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Abstract

In the recent years there have been significant advances in 2D face recognition by using
deep neural networks. One of the potential next steps is to develop optimized 3D facial
recognition. Shifting from 2D to 3D increases complexity of the problem by adding an-
other dimension to data, making possible solutions more resource hungry. In this thesis
we investigate different depth camera based facial recognition techniques and test their
performance by deploying them on an embedded processor. We focus on applications
for embedded systems and use a small low-resolution time of flight (ToF) camera with
Raspberry Pi to keep overall system portable and compact. The first approach involves
feature enrichment using an auto encoder and uses a Support Vector Machine (SVM) to
train a classifier on these encoded features. The second and third approach are based on
two different variant of Iterative Closest Point (ICP) along with a face detector and a facial
landmark detector. In order to evaluate the performance of the developed techniques, we
created a dataset of 20 identities captured with a low-resolution depth camera and use it
for both training and testing. The presented results show that the ICP based techniques
perform better in terms of accuracy and run several times faster than SVM based classifier.
We achieved almost real-time performance on Raspberry Pi for face recognition.
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1. Introduction

2D face recognition has improved significantly in recent years. The improvement was
mainly based on the success of deep neural networks combined with tremendous compu-
tational power of GPUs and large-scale data. Following the success, one of the potential
next steps is to develop 3D facial recognition and deploy it on an embedded processor.
2D face recognition is prone to image attacks, and there is no potential algorithm based
on single image which can detect these image attacks. 3D face recognition provides a so-
lution against spoof by utilizing the geometry of the scene. Further, the constraint that
the method should be able to run on an embedded processor, makes sure that the method
is computationally optimal. However, utilizing 3D information drastically increases com-
putational complexity and Single Board Computers (SBCs) with an embedded processors
have limited computational resources.

Deep Neural Networks are data and resource hungry, they require a good amount of
system memory and multiple processing cores. In computers of daily use, these require-
ments are fulfilled by powerful dedicated GPUs. However, in SBCs the integrated GPUs
share limited system memory with the CPU. When the system memory is exhausted, the
CPU starts using secondary storage space as the virtual memory. The hard drives used
as secondary storage are thousand times slower than the system memory, and as soon as
the CPU starts using it, the performance hits the floor due to latency of disk read/write
operations.

Furthermore, the SBCs are made with top priorities being portability and small form
factor. Small form factor makes SBCs suitable for DIY and IoT projects. If a 3D face recog-
nition method with reliable accuracy can run on an SBC with satisfactory running time, it
will be a huge breakthrough in the embedded industry.

1.1. Problem Statement

Facial Recognition has been one of the most researched topics in recent years in the field of
Human and Computer Interaction. The goal of a facial recognition algorithm is to create
a face model using multiple training samples for each identity, and to use these models to
recognize the faces in the samples afterwards. The face recognition problem can be divided
into two sub problems. The first is to create face models using image samples and later is
to identify the faces in the images using created face models. Identifying the faces seems
to be more important step however, it relies on creation of the face models.

In the 3D face recognition domain, the face model creation problem is a well defined
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1. Introduction

problem since 3D scene data is already given and only few processing steps are required
to extract models from the scene. In this particular case when 3D scene data is given, the
focus is to register multiple faces of a single identity and find suitable weights for different
facial features to have an acceptable face model. Further, the 3D data reduces the problem
of identifying faces in images to the 3D face registration problem.

The 3D face registration problem is one of point cloud registration problems. In addition
to point cloud registration, 3D face registration has prior information of face structure and
non-rigid motion. The face structure prior helps in reducing complexity of the problem by
opening possibilities of sparse feature registration instead of dense point cloud registra-
tion. On the other side, non-rigid face motions or facial expressions indicate that the 3D
structure of faces can be misleading sometimes, and hence relative positioning of features
has more importance.

For the scope of this dissertation, another layer of complexity is added in the problem
by restricting the computational resources to be of an SBC to make it highly portable and
optimized. This limits the possibility of using deep neural networks based methods due
to their huge data and computational power requirements.

1.2. Related Work

Deep learning, as it has left behind other techniques in many areas of data processing,
has also interesting solutions for the face recognition problem. There exists different deep
neural network based solutions, some of them take 2D data as input while other operate
on 3D data. One of the famous deep learning based face recognition methods is FaceNet
proposed by Schroff, Kalenichenko and Philbin (2015). In their research Schroff et al. (2015)
used feature encoding in order to increase information to noise ratio [19

.

]. The feature
encoding was used to produce concise face embeddings. Schroff et al. (2015) also trained a
classifier using triplet loss on the top of these face embeddings to achieve good results [19

.

].
The triplet loss not only makes sure that weights for feature embedding of an identity are
same but also ensures that they are distant from other identities [19

.

]. However, the FaceNet
was trained on 260 million images with 7.5 million parameters and it takes roughly 1.6
billion flops for one forward pass [19

.

].
Face recognition problem is also addressed using classical methods of computer vision,

most of them use the point cloud registration for this purpose. Also, there exist many
techniques to handle the point cloud registration, one of which is the Iterative Closest
Point (ICP) as used by Min, Choi, Medioni and Dugelay (2012) [13

.

]. The ICP takes two
point clouds and tries to find a transform which register first point cloud to second by
finding correspondences and minimizing the distances between them. The closed form
solution of ICP exists if the correspondences are known but one of the major challenges of
ICP is its dependence on good initialization.

Before ICP can be applied on the face models, they must be created out of raw scene
data. The DLib-ml machine learning toolkit introduced by Davis (2009) contains a great
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1.2. Related Work

face detector for raw images. The DLib-ml face detector yields a 2D bounding box for each
face in the image. The 2D bounding box based cutout, when projected to 3D, can contain
3D points other than of face and also it can miss some of them as well. In their research,
Mian, Bennamoun and Owens (2006) proposed interesting method to improve raw and
noisy face cutout [12

.

]. Mian et al. (2006) used coarse to fine approach to find nose in face
point cloud and once located, it is used to improve the face cutout by drawing a sphere
around nose. The points within the sphere are considered valid while other points are
neglected [12

.

].
There are three ways the ICP can be used for facial recognition i.e. one-to-all or direct

ICP based facial recognition, indirect ICP involving intermediate model formation steps
and a hybrid method as proposed by Min et al. [13

.

]. Direct face recognition includes
matching probe face to all of the gallery faces and returning the most matched face with
identity. This problem can also be visualized as nearest neighbor search where distance
two models is distance between their corresponding face features or points. This approach
is known to be accurate, but it is slow since for n faces in gallery registration process has to
be done n times [13

.

]. In terms of time bounds, running time of the direct ICP based facial
recognition becomes O(n × T (p)) for one query, where T (p) is runtime of ICP for probe
face p. Upon generalizing we get asymptotic bound O(nm × T (p)) where m is number of
query faces.

