y = τmy (2.4)

z = τ − ξ (2.5)

with

τ =
ξ +

√
1 + (1− ξ2)r2
1 + r2

(2.6)

mx =
xπ − cx
fx

(1− α) (2.7)

my =
yπ − cy
fy

(1− α) (2.8)

r =
√
m2
x +m2

y (2.9)

ξ =
α

1− α
(2.10)
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Chapter 2 Camera models and lenses

The UCM can be expanded to the Extended Unified Camera Model (Khomutenko
et al., 2016) where the first projection on a sphere is replaced by a projection on an
ellipsoid. This leads to an additional parameter β for the elliptic distortion, where
β = 1 just represents the normal UCM. In this case, the projection becomes is just
altered by the factor β in the term d:

d =
√
β(x2 + y2) + z2

The unprojection however becomes more complicated due to the ellipsoid which
leads to the following formulae:

x =
1

λ
mx (2.11)

y =
1

λ
my (2.12)

z =
1

λ
mz (2.13)

with

λ =
√
m2
x +m2

y +m2
z (2.14)

mx =
xπ − cx
fx

(2.15)

my =
yπ − cy
fy

(2.16)

r =
√
m2
x +m2

y (2.17)

mz =
1− βα2r2

α
√

1− (2α− 1)βr2 + (1− α)
(2.18)

2.1.3 Kannala-Brandt Camera model

The Kannala-Brandt camera model (Kannala and Brandt, 2006) that is able to well
approach a variety of lens types including fisheye lenses, uses a slightly different
approach in approximating the imaging process. The basic assumptions is that
the distance of a projected point on the imaging plane is proportional to an (up to)
ninth order polynomial d(θ) of the angle θ under which the object point is perceived.
Kannala and Brandt also proposed a model with only six intrinsic camera parameters
where the polynomial is cut off at the fifth order but we decided to employ the
approach with four additional parameters.

With
d(θ) = θ + k1θ

3 + k2θ
5 + k3θ

7 + k4θ
9,
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2.1 Camera models

Figure 2.3: KB concept image. The distance between the optical axis and the projec-
tion of the point is proportional to the polynomial function d(θ) which depends on
the angle θ between the axis and the incident light ray.

the projection can be expressed as follows:

xπ = fxd(θ)
x

r
+ cx (2.19)

yπ = fyd(θ)
y

r
+ cy (2.20)

with

r =
√
x2 + y2 (2.21)

θ = atan2(r, z) (2.22)

The unprojection function becomes more complicated since it requires solving the
polynomial (via d−1(r) = θ) but we can define it as:

x = sin(θ∗)
mx

ru
(2.23)

y = sin(θ∗)
my

ru
(2.24)

z = cos(θ∗) (2.25)

9



Chapter 2 Camera models and lenses

with

mx =
xπ − cx
fx

(2.26)

my =
yπ − cy
fy

(2.27)

rx =
√
m2
x +m2

y (2.28)

θ∗ = d−1(ru) (2.29)

Both, the EUCM and the Kannala-Brandt model, are radially symmetric and thus
particularly suitable for the radial model envisaged by this thesis.

2.2 Fisheye lenses

Camera lenses are a photographer’s—or computer visionist’s—tool to capture a spe-
cific visual state of the real world and save it for later usage. Most conventional lenses
are only capable of taking images from a rather narrow angle of view compared to
what a human eye is able to see while other lenses were created for landscape pho-
tography and panoramic views. Throughout the years of camera lens development,
some manufacturers pushed the limit of the widest angle one can capture with a
lens further to reach higher and higher values. This in turn started to distort im-
ages when pictured on a flat 2D screen or paper resulting in a view similar to that
expected of a fish’s perception, thus the name ’fisheye lenses’. An example of a
distorted image is shown in Figure 2.4. These lenses are often created with open-
ing angles of 180 degrees and higher, some concepts reaching as far as 310 degrees,
effectively imaging objects lying far behind the camera (and imaging plane) itself.
Both of the aforementioned camera models are well-suited for wide angle and fisheye
lenses (Usenko et al., 2018). An image of a fisheye lens can be seen in Figure 2.5

10



2.2 Fisheye lenses

Figure 2.4: Fisheye view of ESO’s Very Large Telescope (VLT), taken from (Salgado,
2015) under Creative Commons license.

