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Abstract

In this work, we revise and extend an existing formulation of Photometric Bundle
Adjustment (PBA). Bundle Adjustment is a computer vision technique to improve
an initial reconstruction acquired from a collection of images. The reconstruction
includes an estimated three dimensional map as well as an estimated camera trajectory.
PBA improves the reconstruction based on optimization criteria which contain pixel
intensities of the images. PBA can be used in various applications such as robot
navigation or autonomous driving. There are numerous design choices made in the
PBA pipeline, such as detecting occlusions in the initial map, choosing an image
interpolation method, selecting a suitable representation of three-dimensional points,
efficiently transforming pixel locations between frames, reducing the effect of outlier
pixels which degrade the optimization, etc. In this thesis, we examine a number of
design choices in the current PBA pipeline and implement alternatives as well as
extensions. We provide an extensive evaluation on the Euroc MAV, Kitti odometry and
a small simulated custom data set. We focus on improving the global consistency of
the reconstruction by measuring how much the estimated camera trajectory deviates
from the ground truth trajectory. This thesis contributes to a better understanding of
the current implementation of PBA and how the proposed modifications can help to
enhance the system.
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1 Introduction

1.1 Motivation

We are currently in the midst of a robotic revolution: Whereas robotic systems have
previously been used almost exclusively for monotonous and well-defined tasks in
production plants, a new generation of flexible robots is being developed today. These
new robots can perform a wide variety of tasks by freely moving in the world and
flexibly interacting with it. For example, a cleaning robot can notice rearrangement of
furniture to adapt its cleaning strategy.

To notice such changes of the world, a robot must be able to localize itself in a map
of the environment. Only then can the robot reasonably plan its actions in our ever-
changing world. In most robotic applications, a three dimensional (3D) map is required
because navigation is usually performed in 3D space. In many cases, a map is not
available, considering that the robot might operate in unexplored or simply unmapped
terrain. Even if large 3D maps of main city districts or buildings are available in the
future, it can hardly be ensured that these maps are always up to date.

Therefore, for independent and general localization capabilities, it is very beneficial
for a robot to build and update an accurate map of the environment by using its own
sensing devices. The approach for jointly building a map and at the same time localizing
itself is called Simultaneous Localization and Mapping (SLAM). Implementation details
for SLAM heavily depend on the available sensor modalities, computing resources and
general system requirements. Since cameras are versatile and cheap sensors that are
part of most state-of-the-art robotic systems, a lot of research has been conducted in
visual SLAM (VSLAM) which solely relies on captured images [14].

There are many unsolved issues in current VSLAM algorithms which prevent them
from being integrated seamlessly into robotic systems. A fundamental issue is the
accumulation of drift, which causes the position and map estimation to degrade for
an increasing map size [17]. Another major problem is instability of the system due to
spurious or noisy observations, which can result in a temporary or complete system
failure and degrades the estimation locally. Ultimately, the goal is to obtain an accurate
and globally-consistent map, which is not affected by accumulated drift or noise. Global
consistency means that all map segments are consistently aligned with each other. This
is the key difference to visual odometry (VO), where the generated map is only used for
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1 Introduction

navigation purposes [42]. In VO, different map segments do not need to align strictly
as long as navigation performance does not degrade.

In this thesis, we investigate a post-processing approach which increases global
consistency of a given initial map. This approach is in principle independent of the
underlying implementation for the initial map estimation.

1.2 Problem Statement and Contributions

VSLAM can be divided into indirect and direct approaches. Indirect approaches, such
as the influential paper ORB SLAM [40], first abstract an image to features. Usually a
set of re-identifiable keypoints for each image is extracted and matched across images
[17]. The resulting correspondence sets are used to recover camera motion and 3D
scene structure using classical techniques from 3D geometry. A common approach
called Bundle Adjustment (BA) refines these initial estimates further. Geometric BA
minimizes the difference between detected 2D keypoint location and reprojected 3D
points (landmarks) into the images. The minimization variables in BA are the structure
and motion parameters of the scene.

Direct approaches on the other hand use raw pixel data. The main idea is the
photoconsistency assumption [27]: If two identical cameras observe a 3D point from
different vantage points, the response (pixel value) in the cameras at the respective
pixel position is the same. In contrast to indirect methods which require re-identifiable
keypoints, direct methods can sample from all pixels in the image. Similar to indirect
methods where BA minimizes a geometric error, a common approach in the direct
setting is called Photometric Bundle Adjustment (PBA) minimizing pixel intensity
differences at pixel locations viewing the same 3D landmark.

In this thesis, we investigate how the direct image error (Equation 1.1) introduced by
Engel et. al. in the VO system Direct Sparse Odometry (DSO) [21] can be adopted in a
global PBA module to increase global consistency of the map. To keep DSO real-time
capable, Engel et. al. perform the PBA formulation only over a sliding window of active
keyframes F. Keyframes are a subset of all frames to reduce the number of frames
used in the system. Once a keyframe becomes inactive in DSO, i.e. once it leaves the
sliding window, it is marginalized from the optimization problem. In contrast to DSO,
we use the direct error in a post-processing step to improve the global consistency of
an initial map estimate. In our formulation, we include most frames and points in the
global optimization. We do not strictly require real-time capability. We propose and
investigate different modifications to the error function and analyze the assumptions
that are made in the formulation.
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1 Introduction

The research questions that are examined ask:

• Which modifications of the photometric error function affect the global consistency
of PBA? What are the significant effects on runtime?

• Which other modification such as occlusion detection algorithms or modified
optimization routines affect global consistency of PBA?

The contributions of this thesis include:

• To our knowledge, we perform the first systematic modification study of the
error function in [21] in the context of global PBA. This formulation has been
widely used in systems building on the idea of DSO [23], [59], [63], [5]. We
implement and analyze possible useful modifications and extensions to the direct
image error. We analyze using occlusion detection algorithms before performing
PBA. Additionally, we analyze and experiment with details in the optimization
procedure.

• We evaluate the proposed modifications quantitatively using common error
metrics on the widely used datasets Euroc MAV [13], Kitti odometry [24] and an
existing simulated image dataset obtained by CARLA Simulation software [19].

• We extend an existing manual custom solver for the PBA formulation.

Ephoto = ∑
i∈F

∑
p∈Pi

∑
j∈obs(p)

∑
p∈Np

wp‖ (Ij[p′]− bj)−
tjeaj

tieai
(Ii[p]− bi)︸ ︷︷ ︸

residual

‖τ (1.1)

Equation 1.1 states the investigated error function used in [21]. It contains the pixel
value difference between a pixel p in the host frame i and the corresponding pixel p′

in the target frame j. The pixel p′ is determined by the rotation Rji and translation tji
from frame i to frame j, the landmarks inverse distance idp and the camera’s intrinsic
parameters c. The relationship is captured by the warp function in Equation 1.2:

p′ = Πc(RjiΠ−1
c (p, idp) + tji) (1.2)

The projection from 3D world to 2D image coordinates considering the intrinsic
camera parameters c is denoted by Πc. The unprojection from a 2D image point to a 3D
point with inverse distance idp is given by Π−1

c (p, idp). A detailed overview of common
camera models can be found in [56]. Since photoconsistency does not hold in most real
world scenarios, [21] formulates a relaxed assumption called irradiance constancy: If
two cameras observe a 3D point from different vantage points, the received irradiances
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1 Introduction

(in Watts per square meter) [36, p. 40] in the cameras at the respective pixel positions
are the same. To obtain approximate irradiance from pixel values, the exposure times
ti, tj and the non-linear camera response γ() which maps from received energy to
pixel values must be taken into account. It is also common to model spatially varying
sensitivity of the camera sensor. One popular choice is a vignetting [7] model which
assumes less sensitivity towards the sensor’s outer boundary. In case of unknown
exposure times ti, tj, the affine brightness parameters (ai, bi, aj, bj) can be optimized.
If exposure time is known, the brightness parameters are set constant. The Huber
norm || · ||τ is employed to reduce the influence of outlier residuals to the optimization
problem, see Section 3.4.3. In a direct setting, outliers include occlusions, dynamic scene
changes or illumination change. The observed objects need to be lambertian, i.e. they
radiate the same brightness independent of the observer’s viewing angle, as opposed
to for example shiny or transparent surfaces [7]. To obtain the total photometric error
Ephoto, we sum over: (I) all frames F, (II) all points Pi hosted in frame i, (III) all target
frames obs(p) where the point p projects to, and (IV) all points of the residual pattern
Np. In DSO F consist of all active frames which form the sliding window. In this thesis,
F contains all keyframes in the initial map estimate. Figure 1.1 visualizes how the
total photometric error Ephoto is obtained. DSO uses the displayed residual pattern
consisting of multiple hosted points which belong to the same landmark, i.e. they share
the inverse distance parameter id. This increases robustness by providing additional
information to the optimization. One of the ideas we investigate in this thesis is the
residual pattern size and shape on the PBA output.

1.3 Scope

Programming:
To modify the cost as proposed above, we adapt existing code for a ceres-based [4] and
for a manual solver implementation. Ceres is a C++ open-source library for solving
non-linear least-squares optimization problems. The manual solver offers more flexibil-
ity in modeling and logging and shows superior runtime.

Initial Map:
In this thesis, we use the refined output of Direct Sparse Odometry with Loop Closure
(LDSO [23]). LDSO is an extension of DSO by a loop closure module which increases
global consistency. Loop closures arise when the camera returns to a previously visited
area. LDSO employs Pose Graph Optimization (PGO), explained in chapter 2.1. The
map after PGO is the input to our PBA module. We denote this initialization as init_pgo
in the results table in chapter 4
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1 Introduction

Figure 1.1: Photometric Bundle Adjustment Visualized. Orange points show the central
pixels. Blue Arrows indicate the summations. Grey pattern is the residual pattern
Np. Point p1 is hosted in frame i and observed in frame j and j+1. Point p2 is
hosted in frame i and observed by frame j. We estimate the transformation Ti from
world to camera frame i and one inverse distance id parameter for each landmark.
Note that with our warp function, the residual pattern can be rotated, translated
and distorted in the target frame.
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1 Introduction

Map and Trajectory Representation:
We represent the camera trajectory as a discrete collection of N transformation matrices
{Tt}N

t=1 from the world frame to any camera frame i. The first camera frame is consid-
ered our world reference frame. We represent the 3D map by an unordered collection
of sparse landmarks. The landmarks are parameterized relative to their host frame.
We do not model surfaces in the 3D space, and we do not model semantics of the
reconstructed objects. We restrict our estimation to rigid bodies, i.e. non-deformable
objects.

Global Consistency Measure:
To evaluate global consistency, the absolute trajectory error (ATE) is used. At first, our
estimated trajectory is aligned with the given ground truth trajectory in a common
reference frame by associating poses for each discrete timestamp t. ATE measures the
Euclidean distance ‖xt − x̃t‖ in the common reference frame between the estimated
camera position x̃t and the ground truth position xt at time t. In this thesis we focus
on the root mean squared error (RMSE) over the whole trajectory, which measures
deviations in a phyiscally meaningful unit such as meters:

ATErmse =

√√√√ 1
N

N

∑
t=0
‖et‖2

2 =

√√√√ 1
N

N

∑
t=0
‖xt − x̃t‖2

2 (1.3)

In contrast to the common arithmetic mean ATEmean, taking the RMSE gives bigger
influence to single outlier distances between the two trajectories. This is due to squar-
ing the individual distances. It allows for a better comparison of consistency: Imagine
trajectories A and B have the same ATEmean compared to the ground truth trajectory G.
A is consistently close to G with mostly small errors whereas B deviates a lot for some
time stamp but exactly matches G at other time stamps. We prefer trajectory A with a
lower ATErmse.

Data and Performance Comparison:
Instead of using stereo information, we only we only operate on monocoluar images.
In most cases, we evaluate our methods on all sequences of Euroc MAV, Kitti odometry
and our simulated data called Carla. We make use of a test data set which allows for
small sanity checks of our implementation. This test data consists of the pose-graph
optimized (see Section 2.1) sequences EurocV101, Carla circle and Carla 12cam. For
most experiments we show the averaged ATErmse over multiple sequences relative to
our PGO initialization. Note that we employ the geometric mean here, as it is the most
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suitable mean to compare relative performance measures [22].

ATErmse,geo = (
N

∏
i=1

ATErmse, dataset i

ATEPGO rmse, dataset i
)1/N (1.4)

Additionally, for some experiments we show detailed comparison in terms of conver-
gence behaviour during optimization, i.e. plotting for example intermediate ATE and
cost values as well as solver parameters. All ATE measures are displayed in meters,
except otherwise stated.

1.4 Outline

This thesis is organized as follows: In chapter 2 we present state-of-the-art methods for
achieving global consistency. Chapter 3 describes the mathematical notation and ideas
used throughout this thesis. Chapter 4 shows experiments and results. The conclusion
is given in chapter 5.
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2 Related Work

The fundamental idea of photometric minimization in image analysis was popularized
by Horn and Schunk [25] as well as Lucas and Kanade [34] in 1981. Similar to their
ideas we assume photoconsistency. We cannot model actual irradiance constancy since
no full photometric calibration is available in our datasets, i.e. the exposure times,
vignetting and camera response function γ() are missing. The topic of structure from
motion is closely related to VSLAM/VO, where the focus in structure from motion lies
in offline applications having access to all acquired data [53, p. 345-377]. The focus of
VSLAM lies in incremental and real-time applications [14]. In our work, we focus on
scenes consisting of rigid, i.e. non-deformable objects. The topic of non-rigid large-scale
VSLAM is largely unexplored [14].

2.1 Pose Graph Optimization

SLAM problems can be described as graphs: Each node represents a state variable
and a connection relates two states by a relative measurement [31]. Kümmerle et al.
propose the popular framework g2o for solving graph-based optimization problems
in [31]. In landmark-based SLAM the states consist of camera poses and landmark
positions. A connection from one camera pose to another camera pose is a relative
pose measurements from the VO front-end. Similarly, a connection of a camera pose to
a landmark is given by the VO position estimation of the landmarks. The landmark
positions are usually initialized by triangulation of detected 2D correspondences [14].
To increase global consistency of the map, many SLAM systems [40], [23], [27] use the
idea of pose graph optimization (PGO): A global graph of all (keyframe) camera poses
connected by relative pose measurements is jointly optimized. PGO is part of the SLAM
back-end. While the SLAM front-end is responsible for building a sufficiently accurate
initial map, the SLAM back-end deals with optimizing and managing the map for
long-term usage [14]. The main advantage of PGO is that the number of optimization
variables grows only with the number of selected keyframes. A main disadvantage
is its lack of robustness, i.e. its property to converge to nonsensical solutions if a few
poses are incorrectly associated [52]. Furthermore, omitting the landmarks in the PGO
formulation neglects their influence on the solution. In this thesis we use a PGO module
to obtain an initial guess as input to our global PBA layer.
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2 Related Work

2.2 Global Bundle Adjustment

Global geometric BA has been studied widely and is used in many SLAM applications
for structure refinement [54]. The geometric error is a 2D Euclidean distance between
detected keypoints and reprojected landmarks. Therefore, geometric BA is limited by
the precision of the keypoint detection algorithm as well as the intrinsic calibration for
computing the projections.
The published literature surrounding PBA is rather limited. In this thesis we use and
modify the cost function introduced in DSO [21]. DSO and its extension to more
sophisticated camera models such as omnidirectional DSO [37], perform PBA in a
sliding-window fashion only. LDSO is an extension of DSO, which performs global
map optimization in a direct setting [23]. In contrast to our work, it performs pose-only
BA. It uses DSO as direct odometry front-end, changing the point selection strategy to
additionally select corner features. The combination of corner features and originally
sampled points from DSO are used to notice loop closures. The estimated trajectory
is optimized by employing PGO. LDSO estimates similarity transformations between
poses, which take into account a rigid body motion as well as a scale factor α 6= 0 [36,
p. 269]. This scale factor models the scale drift which is present in monocular geometry
reconstructions [23]. In this thesis, our global PBA implementation is initialized using
LDSO. In our work, we only model point clouds consisting of sparse landmarks. Note
that similar cost functions to the one presented in DSO can also be employed for dense
3D geometry reconstruction and texture estimation using a PBA approach, see [18].

Similar to LDSO, Direct Sparse Mapping (DSM) [63] by Zubizarreta et al. improves
the global map acquired by a direct odometry frontend. In contrast to LDSO and DSO,
DSM proposes a new criterion to select keyframes that are included in the PBA problem:
Their new criteria is a combination of temporal proximity (as in DSO) and covisibility
of shared map points (as in LDSO but without computing corner features explicitly).
Zubizarreta et al. perform full PBA over the resulting set of keyframes, solving for
optimal increments to absolute poses and inverse depth parameters. DSM provides a
quantitative evaluation of map quality, whereas most VO/VSLAM systems only report
trajectory errors. Inspired by [27], Zubizarreta et al. model the residual histogram of
each keyframe by a t-distribution, to reduce the influence of outlier residuals on the
optimization result. In Section 3.4.2 in this thesis, we propose a corrected robust weight
formula based on a per-frame modelling of residual distributions. We show the results
of using this corrected formula in Section 4.6.