Indirect ICP based method for facial recognition mostly have an intermediate step which
is registration to a face model or atlas usually Average Face Model (AFM) [13

.

]. Registra-
tion to an Intrinsic Coordinate System (ICS) also falls in this category. All these indirect
methods only require ICP to run once and hence are faster than one-to-all ICP method.
However, in order to obtain performance with respect to time these methods compromise
on accuracy [13

.

].
Hybrid technique proposed by Min et al. (2015) aimed to achieve best of both direct

and indirect registration technique by introducing multiple intermediate face models or
canonical faces. These canonical faces are chosen from gallery faces [13

.

]. All the gallery
faces are registered to all canonical faces and on query, the probe face is only registered to
these canonical faces. The probe face is then matched to the gallery faces based on their
registration results. In this way hybrid technique achieves better running time which has
asymptotic bound of O(c×T (p)) where c is number of canonical faces and T (p) represents
running time of ICP for probe facep. Here it can be seen that by taking c = n hybrid method
becomes one-to-all ICP method and also by taking c = 1 it becomes indirect ICP. This
technique is powerful since it has flexibility to adjust compromise between performance
in terms of running time and accuracy.

Another yet interesting work is presented by Park, Zhou and Koltun (2017). In their re-
search Park et al. (2017) propose combining photometric and geometric objective together
in a manner which is normally used in RGB-D image alignment to add photometric in-
formation in ICP and improve convergence. RGB-D image alignment proposed by Stein-
bruecker, Sturm and Cremers (2011) [20

.

] provides promising results for 3D reconstruc-
tion. Feng and Zhao (2018) in their research present novel depth-to-depth face recognition
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1. Introduction

method using Deep Convolutional Neural Networks (DCNN) [5

.

]. Feng and Zhao (2018)
use two different networks to obtain normalize 3D reconstruction and feature encoding
respectively. And, on the top of extracted feature encoding they use softmax classifier to
classify faces into identities.

The datasets frequently used by researchers for face recognition using the depth im-
ages are dataset of 3D images created for Face Recognition Grand Challenge (FRGC) and
Lock3DFace dataset created by Zhang, Huang and Sun (2016) [15

.

, 21

.

]. Both datasets con-
tain colored and depth images, having multiple sample per identity with different envi-
ronment conditions and facial expression.

1.3. Challenges

1.3.1. Embedded Processor and Computing Power limitations

Major objective of this dissertation is to deploy a solution on an Embedded processor. For
choice of the embedded processor, Raspberry Pi was chosen, since it is easily available,
economical and most power full among Single Board Computers (SBCs) of its form factor.
The latest model of Raspberry Pi at the time of this dissertation is Raspberry Pi 3 B+. This
version of Raspberry Pi has ARM Cortex-A5 Quad-Core-CPU with core clocks frequency
up to 1.4 GHz. The Random Access Memory is 1 Gigabyte, which is shared between CPU
and GPU. For secondary memory a USB drive or external SD cards is used. Raspberry
Pi on one side is portable and economical but it comes with a compromise on computing
power. Raspberry Pi officially supports the Raspbian Stretch Operating System which is
Debian Stretch based; the third-party operating systems available for Raspberry Pi include
Windows 10 IoT, Lubuntu and Ubuntu Mate. While it support other operating systems as
well but with significantly slow performance.

Latest version of Raspbain OS available at the time of this dissertation is Raspbian 9
which ships with Linux kernel version 4.14. Official website allows to choose between 3
different images including Rasbian Stretch Lite, Raspbian Stretch Desktop and Raspbian
Streatch Desktop with recommended software. Raspbian Stretch Desktop was chosen for
this dissertation, since it contains Desktop environment to test things and extra software
are not included to spare disk space for other package and compilation. Raspbian Stretch 9
has limited software repositories and it leaves the user with no other option but to compile
required repositories for themselves.

Compilation on Raspberry Pi is a time taking process, due to RAM limited to 1 Gigabyte,
which is shared between CPU and GPU. It runs out of memory quickly, relying on slow
swap. As soon as it hits swap, due to low Read/Write speed of SD card, performance hits
the floor. The compilation of OpenCV took around 6-8 hours when environment setup was
done. Installing Python packages requires even more patience because if a dependency is
missing or a package is incompatible it throws an exception after completely installing
other dependencies. In most cases after 2-3 hours of dependencies installing user runs
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into an exception. The solution to avoid these issues is to follow installation guides alone
and install dependencies beforehand to save time. The best and quick solution is to use
APT package handling utility apt-get to install python packages instead of pip as it installs
prebuilt packages as well as system dependencies saving compilation time.

1.4. List of Contribution

Following is the list of contributions made by this dissertation:

• Search for suitable face recognition algorithms which can run on low-resolution depth
and intensity images.

• Training of SVM for face recognition using the FaceNet embeddings.

• Search for multiple preprocessing steps, which can crop out faces optimally from the
point clouds and their implementation.

• Development and implementation of 3D face recognition algorithms by combining
Face Detector, Facial Landmark Detector and ICP based registration methods.

• Comparison of ICP followed by 2.5D projection and Colored ICP.

• Development and implementation of nearest neighbour search algorithm for faces to
avoid brute force search.

• Optimization of algorithms to make them run on almost real-time on Raspberry Pi.

• Compilation of prerequisite Python and system libraries for Raspberry Pi, which
does not have default installation packages.

• Deployment, testing and insights of algorithms on Raspberry Pi.

• Collection of small datasets of low resolution depth and intensity images.
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2. Background

In this chapter some basic concepts, which are necessary in order to understand the meth-
ods, results and the conclusions are explained. Reader with knowledge of the domain can
skip this section.

2.1. Perspective Projection

Perspective projection is a linear image formation model where a 3D scene is projected on
the image plane of the camera, the depth information is lost, and closer objects appear to
be larger. In perspective projection, the image of parallel lines intersect at a point called
vanishing point (See Fig. 2.1

.

). Compared to other projection models, the perspective pro-
jection looks most realistic since, lens in the human eye as well as the lenses in the digital
cameras use same projection model. Equation 2.1

.

and 2.2

.

show the projection and the
inverse projection of perspective projection model.

π(

XY
Z

) = λ

uv
1

 =

fx 0 cx
0 fy cy
0 0 1

XY
Z

 (2.1)

π−1(

uv
1

) =

XY
Z

 =

fx 0 cx
0 fy cy
0 0 1

−1 uv
1

 (2.2)

where:

fx = horizontal focal length of camera
fy = vertical focal length of camera
cx = horizontal center of camera in pixel coordinates
cy = vertical center of camera in pixel coordinates
λ = depth and scale of point

2.2. Rigid Body Transformation

The Rigid body transformation is a subset of 3D transformations which preserves the scale
and the shape of the body, hence called rigid body transformation. The rigid body trans-
formation is highly used in the field of multi-view geometry. It is composed of a rotation
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2. Background

Figure 2.1.: Example of vanishing points[1

.

