Joint Optimization of Pose And Depth Using a Prox-Linear Approach Master Thesis Presentation

Florian Hofherr

20. Dezember 2019

イロト イポト イヨト イヨト

э

Florian Hofherr

Problem Formulation

2 Optimization

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Florian Hofherr

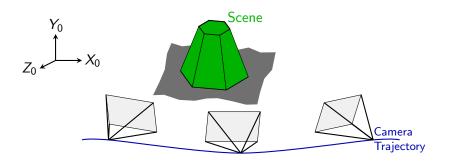
Problem Formulation

2 Optimization

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

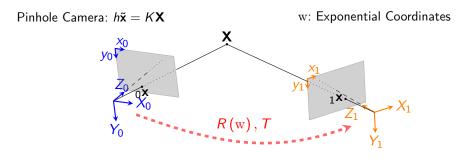
Florian Hofherr

SLAM Overview



Florian Hofherr

Warping Between two Frames



$$_{1}\mathbf{x}=\omega_{_{0}\mathbf{x}}\left(R,T,_{0}\mathbf{h}\right)$$

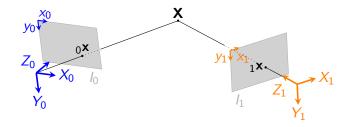
(a)

æ

Florian Hofherr

Problem Formulation	Optimization
000000	

Photometric Data Term



イロト イ団ト イヨト イヨト

æ

- Photometric \rightarrow Compare image intensities
- Bilinear/Bicubic interpolation in second image
- Assume Lambertian surfaces
- Dense \rightarrow All valid pixels

イロト イヨト イヨト イヨト

Ξ.

Photometric Data Term

Data term for two images

$$E_{data}(\mathbf{w}, T, \mathbf{h}) = \sum_{\mathbf{x} \in \mathcal{V}_{l_{1}}} \ell \left(\mathcal{J}l_{1}\left(\omega_{\mathbf{x}}\left(R\left(\mathbf{w} \right), T, \mathbf{h} \right) \right) - l_{0}\left(\mathbf{x} \right) \right)$$

- \mathcal{V}_{I_1} : Set of valid pixels
- *l*: Loss function
- \mathcal{J} : Interpolation operator
- Extendable for more images

= nav

イロン イロン イヨン イヨン

Regularization

Isotropic Huber Regularization with image-driven weights

$$E_{reg}\left(\mathbf{h}
ight) = \sum_{\mathbf{x}\in\mathcal{P}}\gamma\left(\mathbf{x}
ight)\left\|D\mathbf{h}\left(\mathbf{x}
ight)
ight\|_{h}$$

- $\bullet \ \mathcal{P} :$ Set of all pixels
- $\gamma(\mathbf{x}) = e^{-\alpha \|DI_0(\mathbf{x})\|_2^{\beta}}$
- D: Discrete gradient operator (forward differences)

• Huber norm:
$$||x||_h = \begin{cases} \frac{1}{2h} ||x||_2^2 & \text{if } ||x||_2 \le h \\ ||x||_2 - \frac{h}{2} & \text{else} \end{cases}$$

Florian Hofherr

< ロ > < 同 > < 三 > < 三 > 、

Ξ.

Joint Optimization Problem

Joint Optimization Problem

$$\min_{\mathbf{w},\mathbf{T},\mathbf{h}} \left\{ E_{data}\left(\mathbf{w},\mathbf{T},\mathbf{h}\right) + \lambda_{reg} E_{reg}\left(\mathbf{h}\right) \right\}$$

Advantages

- Only one optimization for pose and depth
- No keypoint selection, all pixels for pose

Difficulties

- Non-linear, Non-Convex
- High-Dimensional

Florian Hofherr

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Florian Hofherr

Composite Optimization Problem

Composite Optimization Problem

$$\min_{x} F(x) := g(x) + h(c(x))$$

- $g: \mathbb{R}^d \to \overline{\mathbb{R}}$ and $h: \mathbb{R}^m \to \mathbb{R}$ proper, closed and convex
- $c: \mathbb{R}^d \to \mathbb{R}^m$ be a C^1 -smooth

Florian Hofherr

Composite Optimization Problem

Composite Optimization Problem

$$\min_{x} F(x) := g(x) + h(c(x))$$

• $g: \mathbb{R}^d \to \overline{\mathbb{R}}$ and $h: \mathbb{R}^m \to \mathbb{R}$ proper, closed and convex • $c: \mathbb{R}^d \to \mathbb{R}^m$ be a C^1 -smooth

$$g(\cdot) \quad \leftrightarrow \quad \lambda_{reg} E_{reg}(\mathbf{h}) = \lambda_{reg} \sum_{\mathbf{x} \in \mathcal{P}} \gamma(\mathbf{x}) \left\| D\mathbf{h}(\mathbf{x}) \right\|_{h}$$