In our work, we do not keep track of image features, but we revert to the intensity-
based formulation of PBA, see Section 1.2. We do not perform PBA on a small subset
of frames such as in DSO, omnidirectional DSO or DSM, but we include most of the
keyframes in the optimization problem. Alismail et al. provide a PBA formulation in

9



2 Related Work

[5]: In their work, the residual pattern can only be offset by a 2D translation vector
in the target image plane. We assume that this simple warp function can improve
the initialization solely because small increments to the initial structure and motion
parameters are estimated, in a sliding-window fashion. Their PBA problem is initialized
using ORB-SLAM [41], which performs geometric BA based on features. Since image
projections generally result in subpixel positions in the target image, Alismail et al.
use bilinear interpolation for image values in their work. The Huber loss function is
employed to reduce the influence of outlier on the global optimization. In contrast to
our work and DSM, they do not model residual distributions on a per-frame basis to
chose the robust loss weights. Landmark positions are parametrized using absolute
3D Euclidean coordinates, and camera poses are parametrized using absolute poses.
This parametrization allows the appearance of observed landmarks to change in the
host frame during optimization. This could introduce biased solutions where both
patches drift to the same constant brightness areas such that the photometric error
is minimal [5]. Therefore, Alismail et al. fix the patch appearance in the host. The
quantities of interest in the optimization problem are the optimal updates to the
structure and motion parameters given the initialization. Their PBA is implemented
in a sliding window fashion, which requires a strategy of avoiding re-initializing new
scene points at similar image locations as before. Occlusions are detected using zero
normalized cross correlation (ZNCC), which is a photometric measure for similarity
of the residual pattern between host and target frame. We also perform photometric
occlusion detection based on ZNCC in Section 4.13.

Note that we deviate from Alismail et al. as follows in this thesis : Our method
allows a general six DOF rigid transformation of the residual pattern in 3D. This
allows for more general patch configurations in the target image. For example, only
our formulation can model a host-target pair of cameras which is given by a rotation
around the coinciding principal axis of the cameras. We use efficient approximations of
our more expressive warp function in Section 4.5 to make it computationally feasible.
Furthermore, we propose interpolation schemes which give superior results over simple
bilinear interpolation, see Section 4.3. Our method is initialized using LDSO. We do
not implement a sliding window approach but we add all poses and landmarks to a
global PBA problem. For outlier detection, we further propose a geometric occlusion
detection algorithm, see Section 4.12. In addition to the Huber loss with a fixed tuning
parameter as in the work of Alismail et al., we investigate data-dependent tuning
parameter estimation techniques. Furthermore, we employ the Student’s t-distribution
with data-adaptive tuning parameters such as in [27], [63] and propose a corrected
mathematical formulation suitable for our PBA setup in Section 3.4.2.

10



2 Related Work

2.3 Robust Estimation Techniques in SLAM

Sünderhauf et al. [52] argue that false positive loop closures often cause a failure in
the least squares formulation of PGO. This can lead the map converging towards
heavily distorted and unusable results. A false positive loop closure wrongly connects
two camera poses, hence incorrectly enforcing a similar 3D position for both cameras.
This unavoidable error originates from wrong data associations in the VO front-end’s
place recognition module that detects which poses share common landmarks [52].
Simply using standard robust loss functions such as the Huber loss (see Section 3.4.3)
is not sufficient to deal with false positive constraints [51] in PGO. Therefore, in [51],
Sünderhauf et al. introduce the idea of switchable constraints jointly optimizing over the
poses and the topology of the pose graph. An extension of this work by Agarwal et
al. [3], which drastically improves the convergence speed, is called dynamic covariance
scaling. Both these methods share the same idea: Each pose constraint is augmented
with one switch variable, a multiplicative factor between 0 and 1. The pose connection in
the graph can be turned off by setting the factor to 0, it can be fully kept by using a
factor of 1 or it can be in between those states only influencing the overall optimization
up to its multiplicative factor. Similarly, in [33], a latent weight variable is assigned
to each loop closure constraint, but the graph is optimized using an Expectation
Maximization (EM) algorithm. The EM-algorithm is an iterative algorithm which is
generally applied to find the maximum likelihood of probability models containing
latent (un-observable) variables [8, p. 439]. A main disadvantage of the mentioned
methods is that the search space increases by adding additional variables. This demands
more computational power and the optimization might get stuck in local minima more
often [2]. Additionally for [51] and [3], regularization techniques which introduce new
tuning parameters are required.

Another algorithm called Realizing, Reversing, Recovering [51], [32] by Latif et al. tries
to identify false positive loop closures by checking the consistency of loop closure
edges in accordance with the final trajectory estimate. The set of all loop closure edges
which stem from the place recognition module is divided into disjoint subsets called
clusters. Each cluster links topologically similar parts of the robot trajectory. A plain
graph which contains all poses and VO constraints is extended by only one loop closure
cluster. The resulting error has to fall below a threshold or else the whole cluster is
rejected. This consistency check is also performed for single constraints inside the
cluster, comparing the error introduced by single constraints to the error of the whole
cluster. Furthermore, the error of extending the plain graph by individual clusters is
compared among different clusters to find mutually consistent clusters. The output of
the algorithm is a set of loop closure constraints which can produce useful PGO results.

As explained in chapter 3.4.1, maximum likelihood estimation of the map state
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leads to a least-square cost function under a Gaussian likelihood assumption. In [44],
Olson and Agarwal propose to use a multi-modal max-mixture likelihood. The multi-
modality allows to keep track of probabilities for loop closure associations during the
optimization. The optimization process is computationally feasible and the robustness
is increased. However, a max-mixture model is a non-smooth approximation of a
standard Gaussian mixture model [2]. Therefore, only an approximate solution is
found, and no convergence guarantees can be given.

In this thesis, we follow yet another approach called M-estimation, which is very
popular for BA problems. The M stands for maximum likelihood estimation, but for
an unknown, non-Gaussian model [10]. Least-square costs which arise from Gaussian
noise assumptions are extremely sensitive to outliers [8, p. 104]. Probabilistically, this
can be derived from the fact that Gaussians are so called light-tailed [10] distributions
meaning that the probability for an event which is far away from the expected value is
very low. The M-estimation approach replaces the least-squares criterion by a robust
loss function. Optimizing the robust loss function is less severely influenced by existing
outliers in the data. Agamennoni et al. [2] show that the noise model often follows
elliptical distributions for certain robust loss functions. Note that M-estimation can be
applied to any kind of least-squares estimation process.

12



3 Mathematical Foundations for Bundle
Adjustment

This chapter describes the mathematical concepts and notation used throughout the
thesis. Lowercase light symbols ( f ) represent scalars or functions. Lowercase bold
letters (t) represent vectors. Uppercase bold symbols (R) represent matrices.

3.1 Skew Symmetric Matrices

A skew symmetric matrix A ∈ SO(3) is given by [36, definition 2.2]

AT = −A, A ∈ R3x3 (3.1)

Such skew symmetric matrices can be represented by the isomorphism ∧ from the
vectors u = (u1, u2, u3) ∈ R3 to so(3) with [9, section 9.2]

û =

 0 −u3 u2

u3 0 −u1

−u2 u1 0

 (3.2)

The inverse operation is denoted by ∨ : so(3)→ R3. Skew symmetric matrices model
the cross product:

u× v = ûv (3.3)

3.2 Rigid Body Motion

A rigid body motion is defined as a map:

g : R3 → R3; u→ g(u) (3.4)

which preserves norm and cross products of any two vectors [36, definition 2.3]:

‖g(u)‖ = ‖u‖, ∀u ∈ R3

g(u)× g(v) = g(u× v), ∀u, v ∈ R3 (3.5)

13



3 Mathematical Foundations for Bundle Adjustment

Therefore, a rigid body motion can be represented by a motion of a Cartesian coordinate
frame attached to the rigid body. Such a motion contains six degrees of freedom (DOF).
In this thesis, we use two ways to represent rigid body motions:

a) Representation via transformation matrix T ∈ SE(3) of the special euclidean group
[9, section 1.2.3]:

T =

(
R t
0 1

)
(3.6)

where the rotation matrix R ∈ SO(3) is of the special orthogonal group

SO(3) = {R ∈ R3x3 |RTR = I, det(R) = +1} (3.7)

and the translation vector t ∈ R3 is a 3D vector describing the translation of the origin.
The inverse motion can be described by the inverse of T:

T−1 =

(
RT −RTt
0 1

)
(3.8)

Throughout this thesis, the camera trajectory is described as a sequence of rigid body
motions. Ti refers to the transformation from world frame to frame i; Tji refers to the
relative transformation from frame i to frame j.

Tji = Tj T−1
i (3.9)

b) Representation via Lie Algebra se(3) [9, section 9.2]:
The rotational matrix R contains nine variables, but considering the constraints of SO(3),
it only has three DOF. It is desirable to set up an unconstrained optimization problem
and directly optimize the three DOF instead of ensuring the constraints numerically.
This can be done by formulating the problem in the Lie Algebra se(3), because any
element of se(3) called twist ξ̂

se(3) = {ξ̂ =

(
ŵ v
0 0

)
| ŵ ∈ so(3), v ∈ R3} (3.10)

can be mapped to an element of the rigid body motions T ∈ SE(3) by the unique
exponential map [11]:

exp : se(3)→ SE(3); eξ̂ =
∞

∑
n=0

ξ̂n

n!
= T (3.11)

The twist coordinates ξ = (wT, vT)T contain three variables for the rotational compo-
nent w and three variables for the translational component v. The inverse mapping,

14



3 Mathematical Foundations for Bundle Adjustment

the logarithmic map, exists for all transformations but is not unique: There exist many
different twist coordinates describing the same transformation. This can be understood
by considering that a rotation by 0 or by 360 degrees around the same axis results in
the same position.

3.3 Landmark Representation

Landmarks are 3D points that can be described by three coordinates p ∈ R3 in a
reference frame. Inspired by [21], we use a different representation in this thesis: Each
3D point is associated with exactly one host frame. It is represented by its 2D pixel
coordinates in the respective host frame and an associate inverse distance id. Unlike
geometric BA, we keep the pixel location in the host frame fixed during optimization,
and we only optimize the inverse distance parameter. As a consequence, every residual
involves exactly two frames, i.e. host i and target frame j. We refer to frame i and j as
host-target-pair ij or ji (since in most cases the frame j also hosts points which project to
frame i).

A bearing vector b is a 2-DOF vector of unit-length describing a direction. We can use
a bearing vector to connect the origin of a host camera with the 2D pixel coordinates.
Therefore, an inverse distance id together with either a bearing vector or 2D pixel
coordinates in a host frame can be used interchangeably to describe a landmark.

3.4 Parameter Optimization

We refer to the error terms as residuals r. In the case of PBA, the residuals are the
difference of pixel intensities, possibly weighted by affine lightning transform parame-
ters. We model landmarks sparsely, i.e. we only transform selected pixels of interest
from the host to all reachable target frames. A target frame is reachable if the pixel
can be projected from the host to the target image and maintain a safety margin to
the boundary in order to allow meaningful interpolation. The set of all reachable
observations is reduced by filtering as follows: We remove observations which are too
close to the camera, have too large absolute residual value or where the ratio of target
inverse distance idtarget over host inverse distance idhost is either too large or too small.
This later check is performed to remove observations with very different object scales
in host and target frame. We investigate geometric and photometric occlusion detection
algorithms to remove observations, see Section 4.12 and 4.13. In a second filtering stage,
we remove landmarks if they contains too few (remaining) observations, their inverse
distance is negative, or the host inverse distance idhost is either too large or too small.
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3 Mathematical Foundations for Bundle Adjustment

Each of the described filters requires to select thresholds. In this thesis, we keep all
these thresholds constant throughout our experiments, except otherwise stated. For
each residual pattern belonging to one landmark, we only estimate one scalar value
id; for each keyframe we estimate six transformation parameters. Since we have many
more residual patterns than frames, the system is generally over-determined.

3.4.1 Bayesian Derivation of Least Squares

From a Bayesian point of view [8, chapter 1.2], PBA tries to find the structure and
motion parameters θ which maximize the posterior probability p(θ|r) ∝ p(r|θ) p(θ)
given all residuals r. Equality up to a constant is denoted by ∝. We assume a uniform
prior on θ, i.e. p(θ) = constant, we can alternatively minimize the following negative
log likelihood:

arg max
θ

p(θ|r) = arg min
θ

−log(p(θ|r)) = arg min
θ

−log(p(r|θ)) (3.12)

A residual ri can be composed of all residuals in the residual pattern, i.e. dim(ri) = Np

or we can formulate the equations pixel-wise, i.e. dim(ri) = 1. We assume that
every residual ri is coming from an independent distribution giving the following joint
likelihood:

p(r|θ) =
N

∏
i=1

pi(ri|θ) (3.13)

This likelihood models unknown error sources resulting in non-zero photometric
residuals, given the structure and motion parameters. These error sources include false
structure and motion estimates, noise in the images, occlusions, non-lambertian objects
as well as varying exposure times and scene lightning. Minimization of the negative
log likelihood results in the following optimization problem:

arg min
θ

−log(p(r|θ)) = arg min
θ

N

∑
i=1
−log(pi(ri|θ)) = arg min

θ

N

∑
i=1

1
2

ρi(‖ri(θ)‖2) (3.14)

where −log(pi(ri|θ)) = 1
2 ρi(‖ri(θ)‖2) 1. For this optimization problem, there exists

an iteratively reweighted least squares (IRLS) optimization problem which shares the

1Our particular choice of using ρ(‖ri(θ)‖2) limits the class of possible residual distributions p(ri|θ).
However, in practice many common distributions can be modelled. Our formulation is in accordance
with [2], [10], [54]. Note how the robust problem is formulated slightly differently in [27], [53, p. 318]
and [45] by using ρ(‖ri‖). When changing between ρ(‖ri‖) and ρ(‖ri(θ)‖2), the robust loss function
must be adapted to still yield the same optimization problem.
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3 Mathematical Foundations for Bundle Adjustment

same stationary points θ∗ [2, eq. 8], namely:

θ∗ = arg min
θ

N

∑
i=1

wi(‖ri(θ)‖2) ‖ri(θ)‖2 , wi(s) =
dρi(s)

ds
(3.15)

where we denote ‖ri(θ)‖2 = s. In the special case when we set ρi(s) = s (least squares
loss) in our original problem, we have wi = 1 ∀ i in the IRLS formulation. In the general
case of ρi(s), a solution to the IRLS problem can be obtained by the following iteration
scheme, where the weights are constant during every outer iteration k. In every iteration,
a NLS problem of the form:

θk+1 = arg min
θ

N

∑
i=1

wi(θ
k) ‖ri(θ)‖2 (3.16)

must be solved, where

wi(θ
k) =

dρi(s)
ds

∣∣∣
s=‖ri(θ

k)‖2 (3.17)

Close to convergence, we have θk ≈ θk+1. Therefore, for the intermediate problems
in step k, stationary points close to convergence are given by

N

∑
i=1

2 ρ′i(
∥∥∥ri(θ

k+1)
∥∥∥2
) ri(θ

k+1)T ∇θri(θ
k+1) = 0 (3.18)

We use the identity d‖x‖2

dx = 2x [47, equation 131] and the chain rule. The stationary
points of our original problem 3.14 are determined by the same equation up to a
factor of two. By casting our robust problem to an IRLS problem, we can use common
minimization algorithms. In this thesis, we do not solve the NLS exactly. Instead,
we employ the Gauss-Newton algorithm which linearizes the residuals at the current
parameter state, see Section 3.4.4. By linearizing, we only solve an ordinary, linear least
squares (OLS) problem in every iteration.

One important thing to note here: Since in VSLAM/VO we are continuously calcu-
lating our photometric residuals ri for a given image sequence (given θ), we can model
the likelihood pi(ri|θ) by fitting a probability distribution to the observed photometric
residual histogram. This allows for a data-adaptive, automatic selection of weights wi
during the runtime of the algorithm. However, it is not clear what the best choices for
histogram modelling are. First of all, the type of distribution must be defined. The
work of [2] provides a quantitative methodology to chose among a class of pre-selected
candidate distributions. Inspired by [27] and [63], we employ a t-distribution to model
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the photometric residuals. In general, multimodal distributions could be an even
better fit to the observed histogram. Secondly, it is unclear how to actually aggregate
the residual histogram. For example, it is possible to compute one histogram for all
residuals of the PBA problem and fit the distribution parameters to it. In this case, we
would model only one distribution p(ri|θ) for all residuals and lose the dependence
of index i on p in the notation. Similar to this idea, in this thesis we average the
t-distribution’s scale parameter across multiple datasets to obtain one global constant,
see experiment 4.6. We compare this approach to the idea of computing one histogram
per target frame. Modelling one distribution per target frame is similar to [63], but we
derive a corrected formula presented in Section 3.4.2. In experiment 4.6, we analyze the
effect of the correct weight formula. We furthermore re-implement the approach by
Agamennoni et al. given in [2] to automatically determine the weights wi during the
runtime of the algorithm for Huber as well as the t-distribution loss, see Section 4.9.
In general, histograms could also be aggregated among a certain sliding-window of
neighboring keyframes, which could improve the robustness of the parameter fitting
algorithm.

3.4.2 Robustification by Using the t-Distribution

Assuming the photometric residuals are originating from a t-distribution is a popular
choice in the literature [27], [63]. The parameters of a t-distribution are influenced far
less by outliers than for example the Gaussian distribution. In our notation, we drop
the dependency of ri(θ) on θ:

pi(ri|σ, v) =
Γ( v+1

2 )√
v π σ2 Γ( v

2 )
(1 +

r2
i

σ2 v
)−

v+1
2 =

A
B
(1 +

r2
i

σ2 v
)−

v+1
2 (3.19)

We additionally drop the dependency of the t-distribution parameters on the target
frame to avoid cluttered notation, i.e. we write v and σ instead of vi and σi. Note that
when fitting the t-distribution to Ntarget target frames, we would have Ntarget different v
and σ to estimate.

Setting r2
i = s, taking the negative logarithm and multiplying by 2 (see Equation 3.14)

of this expression gives us:

ρi(s) = −2log(A) + 2log(B) + (v + 1) · log(1 +
s

σ2 v
) (3.20)

Therefore the weight is given by:

wi(s) =
dρi(s)

ds
= (v + 1)

1
σ2 v

1 + s
σ2 v

=
v + 1

σ2 v + s
=

1
σ2

v + 1
v + ( ri

σ )
2 (3.21)
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3 Mathematical Foundations for Bundle Adjustment

Note that our derivation differs to the weight presented in the literature [27], [28] by
the factor 1

σ2 . This is due to the fact, that in these systems only one constant scale
parameter σ is estimated for all residuals, i.e. σ can then be factored out of the overall
log likelihood. In our manual solver implementation, we estimate a σt parameter during
runtime for each target keyframe t separately. Therefore, we need to keep this factor in
our formulation. Similarly, it should be kept in the formulation given in [63].