Figure 2.5: Image of a fisheye lens, Nikkor 6mm f/2.8, taken from (Commons, 2018)
under Creative Commons license.
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Chapter 3

Vignetting

The imaging process of a camera consists of converting the incident light beam to
usable data. Within a scene, it is usually enough to have data up to a scalar factor
as long as one is able to compare the images with each other. Let us assume an
image B with coordinates x, then the image information I provided by the sensor
at a certain pixel is:

I(x) = G(B(x)t), (3.1)

where G is the response function of the camera and t the exposure time. For simplic-
ity let’s define U = G−1 as the inverse response function. A common phenomenon
in camera imaging is the light attenuation in captured pictures towards the image
edges. This effect is called ’vignetting’ and while sometimes desired by photogra-
phers it is predominantly an issue for imaging techniques. Vignetting is the result of
having more than one aperture (pinhole cameras don’t suffer from vignetting) and
the ray beam being partially restricted by one of them. The imaging model (3.1)
then gains an additional, position dependent, attenuation factor V (x) which leads
to:

I(x) = G(B(x)V (x)t) (3.2)

As V (x) in general is only known up to a scalar factor, unless the exact irradiance
is known, this work always normalizes it to Vmax = 1. The image information that is
retrieved in vignetted areas is not accurate since the attenuation will produce lower
brightness values compared to the same point being captured by the lens center. To
avoid this effect one can either only keep image information from within the area
without vignetting or calibrate the camera lens to correct the images afterwards.
The first approach is either costly (reduce the area of vignetting by changing the
lens geometry) or wasteful (rejecting the erroneous image data), while the second
one requires to take a calibration sequence. This sequence has to contain pictures
accurately representing the vignetting affect in possibly all areas of the lens. This
thesis seeks to show the latter approach for fisheye lenses. We employ the same
mode as mentioned in (Engel et al., 2016).
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Chapter 4

Vignette Calibration

Figure 4.1: Comparison between EUCM (left) and KB (right) full vignettes.

The goal of this thesis is to provide vignette parameters allowing the calibration of
fisheye lenses by recording a calibration sequence. There will be a comparison be-
tween a dense model where every pixel is treated seperately and a radial model where
the attenuation is a function of the distance from the principal point.

The calibration sequence contains a large flat surface with approximately uniformly
colored regions as well as a (set of) marker(s) to extract the exact camera pose for
every image. To this end, we used an April marker (Olson, 2011) grid whose markers
are automatically detected in the images. The pose estimation is then performed
with an initial guess from UPnP and non-linear refinement using the Gauss-Newton
algorithm as presented in (Usenko et al., 2018). In the end this yields the intrinsic
parameters of the camera (if not already known from pre-calibration) as well as the
current camera pose for each image.

As a first step, the EUCM and the Kannala-Brandt model mentioned earlier where
compared to each other to assess which of them may suit our needs best. For the
most part both had very similar results (see Figure 4.1 and Figure 4.2) and since the
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Chapter 4 Vignette Calibration

Figure 4.2: Comparison between EUCM (left) and KB (right) radial vignette func-
tions.

Kannala-Brandt model can reach potentially higher accuracy (Usenko et al., 2018)
we decided to use it for the remainder of the study.

The retrieved information from the image sequence is then used to generate the
vignetting factor V for every pixel of the sensor by comparing values of the same
surface point when perceived by different different views. This assumes that the
response function of the pixels is known (up to a scalar factor) and the exposure
time is either constant over the sequence or factored into the calculations. In the
case of Aruco data sets we used the calibrated response function from (Engel et al.,
2016) whereas in the April grid sequences the camera was configured to have a linear
response (the scalar factor of the response function can be ignored, since the vignette
is determined only up to a scalar factor anyway).

The marker sets used in the observed sequences can be found in (Garrido-Jurado
et al., 2014; Olson, 2011), examples can be seen in Figure 4.3, the camera lenses are
of the type Lensagon BF2M2020S23 with a 195◦ field of view (Lens1) and BM2420
with a 148◦ FOV (Lens2), both from Lensation.

To create a relatively robust representation of V we recorded a long sequence of
images (Ii with i = 0, 1, . . .) in order to obtain image values for every pixel of the
sensor. The method assumes the markers to be situated on a well-lit, planar surface
S ⊂ R3 exhibiting Lambertian reflectance and estimates the camera’s position with
respect to S via marker detection. The pixel values on the sensor are then calculated
via a projection πi : S → Ω based on one of the camera models presented in
Chapter 2 and the current camera pose. Let C : S → R be the irradiance of
the surface and V : P → R the vignetting factor where P , the domain of V , is
P = Ω for the full model and P = [0, rmax] in the radial case. rmax is the distance

16



Figure 4.3: Exemplary markers, April grid (left), April square (middle) and Aruco
marker (right)

from the principal point to the furthest corner of the image. We can then define a
Maximum-Likelihood energy (Aldrich, 1997)

E(C, V ) =
∑
i,x∈S

(tiV (m(πi(x)))C(x)− U (Ii(πi(x))))2, (4.1)

where m depends on the employed model: It is the identity I in for the full model
and in the radial case m is a mapping: m(y) = ||y−c|| from any point to its distance
to the principal point, || · || being the euclidian norm.

In case of the full model, bilinear interpolation between the four nearest points is
used to retrieve values in-between discrete positions whereas normal linear interpola-
tion is employed in the case of the radial vignette. The interpolation of points in the
camera images is still done bilinear even in the radial model.