Florian Hofherr

Composite Optimization Problem

Composite Optimization Problem

$$\min_{x} F(x) := g(x) + h(c(x))$$

• $g: \mathbb{R}^d \to \overline{\mathbb{R}}$ and $h: \mathbb{R}^m \to \mathbb{R}$ proper, closed and convex • $c: \mathbb{R}^d \to \mathbb{R}^m$ be a C^1 -smooth

$$h(c(\cdot)) \quad \leftrightarrow \quad E_{data}(\mathbf{w}, T, \mathbf{h}) = \sum_{\mathbf{x} \in \mathcal{V}_{l_1}} \ell\left(\mathcal{J}_{l_1}(\omega_{\mathbf{x}}(R(\mathbf{w}), T, \mathbf{h})) - I_0(\mathbf{x})\right)$$

Florian Hofherr

The Standard Prox-Linear Algorithm

Composite Optimization Problem

$$\min_{x} F(x) := g(x) + h(c(x))$$

Iterative update

$$x^{k+1} = \underset{x \in \mathbb{R}^{d}}{\arg\min} \left\{ g\left(x\right) + h\left(c\left(x^{k}\right) + Jc\left(x^{k}\right)\left(x - x^{k}\right)\right) + \frac{1}{2t} \left\|x - x^{k}\right\|_{2}^{2} \right\}$$

•
$$Jc(x^k)$$
: Jacobian Matrix of c

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Florian Hofherr

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The Standard Prox-Linear Algorithm

Composite Optimization Problem

$$\min_{x} F(x) := g(x) + h(c(x))$$

Iterative update

$$x^{k+1} = \underset{x \in \mathbb{R}^{d}}{\arg\min} \left\{ g\left(x\right) + h\left(c\left(x^{k}\right) + Jc\left(x^{k}\right)\left(x - x^{k}\right)\right) + \frac{1}{2t} \left\|x - x^{k}\right\|_{2}^{2} \right\}$$

- $Jc(x^k)$: Jacobian Matrix of c
- $g \equiv 0$, $h = \frac{1}{2} \sum x_i^2 \Rightarrow$ Levenberg-Marquardt
- $h(x) = x \Rightarrow$ Prox-gradient algorithm

Florian Hofherr

∃ 990

Weighted Proximal Mapping

- $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ closed, proper and convex
- $M \in \mathbb{R}^{n \times n}$ symmetric positive definite matrix (\rightarrow diagonal)
- Weighted norm: $\|u\|_M^2 = \langle M^{-1}u, u \rangle$

$$\operatorname{prox}_{Mf}\left(u\right) := \operatorname*{arg\,min}_{v \in \mathbb{R}^{n}} \left\{ f\left(v\right) + \frac{1}{2} \left\|v - u\right\|_{M}^{2} \right\}$$

イロン イロン イヨン イヨン

Florian Hofherr

The Weighted Prox-Linear Algorithm

Composite Optimization Problem

$$\min_{x} F(x) := g(x) + h(c(x))$$

Iterative update

$$x^{k+1} = \underset{x \in \mathbb{R}^{d}}{\arg\min} \left\{ g\left(x\right) + h\left(c\left(x^{k}\right) + Jc\left(x^{k}\right)\left(x - x^{k}\right)\right) + \frac{1}{2}\left\|x - x^{k}\right\|_{M^{k}}^{2} \right\}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - 20ペ

Florian Hofherr

∃ 990

イロン イヨン イヨン

The Weighted Prox-Linear Algorithm

Composite Optimization Problem

$$\min_{x} F(x) := g(x) + h(c(x))$$

Iterative update

$$x^{k+1} = \underset{x \in \mathbb{R}^{d}}{\arg\min} \left\{ g\left(x\right) + h\left(c\left(x^{k}\right) + Jc\left(x^{k}\right)\left(x - x^{k}\right)\right) + \frac{1}{2}\left\|x - x^{k}\right\|_{M^{k}}^{2} \right\}$$

Step widths:
$$(M^k)^{-1} = rac{1}{\zeta_{step}^k} M_0^{-1} + ext{diag} \left(J^k{}^T J^k
ight)$$

Florian Hofherr

Solution of the Sub-Problems

Sub-Problem

$$u^{k+1} = \arg\min_{u} \left\{ h\left(J^{k}u - b^{k}\right) + \lambda_{reg} E_{reg}\left(u\right) + \frac{1}{2} \left\|u - u^{k}\right\|_{M^{k}}^{2} \right\}$$

General Case

- h: Absolute loss, Huber loss
- Standard TV regularization possible
- Solve using preconditioned PDHG

Florian Hofherr

Solution of the Sub-Problems

Sub-Problem

$$u^{k+1} = \arg\min_{u} \left\{ h\left(J^{k}u - b^{k}\right) + \lambda_{reg} E_{reg}\left(u\right) + \frac{1}{2} \left\|u - u^{k}\right\|_{M^{k}}^{2} \right\}$$

Special Case:
$$h(x) = \frac{1}{2} ||x||^2$$

- Linearize Regularization
- \Rightarrow Analytic Solution
- Mixture: Levenberg-Marquardt on data term, gradient descent on regularization