The scale parameter σt of the t-distribution represents uncertainty: For more unsure,
spread out distributions, a higher σt is estimated. Conversely, the factor 1

σ2
t

represents
certainty. Assume the following scenarios:

• ri >> σt ⇒ wi → 0. If we have a very large residual compared to our scale
estimation σt, we are in the outlier region and should weight the residual less,
eventually converging to 0.

• ri << σt ⇒ wi → 1
σ2

t

v+1
v . If we have a small residual compared to σt, we consider

this an inlier and weight it with the factor 1
σ2

t
(considering v+1

v ≈ 1 for v = 5).

Consider one inlier residual ra << σa coming from a distribution with σa and one
inlier residual rb << σb from a distribution with σb. If σa << σb, we get wa >> wb.
So the residual ra is given a higher weight and contributes more to the optimization,
because its estimated uncertainty σa is smaller. The residual rb comes from a more
unsure distribution and therefore should not contribute as much to the overall cost.

The parameters of the t-distribution <σ, v> can be estimated by using an EM Algo-
rithm. In this thesis we set v = 5 because fitting v in an online, data-dependent fashion
is not expected to bring major improvements, see [63]. We fit σ using the derived
maximization in [50, section 3, step 5], see Equation 4.31. The initial value for the EM
algorithm is set to σ̂MAD using:

σ̂MAD = 1.4826 median
i

(|ri −median
i

(ri)|) (3.22)

MAD abbreviates Median Absolute Deviation. σ̂MAD is a robust scale estimation.

3.4.3 Robustification by Using the Huber Loss

There exist multiple robust loss functions in the literature [62]. In this thesis, we employ
the Huber loss function among others, given by:

ρτ(s) =

{
s if s < τ

2
√

τ s− τ, else
(3.23)
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If the residuals are in the inlier region, i.e. s < τ, the Huber function is equivalent to
assuming a Gaussian distribution. Residuals in the outlier region only have a linear
influence on the cost. The Huber loss function can be motivated by the same Bayesian
derivation as above, assuming an underlying Huber density for the residuals [39].
However, we do not explicitly model the parameters of the Huber density. The efficiency
of an estimator describes the certainty of the parameter estimates. To keep 95% of the
efficiency of the original least-squares formulation, we must set τ = 1.345 σ, where σ is
the standard deviation [58], [62]. Since σ is unknown and needs to be estimated from
the data, we investigate multiple strategies in Section 4.8: (1) setting τ to a constant
value, (2) setting τ = 1.345 σ̂MAD, (3) setting τ = 1.345 σ̂sample where σ̂sample is the
sample standard deviation [30, p. 1064], (4) setting τ = 1.345 σ̂tdist where σ̂tdist is
estimated with the same EM algorithm as for the t-distribution. In Section 4.9, we
determine the robust weights wi automatically for the Huber loss, using the proposed
approach by Agamennoni et al. given in [2].

3.4.4 Levenberg-Marquardt Algorithm

The general Levenberg-Marquardt (LM) algorithm is based on the idea of Newton’s
method in optimization [54, section 4]: Newton’s method starts at an initial guess
θ(0) and iteratively approximates the non-linear cost function C(θ) by its second order
Taylor expansion at the current evaluation point. The next evaluation point θ(k+1) is set
to the minimizer of this second order approximation. The general update equations of
Newton’s methods are given by:

H ∆θ = −∇C(θ) (3.24)

where ∆θ = θ(k+1) − θ(k) and Hij =
∂2C

∂xi∂xj
.

The Gauss-Newton (GN) approximation approximates the Hessian matrix for NLS
problems by first order derivatives only. For NLS problems of the form:

min
θ

C(θ) = min
θ

∑
i

wi ri(θ)
2 = min

θ
r(θ)T W k r(θ) (3.25)

with W(θ) = diag(w1, ..., wN), the Hessian matrix can be written as

Hjk = 2 ∑
i

wi(
∂ri

∂xj

∂ri

∂xk
+ ri

∂2ri

∂xj ∂xk
) ≈ 2 ∑

i
wi

∂ri

∂xj

∂ri

∂xk
(3.26)

Writing above approximation in matrix form by using Jij =
∂ri
∂xj

and W = diag(w1, ..., wN),
yields:

H ≈ 2 JTW J (3.27)
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This approximation is valid for small residuals and close to linear residuals (second
order terms are negligible) 2. JTW J is positive definite by construction. Since ∇C(θ) =
2 JTWr, the Gauss-Newton update for NLS problem becomes:

(JTW J)∆θ = −JTWr (3.28)

Levenberg-Marquardt methods solve a regularized system which is controlled by a
dampening parameter λ and a diagonal matrix M:

(JTW J + λ M)∆θ = −JTWr (3.29)

If M = I, the dampening parameter λ continuously interpolates between Gauss-
Newton (λ → 0) and standard gradient descent (λ → ∞) with step size 1

λ . Gradient
descent can always produce a decrease in the error [43, p. 21] given a sufficiently small
step size.

The choice of M = diag(JTW J) damps each component differently, which is useful if
the parameters are of different scale. The Hessian matrix and its approximation contain
curvature information of the objective function. Again if we chose a very large λ in this
case, the update is approximately given by ∆θ ≈ 1

λ diag(JTW J)−1 JTW , i.e. we update
the parameter θi less (note the inversion) if the curvature along parameter dimension i
is high.

The LM-algorithm can also be cast as a trust-region approach [43, p. 258], where in
every iteration we solve a subproblem of linearized residuals subject to a constraint
limiting the maximum update step to the current trust region radius. In this thesis, we
do not adopt a formal trust-region approach, but we update the value of λ as discussed
in the next section. Note that our updating λ is analogous to the trust region approach
and both share similar convergence properties [43, p. 268].

3.4.5 Levenberg-Marquardt for PBA

In Section 3.4.1 we have shown that we can cast our robustified non-linear cost function
for PBA to an IRLS formulation. In every outer iteration k, we linearize the current
NLS problem, see iteration scheme 3.16. We solve the resulting OLS problem by first
applying a dampening matrix M. Overall, we perform the following algorithm in our

2An alternative derivation of the Gauss-Newton update equation for NLS, is to linearize the residuals to

rlin
k = rk + Jk ∆θk in every iteration [43, page 255] and solve arg min∆θk

∥∥∥rlin
k
∥∥∥

2
.
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manual solver:
Algorithm 1: Levenberg-Marquardt for PBA

Result: stationary point θ∗ for PBA cost ∑N
i=1 ρ(‖ri(θ)‖2)

1 Input: load θ0 from initialization (LDSO)
2 set initial λ, λincrease > 1 and λdecrease > 1;
3 compute the scales σ2 per-frame or globally (using for example Equation 4.31 for

the t-distribution case) or set constant;
4 for k = 1...kmax do
5 compute Jacobians JT

k at θk using relative-absolute decomposition,
[45, chapter 6.2];

6 compute diagonal matrix W k using Equation 3.17 or alternatively
using the self-tuning approach [2] (see Section 4.9);

7 linearize: compute Jk and rk to obtain rlin ≈ rk + Jk ∆θ, see Section
3.4.6 ;

8 for lm = 1...lmmax do
9 solve (JT

k W k Jk + λ Mk)∆θk = −JT
k W krk (OLS problem);

10 update θk+1 = θk + ∆θ;
11 if C(r(θk+1)) < C(r(θk)) then
12 lm = lmmax (accept step);
13 decrease λ: λ = λ

λdecrease
(move towards Gauss-Newton);

14 else
15 θk+1 = θk (restore old states);
16 increase λ: λ = λ · λincrease (move towards Gradient Descent);
17 end
18 end
19 end

If the update decreases the cost, we update our state θk+1 = θk + ∆θ and we decrease
the dampening parameter λk+1 = λk

λdecrease
with λdecrease > 1. This increases the possible

update step length in the next iteration and makes the update direction move closer to
GN. If the update increases the cost, we keep the states by setting θk+1 = θk and we
increase the dampening parameter by setting λk+1 = λk · λincrease.

Note how we check the decrease of the cost in line 11: In Section 4.10 we analyze the
effect of evaluating the original PBA cost instead of the least squares cost C(r(θ)) as
discussed in [60].

A detailed description of how to efficiently solve the linear system in line 9 can be
found in [45, chapter 6.2]. Because of the structure of the (approximated) Hessian
matrix, we can use the Schur complement to make it computationally feasible [21]. The
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Schur complement uses the fact that the update equations H ∆θ = −∇C(θ) can be
decomposed into a block-matrix structure, where the bottom right element is easily
invertible [54]. (

A B
C D

)
︸ ︷︷ ︸

H

(
x
y

)
︸︷︷︸

∆θ

=

(
f
g

)
︸︷︷︸
−∇C(θ)

(3.30)

In the case of PBA, A contains the camera-camera correlations, D contains only
diagonal entries since landmarks are uncorrelated. Matrix B and C store the camera-
landmark correlations. The vector x comprises all Ncam camera pose updates, and the
vector y comprises all Nlmk landmark inverse distance updates. Ncam is the number
of cameras multiplied by six, since each camera is parameterized with six absolute
pose parameters. f and g are the gradients computed for the poses and landmarks,
respectively. Note that we usually have many more landmarks than camera poses in
PBA. Therefore, using the Schur complement helps a lot because we can first invert the
reduced camera system [54] system of size {Ncam × Ncam} (if D contains only non-zero
diagonal entries) to obtain x:

x = (A− BD−1C)−1 (f− BD−1y) (3.31)

S = A− BD−1C is called Schur complement of the block matrix H. Given x, y can
easily be obtained by using:

y = D−1(g− Cx) (3.32)

Inverting a diagonal matrix can be performed by inverting all elements individually.
In Section 4.11, we investigate the solver behaviour for using different dampening
strategies for the LM steps. In particular, we apply dampening not just to the original
Hessian matrix H but we validate if it is possible to alternatively dampen the Schur
complement for efficiency reasons.

3.4.6 Hessian Matrix for Robust Loss Functions (Triggs Correction)

In Section 3.4.4, we provided an alternative derivation for the Gauss-Newton algorithm.
This derivation performs a first-order linearization of the non-linear residual rlin(θ) ≈
r(θk) + J(θk) (θ− θk) = rk + Jk ∆θ function at the current evaluation point θk. Plugging
the linearized residual back into the NLS cost:

COLS(θ) = rlin(θ)
T W rlin(θ) (3.33)

gives the GN update equations:

(JT
k W Jk)∆θ = −JT

k Wrk (3.34)
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as before. Solving this system and re-linearizing the residuals at the new evaluation
point is repeated until convergence.

In [60], [61], the same idea is applied to the robustified PBA cost function. First, we
linearize the residuals and then plug them into the robust cost:

Cpba(θ) =
N

∑
i=1

ρ(‖rlin,i(θ)‖2) (3.35)

Subsequently a second order expansion of the robust loss functions ρ() around
∆θ = 0 is performed, which leads to the Triggs correction [60]:

ρ(‖rlin,i(θ)‖2) ≈ 2ρ′ikrT
ik Jik∆θ+ ∆θT JT

ik (ρ
′
ik I + 2ρ′′ikrikrT

ik)︸ ︷︷ ︸
H ik

Jik∆θ+ const. (3.36)

where ρ′ik = ρ′(
∥∥∥ri(θ

k)
∥∥∥2
) and ρ′′ik = ρ′′(

∥∥∥ri(θ
k)
∥∥∥2
). In contrast to the IRLS updates, we

use a corrected Hessian matrix that takes the second order derivative of the robust loss
function ρ′′ into account. The second order derivative of the residual is ignored. We
employ this correction only for positive definite H ik, i.e. when ρ′ik + 2ρ′′ik||rik||2 > 0,
analogous to the implementation in [4]. Alternatively, reverting to a positive definite
approximation in the case of a negative definite Triggs Hessian H ik, converges to higher
objectives according to [60].

According to [54], the Triggs correction can be implemented by re-weighting the
Jacobian by

Jreweighted,i =
√

ρ′(1− α
rirT

i

‖ri(θ)‖2 ) Ji (3.37)

and the residuals by

rreweighted,i =

√
ρ′

1− α
ri (3.38)

where α is given by

α =
1 +

√
1 + 2 ‖ri(θ)‖2 ρ′′

ρ′

2
(3.39)

In this thesis, we implemented the Triggs correction according to the above formulas
in our manual solver. We present the results in Section 4.7.
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4 Experiments and Results

In the following sections, we present modifications to PBA and their effect on global
consistency (ATE in meters), map quality and convergence behaviour. We discuss
feasibility of implementation and effects on runtime. We provide an extensive evaluation
on Kitti odometry 00-10, Euroc MAV and a simulated dataset using Carla, see Table 4.1.
Additionally, we use a small test dataset to validate our implementations: It consists of
Euroc MAV V101, Carla Circle and Carla 12 cam, a subset of Carla Circle.

 #l-c #kf #lm #obs 

carlacircle 6 294 105604 833412 
eurocMH01 16 481 308039 2291053 
eurocMH02 7 382 249158 1919379 
eurocMH03 19 650 376060 2992960 
eurocMH04 3 413 198726 1532359 
eurocMH05 16 400 214337 1680738 
eurocV101 21 695 449646 3639173 
eurocV102 11 673 350979 2764613 
eurocV103 1 1251 538534 4469763 
eurocV201 7 412 246423 2013929 
eurocV202 22 868 429225 3322179 
eurocV203 0 1083 325252 2660546 
ki�00 501 3999 1705939 14263131 
ki�01 0 829 164757 1361659 
ki�02 29 4515 1848411 15415771 
ki�03 0 459 226726 1869337 
ki�04 0 248 92155 763672 
ki�05 229 2137 920247 7636899 
ki�06 82 848 339315 2817939 
ki�07 6 753 333366 2771703 
ki�08 0 3839 1749070 14416276 
ki�09 0 1474 619933 5176014 
ki�10 0 1010 404889 3316595 

dataset

Table 4.1: Information about dataset. Number of: loop closures (l-c), keyframes (kf), land-
marks (lm) and observations (obs) displayed. Euroc has loop closures for all but
V203, on Kitti there are datasets with and without loop closures. Our test dataset
used for developement contains Carla Circle and a slightly differently pre-processed
eurocV101 sequence.
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In most experiments, we report the geometric average of ATE over all sequences,
relative to the LDSO initialization init_pgo, see Equation 1.3. To allow for a more
detailed analysis, we have split our dataset into the following four sub datasets:

• euroc-ok: All Euroc sequences but euroc-fail. On these sequences, init_pgo yields
lower ATE than init_odometry. Additionally, PBA yields lower ATE for most
tested configurations.

• euroc-fail: eurocMH04, eurocV103 and and eurocV203. On these sequences,
init_odometry has (local) failures, i.e the map deviates (locally) strongly from
ground truth. PBA still improves the local consistency of these maps, but the
global measure of ATE often increases compared to init_pgo. Hence, comparing
ATE is not very informative on euroc-fail.

• kit-no-loop: All Kitti sequences but kit-loop.

• kit-loop: kitti00, kitti02, kitti05, kitti06 and kitti07.

The following list gives an overview over the conducted studies:

1. Landmark Parameterization

a) Inverse Depth vs. Inverse Distance (Section 4.1) Can we interchange be-
tween distance and depth parameterization?

b) Normal Vector for Residual Pattern (Section 4.2) Can we improve ATE or
map quality results by optimizing a normal vector for each landmark’s
residual pattern?

2. Host - Target Frame Relationship

a) Interpolation Schemes in Target Image (Section 4.3) How should we inter-
polate in the target image?

b) Residual Formulations (Section 4.4) Which residual formulation is ideal for
PBA?

c) Approximated Warp and Motion Jacobian (Section 4.5) Which approxima-
tions are valid for the host-target transformation chain?

3. Robust Norms

a) Corrected Weight for t-Distribution (Section 4.6) Does the correct weight
formula improve PBA results?

b) Corrected Levenberg-Marquardt Hessian (Triggs Correction) (Section 4.7)
Does the second order (Triggs) correction of the Hessian for robust norms
improve PBA results?
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c) Estimating Scale for Robust Huber Loss (Section 4.8) How should the
Huber parameter be selected for PBA? Can it be reliably estimated from data
with existing approaches?

d) Self-Tuning M-Estimators Approach (Section 4.9) Can we find data-dependent
tuning constant for the robust loss functions (Huber, t-distribution and oth-
ers), such as in "Self-Tuning M-Estimators" by Agamennoni et al. [2]?

4. Levenberg-Marquardt Routine

a) Step Criteria (Section 4.10) Which cost needs to be evaluated for validation
of the LM update step?

b) Dampening Strategies (Section 4.11) How do different dampening strategies
affect PBA results?

5. Pre-Processing to Improve the Initialization

a) Geometric Occlusion Detection (Section 4.12) Can a simple geometric oc-
clusion detection algorithm improve PBA results?

b) Photometric Occlusion Detection using ZNCC (Section 4.13) Can a simple
photometric occlusion detection algorithm improve PBA results?

We use the following default configuration for all our experiments:

Landmarks: inverse distance Interpolation: bilinear_smooth
Landmarks: no normal vectors Triggs correction: false

Residual: SSD Warp: full (approximated)
Robust norm: global Huber τ = 5.0 LM step criteria: linearized cost rTWr

landmark LM dampening: none camera LM dampening: identity
Patch: DSO pattern Solver: manual solver

No geometric occlusion detection No photometric occlusion detection

Table 4.2: Default configuration for experiments.