In our case we kept ti = t constant for every frame and selected a 1000×1000 points
large region (”grid”) around the marker for the calibration (see Figure 4.4). This
energy is subsequently minimized in a two-step-process that is iterated multiple
times where we first estimate the image C∗ of the grid and in the second step
calculate the optimal V ∗:

C∗(x) = arg min
C(x)

E(C, V )

=

∑
i tV (m(πi(x)))U (Ii(πi(x)))∑

i (tV (m(πi(x))))2
. (4.2)
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Chapter 4 Vignette Calibration

Figure 4.4: One image of a calibration sequence showing the grid region that was
taken into account for the calibration. The red lines show the same distortion as the
grid itself, verifying correct calibration of the camera parameters.

To calculate the optimal V for a given C we differentiate E with respect to V which
gives us:

∂E(C, V )

∂V
=
∑
i,x∈S

2
(
tiV (m(πi(x)))C(x)− U (Ii(πi(x)))

)
(tiC(x)) (4.3)

We now introduce p as the integer coordinates of the vignetting factor V , as well
as defining a neighborhood N (q) that contains the closest four (or two in the radial
case) integer coordinate points around a point q. One can define weights w(a, b)
that correspond to the (bi)linear weights of (bi)linear interpolation where a and b
are the point to interpolate and the data point to be interpolated from respectively.
The weights w are subject to

∀x, i :
∑

p∈N (m(πi(x)))

w(p,m(πi(x))) = 1.

18



Equation (4.3) then can be written as

∂E(C, V )

∂V
=
∑
i,x∈S

∑
p∈N (m(πi(x)))

2w(p,m(πi(x)))
(
tiV (m(πi(x)))C(x)

− U (Ii(πi(x)))
)
(tiC(x)).

(4.4)

We can now switch the order of summation and set the term to zero since we are
interested in minimizing the energy:

∂E(C, V )

∂V
=
∑
p

∑
i,x∈S: p∈N (m(πi(x)))

2w(p,m(πi(x)))
(
tiV (m(πi(x)))C(x)

− U (Ii(πi(x)))
)
(tiC(x))

!
= 0

(4.5)

Since this has to hold true for every p, the calculation of V ∗ becomes:

V ∗(p) = arg min
V (p)

∑
i,x: p∈N (m(πi(x)))

(tiV (m(πi(x)))C(x)− U (Ii(πi(x))))2

=

∑
i,x∈S: p∈N (m(πi(x)))

w(p,m(πi(x)))(U(Ii(πi(x))))(tiC(x))∑
i,x∈S: p∈N (m(πi(x)))

w(p,m(πi(x)))(tiC(x))2
(4.6)

Note that V is still defined on non-integer coordinates via (bi)linear interpola-
tion.

The full approach essentially assumes that the vignetting that happens for every
single pixel is independent of every other pixel in the image. Due to the radially
symmetric nature of lenses, we want to use a model that exploits this symme-
try for a parametric approach of the vignette calibration. This also seems natu-
ral as the geometric calibration already employs a radial model. Our model as-
sumes that the vignetting factor of the lens is not individual for each point but
instead a radial function with its center in the principal point of the camera system.

In a real, non-ideal calibration environment surfaces often do not fulfill the assump-
tion of lambertian reflectance and can thus produce different brightness values under
different angles. Shadows cast by the camera itself or the user handling the record-
ing cannot always be fully avoided as well. The radial method reduces the amount
of parameters of the calibrated vignette and allows to smoothen out local inconsis-
tencies since those are compensated for by the remaining values at the same radial
distance. Another advantage is the need for less data and thus shorter calibration
sequences since the averaging nature of the radial model results in multiple data
points used for each radial value. A comparison of a dense and a radial vignette can
be seen in Chapter 5, Figures 5.1, 5.4 and 5.7.
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Chapter 4 Vignette Calibration

Figure 4.5: Image from an April grid sequence. Purple pixels weren’t considered for
the vignette calibration.

While (Engel et al., 2016) only employed an Aruco marker (Garrido-Jurado et al.,
2014) we also used an April marker set (Olson, 2011) for calibration. The additional
markers provided more points to obtain a higher accuracy position estimation. In
addition to higher robustness it also allows pose detection directly on the distorted
images as the undistortion performed in (Engel et al., 2016) is not possible for fields
of view larger than 180 degrees.

In the radial approach, V (x) will be simplified to a one-dimensional function V (r)
that only depends on the distance from the principal point.

We decided to exclude the black markers themselves for the calibration (and a small
border surrounding them) since at the edge of a marker the light rays from dark
and bright object points will fall on the same pixel on the sensor and thus produce a
mixed grey value that might otherwise be interpreted as attenuation by vignetting.
The dark marker parts are also inherently less valuable for the vignette estimation
since their low brightness values leave less range (and thus less precise gradation
steps) for attenuation. An example of which parts where excluded can be seen in
figure 4.5.