]

and a translation part where rotation matrix R ∈ R3×3 and translation vector T ∈ R3.
In order to perform the rigid body transformation on a point, first the rotation matrix is
multiplied with the point and then the translation vector is added as shown in Equation.
2.3

.

.

gt(x) = Rx+ T (2.3)

It is important to note that the rotation matrix R is orthogonal, and determinant of R is
+1. Being orthogonal matrix means that if the matrix is multiplied with a vector, the scale
of the vector is preserved and R−1 = RT hence, RTR = I . These properties show that
the rotation matrix R belongs to the special orthogonal group or the Lie group SO(3) (See
Equation. 2.4

.

). Using the homogeneous coordinates both rotation and the translation can
be combined in to one matrix (See Equation. 2.5

.

).

SO(3) =
{
R ∈ R3×3|RTR = I, det(R) = +1

}
(2.4)

XY
Z

 =

[
R T
0 1

]xy
z

 (2.5)

2.3. RGB-D Image Alignment

Given two RGB-D images, the goal of the RGB-D image alignment is to find optimal pose
ξ which is defined as relative transformation between first and second camera. Here, first
and second camera doesn’t mean there must be a different camera for every single image,
but instead cameras represent the position of camera when images were taken, making

10



2.3. RGB-D Image Alignment

Figure 2.2.: a) 2 different scene reconstructed from RGB-D Images. b) Resultant recon-
structed scene from RGB-D Image Alignment [14

.

]

it one camera for each image. ξ is not just relative transformation of camera but it can
also be seen as transformation between captured scenes and thus can be used to combine
information captured by different cameras into one big scene. 3D Reconstruction problem
using RGB-D cameras can be reduced to RGB-D image alignment problem on consecutive
pairs of images.

The RGB-D image is composed of colored as well as depth information for each pixel
in image. Unlike RGB images RGB-D image itself is enough for reconstructing captured
scene. In order to do so, the RGB values are unprojected using camera intrinsic matrix K,
which is defined as

K =

fx 0 cx
0 fy cy
0 0 1

 (2.6)

to obtain image on focal plane of camera. On image plane each pixel corresponds to a
3D vector with values in focal units where depth value for each vector is 1 focal unit. In
order to reconstruct the scene, the vectors are multiplied with their corresponding depths.

Since, RGB-D image contains sufficient information of the scene from one particular
perspective, multiple images are taken from different perspectives and are later combined
using RGB-D image alignment to obtain a better reconstructed scene (See Fig. 2.2

.

).
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2. Background

2.4. Iterative Closest Point

The process of minimizing the distance between two point clouds is called point cloud
registration. One of the famous methods of the point cloud registration is Iterative Closest
Point or ICP [3

.

, 2

.

, 4

.

]. ICP is used in 3D reconstruction and localization of robot. Given
two point clouds it iteratively finds best rigid body transformation which minimizes the
distance between corresponding points. In each iteration, ICP finds point correspondences
between two point clouds and based on the found correspondences it finds optimal rigid
body transformation which minimizes the distance between corresponding points. In
most cases, the closest point to a point in target point cloud is considered its corresponding
point. The method keeps running unless maximum number of the iterations is reached or
the resultant error between correspondences is smaller than some threshold (See Source
Code. 2.1

.

).

1 def find_point_correspondences(P: list, Q: list):
2 correspondences = dict()
3 for p in P:
4 q = closest_point_to(p, Q)
5 correspondences[p] = q
6 return correspondences
7

8 def icp(P: list, Q: list):
9 Cp = center_of_mass(P)

10 Cq = center_of_mass(Q)
11

12 t = Cq − Cp
13 P.translate(t)
14

15 error = ∞
16 for i in range(max_iterations):
17 if error ≤ ε:
18 break
19 correspondences = find_point_correspondences(P, Q)
20 transformation T = argminT

∑
i ‖qi − T (pi)‖2

21 P.transform(T)
22 error = euclidean_dist(correspondences)

Source Code 2.1.: Iterative Closest Point Algorithm
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2.5. Hoteling Transform

T = argmin
T

∑
i

‖qi − T (pi)‖2 (2.7)

In case when correspondences are known ICP has a close form solution as they reduce
the problem to estimation of transformation T which minimizes Equation. 2.7

.

. To do so,
first both point clouds are mean normalized i.e.

P̃ = {pi − µp} = {p̃i}
Q̃ = {qi − µq} = {q̃i}

(2.8)

W =
∑
i

p̃q̃T (2.9)

Afterwards, using normalized point clouds, W is calculated given by Equation. 2.9

.

and
if the rank(W ) is 3, Single Value Decomposition SVD of W is defined as

W = U

σ1 0 0
0 σ2 0
0 0 σ3

V T (2.10)

where U, V ∈ R3×3 and σ1 ≥ σ2 ≥ σ3. Rotation matrix R and translation T are calculated
using Equation. 2.11

.

.

R = UV T

T = µp −Rµq
(2.11)

There are different variants of ICP available today, they differ from each other based on
different methods for point cloud sampling, correspondence weighting, different matching
algorithms and outlier handling techniques. Which one is to be used, depends on scenario.

2.5. Hoteling Transform

Karhunen-Loeve Transform (KLT), Eigenvector Transform or Hoteling Transform is used
for the rotation normalization/alignment with principal axes of 2D or 3D data [12

.

, 16

.

]. Let
P ∈ R3×n a matrix with x, y and z coordinates of pointcloud (See Equation 2.12

.

).

P =

x1 x2 ... xn
y1 y2 ... yn
z1 z2 ... zn

 (2.12)
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2. Background

The mean vector m ∈ R3 and covariance matrix C ∈ R3×3 is given by Equation. 2.13

.

and 2.14

.

respectively.

m =
1

N

n∑
k=1

Pk (2.13)

C =
1

N

n∑
k=1

PkP
T
k −mmT (2.14)

Let V ∈ R3×3 be the matrix of eigen vectors of C given by Equation. 2.15

.

.

CV = DV (2.15)

Where D is diagonal matrix with eigen values as diagonal entries in descending order
i.e. λ1 ≥ λ2 ≥ λ3. P can be aligned with principal axes using Equation. 2.16

.

known as
Hoteling Transform [12

.

, 16

.

].

P̃ = V (P −m) (2.16)

Hoteling Transform can be used along with sampling and hole filling to align the point
clouds with their principal axes.