If an entire experiment deviates from these default settings, we list the difference
under a separate Configuration subsection. If only some of the presented results or
figures deviate from our default settings, we mention the difference locally under
the respective figure or table. We do not mention if it is clear from the experimental
description that a certain configuration changes, e.g. we do not explicitly state that
the landmark representation changes when comparing inverse distance against inverse
depth parameterization.
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4.1 Landmark Parameterization: Inverse Depth vs. Inverse
Distance

Motivation
It has been shown by [15] that using an inverse depth parameterization is advantageous
over a standard Euclidean (x, y, z) coordinate parameterization. Points at infinity can
be represented by using an inverse depth of zero. It is better suited to represent initial
depth estimates from stereo over the whole depth range [15]. Inverse depth is used in
DSM [63]. For camera models such as fisheye lenses, inverse distance should be used
[37] to model points behind the camera. In the default PBA implementation, landmarks
are represented using inverse distance, not inverse depth. To see the difference between
these two parameterizations, we compare the averaged results of final ATErmse for both
parameterizations. In our implementation, if using an inverse distance parameterization,
all 3D points of the residual pattern belonging to the same landmark are located on a
spherical surface. If using an inverse depth parameterization, all 3D points of the same
residual pattern are located on a planar surface which is parallel to the camera’s xy
image plane.
One scenario where the inverse depth could be slightly superior in terms of compu-
tational requirements is when a pinhole camera model is used. To see why, consider a
pinhole camera model which projects the 3D world coordinates (X, Y, Z)T onto the
image coordinates (u, v) [36, p. 52]:

λ

u
v
1

 =

 f sx f sθ ox

0 f sy oy

0 0 1


︸ ︷︷ ︸

K

1 0 0 0
0 1 0 0
0 0 1 0

 Tcw


X
Y
Z
1


︸ ︷︷ ︸
(Xc,Yc,Zc,1)T

(4.1)

The matrix K denotes the intrinsic calibration parameters. The rigid body motion from
world to camera coordinate system is given by Tcw. The parameter 1

λ represents inverse
depth in the camera frame. Projecting a known 3D point (X, Y, Z)T yields the vector
(uλ, vλ, λ)T, where the depth can be read from the third component λ. Conversely, the
unprojection of a chosen 2D point λ(u, v, 1)T with estimated depth λ, is λ K−1 (u, v, 1)T.
Using inverse distance causes a slight computational overhead. The distance needs to
be calculated explicitly with

√
X2

c + Y2
c + Z2

c . Unprojecting a 2D image point to 3D is
given by distance

‖K−1(u,v,1)T‖2
K−1(u, v, 1)T. It might be useful to represent pixel coordinates

with bearing vectors in the inverse distance case, i.e. vectors of unit length. Converting
from a λ (u, v, 1)T vector to a bearing vector requires a division by its norm.
When working with inverse distance or depth parameterizations, the warp function is
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algebraically rearranged to prevent a division by zero in our implementation. For exam-
ple, consider the case of inverse distance, where the unprojection function Π−1

c (p, idp)

transforms the 2D pixel coordinates p to a bearing vector b. Subsequently, b is scaled
by its distance 1

idp
to yield the 3D point:

p′ = Πc(RjiΠ−1
c (p, idp) + tji) = Πc(Rji

b
idp

+ tji) (4.2)

We now use the fact that Πc(x) = Πc(k · x), where k ≥ 0 is a scalar value describing all
points along the bearing vector between the target camera’s origin and the unprojected
3D point. Multiplying by idp results in the modified warp function:

p′ = Πc(Rjib + tji · idp) (4.3)

whichs prevents the division by zero. Note that points at infinity are represented by
zero inverse distance. The same holds for the case of inverse depth parameterization,
where the unprojection function Π−1

c (p) transforms the 2D pixel coordinates p to a
z = 1 vector (x′, y′, 1)T and then scales the vector by its depth value.

Configuration
We deviate from the default configuration in Table 4.2 by the following list:

• Solver: ceres-solver

• camera LM dampening: diagonal of Schur complement

Results
Even though the results indicate a minor advantage of using the inverse distance
parameterization, we cannot observe a systematic advantage. We suspect that the ATE
difference might be incidental, due to the different residual pattern geometry in 3D.
However, note that this difference of residual pattern geometry becomes negligible if
landmarks are far away from the host-target camera pair. We generally recommend
to use inverse distance as default parameterization in our solver. If runtime is crucial
and inverse depth could improve it, we could also use inverse depth since the ATE
difference is quite small.
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init_odometry init_pgo idist idepth

all sequences 2.131 1.0 0.675 0.684

Table 4.3: Averaged ATE for inverse distance (idist) vs. inverse depth (idepth). We
keep inverse distance as default parameterization because it has slightly
lower averaged ATE. Only for an application where the pinhole camera
model is used and runtime is crucial, one could equally switch to inverse
depth. ATErmse,geo is relative to init_pgo, geometric mean over all sequences.
The smallest (best) ATE is in bold, see Equation 1.3.

Figure 4.1 shows the different residual pattern 3D geometry. The hosted residual
patterns in the current frame are displayed in green. The twelve cameras are displayed
on the lower left as green frustums. The ATE is quite different for a large residual
pattern when switching between inverse distance (0.90 centimeters) and inverse depth
(0.54 centimeters). The lower ATE for inverse depth can be explained by the fact that
on the selected scene carla_12cam, the cameras are viewing a planar house wall, i.e. a
planar residual pattern fits better to the underlying geometry.

For a smaller residual pattern, the ATE difference between inverse distance and
inverse depth is much lower, e.g. 0.45 centimeters and 0.42 centimeters for the DSO
pattern. This can be explained by the fact that the difference of unprojected residual
pattern geometry, i.e. a planar structure (inverse depth) vs. a spherical structure
(inverse distance), becomes negligible if residual pattern are small compared to their
distance from the host camera.

Validation
With the difference of a spherical vs. a planar 3D residual pattern in mind, we validate
our implementation to make sure we do not introduce unintended errors. In particular,
we expect to see the same results for both parameterizations if using a residual pattern
consisting of only one central pixel. Indeed, we measured that in this case both
parameterizations are equal up to max_di f f = 5 · 10e−4 meters ATE difference on our
test data set. We neglect this small numerical difference, which might be mostly due to
different normalization strategies of the bearing vectors. As discussed above, we use
bearing vectors b in the case of inverse distance and z = 1 vectors (x′, y′, 1)T in the case
of inverse depth to represent pixel positions in the host image.
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(a) Inverse distance - residual patterns are spherical, final ATE is 0.90 centimeter

(b) Inverse depth - residual patterns are planar, final ATE is 0.54 centimeter

Figure 4.1: Spherical 3D residual pattern (inverse distance) vs. planar residual pat-
tern (inverse depth). Both plots display the dataset carla_12cam (a subset of
carla_circle) after PBA. A residual pattern of size 7x7 is selected (see Figure 4.11)
for better visualization. The inverse depth parameterization performs better here
because the planar patches fit more accurately to the planar house fronts.
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4.2 Landmark Parameterization: Normal Vector for Residual
Pattern

Motivation
When using an inverse distance parameterization, the pixels of the residual pattern are
located on a spherical surface centered in the host camera’s origin. On the other hand,
when using inverse depth parameterization, the unprojected pixels of the residual
pattern are located on a planar surface which is parallel to the host camera’s image
plane. It is not clear which 3D geometry of the residual pattern is preferable, as
discussed above. We expect that it is advantageous if residual patterns can exhibit
varying, flexible 3D geometry according to the actual scene geometry. To achieve this
in a computationally feasible way, we assign a normal vector which can be optimized
for each residual pattern independently. The normal vector is perpendicular on the
unprojected residual pattern which forms a plane. A normal direction has two DOF,
hence at least two parameters are required for its description. We parameterize the
normal vectors using the stereographic projection model [55, section III B]:

n =

x
y
z

 =

 µa
µb

µ− 1

 , µ =
2

1 + a2 + b2 (4.4)

where (a, b)T are the two parameters representing the normal vector, and nT =

(x, y, z)T is a unit-length bearing vector describing the normal vector in 3D space. The
central pixel determines the distance hplane of the unprojected residual pattern plane
from the camera’s origin, given by:

hplane = nTbcenter
1

idp
(4.5)

In contrast to scaling each bearing vector b for the pixels of the residual pattern by
their common inverse distance parameter idp, we now scale each bearing vector of the
residual pattern individually by a distinct distance hb. For each bearing vector, the
distance hb is chosen such that the normal vector n is perpendicular to the unprojected
residual pattern, i.e.:

hb =
hplane

nTb
=

nTbcenter
1

idp

nTb
(4.6)

This results in the modified warp function:

p′ = Πc(Rjibhb + tji) = Πc(Rjib nTbcenter + tji idp nTb) (4.7)
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where we multiply by idp to avoid a possible division by idp = 0. Similarly, we multiply
by nTb > 0, since this expression can be very small when normal and bearing vector
are close to orthogonal. In the following, we provide a qualitative analysis using a
visualization of the photometric map as well as quantitative results.

Experiments
Introducing two parameters (a, b)T for each landmark increases the number of parame-
ters. This is why we expect that a joint optimization of all camera poses and inverse
distances and normals might be computationally very demanding and might not con-
verge. We try the following optimization sequences: [PBA + normals], [PBA, normals]
and [normals, PBA], where PBA denotes optimization of all camera poses and inverse
distances with fixed normals, normals denotes optimization of all normal parameters
(a, b)T for each landmark with fixed camera poses and fixed inverse distances, and
PBA + normals denotes the joint optimization of all camera poses, inverse distances
and normal parameters. For example, in [normals, PBA], we first solely optimize
normals and subsequently we perform PBA with fixed normals. In addition to the
listed sequences, we have additionally tried other sequence orders but did not find
major differences among them. In the following, we give a motivation for the chosen
sequences:

1. [PBA + normals]: This sequence is used to show whether joint optimization is
feasible. We compare this against the other sequences in terms of ATE.

2. [PBA, normals]: This sequence is used to test whether it is advantageous to post-
process the normal vectors. In a real application, this could make the final point
cloud better initialized for further processing steps, i.e. to generate dense surface
reconstructions or to perform path planning. Since ATE is not affected by the
subsequent normal refinement, we provide a qualitative comparison.

3. [normals, PBA]: This sequence is used to determine whether PBA can profit
from having the residual patterns aligned as pre-processing step. In addition to
qualitative comparison, we compare it in terms of ATE to the other sequences.

For larger residual patterns, the normal vector alignment is expected to work better,
because there is more information determining the orientation. Therefore, we also
experiment with larger pattern sizes on the test datasets. In the following, we initialize
the normal vectors to be pointing away from the host frame, i.e. in (0, 0, 1)T direction
by setting a = b = 0, except stated otherwise.

Configuration
We deviate from the default configuration in Table 4.2 by the following list:

• Solver: ceres-solver
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Results
The initialization in Figure 4.2 shows how the patches are aligned parallel to the cameras
image plane for a = b = 0. Qualitative results on carla_12cam and carla_circle in Figure
4.3, 4.4 and 4.5 confirm that our normal optimization does help to align the residual
patterns with the underlying (planar) geometry, i.e. with the walls of the captured
house and the road. The smaller dataset carla_12cam is a subset of carla_circle. The
segment of carla_circle displayed in Figure 4.5 contains the same frontal house wall
as captured in carla_12cam. Figure 4.4 shows the results for a larger patch, where the
normal optimization seems work better for the alignment with the house wall. This can
be explained by the fact, that the larger patch provides more information for its normal
direction estimation. On the test dataset, we could notice no qualitative difference
between [PBA + normals], [PBA, normals] and [normals, PBA] in terms of map quality.

For all figures in this section, we use the following conventions: Normal vectors
are displayed in red, hosted points in the current frame are highlighted in green.
Unprojected landmarks contain the gray scale value as captured in the image, i.e. they
are mostly gray and black. Outlier landmarks are displayed in yellow. Keyframe
camera poses are displayed by the green camera frustums, the current active frame is
visualized by an enlarged, light-green camera frustum. The ground-truth trajectory is
displayed in purple. Estimated camera clusters are highlighted in yellow. The image
on the top left corner shows the current camera view (enlarged, light-green camera
frustum). On the right hand side of the camera view, the image pyramid is displayed.
The image below the current camera view shows the ground-truth depth map, where
lighter values represent distant and darker values represent close objects.

Table 4.4 shows the average ATE results for normal vector alignment. The ATE in
column [PBA, normals] is the same as for [PBA] because the poses are fixed during
post-processing of the normals. In the case of aligning the normals before PBA, the
ATE degrades quite a lot on average. This is mainly due to a number of datasets
where [normals, PBA] performs significantly worse. Interestingly, the optimization
[normals, PBA] also performs better on a few sequences, namely Kitti00, Kitti02, Kitti05
and Kitt06. These sequences happen to be all part of kit-loop. However, [normals, PBA]

performs quite worse on euroc-ok than the others, even though it contains loop closures
as well. By looking at the visualized map, we could not find a definite reason why
[normals, PBA] outperforms the other methods on these sequences. The joint optimiza-
tion [PBA+ normals] performs worse than [PBA, normals] on all sequences. This might
be explained by the fact that for [PBA + normals] the numbers of parameters is too
large which makes the system less determined, especially for small patterns. Hence,
the optimization is more likely to get stuck in local minima.
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[PBA, normals] [normals, PBA] [PBA + normals]

all sequences 0.672 0.762 0.731

euroc-ok 0.668 0.837 0.707
euroc-fail 1.001 1.000 1.056

kit-no-loop 0.743 0.869 0.849
kit-loop 0.540 0.496 0.542

Table 4.4: Averaged ATE results for normal vector optimization. Joint optimiza-
tion [normals, PBA] as well as [PBA + normals] yield worse ATE, hence
[PBA, normals] should be used. All three options qualitatively yield similar
normal vectors on our test dataset. ATErmse,geo is relative to init_pgo, geomet-
ric mean over respective sequences. The joint optimization [PBA + normals]
is without Kitti00 because the memory requirement is too high. The smallest
(best) ATE is in bold.

There is no major difference among the strategies in terms of runtime, i.e. overall
runtime is very similar for [PBA, normals], [normals, PBA] or [PBA + normals]. The
total runtime for [PBA, normals] increases by approximatively 80 percent compared to
[PBA] without normal optimization. The qualitative normal vector orientation relative
to the structure is similar for all presented optimization modes for our test data set. As
a conclusion, it is advisable to use [PBA, normals] since it achieves the lowest ATE and
the normal optimization is qualitatively similar compared to the other methods on the
test dataset. In constrast to the other methods, [PBA, normals] allows to actually only
perform the normal optimization if it is really desired.
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(a) Initialization DSO pattern - front view of house wall and road

(b) Initialization DSO pattern - top view of house wall and road

Figure 4.2: Front and top view after initialization on carla_12cam for DSO pattern.
The normals are initialized with a = b = 0 such that they point away from
the host frame. The unprojected residual pattern is parallel to the host
camera’s image plane. Red: normal vectors. Green: hosted point in current
frame. Gray-Black landmarks: Unprojected landmarks contain the gray
scale value as captured in the original image.
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(a) [PBA + normals] - front view of house wall and road

(b) [PBA + normals] - top view of house wall and road

Figure 4.3: Front and top view after PBA+normals on carla_12cam for DSO pattern.
The normals align very well with the road. The alignment with the house
wall is not perfectly consistent, i.e. a large number of normal are not
perpendicular to the underlying wall. The other presented optimization
sequences, i.e. [PBA, normals] and [normals, PBA], look similar on the test
dataset.
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(a) [PBA, normals] - front view of house wall and road

(b) [PBA, normals] - top view of house wall and road

Figure 4.4: Front and top view after PBA, normals on carla_12cam for a sparse 7x7
pattern. Normal vectors are aligned more consistently with the house wall
compared to Figure 4.3 b). This might be related to the fact that a larger
patch provides more information for its normal estimation. The sparse
7x7 pattern is visualized in Figure 4.11. Results for [PBA + normals] and
[normals, PBA] are not shown because they are visually similar.
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(a) Initialization with a = b = 0 - front view of same house as in carla_12cam

(b) [PBA + normals] - front view of same house as in carla_12cam

Figure 4.5: Front view of initialization and after PBA+normals on carla_circle using
DSO pattern. Compared to carla_12cam, the normal optimization yields
qualitatively similar results on the larger data set carla_circle. The displayed
segment of carla_circle shows the same frontal house wall as in carla_12cam.
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From Figure 4.5 to Figure 4.9, we show the alignment for init_pgo, [PBA + normals],
[PBA, normals] and [normals, PBA] on a few selected sequences. The aligned 3D trajec-
tories are projected onto the xy-plane of the world coordinate system and visualized
as 2D plot. On eurocV102 and eurocMH03, the alignment is qualitatively similar
among the tested normal optimization sequences, see Figure 4.5 and 4.6. For the
datasets eurocV202, kitti02 and kitti07, the trajectory is significantly better aligned
using [PBA, normals] compared to [PBA + normals] or [normals, PBA]. This qualitative
difference is also reflected by the ATE, displayed in Table 4.4. Therefore, after analyzing
the trajectory alignments qualitatively, we still recommend to use [PBA, normals]. It
performs mostly better or just slightly worse than the others, whereas [PBA + normals]
or [normals, PBA] often perform significantly worse and only sometimes slightly better.

ground truth
init_pgo
[PBA+normals]
[PBA, normals]

 

[normals, PBA]

 

Table 4.5: Aligned trajectories for the proposed normal vector optimization se-
quences on eurocMH03. There is no large difference between the different normal
vector optimization modes on eurocMH03. The trajectories are aligned to ground
truth and their 2D projection onto the xy-world plane is shown.
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ground truth
init_pgo
[PBA+normals]
[PBA, normals]
[normals, PBA]

Table 4.6: Aligned trajectories for the propose normal vector optimization sequences
on eurocV102. There is no large difference between the different normal vector
optimization modes on eurocV102. The trajectories are aligned relative to ground
truth and the 2D projection onto the xy-world plane is shown.

ground truth
init_pgo
[PBA+normals]
[PBA, normals]
[normals, PBA]

Table 4.7: Aligned trajectories for the propose normal vector optimization sequences
on eurocV202. [normals, PBA] performs the worst on eurocV202; [PBA + normals]
performs slightly worse than [PBA, normals]. The trajectories are aligned relative to
ground truth and the 2D projection onto the xy-world plane is shown.
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ground truth
init_pgo
[PBA+normals]
[PBA, normals]
[normals, PBA]

Table 4.8: Aligned trajectories for the propose normal vector optimization sequences
on kitti02. The joint optimization [PBA + normals] and [normals, PBA] both fail on
Kitti02, whereas [PBA, normals] is similar to init_pgo. The trajectories are aligned
relative to ground truth and the 2D projection onto the xy-world plane is shown.

ground truth
init_pgo
[PBA+normals]
[PBA, normals]
[normals, PBA]

Table 4.9: Aligned trajectories for the propose normal vector optimization sequences
on kitti07. The joint optimization [PBA + normals] and [normals, PBA] both per-
form slighlty worse than [PBA, normals] on kitti07. The trajectories are aligned
relative to ground truth and the 2D projection onto the xy-world plane is shown.