In order to have a way to compare our radial approach to the the dense vignette
model, we performed 360 cuts in radial direction through the full vignette, starting
at the principal point of the camera (see Figure 4.6. These cuts are spaced out by
angles of one degree and are then combined into a single data line by taking the
mean value of all cuts and presenting error bars for the 1σ standard deviation. Both

20



Figure 4.6: Visualisation of the 360 cuts. With the exception of the bottom right
corner, only every 10th cut is depicted for better visibility.

the radial cut and the mean cut of the dense model are then normalized to have a
mean deviation of 1 for better alignment of the unknown scale factor. This can be
done without loss of information since the vignette already comprises an unknown
scale factor.
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Chapter 5

Results

This chapter presents the results obtained during the work of this thesis. Six different
setups where used for datasets:

1. Aruco marker on the wall, with Lens2 (Engel et al., 2016)

2. April grid board, artificial lighting, Lens1, existing dataset

3. April grid board, artificial lighting, Lens1, recorded dataset

4. April grid board, natural lighting, Lens1

5. April square, mixed lighting Lens1

6. April square, natural lighting Lens1

We will reference these as setup1 to setup6 in the thesis.

As a first step, we compared our radial model with the dense vignette obtained from
a large, previously recorded dataset under good conditions (large, flat, unicolored
surface; relatively even lit). The difference between the dense model and the radial
vignette are rather minor and hard to spot even in false color images (Figure 5.1).
The radial function is a smooth, concave function (with the exception of the very
edge region where little to no data is available) with a typical shape for vignettes
(Figure 5.2). When comparing the 360 radial cuts with the radial model (Figure 5.3)

Figure 5.1: Comparison between full model (left) and radial model (right). False
colors for better visualisation of graduations. Data from setup1.
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Chapter 5 Results

Figure 5.2: Radial vignette function of the vignette shown in Figure 5.1. Data from
setup1.

one can see the good correspondence between the two models. The radial model
provides a well-suited alternative to the full model.

When the calibration sequence data is less ideal (Figures 5.4 to 5.6) the radial
model already shows it’s strength of smoothing local inconsistencies and averaging
for areas where the dense vignette model contains artifcats. The radial vignette
functions still provide a rather smooth curve and mostly have the expected con-
cave shape of a vignette. The comparison with the 360 radial cuts already shows
how much more the full model varies as soon as the points lie far from the cen-
ter.

When being presented with very little usable data points, the full model is heavily
compromised by artifacts (Figure 5.7). The radial model, while also suffering from
local peaks and dips (Figure 5.8) still preserves its vignette-like shape while at the
same time mapping the full data relatively well (Figure 5.9).

Figure 5.10 shows what happens with local anomalies. Probably due to lens flares,
this dataset contained a very bright spot in the full model that affected the entire vi-
gnette due to it’s high value in relation to which all other pixels are scaled. The radial
model shows no anomaly at the same spot. While thresholding might also solve this
particular issue for the full vignette, it shows the strength of the radial model dealing
with aberrations as long as they are limited to a local area.

Figures 5.11 and 5.12 show the original and corrected image of one of the Aruco
marker sequences. The more uniform brightness of the (supposedly) equally bright
wall is especially noticeable in the false color image. A circular cut was performed
on the image to exclude data with little value in the far edge regions where the
calibration provides little to no data for the vignette.
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Figure 5.3: Comparison between full model (averaged) and radial model. Data from
setup1.

Figure 5.4: Comparison between full model (left) and radial model (right) for datasets
of mediocre quality. Data from setup6 (top) and setup4 (bottom).
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Figure 5.5: Radial vignette functions of the vignettes shown in Figure 5.4. Data from
setup6 (left) and setup4 (right).

Figure 5.6: Comparison between full model (averaged) and radial model. Data from
setup6 (left) and setup4 (right).

Figure 5.7: Comparison between full model (left) and radial model (right) for a dataset
of bad quality. Data from setup2.
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Figure 5.8: Radial vignette function of the vignette shown in Figure 5.7. Data from
setup2.

Figure 5.9: Comparison between full model (averaged) and radial model. Data from
setup2.
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Figure 5.10: Detailed comparison of a local anomaly in full and radial model. The
full model has an overall much darker shade due to the abnormal pixel’s high value
and the relative scaling of the entire image. Data from setup5.

Figure 5.11: Comparison of original (left) and corrected image (right) from one of
the Aruco sequences. Circular cut to restrain the image region to usable data. Data
from setup1.