2.6. Support Vector Machine

In Machine Learning, Support Vector Machines or SVMs or Support Vector Networks are
supervised learning algorithms which are associated with classification as well as regres-
sion problems. The SVMs classifiers with few exceptions are non-probabilistic classifiers
capable of dealing with both linear and non-linear classification.

To run an SVM for labeled data, first feature vectors are created and preprocessed using
different encoding techniques e.g. Auto Encoder Network. Preprocessing is necessary
for dimensionality reduction and information enrichment. These processed vectors along
with the labels are then fed into an SVM classifier for training. Once the training is finished
with suitably low error the trained network can be used for classification of unlabeled data.
It is important to note that before querying, the unlabeled data must be preprocessed in a
similar way as training data was preprocessed.
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3. Methods

In this section, different experimental methods are discussed in detail. 2D based tech-
niques process only gray scale images leaving depth data unused while 3D based tech-
niques utilize both gray scale and depth data to predict facial identities. However, 2D
based techniques are lighter in terms of memory and computational power which is desir-
able for solutions which must run on an embedded processor.

3.1. Dataset

Since, specific ToF camera is used, with no standard dataset there is a need of creating a
dataset just for the scope of this dissertation. The dataset should contain 3D face models
of 6-10 people with 2-5 samples each. Moreover, the algorithms applied for the face recog-
nition are not based on supervised learning so whole dataset can be used for validation.
Furthermore, ToF cameras are passive cameras with strong enough illumination source to
light up the subject in scene. Due to direct light of sensor, shading artifacts from other
sources of light in scene are negligible for the subject close enough to the camera with
the assumption that the scene is indoor. This negates the need of differently illuminated
samples per identity hence, reducing number of samples required per identity.

3.1.1. Model Format

Each face model is saved as numpy file in .npy format [7

.

]. The face model contains cropped
face points along with their intensities as well as their corresponding indices in pixel coor-
dinates, which are concatenated in column-wise fashion as

F =
[
P ITp iTp

]
(3.1)

where:

P = 3D points ∈RN×3

Ip = intensity values ∈RN×1

ip = indices in pixel coordinates ∈RN×1

N = number of points

The resultant numpy array is of form F ∈RN×5 which is then saved as pickled object
with .npy extension [7

.

].
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3. Methods

Figure 3.1.: Capturing Samples for Database

3.1.2. Capturing Models

For the purpose of collection of data, the user is asked to stand between 0.5, 1.5m distance
away from the camera with their face directed towards the camera and hence mostly visi-
ble. Additional condition which can be imposed for better is that there should not be any
direct light on the user’s face. Since, direct light on face introduces intensity variantions
which in turn introduces huge noise in photometric objective.

Using the annotated image with facial region as visual guide, as shown in Figure. 3.1

.

, the
3D point cloud, the depth image and the gray image are captured. Normally around 10-15
samples are taken, out of which 5 samples are randomly taken as the test models and from
the rest, 5 best models which represent other samples well are taken as training models.
The selection of best models is based on ICP registration, each model is registered against
rest of models and then models are sorted in descending order of average registration
score. This setup helps in quick search for best match which will be discussed later in
3.5.2

.

. In addition to sorting, all models under one identity are registered to model with
best average registration score in order to make it canonical face/model of other models
[13

.

]. Although, the intensity and the depth images are saved in the database they are not
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3.2. Recognition Classes and Criteria

needed by either Colored ICP Registration or 2.5D Registration. However, the depth and
the intensity images are used in the 2D Face Recognition using FaceNet.

3.2. Recognition Classes and Criteria

The output of the face recognition algorithm is confidence/probabilities against each label.
There are multiple ways to interpret this information and classify raw probabilities into
different classes such as recognized or fake. In this section, the criterion for the different
classes is briefly described.

3.2.1. Confidence from ICP Based Algorithms

The output of iterative closest point algorithm is two measures, namely fitness and RMSE
(Root Mean Squared Error). The fitness is the ratio of the number of points which have
correspondences over total number of points. Since, not all points in source point cloud
can always be matched to points in destination point cloud, the fitness ratio is almost
always less than one. The RMSE is the root mean squared error based on mean of distance
measure between transformed source points and their corresponding points in the target
point cloud. In order to find correspondence for one point in source point cloud, ICP
looks for the closest point in destination point cloud. ICP allows a configuration where
search for closest point in destination point cloud can be constrained hence, enabling the
definition of maximum possible distance between corresponding points. This maximum
possible distance, when set according to resolution and the precision of depth values from
the camera, allows fitness ratio to be considered as percentage match between source and
destination point clouds. Further, the resultant percentage match can be used as match
confidence for ICP based recognition methods.

3.2.2. Recognized or Uncertain

A result of face recognition is classified as ”Recognized” when there is only one label with
confidence above some threshold. The cases where there are multiple labels above thresh-
old, the result is classified as ”Uncertain”.

3.2.3. Verified or Fake

Once a face is recognized, it is passed to the spoof detector and if spoof detection is posi-
tive, the result is classified as ”Fake”, otherwise ”Verified”. In case of ICP based methods,
spoof detector and face recognizer are not separate. Spoof attacks like pictures or video
are easily caught by ICP, since it registers 3D geometry and geometry to pictures doesn’t
match geometry of face. Also, if the face is printed on a curved surface, the actual geometry
of different part of the face, for example nose, doesn’t match and results in an ”Unknown”
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3. Methods

Figure 3.2.: 2D intensity image samples cropped using MTCNN face detector[22

.

]

label. Mask attacks however, can depict exact geometry as original but the reflectance of
any material used for mask can barely match the reflectance of skin.

3.2.4. Unknown

If there is no label with confidence above the defined threshold, the result is classified as
”Unknown”. It happens in the case where the face is not registered in the database. It also
happens when the face is not fully visible to the camera or it is a spoof attack. The 2D
Face Recognition using FaceNet can detect spoof explicitly since it has a separate module
for the spoof detection but in the case of ICP based methods, it cannot explicitly tell if the
”Unknown” is an unregistered face or a spoof attack.

3.3. 2D Face Recognition using FaceNet

Thanks to deep neural networks, 2D face recognition provides promising results however,
the deep neural networks are data and resource hungry. In 2D Face Recognition using
FaceNet, FaceNet presented by Schroff et al. (2015) is used as a feature encoder to enrich
raw face data and increase signal to noise ratio [19

.

]. The face embedding obtained from
FaceNet are then used to train an SVM classifier.

3.3.1. FaceNet

In their research Schroff et al. (2015) pointed out that with the better encoding of face
model accuracy of face recognition and verification can be improved [19

.

]. Schroff et al.
(2015) used deep convolutional network to obtain features in euclidean space where lesser
distance between models represent face similarity [19

.

]. Schroff et al. (2015) introduced
triplet loss in order to improve recognition results [19

.