Validation
We perform two experiments to validate our normal vector implementation: In the
first validation experiment, all normal vectors are initialized to (0, 0, 1)T by setting
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a = b = 0, so that the residual pattern is parallel to the image plane for each hosted
landmark. We perform PBA with constant normals. We expect that the final result
must be exactly equal to the case of an inverse depth parameterization, when no patch
normals are used. Indeed, we can find no measurable difference between the inverse
depth parameterization and the inverse distance parameterization with a = b = 0 on
our test dataset. Additionally, we can visually confirm that the residual patterns in 3D
are planar, see Figure 4.3.

In the second validation experiment, we initialize the normals parallel to the bearing
vectors of the hosted 2D points. We use inverse distance parameterization and perform
PBA with constant normals. The results are expected to be close to an inverse distance
parameterization without normals, i.e. there should be only a minor change of final
ATE. Indeed, we found only minor numerical differences in the last decimal places of
the ATE on our test dataset. We can visually confirm that in this case, the unprojected
residual patterns are planar surfaces, which are normal to their bearing vector from the
host camera, see Figure 4.6.

Figure 4.6: Initializing the normal vectors of the patches parallel to their bearing
vector in inverse distance parameterization on carla_12cam as validation.
We perform this initialization to validate our implementation. As expected, the
structure resembles a mixture of inverse distance and inverse depth parameteriza-
tion. The planar patches are headed towards the cameras. Green: hosted point in
current frame. Gray-Black: Unprojected landmarks contain the gray scale value as
captured in the image
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4.3 Host - Target Frame: Interpolation Schemes in Target
Images

Motivation
The points p in the host image are selected at constant pixel positions. The warp
function which transforms host points p to target points p′ is given by:

p′ = Πc(RjiΠ−1
c (p, idp) + tji) =

(
x′

y′

)
(4.8)

Most target points p′ end up at subpixel positions. Hence, for the evaluation of the
photometric residuals, we need to compute an interpolated (estimated) image value
I(p′). Similarly, for the evaluation of the Jacobians, we need to interpolate the image
gradient ∇I(p′) = [Ix(p′), Iy(p′)]T at those subpixel positions (see Section 4.5). If the
interpolation mask around p′ exceeds the image borders, we implement a clamping
strategy which uses the closest pixel of the image border as pixel value for the out-of-
bounds pixels. In many SLAM/VO systems, so-called bilinear interpolation is used due
to its simplicity, e.g. in DSO [21] or in the work of Alismail et al. [5]. In constrast to
that, the default interpolation scheme in the ceres-solver library is bicubic interpolation
with exact derivatives, which we denote as bicubic_exact in our experiment.

Experiments
We compare four different combinations of image value and image gradient interpola-
tion in terms of final ATE: bilinear_exact, bilinear_smooth, bicubic_exact, bicubic_smooth,
where the first word denotes the image value interpolation and the second word de-
notes the image gradient interpolation. The methods with suffix local stand for a
gradient interpolation which takes into account the same pixel neighborhood as the
corresponding image value interpolation. Bilinear_exact computes the gradient by
forward difference between intermediate linearly interpolated values; bicubic_exact
computes the gradient by evaluating the exact derivatives of intermediate interpolated
cubic spline functions, see the explanations below. The methods with suffix smooth refer
to a gradient interpolation which takes into account a larger neighborhood of pixels.
They first compute a gradient image in the x as well as in the y-direction by central
differences. In the case of bilinear_smooth, this gradient image is then interpolated
with bilinear image value interpolation to obtain the gradient value; in the case of
bicubic_smooth, the gradient image is interpolated with bicubic interpolation. In order
to perform bilinear or bicubic interpolation once, we take into account a neighbor-
hood of 4 and 16 pixels, respectively. The gradient interpolation bilinear_smooth and
bicubic_smooth take 12 and 32 pixels into account.
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Bilinear interpolation is illustrated in Figure 4.7. To explain bilinear interpolation, we
let ix = intbx′c, iy = intby′c, where intbxc takes a positive real number x and outputs
the closest integer smaller or equal to x. Furthermore, we set dx = x− ix, dy = y− iy
and ddx = 1− dx, ddy = 1− dy.

Ibilin(p′) = ddx · ddy · I(ix, iy) + ddx · dy · I(ix, iy + 1)+

dx · ddy · I(ix + 1, iy) + dx · dy · I(ix + 1, iy + 1)
(4.9)

Figure 4.7: Bilinear interpolation illustrated. Black squares represent integer pixel coor-
dinates. Blue lines represent subpixel positions of the target point p′. Orange
lines represent the intermediate interpolation along the x-direction first. Four pixel
values are required.

The bilinear interpolation process can be interpreted as follows:

1. At first, we interpolate along the x-direction at dy = 0 and dy = 1 separately,
which is illustrated by the orange lines in Figure 4.7. We assume a linear image
function along these orange lines, with start and end point given by the actual
image values. This linear image along the upper orange line is described by
I(x′, iy) = ddx · I(ix, iy) + dx · I(ix + 1, iy). Note that 0 <= dx <= 1 and ddx =

1− dx. We attain two intermediate interpolated values at (x′, iy)T and (x′, iy+ 1)T,
represented by two orange circles in Figure 4.7.
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2. To obtain the image value, we linearly interpolate between (x′, iy)T and (x′, iy +

1)T, i.e. we set I(p′) = ddy · I(x′, iy) + dy · I(x′, iy + 1).

3. [Only in the case of bilinear_exact] In the case of bilinear_exact gradient interpo-
lation, we use forward differences. To obtain the gradient in y-direction, we set
Iy(p′) = I(x′, iy+ 1)− I(x′, iy). For the gradient in x-direction Ix, we first perform
the same linear interpolation as in (1) along the y-direction to obtain intermediate
image values, denoted by the black crosses in Figure 4.7. Then, we calculate the
forward difference between these intermediate interpolated values.

Performing this process first along the y-axis for dx = 0 and dx = 1 and then along
the x-axis yields the same result. The main advantage of bilinear interpolation is that it
is fast to compute since only 4 pixels are accessed and few multiplications and additions
are required.

Figure 4.8: Bicubic interpolation using splines illustrated. Black squares represent in-
teger pixel coordinates. The blue and red line represent subpixel positions of
the target point p′. Orange lines represent the intermediate splines along the
x-direction, which are used to obtain image values and image derivatives along
the x-direction at (x′, Ysplines). The red line shows the vertical spline along the
y-direction. 16 pixel values are required.

Similar to the ceres-solver, we implement the bicubic convolution algorithm in [29] to
perform bicubic interpolation. There is a similar, multi-stage process which describes
this interpolation:
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1. At first, we fit 1D cubic spline functions [30, p. 820-825] horizontally along
the x-direction for all y-values in the set Ysplines = {iy − 1, iy, iy + 1, iy + 2}.
We evaluate the fitted spline functions to attain intermediate image values at
(x′, Ysplines), illustrated by the four orange circles in Figure 4.8.
[Only in the case of bicubic_exact] In the case of bicubic_exact image gradient, we
evaluate the exact image derivative along the x-direction Ix(x′, Ysplines) at each
orange circle by taking the analytical derivative of the spline functions.

2. We fit another vertical spline along the y-direction using the image values at
(x′, Ysplines), illustrated in red in Figure 4.8. This spline can be evaluated at p′ to
read off the image value Ibicubic(p′).
[Only in the case of bicubic_exact] In the case of bicibuc_exact image gradient, the
image derivative in y-direction Iy(p′) is obtained by the derivative of this red
spline equation.

3. [Only in the case of bicubic_exact] We fit another vertical spline along the red line.
This vertical spline is constructed from the derivative values Ix(x′, Ysplines)

T along
the x-direction. The spline value at (x′, y′)T is used as image derivative Ix(p′).

The above procedure is equivalent to performing a convolution with a separable
filter as shown in [29]. Therefore, if we first perform vertical interpolation in step
(1) and then horizontal interpolation in step (2), we obtain the same result, which is
experimentally validated in our unit tests.

Results

The smooth gradient interpolations (green, brown, purple) decrease the cost and ATE
faster than exact gradients for EurocV101, as can be seen in Figure 4.9. This might be
due to the fact that the gradient is composed of more neighboring pixels for the smooth
interpolations. The difference in convergence behaviour between our manual solver
and the ceres-solver implementation becomes quite small when the same interpolation
method is used for both. Note that while the smooth interpolation decreases ATE faster
on eurocV101, all schemes converge to similar final ATE. The final photometric costs
differ slightly and they are the highest for exact derivative computations.
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Figure 4.9: Smooth interpolation results in faster convergence on Euroc V101. On
the left we see ATE over solver iterations. On the right, we see the total
photometric cost over solver iterations (see Equation 1.1). When we perform
smooth interpolation, we can achieve faster convergence compared to the
exact interpolation. The difference in convergence behaviour between the
manual solver and the ceres-solver implementation becomes very small
when using the same interpolation method.

In Figure 4.10, it can be seen that our smooth interpolation schemes introduced above
behave similarly in terms of ATE as interpolating exactly but on one pyramid level
higher. This may be due to the fact that both the image pyramid and our smooth
gradient interpolation take additional neighboring pixels into account. If we interpolate
smoothly but on one pyramid level above, even more smoothing is introduced. An
example is shown in in Figure 4.10, where the brown curve arises by interpolating the
gradient with bilinear_smooth on pyramid level one. In this case, the ATE decreases the
fastest; however, final ATE is higher. This can be explained by the fact that too many
neighboring pixels are taken into acoount in this case and the gradient becomes less
distinct.

The faster convergence of our manual solver compared to our ceres-solver implemen-
tation can be largely explained by the different interpolation schemes which are used.
We assume that the remaining difference between the two implementations in terms
of convergence is mainly due to numerical differences, which for example might arise
from different evaluation orders, slightly different implementation details for the linear
solver and different updating strategies of the dampening parameter λ for LM.
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Figure 4.10: Smooth interpolation behaves similar as interpolating on image pyra-
mid on EurocV101. In the left plot, we see ATE over solver iterations. In
the right plot, we see the total photometric cost over solver iterations. Per-
forming smooth image gradient interpolation on pyramid level 1 (brown
curve) converges even faster; however, the final ATE is higher as for the
other methods. The image pyramid is built using a convolution with a 5x5
Gaussian kernel, reducing both the image width and the image height by
a factor of 1

2 for each pyramid level.

Note that the reduction of cost and ATE is correlated, but they do not deterministically
follow the same trajectories. Similar to performing PBA on an image pyramid which
has been implemented in [45], we propose to initially use our smooth interpolation
schemes and then switching back to the exact interpolations later. The results for using
bicubic_smooth for the first 20 iterations and switching back to bicubic for the resulting
80 iterations is displayed in Table 4.10, rightmost column. This gives the most accurate
results compared to keeping the same interpolation scheme for all iterations. A very
similar final ATE is achieved if the first 40 iterations are used to interpolate smoothly.
Choosing between bilinear and bicubic interpolation for the first 20 (or 40) iterations
also does not influence the ATE significantly. We recommend to use bicubic_sm@20It
as default interpolation method for PBA since it achieves the lowest ATE and converges
faster than the exact methods.
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bilin_ex bilin_sm bicub_ex bicub_sm bicub_sm@20It

all sequences 0.671 0.673 0.669 0.666 0.657

Table 4.10: Comparison of four interpolation methods. bicubic_sm@20It denotes in-
terpolation of bicubic_smooth (bilin_sm) for the first 20 iterations and
bicubic_exact (bicub_ex) for the 80 remaining iterations. This is the inter-
polation method which we recommend for PBA because it achieves lowest
ATE and converges quicker than the exact gradient computations. Very
similar results are achieved when bicubic_smooth is used for the first 40
iterations or if we use bilinear_smooth instead of bicubic_smooth for the
first 20 or 40 iterations. Bold numbers show the best configuration (lowest
ATE). ATErmse,geo relative to init_pgo, geometric mean over all sequences.

Validation
We created unit tests to show equivalence of our bicubic interpolation and the ceres-
solver interpolation method on three arbitrary test images. By performing these
unit tests, we have confirmed that the difference between either implementation is at
most 10e−6 for the image value as well as image gradient components. Furthermore,
we confirmed that bilinear interpolation yields similar interpolated image values
compared to bicubic interpolation. We also showed that a numeric image derivative
∇num I[p] of interpolated image values yields a similar gradient as the gradient ∇cub I[p]
obtained with the bicubic_exact method. The numeric derivative is evaluated by central
differences of the interpolated image values around the pixel of interest p = (u, v)T

using bicubic image value interpolation. For example, in the x-direction, we compute
∇cub,x I[(u, v)T] = 0.5 I[(u + ε, v)T] − I[(u − ε, v)T] / (2 ε). The stepsize is set to ε =

10e−5. We require that ‖∇cub I[p]−∇num I[p]‖2 ≤ 0.01 for each tested pixel p in the
unit test.

4.4 Host - Target Frame: Residual Formulations

Motivation
In Equation 1.2, the residuals are formulated as in DSO [21]. In this section, we present
and compare other common residual formulations. The residual arises from a pixel
comparison between host frame i and target frame j. For most cases, we use the residual
rssd is this thesis if not otherwise stated. SSD abbreviates sum of squared differences. It
does not account for exposure times, vignetting or illumination differences between the
vantage points of frame i and j. For one reprojected residual pattern, we have Np scalar
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residual values:
r(k)ssd = Ij[p′k]− Ii[pk], k = 1...Np (4.10)

where pk = pcenter + uk with the offset vector uk and p′k = w(pk, idp, Tij) is given by
the warp function. In this thesis, we define u1 = (0, 0)T, i.e. the center point is the first
pixel of the residual pattern.

The residual rab uses the affine brightness transform parameters to correct for un-
known exposure time changes, thus increasing the parameter space.

r(k)ab = (Ij[p′k]− bj)−
eaj

eai
(Ii[pk]− bi) (4.11)

The residual rlssd takes into account the arithmetic mean of all pixel values in the
residual pattern. We denote the arithmetic mean of all pixel values in the host patch
by Ii, in the target patch by Ij. By including the factor Ij/Ii, any multiplicative
changes in the host or in the target patch brightness are neutralized. In contrast to
rab, where the brightness transform paramters (ai, aj, bi, bj) apply to the whole image,
these multiplicative changes are taken care of independently for each patch in rlssd. The
reason for multiplicative brightness changes might be different exposure times for host
and target image or non-uniform as well as changing scene illumination.

r(k)lssd = Ij[p′k]−
Ij

Ii
Ii[pk] (4.12)

Similarly, the residual rlnssd [55] normalizes the pixel intensities by the mean of the
residual pattern to account for lighting variations between host and target patch. Note
that the other residuals measure a difference in pixel, whereas rlnssd is without units
and in the range −Np < r(k)lnssd < Np, k = 1..Np.

r(k)lnssd =
Ij[p′k]

Ij
− Ii[pk]

Ii
(4.13)

In the work by Usenko et al. [55], the zero normalized cross correlation (ZNCC) is
mentioned as a possible residual function. It is not employed in their systems because
it is computationally too expensive. Since we perform a general investigation in this
thesis, not majorly focusing on runtime, we additionally include the ZNCC in this
experiment. It is defined as:

ZNCC(p) =
[Ii[p]− µ(Ii)]

T [Ij[p′]− µ(Ij)]

‖[Ii[p]− µ(Ii)]‖2

∥∥[Ij[p′]− µ(Ij)]
∥∥

2

(4.14)
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where Ii(p) is the vector consisting of all image values from the host patch i in the
neighborhood centered at p [38]. Similary, Ij(p′) contains all image values from the
target image’s neighborhood centered at the transformed pixel p′. The arithmetic mean
of the image patch stacked as vector of size Np is denoted by µ(Ii), i.e. each entry
µ(Ii)

(k) = Ii for k = 1...Np. If we write the equation with zero-mean image vectors, i.e.
Ĩi(p) = Ii(p)− µ(Ii(p)), we get:

ZNCC(p) =
Ĩi[p]T Ĩj[p′]

||Ĩi[p]||2 ||Ĩj[p′]||2
= cos(angle[Ĩi[p], Ĩj[p′]]) (4.15)

The ZNCC is the cosine of the angle between the zero-mean image vectors and
therefore −1 < ZNCC < 1. From the definition via zero-mean vectors, it becomes
clear that ZNCC is invariant to affine brightness changes in the images patches, i.e.
if we multiply or add a constant to all image values in the patch, the ZNCC remains
unchanged. Similar image values result in a ZNCC close to 1, whereas different image
values results in a low ZNCC close to -1.