Some of the data sets we recorded lead to mostly unusable data. Reflections espe-
cially (as seen in Figure 5.13) can lead to undesired results as the model unexpectedly
receives increased instead of attenuated brightness values. Another issue that posed
a problem was artificial lighting with fixed frequencies as present in flourescent tubes.
When the frequency of the camera sensor is not properly aligned with the frequency
of the illumination the resulting images’ brightness is no longer independent of the
time the images were recorded. The perceived attenuation in the middle of two light
flashes of these tubes is considerably lower than at their peak, preventing proper
vignette calibration.
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Figure 5.12: Same images as Figure 5.11 but in false colors. The right picture shows
a much more uniform distribution over the flat wall’s surface.

Figure 5.13: Image from a sequence with natural lighting. The reflections present at
steep angles lead to unusable values in that region. Data from setup6.
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Chapter 6

Conclusion and Outlook

In this thesis we present an alternative model for vignette calibration of fisheye
lenses. We implemented two suited camera models suited for these lenses and tested
the calibration algorithm on multiple image sequences with two different marker sets.
In comparison, the results showed a good accordance to the full vignette model while
at the same time removing drawbacks like sensitivity to local inconsistencies and lack
of data in few regions. This allows to also reduce the impact of few reflections in the
data or shadows cast by the camera itself or the camera handler. The low amount
of data needed for a decent vignette potentially offers the means to perform the
calibration on already existing data (e.g. from intrinsic camera calibration) instead
of recording explicit sequences for vignette calibration.

Further work could include parametrizing the radial function in a way to imitate
common shapes of lens vignettes. This could make it even more robust at the cost
of degrees of freedom provided by the current model.

31





Appendices

33





Appendix A

Code

The calibration code is too extensive to fully list here and also contains previ-
ous work (see also (Engel et al., 2016)). It is however available in its entirety in
my branch of the Mono-data-set-git at https://gitlab9.in.tum.de/slam/mono_

dataset_code/tree/maurice-devel

A.1 Evaluation code

Python evaluation code used for the comparison between the 360 cuts of the full
model with the radial model:

1 import matplotlib . pyplot as plt

2 import numpy as np

3 import os

4 import sys

5 import scipy

6 from PIL import Image

7 from mpl_toolkits . mplot3d import Axes3D

8 from optparse import OptionParser

9

10 def main ( ) :
11 parser = OptionParser ( )
12 parser . add_option ( ”−f ” , ”−−f o l d e r ” , dest=” f o l d e r ” , he lp=” Spec i f y save f o l d e r ←↩

and path r e l a t i v e to which other f i l e names are de f ined ” , default=” ./ ” )
13 parser . add_option ( ”−v” , ”−−vignettename” , dest=” f i l ename ” , he lp=”name ( and ←↩

l o c a t i o n r e l a t i v e to FOLDER) o f the v i gne t t e f i l e ” , default=”/ v i gne t t e . png←↩
” )

14 parser . add_option ( ”−c” , ”−−camf i l e ” , dest=”camFile ” , he lp=”name ( and l o c a t i o n ←↩
r e l a t i v e to FOLDER) o f the camera i n t r i n s i c s f i l e ” , default=”/camera . txt ” )

15 parser . add_option ( ”−r ” , ”−−r a d f i l e ” , dest=” radF i l e ” , he lp=”name ( and l o c a t i o n ←↩
r e l a t i v e to FOLDER) o f the r a d i a l v i gn e t t e cut f i l e ( r adF i l e . txt ) ) ” ,←↩
default=” ./ radF i l e . txt ” )

16 parser . add_option ( ”−−c en t e ra r ea ” , dest=”area ” , type=f l o a t , nargs=4, help=” p i x e l ←↩
i n d i c e s d e l im i t i n g the area where to search f o r the maximum value , ←↩
de f i n i n g the cent e r o f the v i gne t t e . format : x S ta r t x End y Sta r t y End”←↩
)

17 ( options , args ) = parser . parse_args ( )
18 folder = options . folder ; filename = options . filename ; camFileName = options .←↩

camFile ; radFileName = options . radFile ;
19

20 fileToOpen = folder+”/”+filename

21 center = np . array ( [ 1 . , 1 . ] ) ;
22 img = plt . imread ( fileToOpen )
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23 s = img . shape
24 t = tilesPerSide = 7 . #de f au l t va lue
25 i f (not ' area ' in l o c a l s ( ) or not i s i n s t a n c e ( area , tup l e ) ) :
26 area = np . round ( [ np . floor ( t /2) *( s [ 0 ] / t ) , np . floor ( t/2+1) *( s [ 0 ] / t ) , np . floor ( t←↩