]. This representation when used
for face recognition achieves the accuracy of 99.63% on Labeled Faces in the Wild (LFW)
dataset[19

.

, 6

.

].
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3.4. Preprocessing for ICP

3.3.2. Spoof Detector with 2D Face Recognition using FaceNet

2D Face Recognition alone is not enough since, most of the face recognition algorithms are
optimized to identify the face in image and it is hard to tell whether the image contains
another image of a face. In order to cope with this problem, spoof detector is introduced to
verify if the image contains real face or just another image. The spoof detector runs along
with face recognition, once an identity is established the spoof detector gives confidence
about it being real (See Fig. 3.3

.

). The spoof detector is pre trained and does not need any
further training specific to face identities.

3.3.3. Training

For 2D Face Recognition, 200 samples of intensity images per identity are captured and
processed by MTCNN face detector to extract the region of interest (See Fig. 3.2

.

)[22

.

]. Fur-
ther, these region of interest patches are resized to 160x160 images and processed through
facenet to obtain face embeddings [19

.

]. Once, all embeddings are obtained and SVM clas-
sifier is trained with names as labels to recognize the faces.

Training SVM requires computational, when tried on raspberry pi 3 with 1 Giga Byte
of RAM, the process runs out of system memory limiting the training only for computers
with greater resources.

3.3.4. Classification

For classification, face is cropped out of intensity image using MTCNN and processed
through FaceNet to obtain embeddings [22

.

, 19

.

]. These embeddings are then fed forward
to the SVM classifier to obtain a label. If the confidence of the classifier is below 0.60 the
identity is considered unknown. Instead of running classifier and spoof detector on every
frame, once an identity is established, it is tracked using MTCNN tracker and new identity
is established only after the first one is lost by tracker [22

.

].

3.3.5. Verification

For verification, raw intensity and depth images are provided to spoof detector without
cropping out any part. Spoof detector returns score in interval [0-1]; the score repre-
sents confidence of spoof detector for face being real. Due to separate spoof detection,
the method can explicitly differentiate between ”Unknown” and ”Fake” faces.

3.4. Preprocessing for ICP

A series of preprocessing steps are applied to increase signal to noise ratio in images. All
preprocessing steps discussed below are applied after obtaining point cloud from depth
image. For the purpose of unprojecting image into point cloud, pinhole camera model
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3. Methods

Figure 3.3.: Output of 2D Face Recognition and Verification
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3.4. Preprocessing for ICP

Figure 3.4.: Output of Dlib Shape Predictor [17

.

]

was used due to its simplicity. The camera intrinsics were obtained from API sources
which came along with camera as an SDK. The depth and the gray images obtained from
the ToF camera were already registered making color assignment to the points, simple and
straight forward.

3.4.1. Face Detection and Shape Prediction

The DLib-ml face detector was used to obtained face bounding box from gray image along
with DLib-ml shape predictor which is an implementation of face alignment with an en-
semble of regression trees, to predict the facial landmarks[8

.

, 10

.

]. The predictor outputs 68
(x, y)-coordinates which map to the facial structures on the face as shown in Fig. 3.4

.

. The
corresponding 3D points of facial landmarks are obtained by using corresponding index
of the facial landmarks in images since, order stays same while projecting 2D image pixels
to 3D point cloud.

xµ = X −
∑
i=0

xi (3.2)

3.4.2. Mean and Scale Normalization

The unprojected point cloud has non-consistent scale due to varying distance of the person
from the camera. In order to normalize the obtained point cloud, points are first mean
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3. Methods

Figure 3.5.: Point Cloud after Extraction of Facial Points

normalized using equation 3.2

.

and then scale normalized using equation 3.3

.

.

Xγ =
X

1
|X|
∑

i=0 ‖Xi‖
(3.3)

3.4.3. Facial Points Extraction

As Face Detector only runs on 2D gray scale image, the detection output is not consistent
due to varying poses and sometimes includes areas like hair, ears and neck. These areas
are undesired because either they’re highly dynamic or they’re not always part of detected
regions. In order to deal with inconsistent detection, the point cloud is filtered again for
facial region based on the nose tip. For this purpose, technique proposed in research by
Mian et al. (2006), is used, which takes a sphere of fixed radius with nose tip as center
and all points which lie within this sphere are considered part of facial points [12

.

]. In their
research Mian et al. (2006) apply a facial geometry based coarse to fine approach to detect
nose, which in proposed methods is detected using DLib-ml shape detector [8

.

, 10

.

, 12

.

].
Once facial points are extracted mean and scale normalization discussed in section 3.4.2

.

are applied again. An Example of extracted facial points is shown in Figure. 3.5

.

.

3.4.4. Pose Normalization

The iterative closest point algorithm needs a good initialization in order to avoid local
minima. To ensure that, the pose of the faces must be normalized so that before they’re
presented to the ICP both source and target faces are of almost similar pose hence, re-
ducing the work of ICP and decreasing chances of hitting local minima. There are two
techniques which are considered effective for pose normalization in such scenarios, the
Hoteling Transform (See section. 2.5

.

) or finding the face plane using facial landmarks. The
Eigenvector or Hoteling Transform sometimes results in mirrored point clouds which is
undesired for ICP, making it not a viable solution. Also, finding the face plane using facial
landmarks didn’t work well due to unstable facial landmarks.
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3.5. Colored ICP

3.4.5. Voxel based Down Sampling for Lower Resolution

In voxel base down sampling, a voxel grid is applied to the point cloud so that all points
in the points cloud are contained in voxels. The size of the voxels defines the resolution
of resultant point cloud, lower the voxel size is higher the resolution will be. Once, voxel
grid is applied for each voxel, voxel centroid is selected by checking which point is closer
to mean of points contained in voxel. Voxel centroid is given by Equation 3.4

.

. Finally, a
point cloud containing only centroids of voxel is created.

ζ = argmin
xi


(
xi −

1

N

N∑
i=0

xi

)2
 (3.4)

Selecting voxel centroid instead of voxel center is less efficient in terms of running time
however, point cloud formed by voxel centroids represents geometry much better than
voxel centers [12

.

].

3.5. Colored ICP

Colored ICP is a variant of the ICP algorithm for registration of 3D point clouds introduced
in research by Chen and Medioni (1992) and Besl and McKay (1992) [2

.

, 3

.

]. Colored ICP
generalizes photometric objectives used in RGB-D image alignment by introducing virtual
image on tangent plane of every point to define a photometric objective for point cloud
registration [14

.

]. The virtual images on tangent planes provide a local approximation of
color variation. Efficient joint photometric and geometric optimization is enabled by in-
tegrating resultant photometric objective with geometric objective obtained from virtual
images on tangent planes [14

.