1 Problem Formulation

Optimization

・ロト ・回 ト ・ヨト ・ヨト ・ヨー うへの

Florian Hofherr

∃ 𝒫𝔄𝔄

イロト イヨト イヨト イヨト

Experiment 1

Compare joint estimation to pure depth/pose estimation

- Absolute data loss
- Pure estimation: Use ground truth
- New Tsukuba data set

Results 00●0000

Comparison Joint Approach vs. Pure Pose/Depth

Image Pair

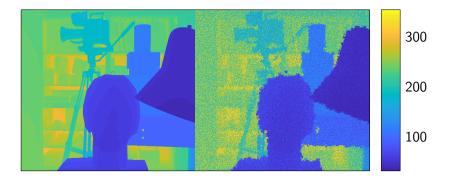
・ロト ・回 ト ・ヨト ・ヨト ・ヨー うへの

Florian Hofherr

Results 00●0000

Comparison Joint Approach vs. Pure Pose/Depth

True depth and initial value



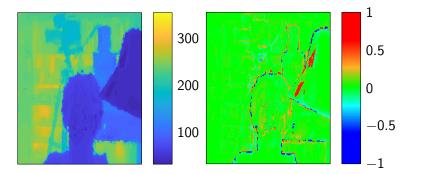
・ロト・西ト・西ト・西・ うらの

Florian Hofherr

Results 00●0000

Comparison Joint Approach vs. Pure Pose/Depth

Result Joint Optimization



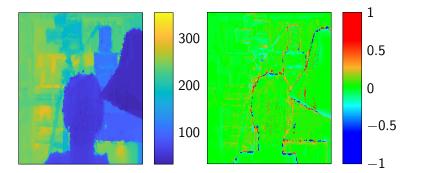
▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - 釣A

Florian Hofherr

Results 00●0000

Comparison Joint Approach vs. Pure Pose/Depth

Result Pure Depth Estimation



(日) (四) (三) (三)

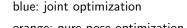
Florian Hofherr

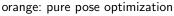
Problem	Formulation

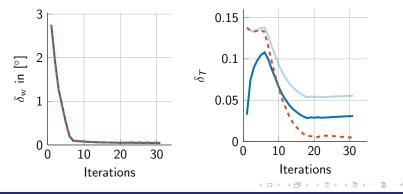
Results 00●0000

Comparison Joint Approach vs. Pure Pose/Depth

Comparison Results Pose







Florian Hofherr

∃ 𝒫𝔄𝔄

イロト イヨト イヨト イヨト

Experiment 2

Compare data loss functions

- Absolute loss and special case (quadratic data loss)
- Reduced step widths for special case

Florian Hofherr

Results 0000●00

Comparison Absolute Loss vs. Special Case

Image Pair

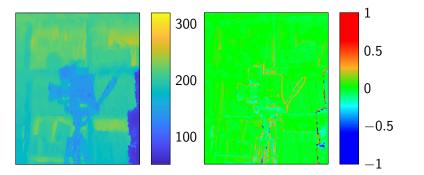
▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへ⊙

Florian Hofherr

Results 0000●00

Comparison Absolute Loss vs. Special Case

Result Absolute Loss

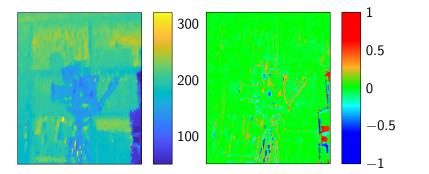


Florian Hofherr

Results 0000●00

Comparison Absolute Loss vs. Special Case

Result Special Case



・ロト ・日下・ ・ ヨト・

3

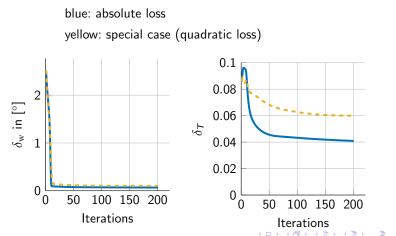
Florian Hofherr

Problem	Formulation

Results 0000●00

Comparison Absolute Loss vs. Special Case

Comparison Results Pose



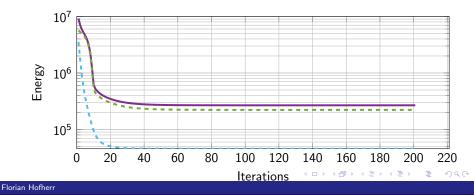
Florian Hofherr

Problem	Formulation

Comparison Absolute Loss vs. Special Case

Energy absolute loss

cyan: Regularization part



Problem	Formulation

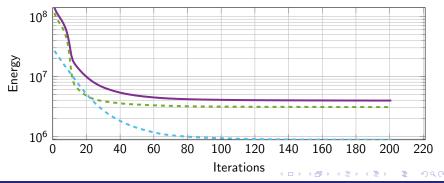
Results 0000●00

Comparison Absolute Loss vs. Special Case

Energy special case (quadratic loss)

green: data part

cyan: Regularization part



Florian Hofherr

イロン イロン イヨン イヨン

Ξ.

Questions?

Florian Hofherr

イロト イポト イヨト イヨト

Thank You And Merry Christmas

Florian Hofherr