/2) *( s [ 1 ] / t ) , np . floor ( t/2+1) *( s [ 1 ] / t ) ] )
27

28 radFile = open ( folder + radFileName , ' r ' )
29 radCut = np . array ( radFile . readline ( ) . rstrip ( ) . split ( ' ' ) ) . astype ( f l o a t )
30 radFile . close ( )
31 i f ( os . path . isfile ( folder+camFileName ) ) :
32 cameraFile = open ( folder+camFileName , ' r ' )
33 line = cameraFile . readline ( ) . split ( ' \ t ' )
34 cx = f l o a t ( line [ 2 ] ) ; cy = f l o a t ( line [ 3 ] )
35 i f ( cx<1.) :
36 cx = cx*s [ 0 ] − . 5 ; cy=cy*s [ 1 ] − . 5
37 center = np . array ( ( cx , cy ) )
38 print ( ”Vignette c en te r taken as p r i n c i p l e po int from camera f i l e . ” )
39 cameraFile . close ( )
40 else :
41 center = findPeakInArea ( img , area )
42 print ( ”Vignette c en te r est imated from va lue s . ” )
43 print ( ”Vignette c en te r : {} ,{} ” . format (* center ) )
44 print ( ”Image s i z e : {} ,{} ” . format (* img . shape ) )
45

46 img = set1toNaN ( img ) #edges / co rne r s without va lue s w i l l be s e t to NaN
47 cutArray = ( cuts360Degrees ( img , center ) )
48 means = np . array ( [ ] ) ;
49 devs = np . array ( [ ] ) ;
50 radCut = radCut [ : cutArray . shape [ 1 ] ]
51 alignmentStart = 20
52 alignmentEnd = −75
53 radCut = radCut [ : ]
54 cutArray = cutArray [ : , : ]
55 radMean = np . nanmean ( radCut [ : ] )
56 radCut = ( radCut−radMean ) /getMeanAbsoluteDeviation ( radCut [ alignmentStart :←↩

alignmentEnd ] ) #normal ize
57

58 for cut in cutArray :
59 means = np . append ( means , np . nanmean ( cut [ : ] ) )
60 devs = np . append ( devs , getMeanAbsoluteDeviation ( cut [ : ] ) )
61 stDevs = np . zeros ( cutArray . shape [ 1 ] )
62 meanCut = np . zeros_like ( stDevs )
63

64 for i in range ( cutArray . shape [ 1 ] ) :
65 stDevs [ i ] = np . nanstd ( cutArray [ : , i ] )
66 meanCut [ i ] = np . nanmean ( cutArray [ : , i ] )
67 normalizerMean = np . nanmean ( meanCut [ : ] )
68 normalizerMean = 0
69 normalizerFactor = getMeanAbsoluteDeviation ( meanCut [ alignmentStart :←↩

alignmentEnd ] )
70 meanCut = ( meanCut−normalizerMean ) /normalizerFactor
71 stDevs = stDevs/normalizerFactor
72 print ( ”radMean : {} , CutsMean : {}” . format ( np . nanmean ( radCut ) , np . nanmean (←↩

meanCut ) ) )
73 print ( ”radDev : {} , CutsDev : {}” . format ( getMeanAbsoluteDeviation ( radCut ) ,←↩

getMeanAbsoluteDeviation ( meanCut ) ) )
74

75 fig=plt . figure ( figsize=(10 ,6) ) ; plt . title ( ' Ful l and r a d i a l model comparison ' )←↩
; plt . xlabel ( ' Pixe l d i s t ance from p r i n c i p l e po int ' ) ; plt . ylabel ( '←↩
Normalized v i gn e t t e i n t e n s i t y ' )

76 x = range ( meanCut . shape [ 0 ] ) ; print ( l en ( x ) ) ; plt . errorbar (x , meanCut [ : ] , stDevs←↩
[ : ] , label= ' Ful l model average cut ' ) ; plt . plot (x , radCut , ' r ' , label= ' Radial ←↩
model ' ) ; plt . legend ( ) ;#p l t . show ( )

77

78 fig . savefig ( folder+”meanCutWithEBarsFull . png” , bbox_inches= ' t i g h t ' ) ; plt . close←↩
( fig )
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79 np . savetxt ( folder+”/meanCutWithStDevs . txt ” , np . stack ( [ meanCut , stDevs ] ) , '%2.8 f '←↩
)

80 np . savetxt ( folder+”/360 rad ia lCut s . txt ” , cutArray , '%2.8 f ' )
81 np . savetxt ( folder+”/meansAndDevs . txt ” , np . stack ( [ means , devs ] ) , '%2.8 f ' )
82

83 main ( )
84

85 def set1toNaN ( array ) :
86 for i in range ( array . shape [ 0 ] ) :
87 for j in range ( array . shape [ 1 ] ) :
88 i f ( array [ i , j ] == 1) :
89 array [ i , j ] = np . nan
90 return array

91

92 def showSurfaceplot ( dataArray ) :
93 fig = plt . figure ( )
94 ax = Axes3D ( fig )
95 X = np . arange (0 , dataArray . shape [ 1 ] )
96 Y = np . arange (0 , dataArray . shape [ 0 ] )
97 X , Y = np . meshgrid (X , Y )
98 surf = ax . plot_surface (X , Y , dataArray , cmap= 'magma ' , linewidth=0, antialiased=←↩