]. Combined geometric and photometric objective is given by

E(T ) = (1− λ)EI(T ) + λED(T ) (3.5)

where:

λ = weight of geometric objective ED(T ) over photometric objective EI(T ), λ ∈ [0, 1] .

Open3D [24

.

] implementation of ICP was used which is an implementation of research
by Park et al. (2017) [14

.

].

3.5.1. Photo-Geometric ICP

Unlike classical ICP which only uses geometric error, colored ICP tries to find the best
transformation which minimizes both photometric and geometric error [14

.

]. Equation 3.5

.

shows the joint objective function which is minimized in order to get optimal T . λ hyper
parameter weighs geometric error over photometric error with range (0,1) where 0 means
photometric error only and 1 means geometric error only. The technique is applied in
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3. Methods

coarse to fine approach since the minimization problem is not fully convex. Although,
coarse to fine approach deals with local minima better but it is expensive in terms of com-
putation power.

Instead of dealing with point cloud directly, Park et al. (2017) try to simplify it by cast-
ing it into a RGB-D image alignment problem [14

.

]. Given two RGB-D images, the goal
of RGB-D image alignment is to find a transformation/pose which registers one image to
other [20

.

, 9

.

]. RGB-D image alignment uses both geometric and photometric objectives and
hence perform much better than state of the art ICP [20

.

]. The only problem which prevents
casting the point cloud registration problem directly into RGB-D image alignment prob-
lem is discrete intensity values. However, for photometric objective given by 3.6

.

intensity
information should be continuous. In order to cope with the issue Park el al. (2017) cre-
ate virtual intensity image on the tangent plane of each point which contain interpolated
intensity values based on intensity values of point and its neighbors [14

.

].

E(ξ) =

∫
Ω

(I2(τ(ξ, xi))− I1(xi))
2 (3.6)

When point clouds are not pose normalized, traditional ICP gets stuck into local minima.
To solve this issue convex relaxation methods are tried and one of those methods is coarse
to fine scale pyramids. In this approach, point cloud is sampled with multiple resolution
and ICP registration is done for sampled point clouds from coarse to fine resolution. The
solution found for low resolution is used to initialize the registration of higher resolution
and in this way good initialization which is necessity for ICP is found automatically using
coarse to fine scale pyramids.

3.5.2. Nearest Neighbor Search

Face Recognition can also be viewed as nearest neighbor search. At first, query model is
registered to first model under each label. It is important to note that the first model is
best representative of label since, while adding models to database they were sorted in
descending order with respect to average registration score against all other models under
same label. Once, the first model of each label is scored, possible candidate labels are
filtered out based on how close they are compared to maximum score. Labels with scores
greater than 90% of maximum score proved to be good criteria to find out candidate labels.
In case where, there is only one candidate label it is straight forward that models under
this label match the query model most. However, if there are more than one candidate
labels, the query model is again matched with next model under each candidate label and
candidate labels are filtered again based on logic stated before. The process repeats until
there is only one candidate label remaining or there are no more models for candidate
labels (See fig. 3.6

.

).
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3.6. 2.5D projection with ICP

Figure 3.6.: Nearest Neighbour Search Algorithm for ICP.

3.6. 2.5D projection with ICP

Another approach to efficiently register 3D faces while addressing both geometric and
photometric error is presented in research by Min et al. (2012) [13

.

]. Min et al. (2012)
argue that 3D face registration using ICP is a time-consuming technique and effects overall
running time badly when done on larger scale. They insist that matching a query with all
gallery faces (faces in database) is not a viable option when the number of gallery faces is
large, so in order to reduce number of registrations they introduce so called canonical faces
which can be seen as centroids with a cluster of faces which are registered to it. Instead of
registering query to every gallery face, query is only registered to the canonical faces. The
registered canonical face with lowest RMSE is picked and gallery faces registered to it are
then searched for best match.

3.6.1. Point-to-plane based ICP registration

Point-to-plane ICP introduced by Chen and Medioni (1992) has ICP error metric based on
distance between source point and tangent plane of destination point (see Figure 3.8

.

)[3

.

,
11

.

]. If M and Mopt are 4 × 4 3D rigid-body transformation matrices in homogenous coor-
dinates then loss function of Point to Plane ICP becomes

Mopt = argmin
M

{∑
i

((M · si − di) · ni)2

}
(3.7)
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3. Methods

Figure 3.7.: Perspective vs Orthographic Projection [23

.

]

Figure 3.8.: Point-to-plane error between two surfaces. [11

.

]
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3.6. 2.5D projection with ICP

where:

s = corresponding points from source point cloud
d = corresponding points from destination point cloud
n = normal vector at corresponding points from destination point cloud

Point-to-plane ICP is used due to its fast convergence and since, it is more robust to
sensor noise along the tangents of surface[3

.

]. However, point-to-plane ICP can get stuck
in local minima since, no steps were taken to ensure good initialization for point-to-plane
ICP.

3.6.2. 2.5D projection

2.5D or orthographic projection is widely used in computer games to give an experience
of 3D in 2D images. Image formation in human eye is based on perspective projection
which is another more commonly used type of projection. Figure 3.7

.

shows comparison of
perspective projection with orthographic projection. Compared to perspective projection,
orthographic projection maintains relative scale of objects, there is no vanishing point and
parallel lines never intersect, the orthographic projection matrix K is given by

K =


2

right−left 0 0 − right+left
right−left

0 2
top−bottom 0 − top+bottom

top−bottom
0 0 − 2

far−near −far+near
far−near

0 0 0 1

 (3.8)

Once, point clouds are registered via ICP registration as described in 3.6.1

.

, images of
their 2.5D projection are taken. The projected images are scaled down to get intensity
values in interval [0,1]. These images are then compared with each other in pixel-wise
manner to generate root mean square difference (see Equation 3.9

.

), which is then used as
difference score or subtracted from 1 to generate score of match.

e =
√
µ(∆2) (3.9)

where:

µ(x) = mean of x
∆ = pixel-wise image difference
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4. Implementation

In this chapter, implementation of the methods, mentioned in chapter. 3

.

is explained in
detail. Only implementation of 2.5D Projection with ICP and Colored ICP and explained
below, FaceNet with SVM is discarded in this section because its implementation is straight
forward.

4.1. Solution Architecture

The solution architecture is designed as simple as possible. Both algorithms, the 2.5D
Projection with ICP and the Colored ICP are represented by different Registration classes,
Register25D and RegisterICP respectively. Both classes inherit from the Register base class.
The Face class manages loading, storing, processing and manipulation of face models. The
logic for registration and classification is handled within Registration classes and prepro-
cessing is done in Face class. Virtual functions were used to keep the consistency in regis-
tration classes.