Note that the ZNCC is different from the other presented norms (rssd, rab rlssd and
rlnssd) because it can not be written as squared sum of individual residual values
r(k) of the patch. All other presented norms compute one residual value for each
individual pixel of the patch and their final value arises from a sum over the squared
individual entries. For example, SSD is given by rT

ssd rssd. Furthermore, ZNCC is a
similarity measure, meaning that higher values are preferred. The other norms calculate
a dissimilarity measure. Since we include ZNCC in our least-squares formalism, we
need to use a dummy vector rzncc,i to describe the residual values in patch i. The vector
rzncc,i consists of Np entries, where Np is the number of pixels in patch i. We include

ZNCC into our least-square solver routine by setting each entry r(k)zncc,i with k = 1...Np

as follows:

r(k)zncc,i =

{√
1− ZNCC if k = 1

0 else
(4.16)

If N is the total number of residuals in our PBA problem, we have i = 1...N. We use√
1− ZNCC, because the residuals will be squared in our implementation, i.e. we

calulate rT
zncc,i rzncc,i for each patch i, see Section 3.4.4. This results in 1− ZNCC to be

minimized, which in turn means that we maximize the similarity measure ZNCC.
Furthermore, we use the residual function ZNSSD: There exists the following relation

between ZNCC and ZNSSD, derived in [46] and given by:

ZNSSD = 2 · (1− ZNCC) (4.17)

where ZNSSD is defined as rT
znssd,i rznssd,i. Minimizing 1− ZNCC as suggested above,

is therefore analogous to minimizing ZNSSD. Each element k of the vector rznssd,i is
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computed as:

r(k)znssd =
Ĩ(k)j√
ĨT

j Ĩj

−
Ĩ(k)i√
ĨT

i Ĩi

(4.18)

where pk is a point of the residual pattern, i.e. k = 1...Np. ZNSSD is similar to rlssd,
but in the case of ZNSSD we compute zero-mean vectors, and we divide by the scaled
sample standard deviation instead of the mean.

Configuration
We deviate from the default configuration in Table 4.2 by the following list:

• Solver: ceres-solver

• Robust norm: global Huber with τ = 0.2 for LNSSD, ZNCC and ZNSSD and
τ = 5.0 for all others

• camera LM dampening: diagonal of Schur complement

Results
Table 4.11 shows all presented formulations. The ATE improves significantly when
modelling brightness changes, i.e. SSD performs worse than all others (except ZNCC).

Taking brightness changes only implicitly into account by using LSSD, LNSSD or
ZNSSD performs similar or even better than explicitly optimizing for ai, bi, aj, bj in the
rab formulation (APOPT). Since the explicit optimization increases the parameter space,
therefore requiring more memory and computational resources, we recommend to use
LSSD which is the best choice on our dataset. The reason why it performs better than
ABOPT might be related to the fact that it takes local brightness changes into account,
individually for each patch. However, this can not explain why LNSSD and ZNSSD
perform worse than LSSD. There might be other differentiating properties of LSSD,
LNSSD and ZNSSD which can explain their different performances. One difference
between LSSD in contrast to LNSSD and ZNSSD, is that LSSD computes residual
values in units of pixels, whereas both LNSSD and ZNSSD are measures without units.
Because of that, we also choose different Huber parameters, i.e. τ = 5.0 for LSSD and
τ = 0.2 for LNSSD and ZNSSD, which is another reason why they could perform
differently. LSSD is computationally more demanding than simple SSD since the mean
needs to be calculated by summing over all pixels in the residual pattern. Additionally,
the computation of motion Jacobians causes a small computational overhead for LSSD,
see Section 4.5. Therefore, if runtime is the most crucial design factor of the PBA system,
SSD should be used.
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residuals: SSD LSSD LNSSD ABOPT ZNCC ZNSSD

all sequences 0.693 0.658 0.670 0.666 0.751 0.676

euroc-ok 0.691 0.554 0.491 0.556 0.535 0.548
euroc-fail 0.997 1.025 1.002 1.021 1.004 0.994

kit-no-loop 0.724 0.800 0.884 0.873 1.000 0.872
kit-loop 0.568 0.559 0.672 0.503 0.733 0.685

Table 4.11: Comparison of ATErmse,geo for different residual formulations. We recom-
ment using LSSD or ZNSSD, which in constrast to ABOPT take brighntess
changes only implicitly (but locally for each patch) into account. This avoids
the introduction and optimization of new parameters such as in ABOPT.
Huber loss function with τ = 0.2 for LNSSD, ZNCC and ZNSSD and τ = 5.0
for all others, see Equation 3.23. Kitti00 is excluded for abopt because the
memory requirement is too large. ATErmse,geo relative to init_pgo.

Interestingly, the naive formulation of ZNCC does not work well. However, the anal-
ogous measure ZNSSD, which is reformulated to fit into the least-squares formalism,
performs quite well. A possible reason why ZNSSD performs better than ZNCC might
be related to the fact that the contribution of each residual to the LM Hessian matrix is
only a rank-one matrix for ZNCC. To see why, consider the example residual vector
rzncc,i = (1− ZNCC, 0, 0, 0)T = (a, 0, 0, 0)T, for Np = 4. The Jacobian JZNCC for ZNCC
can exclusively contain non-zero elements in the first row. Having for example three
motion parameters (x, y, z)T, we obtain:

JZNCC =


∂a
∂x

∂a
∂y

∂a
∂z

0 0 0
0 0 0
0 0 0

 (4.19)

The rank of JZNCC can be at most one, because the rank is determined by the number
of linearly independent columns [30, p. 283]. Since rank(AB) ≤ min[rank(A), rank(B)]
[47, eq. 546], the rank of JT

ZNCC JZNCC is therefore at most one, as well. Overall, the
LM Hessian is a sum of the Hessians computed for each residual. Hence, the final LM
Hessian might be of full rank and invertible even without any dampening for both
ZNCC and ZNSSD. Besides this difference, we expect that ZNSSD and ZNCC both
perform better for larger patterns, because ZNCC is not well-defined by only a few
pixels, see Section 4.13.

In a small follow-up experiment, we investigated the final ATE when the effect of
the camera vignette is taken into account for rssd before computing the residuals, as in
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DSO. We used the calibration tool from the basalt project [57] to compute the vignette
for Euroc MAV. The output is a grayscale image containing values in the range [0, 255].
By normalizing this image, we obtain the vignetting function V(x) : Ω → [0, 1] as
in DSO, where Ω is the image plane. We do not have access to the camera response
γ() and assume it is linear. We pre-process the loaded images Iloaded by performing
i.e. Inew(x) = Iloaded(x)

V(x) x ε Ω before setting up the PBA routine. There is almost no
improvement in modelling the vignette, see Table 4.12.

 

 

 

 
eurocMH01 0.015 0.015 
eurocMH02 0.014 0.014 
eurocMH03 0.038 0.038 
eurocMH04 2.873 2.882 
eurocMH05 0.067 0.067 
eurocV101 0.033 0.033 
eurocV102 0.036 0.036 
eurocV103 1.233 1.232 
eurocV201 0.014 0.014 
eurocV202 0.053 0.053 
eurocV203 1.281 1.283 

Table 4.12: Absolute ATE values for Euroc with and without vignette for rssd. Bold
numbers are the lowest (best) ATE for the respective sequence. Modelling the
vignette function does not improve our results. When loading the images we divide
them element-wise by the vignette image. We suspect to see a larger improvement
when the camera response γ() is modelled, but we do not have access to γ() for
the employed datasets and assume it is linear

4.5 Host - Target Frame: Approximated Warp and Motion
Jacobian

Motivation
The quantities of interest, i.e. the motion ξ and structure idp parameters, are included
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in the warp function w:

p′k = Πc(TjiΠ−1
c (pk, idp)︸ ︷︷ ︸

p3D,k

) = w(pk, idp, Tji) (4.20)

where Tji = TjT−1
i = exp(ξ̂ j) exp(ξ̂i)

−1. We fix the residual pattern in the host frame
which is associated with a landmark of inverse distance idp. In this section, Π−1

c (p, idp)

maps 2D pixel coordinates p to homogeneous coordinates p3D ∈ R4 representing a
3D point in the coordinate system of the host; conversely, Πc(p3D) maps homogeneous
coordinates p3D ∈ R4 to 2D pixel positions p′.

We employ two approximations in the current implementation: At first, to obtain the
warped pixel positions p′k for all pixels k = 1...Np of the residual pattern, we perform a
first-order Taylor expansion of the warp function around the central pixel. The central
pixel is denoted by pcenter; the offset to a pixel k of the residual pattern in the host is
given by uk. Hence, the first-order expansion of the warp is given by:

w(pcenter + uk, idp, Tji) ≈ w(pcenter, idp, Tji) +
∂w(p, idp, Tji)

∂p

∣∣∣∣
p=pcenter

· uk (4.21)

The derivative of the warp function relative to the pixel position in the host can be
written in terms of the projection Jacobian Jproj and unprojection Jacobian Junproj:

∂w(p, idp, Tji)

∂p

∣∣∣∣
p=pcenter

=
∂Πc(p3D)

∂p3D︸ ︷︷ ︸
Jproj(p3D)

∣∣∣∣
p3D=TjiΠ−1

c (p,idp)

· Tji ·
∂Π−1

c (p)
∂p︸ ︷︷ ︸

Junproj

∣∣∣∣
p=pcenter

(4.22)

The second approximation that we make in our implementation is to approximate
the full Jacobians (Jξ or Jid) of the residual function by only computing motion Jacobians
Jmotion for the central pixel. In this thesis, we define the motion Jacobian to be this part
of the full Jacobian which does not include the image gradient. For example, in the
case of rssd, row k of the approximated full Jacobian with respect to pose parameters ξ

is given by:

J(k)ξ,ssd =
∂r(k)ssd(w(pk, idp, Tji))

∂ξ
= ∇p Ij[p]T

∣∣∣∣
p=p′k

· Jproj(p3D,central) ·
∂p3D,central

∂ξ︸ ︷︷ ︸
Jmotion

(4.23)

where ∂p3D
∂ξ =

(
I3x3 − ˆp3D

0T 0

)
[20]. ∇p I[p]T|p=p′k

denotes the image gradient evaluated

at the transformed pixel position p′k in the target image j.
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Similarly, row k of the approximated Jacobian with respect to the point’s inverse
distance parameter idp is given by:

J(k)id,ssd =
∂r(k)ssd(w(pk, idp, Tji))

∂idp
= ∇p Ij[p]T

∣∣∣∣
p=p′k

· Jproj(p3D,central) ·
∂p3D

∂idp︸ ︷︷ ︸
Jmotion

(4.24)

where ∂p3D
∂idp

= (tT
ij , 1)T is independent of which pixel of the residual pattern is chosen

because they all share the same idp parameter. In summary, in both cases the approxi-
mation is given by using the projection Jacobian Jproj of the central pixel p3D,central for
all pixels of the residual pattern. Additionally, in the case of pose parameters, we use
the Jacobian ∂p3D,central

∂xi of the central pixel as approximation. Note that we can write rlssd
as:

r(k)lssd = Ij[p′k]−
Ij

Np Ii
Ii[pk] = Ij[p′k]−

Ii[pk]

Np Ii

Np

∑
n=1

Ij[w(pk + un)] (4.25)

where un is the offset to model the residual pattern in the host frame, for example:
{u1, ..., uNp} = {(0, 0)T, (1,−1)T, (−1, 1)T, (−1,−1)T, (2, 0)T, (0, 2)T, (−2, 0)T, (0,−2)T}
for the DSO pattern. Ii and Ij denote the arithmetic mean of all pixel values in the host
and target patch, respectively.
Therefore, row k of the Jacobian Jξ|id,lssd for LSSD can be expressed computed as:

J(k)
ξ|id,lssd = J(k)

ξ|id,ssd −
Ii[pk]

Np Ii

Np

∑
n=1

J(n)
ξ|id,ssd (4.26)

Overall, for rlssd we have to compute the same Np Jacobians as for the case of rssd.
Similarly, we can express the Jacobians for rlnssd with the Jacobians of rssd:

r(k)lnssd =
Ij[p′k]

Ij
− Ii[pk]

Ii
(4.27)

By using the quotient rule we get the following expression for row k of the Jacobian for
LNSSD:

J(k)
ξ|id,lnssd =

J(k)
ξ|id,ssd Ij − Ij[p′k]/Np ·∑

Np
n=1 J(n)

ξ|id,ssd

I2
j

(4.28)

Experiments
To validate the above approximations, we compare the ATE between the approximated
version and the exact version. Both the approximate and the exact version warp each
pixel of the patch, hence we call this the full warp. The exact full warp projects each
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pixel using the warp function; the approximated full warp projects each pixel using the
first order Taylor expansion of the warp. Furthermore, the exact version uses the true
projection Jacobian Jproj(p3D) for each 3D point of the unprojected residual pattern.
Accordingly, it uses the exact parameter Jacobians ∂p3D

∂xi .
In a second experiment, we try an even stronger approximation by using the image

gradient of only the central pixel for all pixels of the residual pattern. We compare
two scenarios: (1) We use the central pixel’s gradient ∇p I[p′central ]

T but compute the
warp and the motion Jacobians exactly. Image values and residual values are therefore
exact. (2) We approximate the image gradient as well as the warp and the motion
Jacobian by the central pixel. In both cases, we interpolate the image gradient with
the bilinear_smooth interpolation, to take at least some neighborhood information into
account. This experiment is done for rssd.

In a third experiment, we apply the proposed warp and Jacobian approximations
using larger residual pattern to determine in which region the proposed approximations
are valid. The employed patterns are visualized in Figure 4.11. In all other presented
experiments in this thesis, we use the standard residual pattern from DSO if not stated
otherwise.

Figure 4.11: Patterns used to test approximation radius. The sparse patterns only occupy
every second row and column of the pixel grid.

In a fourth experiment, we use a very simple warp function such as in [5]. The
simple warp projects only the center pixel p3D,center exactly and simply adds the host
image offset un to reach pixels in the target image’s residual pattern:

p′ = Πc(p3D,center) + un (4.29)

Configuration
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We deviate from the default configuration in Table 4.2 by the following list:

• Robust norm: global Huber with τ = 0.2 for LNSSD and τ = 5.0 for all others

• camera LM dampening: diagonal of Schur complement

Results
Table 4.13 shows the results of approximating the full warp by its first order expansion
and the motion Jacobians by the central pixel. The difference between exact and
approximated versions is very small for all selected norms. For LSSD and LNSSD, the
approximated version is slightly better. From this we can conclude, that for the DSO
pattern it is feasible to use the approximated full warp in contrast to the exact full warp
function.

SSD LSSD LNSSD
full warp and Jmotion: exact approx exact approx exact approx

no euroc-fail 0.654 0.657 0.639 0.635 0.647 0.640

Table 4.13: Full warp and motion Jacobian: approximate vs. exact for different
norms. We show the ATE difference between approximated and exact
version of the full warp and motion Jacobian. For the DSO pattern, it is
feasible to use the approximated version. The dataset euroc-fail is excluded
from the table because it differs a lot when choosing between the approx-
imated or exact version, hence it does not contribute to the average in a
meaningful way. ATErmse,geo relative to init_pgo, for geometric mean over
all sequences except euroc-fail.

Table 4.14 shows the result of using the central image gradient in combination with
exact motion Jacobians (left column) vs. the central image gradient with approximated
motion Jacobians (right column). The results are similarly bad for both cases. This
shows that the most crucial component of the full Jacobian (Jξ or Jid) is to evaluate the
image gradient at a location close to its true location. However, it is sufficient if the
evaluation point for the image gradient is only an approximated pixel position, using a
first-order Taylor expansion of the warp function around the central pixel.

59



4 Experiments and Results

<exact ∇p I[p′], exact Jmotion> <false, true> <false, false>

all sequences 0.863 0.864

Table 4.14: Approximation of image gradient by central pixel for rssd. If the image
gradient is approximated by the central pixel, it does not matter whether
the motion Jacobians and the warp are exact or not. To obtain good results,
the image gradient must be evaluated at the warped target position or close
to it using an approximation such as a first order expansion of the warp
function. ATErmse,geo relative to init_pgo, geometric mean over all sequences.

The third experiment is summarized in Table 4.15. The difference between the exact
and the approximated motion Jacobians becomes noticeable only for very large patterns,
i.e. the 13x13 sparse pattern in our experiments. Therefore, for smaller pattern we can
safely use the approximations without having to resort to the exact versions. Note that
with such a large residual pattern the optimization starts to worsen, even if motion
Jacobians are exact. This is because we assign the same inverse distance to all points
of the residual pattern and in many real-world scenarios such large patterns do not
accurately model the geometry.

5x5 dense 9x9 sparse 13x13 sparse
full warp and Jmotion: exact approx exact approx exact approx

all sequences 0.692 0.692 0.739 0.742 0.785 0.796

Table 4.15: Full warp and motion Jacobian: approximate vs. exact for varying resid-
ual patterns with rssd. For larger residual patterns, the difference between
approximated and exact warping becomes more dominant. ATErmse,geo rela-
tive to init_pgo, geometric mean over all sequences. Kitti00 is excluded for
the 13x13 pattern, because the required memory is too large.

The results when using the simple warp given in equation 4.29 are displayed in Table
4.16. It is necessary to take a closer look at the sub datasets to understand how the
different warping strategies perform compared to each other. The average over all
sequences is better for larger patterns using the full warp; in the case of the DSO pattern,
the approximated full warp performs equally well as the simple warp. However, their
advantage over the exact full warp is mainly due to the fact that on euroc-fail, the exact
version increases the ATE a lot. That is why we show results without euroc-fail in
Table 4.13. Also note that the simple warp only outperforms the full warp on either
kit-no-loop or euroc-fail for all tested pattern sizes. The captured scenes on kit-no-loop
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contain mostly linear motion on straight roads, therefore it makes sense that the simple
warp can outerpform the more complex full warp here. Furthermore, a meaningful
comparison on euroc-fail is not possible, because PBA diverges in those parts of the
trajectory where the initialization failed. For the small DSO pattern, it might still
be feasible to use the simple warp for all sequences. For larger patterns, the results
degrade a lot when using the simple warp in contrast to the full warp (approximated
or exact), mostly on euroc-ok and kit-loop (compare with Table 4.15 and Table 4.16).