False )
99 plt . show ( )

100

101 def get360Endpoints ( center , length ) :
102 x = center [ 0 ] ; y = center [ 1 ]
103 endpoints = np . zeros ( ( 360 , 2 ) )
104 for i in range (360) :
105 angle = i /180 .* np . pi
106 Dx = length*np . sin ( angle )
107 Dy = length*np . cos ( angle )
108 endpoints [ i , : ] = [ Dx+x , Dy+y ]
109 return endpoints

110

111 def get360EndpointsNew ( center , size ) :
112 x = center [ 0 ] ; y = center [ 1 ] ;
113 w = size [ 0 ] −1 ; h = size [ 1 ] −1 ;
114 firstEndpoint = furthestCorner ( center , size )
115 Ex = firstEndpoint [ 0 ] ; Ey = firstEndpoint [ 1 ] ;
116 endpoints = np . zeros ( ( 360 , 2 ) )
117 firstangle = np . arctan2 ( Ey−y , Ex−x ) *180/np . pi
118 for i in range (360) :
119 angle = ( firstangle+i )%360
120 i f (0 < angle and angle < 90) :
121 Dx = w−x ; Dy = h−y ;
122 Ny = np . tan ( angle /180 .* np . pi ) *Dx
123 i f ( Ny <= Dy ) :
124 endpoints [ i ] = (w , y+Ny )
125 else :
126 Nx = Dy/np . tan ( angle /180*np . pi )
127 endpoints [ i ] = ( x+Nx , h )
128 e l i f (90 < angle and angle < 180) :
129 Dx = x ; Dy = h−y ;
130 Ny = np . tan ( angle /180 .* np . pi )*(−Dx )
131 i f ( Ny <= Dy ) :
132 endpoints [ i ] = (0 , y+Ny )
133 else :
134 Nx = ( Dy/np . tan ( angle /180* np . pi ) )
135 endpoints [ i ] = ( x+Nx , h )
136 e l i f (180 < angle and angle < 270) :
137 Dx = x ; Dy = y ;
138 Ny = np . tan ( angle /180 .* np . pi ) *( Dx )
139 i f ( Ny <= Dy ) :
140 endpoints [ i ] = (0 , y−Ny )
141 else :
142 Nx = ( Dy/np . tan ( angle /180* np . pi ) )
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143 endpoints [ i ] = (x−Nx , 0 )
144 e l i f (270 < angle and angle < 360) :
145 Dx = w−x ; Dy = y ;
146 Ny = np . tan ( angle /180 .* np . pi )*(−Dx )
147 i f ( Ny <= Dy ) :
148 endpoints [ i ] = (w , y−Ny )
149 else :
150 Nx = (−Dy/np . tan ( angle /180*np . pi ) ) ;
151 endpoints [ i ] = ( x+Nx , 0 )
152 else :
153 i f ( angle == 0) :
154 endpoints [ i ] = (w , y )
155 e l i f ( angle == 90) :
156 endpoints [ i ] = (x , h )
157 e l i f ( angle == 180) :
158 endpoints [ i ] = (0 , y )
159 e l i f ( angle == 270) :
160 endpoints [ i ] = (x , 0 )
161 return endpoints

162

163

164 def calculateEndpoint ( Dx , Dy , corner , angle ) :
165 factor = ( np . tan ( np . arctan2 ( Dy , Dx )+(angle%180) /180 .* np . pi ) )
166 i f ( factor==0) :
167 xN = Dx

168 else :
169 xN = Dy/factor*(1−corner ) + Dx *( corner )
170 yN = Dx*factor *( corner ) + Dy*(1−corner )
171 return ( [ xN , yN ] )
172

173 def interpolate ( image , coordinates ) :
174 x = coordinates [ 0 ] ; y = coordinates [ 1 ]
175 floorX = in t ( x ) ; floorY = in t ( y )
176 dx = x − floorX ; dy = y − floorY

177 dxdy = dx*dy

178 i f ( ( x<=0) or (y<=0) or (x>=image . shape [0 ]−1) or (y>=image . shape [1 ]−1) ) :
179 print ( ”Point to i n t e r p o l a t e out s id e o f image” )
180 return None
181 interpolated = (1 + dxdy − dx − dy ) * image [ floorX , floorY ] \
182 + ( dx − dxdy ) * image [ floorX+1,floorY ] \
183 + ( dy − dxdy ) * image [ floorX , floorY+1] \
184 + dxdy * image [ floorX+1,floorY+1]
185 return interpolated

186

187 def furthestCorner ( center , size ) :
188 x = center [ 0 ] ; y = center [ 1 ] ;
189 w = size [ 0 ] ; h = size [ 1 ]
190 return np . array ( [ ( 0 . i f (x>(w−1) / 2 . ) else w−1.) , ( 0 . i f (y>(h−1) / 2 . ) else h←↩