4.2. Programming Language and System Libraries

Python was chosen as programming language for the solution due to its vast package
database and quick prototyping possibilities. Another major reason behind choosing python
was the fact that certain required libraries like OpenCV can be compiled directly in python
packages. The system libraries which were compiled from scratch are OpenCV, VTK and
Camera driver modules.

4.3. Python Libraries

The solution is dependent on certain python libraries. All these libraries are essential to
run full pipeline of solution. Following is the list of required python libraries:

• Open3D

• DLib

• VTK

• Numpy

31



4. Implementation

• Imutils

4.4. Environment Setup for Ubuntu

In order to run the solution on the Ubuntu Operating System, some system libraries as well
as python packages needed to be installed. These libraries and packages were installed
using Ubuntu Advance Packaging Tool (APT) and if the libraries and packages were not
found in the APT database, they were manually compiled from scratch. OpenCV 4.0 and
python 3.6 were used in solution as they were the latest versions available at the point
when solution development was started.

4.5. Environment Setup for Raspbian

Running solution on Raspbian is bit more complicated on Raspberry Pi, since most of
python packages used were not available in Raspbian APT database and installation from
scratch was the only option. Due to small embedded processor and limited system mem-
ory Raspberry Pi took long time to compile libraries. Most of this delay time was con-
sumed by swap latency since, compilation of libraries requires system memory and Rasp-
berry Pi had only 1 GB. OpenCV 4.0 and python 3.5 were used on Raspberry Pi because at
the time of development, latest version of the Raspbian used to come with python 3.5.
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5. Results and Discussion

In order to judge how well the proposed techniques scale, datasets of three different sizes
have been used with 5, 10 and 20 identities. Test samples are picked at random, removing
any kind of bias. In this chapter, PC represents Intel 8th generation i7 CPU with 6 cores and
12 threads, and Raspberry Pi represents Raspberry Pi 3 B+ model unless stated otherwise.

5.1. 2D Face Recognition using FaceNet

2D Face Recognition using FaceNet did not provide reliable results in terms of f1-score
which was around 75% in case of dataset of 20 identities. Also, it does not scale well
with increasing size of database. This is due to the fact that 2D face recognition has more
false positives with increase in number of identities (See fig. 5.2

.

). The running time of
the method was bit higher than running times of the other methods for smaller datasets
however, running time seemed to scale better than running time of other methods for
larger datasets by staying almost constant for datasets with up to 20 identities. This is
because the computation in neural networks does not depend on number of labels but
instead it depends on network size. On the contrary the loading time of the method was
around 45 seconds on Raspberry Pi and the size of dataset seemed to have no effect on
loading time. Further, with increase in dataset size, the training step took huge memory
and time most of which was used for calculating image features by processing it through
the FaceNet network. The training of algorithm did not run on Raspberry Pi due to low
system memory. The method achieved precision around 88% on average however, recall
of the method was low, being around 65%. The running time of method is given based
on face recognition alone without spoof detection. When only face recognition was run
on Raspberry Pi, system ran out of memory and started using swap as virtual memory
slowing down the process. Further, Raspberry Pi had 1 Giga Byte of RAM and the face
detection used all of it, showing it’s hunger for resources.

5.2. 2.5D projection with ICP

2.5D projection with ICP runs faster than both 2D Face Recognition and Colored ICP, in
terms of recognition time. However, its f1-score was better than the 2D Face Recognition
but not as good as Colored ICP (See fig. 5.4

.

, fig. 5.2

.

).
Since, in 2.5D projection with ICP does not use coarse to fine approach and the algo-

rithm has running time of O(n), it ran quicker than Colored ICP. Coarse to fine approach
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5. Results and Discussion

Figure 5.1.: Load time of methods with different dataset sizes on Raspberry Pi. The loading
time of FaceNet with SVM is huge due to the fact that, it contains two neural
networks and their size exhausts the system memory of Raspberry Pi.

requires solution to run over different scale of problem, which takes more time compared
to running ICP once. Although, Colored ICP converged faster than traditional Point-to-
Plane ICP but due to coarse to fine approach, it took more time [14

.

]. 2.5D achieved around
94% precision and f1-score of 81% on dataset with 20 identities (see fig. 5.2

.

).
Moreover, 2.5D projection with ICP ran at the rate of 1100ms per frame which is almost

1 fps on dataset of 20 identities.

5.3. Colored ICP

In experiments, Colored ICP showed promising results. In terms of f1-score, it outper-
formed both 2D Face Recognition and 2.5D projection with ICP (See fig. 5.2

.

). This is
because the Colored ICP uses both colored and depth information compared to 2D Face
Recognition and the fact that ICP based algorithms need a good initialization and coarse
to fine approach ensures that Colored ICP finds a good initialization [14

.

]. Colored ICP
achieves approximately 0.93 % f1-score which is good for a method which around 1 fps on
Raspberry Pi. Further, the performance is even better than what f1-score shows, since
in face recognition false positive have more impact than false negatives. Colored ICP
achieved almost 98.8% precision which means there were fewer false positives.
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5.3. Colored ICP

Figure 5.2.: F1 score of methods for different number of identities. Colored ICP stays starts
bit low showing biased samples and stabilizes for larger dataset. For 2.5 with
ICP, the score decrease with incresed number of identities, due to increase false
positives mainly.
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5. Results and Discussion

Figure 5.3.: Precision and Recall curves of methods for different number of identities. For
larger datasets, Both ICP based techniques show stable precision however, for
2D Face Recognition it keeps falling with increase in dataset size because of
increased number of false positives.
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5.4. Precision Test

Figure 5.4.: Average Recognition Time of Algorithms on Raspberry Pi with different
dataset sizes

Furthermore, Colored ICP ran with almost 1.5 fps on Raspberry Pi with average recog-
nition time for one query being 1440 ms on dataset with 20 identities (See fig. 5.4

.

).

5.4. Precision Test

In order to check if the developed algorithms could differentiate between different but
visually similar faces, a test was performed using face masks. Two identical face masks
were stuffed slightly differently in a way that, they look visually similar but have slightly
different geometry (See fig. 5.5

.

).
The masks once stuffed, were registered to the database with each mask having 5 mod-

els. The Colored ICP algorithm was then successfully tested on these models with 100%
accuracy of recognition. The above stated experiment proved that Colored ICP algorithm
was capable enough to deal with slightly different faces. However, this raises the ques-
tion that is it good in terms of identification or bad? Since, over time different areas of
face change and a slight change can cause a false negative. However, there exists many
aging models to deal with such changes as well as different areas of face take more time
to change compared to others, for example eyes and nose etc. and weighting of differ-
ent region of faces different in ICP registration can help in dealing with such cases. Also,
scheduled update of face models can also be used to tackle such problems.
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5. Results and Discussion

Figure 5.5.: Visually identical but geometrically different stuffed masks.