DSO pattern 9x9 sparse 13x13 sparse
warp: exact approx simple exact approx simple exact approx simple

all 0.707 0.693 0.693 0.739 0.743 0.787 0.785 0.796 0.847

euroc-ok 0.688 0.691 0.690 0.738 0.731 0.779 0.795 0.796 0.930
euroc-fail 1.183 0.997 1.006 0.996 0.996 0.986 1.015 1.013 1.010

kit-no-loop 0.719 0.724 0.702 0.778 0.781 0.766 0.736 0.774 0.699
kit-loop 0.548 0.568 0.579 0.566 0.566 0.603 0.579 0.582 0.640

Table 4.16: Simple vs. full warp (exact and approximate version) for varying pattern
sizes. For smaller patterns, the simple warp yields similar results as the full
warp; for larger patterns or datasets with more rotations in the image plane,
the full warp should be used. ATErmse,geo relative to init_pgo, geometric
mean over respective sequences. Kitti00 is excluded for the 13x13 pattern,
because the required memory is too large.

Note that on Kitti and Euroc, especially on kit-no-loop, there is no major rotational
movement recorded. We expect that on certain datasets which contain a lot of rotational
movements in the image plane, e.g. in mobile phone applications, the full warp (exact
or approximate) must be used to achieve reasonable results, even for smaller patterns.

4.6 Robust Norm: Corrected Weight for t-Distribution

Motivation
Besides the robust Huber loss, we use the t-distribution to model our residual dis-
tribution. Since we estimate the scale σt of the t-distribution for each target frame t
independently, we must use a corrected weight wi,corrected in the least-squares formu-
lation (see Section 3.4.2). This corrected formulation differs by the factor 1

σ2
t

from the
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literature in [27], [28], [63]:

wi,corrected =
1
σ2

t

v + 1
v + ( ri

σt
)2 (4.30)

We compare the ATE for the corrected and the uncorrected formulation. Additionally,
we also look at the statistics of σt for different datasets. Only if the scale parameters σt

vary a lot across target frames, we can expect to see a noticeable difference. The scale
σt for target frame t is obtained by performing the following k iterations (usually k is
around 3-5) [50, section 3, step 5]:

(σ2
t )

(k+1) =
1

Nt

Nt

∑
i=1

r2
i

v + 1
v + ( ri

σ
(k)
t
)2 (4.31)

where Nt is the number of residuals residing in target frame t. We initialize σ
(0)
t =

MAD, Equation 3.22. Note however, that the estimation of scale parameters require
enough inlier residual data points to find the t-distribution’s parameter robustly. In
the case of not having enough (reliable) residuals, it might be better to use a global
constant value for the σ parameter, possibly averaged over multiple datasets.

Results
Table 4.17 shows detailed results for each dataset when fitting the scales σt for each tar-
get frame during runtime. Note that on euroc-fail (eurocV103, eurocV203, eurocMH04)
and also on eurocV202, our new formulation results in higher final ATE than_pgo. A
numerical comparison of ATE does not make sense for these failed sequences, because
when PBA yields a higher ATE, the initialization itself is likely not good enough and
should be improved. Only if we can observe a meaningful PBA result for all compared
methods, we can argue about which method works better than than the others, i.e.
which method decreases the ATE more. Therefore, we additionally exclude eurocV202
for computing the averages in Table 4.19. For all other Euroc sequences, the new
formulation provides an improvement compared to the original one, see Table 4.17.

Furthermore, by setting σt = mean(σall) = 8.95, we can use either our corrected
formula or the old formula because they are equivalent up to scale for constant σt.
This is similarly done in [26]. In this case, we achieve the lowest ATE, see Table 4.20.
Therefore, it might not be worth spending the computational effort of fitting the t-
distribution, at least for the datasets Euroc or Kitti. We have further tested using separate
constants for Kitti where mean(σkitti) = 7.91 and Euroc where mean(σeuroc) = 10.00.
However, there is no advantage in doing so, the result does not vary strongly when
choosing slightly different tuning constants. As a side-note, it is interesting to see that
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eurocV203 actually does improve compared to init_pgo in the case of setting σt = 8.95,
which is almost never the case and therefore eurocV203 is part of euroc-fail.

 

 

 
 

 

carlacircle 0.024 0.012 0.012 0.014 

eurocMH01 0.034 0.014 0.014 0.015 

eurocMH02 0.019 0.014 0.013 0.014 

eurocMH03 0.087 0.044 0.057 0.041 

eurocMH04 2.669 2.963 3.408 2.825 

eurocMH05 0.070 0.063 0.071 0.072 

eurocV101 0.040 0.032 0.034 0.033 

eurocV102 0.058 0.044 0.048 0.038 

eurocV103 1.218 1.240 1.259 1.236 

eurocV201 0.026 0.012 0.016 0.014 

eurocV202 0.053 0.145 0.046 0.054 

eurocV203 1.318 1.431 1.402 1.225 

ki�00 11.217 2.989 7.260 5.225 

ki�01 115.157 112.645 103.061 99.815 

ki�02 27.671 25.925 24.399 23.248 

ki�03 2.916 1.139 1.121 1.240 

ki�04 1.149 0.764 0.705 0.753 

ki�05 5.123 3.957 3.058 3.362 

ki�06 14.593 4.835 6.125 5.736 

ki�07 3.079 1.839 1.462 1.447 

ki�08 130.317 104.249 97.242 124.707 

ki�09 75.914 63.914 61.454 61.779 

ki�10 17.238 13.983 13.735 13.388 

Table 4.17: Detailed ATE results for all sequences using the old weight, the corrected
weight and globally constant sigma. Even though the geometric average over
all sequence is the same for both old_tdist and new_tdist (our corrected formula
Equation 4.30), we see significant improvement on some scenes using new_tdist, e.g.
Kitti00, Kitti06 and eurocMH05. Comparing these detailed results with a measure
for the variation of estimated sigmas (CoV) given in table 4.18, shows that our
corrected formula mainly improves those sequences with higher variation in sigma.
Comparing all three displayed alternatives, the best option is choosing a global
constant σt = mean(σall) = 8.95 because it yields the lowest averaged ATE and
there is no need to compute the sigmas explicitly during runtime. The numbers
display the absolute ATE in meters. Bold numbers indicate lowest (best) ATE.
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Table 4.18 shows the coefficient of variation (CoV) std({σ})
mean({σ}) , which allows a comparison

of how much the sigmas deviate relative to their mean value [12]. The arithmetic mean
of the estimated scales {σ} across all target frames for a specific dataset is denoted by
mean({σ}). The sample standard deviation of sigmas across target frames is denoted
by std({σ}).

 

 
carlacircle 0.269 

eurocMH01 0.663 

eurocMH02 0.633 

eurocMH03 0.749 

eurocMH04 0.749 

eurocMH05 0.638 

eurocV101 0.674 

eurocV102 0.600 

eurocV103 0.700 

eurocV201 0.529 

eurocV202 0.669 

eurocV203 0.838 

ki�00 0.458 

ki�01 0.664 

ki�02 0.405 

ki�03 0.589 

ki�04 0.366 

ki�05 0.425 

ki�06 0.361 

ki�07 0.421 

ki�08 0.485 

ki�09 0.481 

ki�10 0.441 

Table 4.18: Coefficient of Variation (CoV) for each dataset. CoV is calculated as std({σ})
mean({σ}) ,

where mean({σ}) denotes the arithmetic mean of the scales {σ} across all target
frames for a specific dataset and std({σ}) its sample standard deviation. We expect
to see more improvement using new_tdist over old_tdist if a sequence contains a
larger CoV. This is because the formulas for new_tdist and old_tdist only differ if
the scale parameter sigma is non-constant across target frames.
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Theoretically, if the factor CoV is high, we expect to see more improvement because
then the variation of sigmas across target frames is numerically higher and should not
be neglected. This can be confirmed in our experiments: For the Euroc sequences where
the new formulation converges on, wi,corrected shows consistent improvement, with a
CoV between 0.53 and 0.75 (average 0.65). We also see a substantial improvement on
kit-no-loop, where CoV is between 0.37 and 0.66 (average 0.51). We see no improvement
using the corrected formulation wi,corrected on kit-loop, where CoV is between 0.36 and
0.46 (average 0.41).

TDist weight
weight: wi,corrected wi,old average CoV

all sequences 0.708 0.708 0.58

euroc-ok 0.627 0.702 0.65
euroc-fail&eurocV202 1.355 1.053 0.74

kit-no-loop 0.520 0.584 0.51
kit-loop 0.720 0.683 0.41

Table 4.19: Fitting the t-distribution scale parameter σt per target frame t during rum-
time. Comparison of formula given in [63] and our corrected weight formula,
see Equation 3.21. Right-most colum shows the average CoV on the respec-
tive sequence. We expect to see more improvement using our corrected
formulation wi,corrected if the CoV is higher. We exclude eurocV202 from
euroc-ok because here our new weight formulation increases ATE above
init_pgo and a numerical comparison is not reasonable. ATErmse,geo relative
to init_pgo, geometric mean the respective sequence.

all datasets no euroc-fail& no eurocV202

all sequences 0.690 0.650

Table 4.20: Using constant scale parameter σt = mean(σall) = 8.95 obtained as average
over all Kitti and Euroc sequences. In this case the corrected and the old
weight formulation can both be employed since the constant factor does not
alter the optimization results. We use the old formula. ATErmse,geo relative
to init_pgo, geometric mean over all sequences.

Figure 4.12 shows results on a differently pre-processed photometric map for the dataset
EurocV101. The difference to init_pgo is that the photometric map consists of 710
cameras, 458.058 landmarks and 4.517.006 observations, whereas init_pgo consists of
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695 cameras, 449.646 landmarks, 3.639.173 observations (see Table 4.1). Additionally,
the photometric map is sparsified according to a different criterion than init_pgo, i.e.
redundant observations are removed differently. The reason why there are more obser-
vation present in this example is because observations are added for all neighbouring
frames. In the case of init_pgo, new observations are only added for frames connected
by loop closures. This experiment shows the importance of using the correct weight
formulation: For example, consider the map is pre-processed more elaborately for
offline reconstruction, our formulation could decrease the final error drastically in some
cases. In the example, the final ATE drops from 0.34 meters to 0.28 meters.

Figure 4.12: ATE and photometric cost over solver iterations for our corrected t-
distribution weight formula on a differently pre-processed eurocV101.
For this differently initialized eurocV101 map, our corrected formulation improves
the final ATE a lot (orange) compared to the old formla (blue). The costs on the
right have different scales because they differ by the factor of 1

σ2
t

for target frame t.

Figure 4.13 shows the alignment of the two formulation with the ground truth
trajectory on eurocV101. Even though ATE is only 0.28 instead of 0.34 meters, there
is no large qualitative difference between the new and the old formulation from this
top view. However, note that some information about the trajectories is lost by the
projection onto the xy-plane of the aligned trajectories and the alignment might have
improved mostly in the xz or the yz-plane.
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ground truth
init_pgo
new_tdist
old_tdist

Figure 4.13: Aligned trajectories for t-distribution (old vs. new) on eurocV101. This
figure shows the alignment for the differently pre-processes photometric map as
in figure 4.12. The ATE is 0.28 for the new_tdist and 0.34 for old_tdist, however
qualitatively there is no huge visible difference in alignment. This might be due to
the fact that the aligmnent has mainly improved in the xz or the yz-plane, which
is not shown. The trajectories are aligned to ground truth and their 2D projection
onto the xy-world plane is shown.

On Kitti00, the ATE drops significantly from 7.26 meters using old_tdist to 2.989
meters using new_tdist. Accordingly, the alignment looks qualitatively a lot closer to
ground truth with our new formulation, see Figure 4.15. On Kitti06, our formulation
also yields lower ATE, i.e. 4.835 meters compared to originally 6.125 meters. However,
this large numerical difference in ATE is not completely reflected in the alignment plots,
i.e. the old and new formulation produce similar trajectories projected on the xy-plane
of the world coordinate system, see Figure 4.16.

Figure 4.14 shows the alignment of the old_tdist and new_tdist with the ground truth
trajectory on eurcoV202, where the ATE is worse for our formulation. Correspondingly,
the alignment looks qualitatively worse in this case; especially in the left half of the
trajectories there is a larger deviation from ground truth using our formulation.
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ground truth
init_pgo
new_tdist
old_tdist

Figure 4.14: Aligned trajectories for t-distribution (old vs. new) on eurocV202.
old_tdist yields an ATE of 0.046 meters, new_tdist yields an ATE of 0.145 meters.
The numerical advantage of old_tdist is reflected in the plot because new_tdist
deviates a lot more from ground-truth, mainly in the left half of the trajectory.

.

ground truth
init_pgo
new_tdist
old_tdist

 
Figure 4.15: Aligned trajectories for t-distribution (old vs. new) on kitti00. old_tdist

yields an ATE of 7.260 meters, new_tdist yields an ATE of 2.989 meters. The
numerical advantage of new_tdist is reflected in the plot, mainly in the top-right
and bottom-right loop of the trajectory new_tdist is closer to ground-truth.

.
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ground truth
init_pgo
new_tdist
old_tdist

Figure 4.16: Aligned trajectories for t-distribution (old vs. new) on kitti06. old_tdist
yields an ATE of 6.125 meters, new_tdist yields an ATE of 4.835 meters. The
numerical advantage of new_tdist is only very sublte to notice in the plot, i.e. the
trajectory of new_tdist forms a slightly larger circle on the bottom and on the top,
which is closer to ground-truth.

.

4.7 Robust Norm: Corrected Levenberg-Marquardt Hessian
(Triggs Correction)

Motivation
We implement the Triggs correction as described in Section 3.4.6. We employ the Triggs
correction for the robust loss based on the t-distribution as well as the Huber loss. The
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required first and second derivatives are presented here:

ρ′τ(s) =

{
1 if s < τ

τ√
τs else

(4.32)

ρ′′τ (s) =

{
0 if s < τ
−τ2

2 (τs)1.5 else
(4.33)

For the t-distribution (TDist) with v = 5 we have:

ρ′TDist(s) =
3.0

5σ2 + s
(4.34)

and
ρ′′TDist(s) =

−3.0
(5σ2 + s)2 (4.35)

Results
When the robust loss function is based on the t-distribution, we show two different
dampening strategies for completeness (see Section 4.11). The Triggs correction im-
proves the ATE, even in the first 5 iterations. This is highly relevant if PBA is for
example integrated into the back-end of a real-time SLAM system, where the number
of iterations should be as small as possible.

TDist damp I TDist damp Schur TDist damp I @it5
Triggs correction: true false true false true false

all sequences 0.698 0.714 0.705 0.717 0.701 0.711

Table 4.21: Triggs correction for the t-distribution (TDist) using different camera
dampening. For both presented dampening strategies, the Triggs correction
improves final ATE. Since it is computationally cheap to compute the Triggs
correction, it is advisable to always use it in the case of a t-distribution loss.
Furthermore, it is advantageous to use the Triggs correction even if only a
few iterations are performed, see right-most column. ATErmse,geo relative to
init_pgo, geometric mean over all sequences.

In the case of a Huber robust loss function, the Triggs correction worsens the ATE.
This can be explained by the fact that the second derivative ρ′′τ (s) of the Huber function
is only non-zero for the outlier region. Therefore, only outliers contribute to the
correction of the Hessian if the Triggs correction is used for Huber. If these residuals
are very far in the outlier region, their contribution to the overall optimization should
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instead be totally ignored. The optimization is only getting disturbed by the Triggs
correction based on outliers and converges to a higher final ATE.

Huber damp I Huber damp I @it5 Huber damp I @it10
Triggs correction: true false true false true false

all sequences 0.689 0.670 0.703 0.700 0.695 0.689

Table 4.22: Triggs correction for the Huber loss function. In the case of the Huber loss
function, the Triggs correction should not be employed because it yields
higher final ATE. We additionally show the ATE after 5 and 10 iterations,
where the Triggs correction already worsens the results. ATErmse,geo relative
to init_pgo, geometric mean over all sequences.

In figures 4.17 and 4.18 we compare two extreme cases of the solver behaviour for the
Triggs correction using the t-distribution on the dataset Kitti08. For Figure 4.17 where
the identity is used for camera dampening, we see an improvement using the Triggs
correction. Contrary to this, in Figure 4.18 we use the Schur complement for camera
dampening and observe that the Triggs correction worsens the final ATE. We provide
this example to emphasize that for seemingly small changes of the configuration, the
ATE results can vary quite strongly in terms of absolute ATE change for some extreme
cases.

Figure 4.17: Triggs correction for t-distribution using identity camera dampening on
Kitti08. Using the Triggs correction yields lower final ATE if the LM Hessian
is dampened by the identity. The solver behaviour deviates substantially when
using the The blue lines indicate the optimization without Triggs correction. The
orange lines indicate the optimization using Triggs correction.
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However, it should be noted that the absolute ATE for Kitti08 is generally quite high
and the initial alignment by init_pgo deviates a lot from ground truth for the second
half of the trajectory. On average, when switching between identity or Schur camera
dampening, the results do not vary as strongly, see Table 4.21.

Figure 4.18: Triggs correction for t-distribution using Schur camera dampening on
Kitti08. Using the Triggs correction yields higher final ATE if the LM Hessian is
dampened by the diagonal of the Schur complement. The blue lines indicate the
optimization without Triggs correction. The blue lines indicate the optimization
without Triggs correction. The orange lines indicate the optimization using Triggs
correction.