−1.) ] )
191

192 def centerToEndpointCoordinates ( center , endpoint ) :
193 x = center [ 0 ] ; y = center [ 1 ] ;
194 radialLength = np . sqrt (sum( ( endpoint−center ) **2) )
195 epsilon = 1e−8
196 pixels = in t ( np . ceil ( radialLength−epsilon ) )
197 coordinates = np . zeros ( ( pixels , 2 ) )
198 for i in range ( pixels ) :
199 coordinates [ i , 0 ] = ( x+i *( endpoint [0]−x ) /radialLength )
200 coordinates [ i , 1 ] = ( y+i *( endpoint [1]−y ) /radialLength )
201 return coordinates

202

203 def findPeakInArea ( img , area = [0 ,−1 ,0 ,−1]) :
204 temp = np . zeros_like ( img )
205 temp . fill ( np . min ( img ) )
206 temp [ area [ 0 ] : area [ 1 ] , area [ 2 ] : area [ 3 ] ] = img [ area [ 0 ] : area [ 1 ] , area [ 2 ] : area [ 3 ] ]
207 return np . unravel_index ( np . argmax ( temp , axis=None) , img . shape )
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208

209 def getMeanAbsoluteDeviation ( array ) :
210 mean = 0 ;
211 mean = np . nanmean ( array )
212 size = (˜ np . isnan ( array ) . flatten ( ) ) . sum( )
213 mAbsDev = np . nansum ( ( abs ( array−mean ) ) . flatten ( ) ) /size
214 np . where ( mAbsDev == 0 , np . nan , mAbsDev )
215 return mAbsDev

216

217 def cuts360Degrees ( img , center ) :
218 #cut o f f a l l cuts a f t e r the l egnth o f the minimal cut
219 w = img . shape [ 0 ] ; h = img . shape [ 1 ]
220 x = center [ 0 ] ; y = center [ 1 ]
221 minimalLength = ( np . min ( [ x , w−1−x , y , h−1−y ] ) )
222 maximalLength = np . linalg . norm ( furthestCorner ( center , img . shape )−center )
223 cutArray = np . full ( (360 , i n t ( np . ceil ( maximalLength ) ) ) , np . nan ) #s e t to NaN ←↩

to exc lude areas without va lue s
224 print ( ”Cutarray s i z e : {}” . format ( cutArray . shape ) )
225 cutEndPointCoordinates = get360EndpointsNew ( center , img . shape )
226 for i in range ( cutEndPointCoordinates . shape [ 0 ] ) :
227 pixelCoordinates = centerToEndpointCoordinates ( center ,←↩

cutEndPointCoordinates [ i ] )
228 temp = getRadialCut ( img , pixelCoordinates )
229 cutArray [ i , : temp . size ] = temp

230 #pl t . p l o t ( p ix e lCoord ina t e s [ : , 0 ] , p i x e lCoord ina t e s [ : , 1 ] )
231 return cutArray

232

233 def getRadialCut ( image , pixelCoordinates ) :
234 radialCut = np . zeros ( pixelCoordinates . shape [ 0 ] )
235 for i in range ( pixelCoordinates . shape [ 0 ] ) :
236 interpolated = interpolate ( image , pixelCoordinates [ i , : ] )
237 radialCut [ i ] = interpolated i f ( interpolated . size==1) else interpolated←↩

[ 0 ]
238 return radialCut
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Python code used for the radial plots:

1 import matplotlib . pyplot as plt

2 import os

3 import sys

4

5 filename = sys . argv [1 ]+ ”/ radF i l e . txt ”
6 radFile = open ( filename , ” r ” )
7 print ( ”Read f i l e {0}” . format ( filename ) )
8 radData = [ f l o a t ( i ) for i in radFile . read ( ) . split ( ) ]
9 plt . plot ( radData [ : ] , ' r ' ) ; plt . title ( ' Radial Vignette func t i on ' ) ; plt . xlabel ( ' Pixe l←↩

d i s t ance from p r i n c i p l e po int ' ) ; plt . ylabel ( 'Normalized v i gne t t e f a c t o r ' )
10 wdir = os . getcwd ( )
11 print ( ”Python working d i r e c t o r y : {0}” . format ( wdir ) )
12 destination = sys . argv [1 ]+ ' /2DradVignetteCut . png '

13 plt . savefig ( ' . /{0} ' . format ( destination ) , bbox_inches= ' t i g h t ' ) # ' / usr / stud/←↩
hermwi l l /Documents/ p r o j e c t /python/ r ad i a lV i gn e t t e . png ' , bbox inches = ' t i g h t ' )

14 print ( ”Saving f i l e to {0}/{1}” . format ( wdir , destination ) )
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