5.5. Known issues with Colored ICP

The Colored ICP algorithms uses raw intensity values which is not optimal in uncontrolled
environment due to different lighting conditions. The camera used have active infrared
lighting however, it can easily be dominated by sunlight coming from a side window. This
results in noticeable fall in accuracy when model is tested in different lightning conditions.
Possible solutions to handle such cases are intensity normalization and using properties of
captured face which is independent of lightning and shadows.
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6. Conclusion

6.1. 2D Face Recognition vs 3D Point Cloud Registration

2D Face Recognition methods have proved to perform good in the past few years using
deep neural networks. However, when it comes to running time, required computational
resources and required dataset sizes, these techniques begin to lose interest of areas where
resources are limited. Due to this fact face recognition stayed far away from embedded in-
dustry for long time. 3D Point Cloud Registration on the other hand, handles complexity
of problem by forming a 3 dimension based solution. Although this increase is complexity
requires more resources than 2D image processing methods, this requirement is nothing
compared to resources needed by deep neural networks. 3D Point Cloud Registration
with reasonable down sampling without loss of vital information gives real-time perfor-
mance on embedded processors like Raspberry Pi, making it ideal to be used in embedded
industry.

Further, 2D Face Recognition is a standalone method. On the other hand, 3D Point
Cloud Registration need certain preprocessing steps to extract the region of interest and
normalize it in such a way that it is easy for the registration method to use. Since, 2D Face
Recognition uses deep neural networks, for classification, the whole network needs to be
loaded in memory making it slow and inconvenient. Also, to add or remove a label whole
networks needs to be retrained. On contrary, in case of the 3D point cloud registration,
models are nothing but point clouds and can be loaded in quickly. Further, 3D point cloud
registration uses lesser memory and lesser disk space and hence, is easy to move from one
system to another. Removing or adding a label only requires moving files in or out of the
database, no explicit training step is required.

6.2. RGB-D Image Alignment vs Point-to-Plane ICP

ICP is prone to getting stuck in local minima since it requires a good initialization to reach
near global optima. Coarse to fine approach provides good initialization and guides ICP
toward global minima with small cost of running time. RGB-D Image Alignment is highly
used in reconstruction of scenes using multiple point clouds and locating an object in big
point cloud. Unlike ICP, RGB-D Image does not rely on good initialization however, if
provided it can improve the convergence time. This is since RGB-D Image Alignment
relies strongly on geometric and photometric gradients. Using photometric information
gives RGB-D Image Alignment an edge over ICP and improves convergence rate.
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6. Conclusion

6.3. Future Work

There are several improvements which were left due to time and scope constraint. These
improvements if implemented might improve results as well as running time of Colored
ICP and ICP followed by 2.5D projection on Raspberry Pi.

6.3.1. Replacement of 68-Facial Landmark Detector

One of the most time-consuming steps in 3D Face Recognition using ICP was detection of
facial landmarks. However, only location of nose tip is required in algorithm which makes
other 67 facial landmarks useless. DLib-ml offers a yet faster facial landmark detector
namely 5-point facial landmark detector [18

.

, 10

.

]. 5-point facial landmark detector contains
a nose landmark, so it can be used to replace 68-Facial Landmark Detector. Also, it is 8-
10% faster and model size is 9.2 Mega Bytes compared to 68-Facial Landmark Detector
with size 99.7 Mega Bytes, which is almost 10 times smaller. Another possible replacement
for 68-Facial Landmark Detector is method proposed by Mian et al. (2006) in their research,
they use coarse to fine search to localize nose in slices of faces.

6.3.2. Removing spikes and hole filling

No explicit noise removal method is implemented in proposed algorithms, which cause
random mismatch score reduction. The problem can handle by removing noisy spikes in
the face point clouds. Removing spikes create holes in model which cause same issues as
noisy spikes, however they can easily be filled using a hole filling method [12

.

]. In their
research Mian et al. (2006) use Gaussian based hole filling which produce satisfactory
results [12

.

].

6.3.3. Pose Normalization

One of the major reasons of low f1-score for 2.5 projection with ICP is that ICP is not
properly initialized, which is important to reach close of global minimum. To handle this
issue, pose normalization method like Hoteling Transform can be used [12

.

]. The pose
obtained from Hoteling transform can be used to initialize the ICP to have better results.
Another possible pose normalization solution is fitting of 3D plane to the point cloud. The
RANSAC should be used handle noisy outliers.

6.3.4. Eigen Value based Clustering for Larger Dataset

The current ICP based algorithms work for up to 20 identities. However, once the number
of identities is increased the methods will not run in real-time. It happens because each
query is registered to at least one sample for each identity. One way to reduce number
of identities to register is by using eigen value-based clustering. Mean eigen values can
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6.3. Future Work

be obtained for each identity and can be used to form 3 dimensional clusters of identi-
ties. Further, these clusters could be used to reduce search space by looking into entries
which are part of same cluster as query face or query face can be registered to N nearest
neighbors, where N is significantly smaller than number of identities M .

6.3.5. Integration of Weights in ICP

Face masses can also vary due to environmental changes. These changes are mainly geo-
metrical in nature and most affected areas are around cheeks and mouth. However, area
of nose, eyes and around eyes and nose remains mostly unchanged. It only makes sense
for nose and eyes to have more weight in ICP compared to cheeks and mouth. These
weighting can significantly improve the recognition and add some flexibility towards such
changes in faces [13

.

]. Additionally, it can also help in recognizing faces with different emo-
tions.

6.3.6. Better Face Extraction

Currently, a fix radius is used to cut face from point cloud with center of sphere being nose
tip. However, with change in demographics the size of the face changes and hence the face
recognition algorithms should incorporate flexibility towards such changes.
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A. Experiments

A.1. Validation of ICP Registration

In order to validate the registration results of ICP algorithm, an experiment was setup with
two slightly different plastic heads (See fig. A.1

.

). The heads were identical except one had
dent around both cheeks. These heads were then registered with each other using ICP
registration to validate the RMSE and fitness.

The results of ICP registration can be seen in fig. A.2

.

, the blue color indicates unfit points
which did not found correspondences in destination point cloud. All other point which
are not colored blue are fit points with color indicating the euclidean distance with their
respective correspondences. Further, the green color indicates close to zero distance and
red indicates distance equal to maximum possible correspondence distance. In fig. A.2

.

the
left most sub figure shows cluster of unfit points around dent area which validates the ICP
registration results. The other small clusters of blue points are due to holes in point cloud
caused by perspective occlusion or noise.

Figure A.1.: Miss Dent and Miss No Dent for Validation of the ICP Registration.
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Figure A.2.: Registration results of Miss Dent and Miss No Dent



A.1. Validation of ICP Registration
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