Furthermore, Figure 4.17 and Figure 4.18 show the general problem that ATE and
total photometric error which we optimize are not the same but just correlated to a
certain extend. The ATE does not deterministically follow the cost evolution. Most
importantly, it is possible that the cost decreases during the optimization even though
the global consistency measured by the ATE increases or stays constant. This might
be related to the fact that the photometric error is a local constraint between host and
target frames, wheres ATE is a global consistency measure. In a real application there
is no ground truth trajectory available to compute ATE and only photometric cost can
be measured.
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4.8 Robust Norm: Estimating Scale for Robust Huber Loss

Motivation
As described in Section 3.4.3, we investigate the following strategies for selecting the
Huber parameter τ:

1. Setting a global τ = 5.0, where 5.0 is an arbitrary constant value. Alternatively,
setting τ = mean(σ̂sample) = 9.66, where mean() is the dataset mean of estimated
scales over whole Kitti and Euroc

2. Setting τ = 1.345 σ̂MAD,t for each target frame t separately. σ̂MAD,t is the initial
scale estimate using MAD for each target frame t, see Equation 3.22.

3. Setting τ = 1.345 σ̂sample,t for each target frame t separately. σ̂sample,t is the sample
standard deviation [30, p. 1064] of all residuals in target frame t

4. Setting τ = 1.345 σ̂tdist,t for each target frame t separately. σ̂tdist,t is estimated
according to Equation 4.31.

Strategy (1) selects one global constant for all frames, whereas the other data-adaptive
strategies (2)-(4) fit a Huber parameter for each frame t individually during runtime.
Because selecting a parameter is non-intuitive, we would prefer to use a data-adaptive
strategy.

Results
Similar to the t-distribution scale estimation in Section 4.6, Table 4.23 shows that using
a constant Huber parameter is the best strategy. Note however, that using a Huber
constant of 5.0 yields the best result, even though the calulated mean of estimated
scales is given by mean(σ̂sample) = 9.66. This is different to the case of the t-distribution,
where the best results was found by setting σ = mean(σall) = 8.95. This shows that
computing the global mean over estimated scales parameter is not the ideal strategy.

global constant for all frames data-adpative, per-frame
τ = 5.0 9.66 1.345 σ̂MAD 1.345 σ̂sample 1.345 σ̂tdist

all sequences 0.672 0.689 0.680 0.680 0.681

Table 4.23: Setting the Huber parameter with constant or data-adaptive strategies.
Data-adaptive strategies are generally preferred if the dataset characteristics
are unknown beforehand. Therefore, despite the lowest ATE for a global
constant of 5.0, in most applications we recommend to use 1.345 σ̂sample
or 1.345 σ̂tdist. ATErmse,geo relative to init_pgo, geometric mean over all
sequences.
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Since the ATE difference is quite small between the global constant of 5.0 and the
data-adaptive strategies using 1.345 σ̂sample or 1.345 σ̂tdist, we still recommend to use
one of the later data-adaptive strategies. Interestingly, 1.345 σ̂tdist which estimates the
scale in the same way as for the t-distribution works quite well for the Huber loss. This
can possibly be explained by the fact that the scale estimation in Equation 4.31 is more
stable than estimating the sample standard deviation of the residuals. Theoretically,
we expect the sample standard deviation to be a better estimator for the sigmas of the
robust Huber loss, see Section 3.4.3.

4.9 Robust Norm: Self-Tuning M-Estimators Approach

Motivation
As discussed in the previous sections on robust norms, it is non-trivial to select the
best tuning constant φ for robust loss functions. Agamennoni et al. show how to
estimate the tuning constant for a certain class of loss functions from data in [2]. In this
experiment, we re-implement their proposed algorithm, which can be integrated into a
weighted least-squares estimation process.

The main idea of Agamennoni et al. is to model the residual distribution by a so-called
elliptical distribution, a generalized multivariate Gaussian. These elliptical distributions
can give rise to many common M-estimators, including the Huber loss and the loss
based on the t-distribution, as employed in this thesis. An elliptical distribution can
be described as a mixture of Gaussians whose covariances are weighted by wcov [2].
Therefore, to estimate the parameters of the underlying elliptical distribution, the
parameters of the Gaussian as well as the unknown covariance weights wcov need to be
estimated. In order to achieve this, Agamennoni et al. employ an EM algorithm. Each
residual i is weighted by one wcov,i. Note that this weight should not be confused with
the weight wi of the weighted least squares algorithm, which arises from the robust
loss function, see Equation 3.17.

In the expectation step of the EM algorithm, it is required to compute the expectation
of the joint probability of covariance weights wcov and data distribution, see equation
(6) in [2]. This expectation is approximated via so-called adaptive importance sampling.
The resulting algorithm contains a number of internal parameters and implementation
details, which are explained in the following:

1. A prior density p(φ) over the tuning constants φ needs to be selected. A zero-
mean Gaussian is proposed in the paper. Both the proposal density q(φ) and the
prior density p(φ) are modelled as multivariate Gaussians, parameterized by a
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mean vector and covariance matrix. We adopt the implementation give in [49] to
achieve this.

2. The number of iterations m for calculating the proposal density q(φ) is typically
between 3 and 5.

3. In each iteration i = 1...m, |Φ| tuning constants are drawn from the current
proposal density q(φ). For each drawn tuning constant φj, an intermediate
variable ρj is computed, with j = 1...|Φ|. The set of {φj, ρj} is used to build the
proposal density q(φ). The tuning constants can possibly be vector-valued. In
our case, we have dim(ρj) = 1: For the Huber loss, we estimate the scalar Huber
parameter τ; for the t-distribution, we estimate the scale parameter σ.

4. To compute the intermediate variables φj, equations (12) and (13) are employed
in [2]. Equation (12) includes a multiplication of probabilities from k = 1...n,
where n is the number of data points in the PBA problem. This multiplication
can quickly result in a numerical value of zero for large problems. This leads to a
loss of precision. Even worse, a division by zero occurs if all φj are zero, because
the set {φj} is normalized such that its sum is equal to one in every iteration i.
Therefore, we randomly subsample only n′ < n out of all data points in the full
PBA problem. We typically use a n′ between 500 and 2000.

5. Furthermore, the computation of the intermediate variables φj requires numerical
integration from 0 to ∞. We employ the publicly available implementation
[48] of the adaptive Simpson method [35], using the accuracy stopping criteria
ε = 10e− 9. We re-parameterize the integral by the following change of variables
[16, p. 218], inspired by [1]:∫ ∞

0
f (x)dx ≈

∫ 1−10e−6

10e−6
f
(
0 +

t
1− t

) 1
(1− t)2 dt (4.36)

6. The regularization constant r ensures that the covariance matrix of the proposal
density q(φ) is full rank, see equation (16b) in [2]. We use r = 0.001.

Experiments

As described above, there are many hyper-parameter choices to be made for the
self-tuning approach. This is why in the first experiment, we provide an overview
of parameter sets which work on our test dataset. We show the additional runtime
required by the self-tuning approach.

In a second experiment, we use fixed hyper-parameters and run the self-tuning
approach on the complete dataset.
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Results
Table 4.24 and 4.25 show the ATE and runtime for a fixed tuning constant vs. using
the self-tuning approach. In the following results table, we denote the paramter set as:
[|Φ|, n′, m, r, µp, covp], where |Φ| is the number of samples taken from q(φ), n′ is the
number of subsampled data points out of the total n > n′ residuals in PBA, m is the
number of outer iterations for calculating q(φ), r is the regularization constant and µp

and covp are the prior mean and covariance, respectively.
The ATE or runtime results are not majorly influenced by choosing a prior on

carla_12cam or carla_circle, see Table 4.24 and 4.25. This can be explained by the fact
that the self-tuning approach fits the robust weight wi according to the underlying data
and the prior is only relevant for the first few iterations. The authors of the original
paper also simply chose a zero-mean prior with the identity as covariance matrix, see
[2, sec. IV, D].

The runtime column shows the additional runtime required by the self-tuning
approach to compute the set {φj, ρj}, i.e. we measure the time to finish the loop over
m and divide by the total runtime. It mainly grows with |Φ| and n′ and m. The
computation of weights in line 7 of algorithm 1 in [2] is neglected. We measure runtime
on the same machine under similar loads. The runtime increase in percent is generally
larger for carla_12cam because it consists of only 25088 observations for 3275 landmarks
but the chosen hyper-parmeters are in a similar range as for carla_circle. The runtime
difference when choosing a prior and leaving all other hyper-paramters constant in
Table 4.25 (row three vs. row four) is explained by a slightly different workload on the
machine during the time of measurement.

Huber TDist
carla_12cam ATE runtime increase ATE runtime increase

τHuber = 5.0 | σTDist = 8.95 0.514 0.0% 0.416 0.0%

[100, 100, 3, 0.001, 0, 1] 0.428 4.6% 0.405 3.7%
[500, 500, 3, 0.001, 0, 1] 0.429 15.1% 0.400 11.5%

[1000, 1000, 3, 0.001, 8.95, 8.0] 0.448 24.0% 0.451 22.2%

Table 4.24: ATE and runtime comparison of self-tuning approach vs. a global tuning
constant on carla_12cam. In case of Huber loss, we set of τ = 5.0; in case of
the t-distribution loss, we set σ = 8.95. ATE is largely agnostic to different
hyper-parameters within the displayed order of magnitude in this table.
The aditional runtime required for the computing the set {φj, ρj} in percent
increases with larger |Φ| and n′. ATE in centimeters. The hyper-parameter
vector in the left-most column describes: [|Φ|, n′, m, r, µp, covp].
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Huber TDist
carla_circle ATE runtime ATE runtime

τHuber = 5.0 | σTDist = 8.95 8.95 N.A. 9.64 N.A.

[500, 500, 3, 0.001, 0, 1] 13.1 0.64% 12.9 0.43%
[500, 500, 3, 0.001, 8.95, 8.0] 13.0 0.83% 13.7 0.52%
[5000, 5000, 3, 0.001, 0, 1] 13.1 0.94% 12.9 0.48%

Table 4.25: ATE and runtime comparison of self-tuning approach vs. a global tuning
constant on carla_circle. In case of Huber loss, we set of τ = 5.0; in case of
the t-distribution loss, we set σ = 8.95. ATE is largely agnostic to different
hyper-parameters within the displayed order of magnitude in this table.
The aditional runtime required for the computing the set {φj, ρj} in percent
increases with larger |Φ| and n′. ATE in centimeters. The hyper-parameter
vector in the left-most column describes: [|Φ|, n′, m, r, µp, covp].

Table 4.26 and Table 4.27 show the self-tuning approach on the complete dataset for
the Huber and t-distribution loss, respectively. We compare the self-tuning approach to
a fixed tuning constant and to another data-adpative strategies, as described in Section
4.8 and Section 4.6.

Huber
self-tune τHuber = 5.0 τ = 1.345 σ̂sample,t

all sequences 0.689 0.672 0.681

euroc-ok 0.684 0.684 0.689
euroc-fail 1.010 1.018 1.020

kit-no-loop 0.693 0.652 0.691
kit-loop 0.575 0.540 0.537

Table 4.26: Huber self-tuning approach on the complete dataset in comparison to a
fixed tuning constant and another data-adaptive strategy. Even though
the self-tuning approach performs slightly worse in the case of Huber, it
could be advisable to use it because it allows to find the most suitable
robust loss function among a selection of candidate robust loss functions.
We use [|Φ|, n′, m, r, µp, covp] = [2000, 2000, 3, 0.001, 0, 1] for the self-tuning
approach and expect that better average ATE can be achieved by performing
a hyper-paramter search. ATErmse,geo relative to init_pgo, geometric mean
over respective sequences.

The advantage of the self-tuning approach in comparison to the alternative data-
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adaptive approaches for Huber and t-distribution loss, is that it is more general,
i.e. it can easily be employed to other robust loss functions as well, see [2, Table I].
Furthermore, the self-tuning approach could be used to determine which robust loss
function is the most suitable for the underlying data, see [2] for more details.

Interestingly, the results in Table 4.27 show that in the case of a t-distribution loss,
the self-tuning approach works significantly better than the compared approaches. The
final best ATE is now ATErmse,geo = 0.679 meters. This might be due to the fact that
the global threshold of global σTDist = 8.95 is not ideal and if selected differently, it
could possibly outperform the self-tuning approach as well. Similarly, the per target
frame modelling of sigmas using our corrected formula might not be ideal because too
few inlier residuals could be present in some frames to robustly estimate the sigmas.
This approach is described in Section 4.6. However, since we prefer the self-tuning
approach due to its generality, it might be worth searching for better hyper-parameters
for the self-tuning approach; we expect that this could lead to even lower ATE for
Huber and t-distribution. Before this experiment, the Huber loss was always more
competitive than the t-distribution, because it achieves ATErmse,geo = 0.672 meters for a
global Huber parameter of τ = 5.0.

TDist
self-tune σTDist = 8.95 new_tdist

all sequences 0.679 0.690 0.708

euroc-ok 0.685 0.683 0.754
euroc-fail 1.019 1.000 1.071

kit-no-loop 0.680 0.726 0.720
kit-loop 0.547 0.544 0.520

Table 4.27: T-distribution self-tuning approach on the complete dataset in compar-
ison to a fixed tuning constant and another data-adaptive strategy. The
self-tuning approach should be used in the case of the t-distribution be-
cause it achieves lowest ATE. The column new_tdist fits residuals per
target frame explained in Section 4.6. We use [|Φ|, n′, m, r, µp, covp] =

[2000, 2000, 3, 0.001, 0, 1] for the self-tuning approach. ATErmse,geo relative to
init_pgo, geometric mean over respective sequences.
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4.10 Levenberg-Marquardt: Step Criteria

Motivation
In order to use the LM algorithm we cast our non-linear function of robustfied residuals
∑N

i=1 ρ(‖ri(θ)‖2) to a NLS formulation. This gives rise to constant weights in every
iteration. We additionally linearize the residuals to obtain C(r(θ)) = rlin(θ)

T W rlin(θ)

as discussed in Section 3.4.5. The LM algorithm checks in each inner iteration (algorithm
1 line 11) if the cost C(r(θ)) has decreased.

However, our ultimate goal in this thesis is to minimize the cost ρ(r) = ∑N
i=1 ρ(‖ri(θ)‖2).

Therefore, in this experiment we alternatively use ∑N
i=1 ρ(‖ri(θ)‖2) to accept or reject a

LM step. Theoretically, we expect that this formulation could help in increasing global
consistency since it considers the orignal loss function. According to [60], in practice it
depends on the programming framework which cost is evaluated and therefore there
might also be no huge difference.

Configuration
We deviate from the default configuration in Table 4.2 by the following list:

• camera LM dampening: diagonal of Schur complement

Results
There is no significant difference between using the original ρ(r) vs. C(r(θ)). Since
there is only a slight disadvantage of ρ(r) in terms of ATE, it is advisable to use the
cost which is easier and more efficient to implement. Note that in practice our PBA
implementation might run in the back-end of a SLAM system to continuously improve
the current map. Therefore, we also showed the results after five iterations, where again
no difference can be observed for choosing the LM cost difference check.

TDist TDist @it5 Huber Huber @it5
cost: ρ(r) C(r(θ)) ρ(r) C(r(θ)) ρ(r) C(r(θ)) ρ(r) C(r(θ))

all sequences 0.709 0.707 0.711 0.711 0.693 0.690 0.707 0.707

Table 4.28: Using the original cost ρ(r) = ∑N
i=1 ρ(‖ri(θ)‖2) vs. using the linearized

cost C(r(θ)) = rlin(θ)
T W rlin(θ) after casting to a OLS problem. We

recommend to evaluate the cost which is more efficient to calculate in
the respective implementation, since ATE differs only slightly on average.
Dampening with Schur complement, Huber parameter is set to τ = 5.0,
t-distribution weights are determined per target frame with the corrected for-
mulation. ATErmse,geo relative to init_pgo, geometric mean over all sequences.
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4.11 Levenberg-Marquardt: Dampening Strategies

Motivation
The update equations for LM are given by:

(JTW J + λ M)∆θ = −JTWr (4.37)

see Section 3.4.4 for further details. We can split this large system into the part
containing the camera parameters (index c) and in the landmark part (index l):(

Acc Bcl
Clc Dll

)
︸ ︷︷ ︸

JT W J+λ M

(
xc

xl

)
︸ ︷︷ ︸

∆θ

=

[(
Ãcc Bcl
Clc D̃ll

)
+ λ ·

(
Mcc 0

0 Mll

)] (
xc

xl

)
=

(
fc

gl

)
︸ ︷︷ ︸
−JTWr

(4.38)

Since Dll is a diagonal matrix, we apply the Schur complement instead of inverting the
left hand side. We obtain the following two subsystems:

xc = (Acc − BclD−1
ll Clc︸ ︷︷ ︸

S

)−1 (fc − BclD−1
ll yl) (4.39)

xl = D−1
ll (gl − Clcxc) (4.40)

Applying LM dampening with the diagonal dampening matrix M =

(
Mcc 0

0 Mll

)
affects the diagonal of matrix Acc = Ãcc + λ Mcc and the diagonal of Dll = D̃ll + λ Mll ,
respectively. Either the identity or the diagonal of the original Hessian diag(JTW J) is
used for dampening in the LM algorithm, see Section 3.4.4. However, we do not store
the original Hessian JTW J in the manual solver, but only the Schur complement S to
save computational and memory resources. Therefore, in the current implementation
we set Mcc = diag(S) and Mll = 0 (first column in Table 4.29). In this case, we can
compute the Schur complement S only once and use it for all inner iterations, i.e.
for varying λ in the LM algorithm. This is possible because Mcc only affects Acc, i.e.
+λMcc can simply be added to the (stored) Schur complement S. However, this is
not in accordance with the standard LM, described in Section 3.4.4. Furthermore, the
influence of Mll on the landmarks Hessian part Dll is currently ignored.

Experiment
We want to verify if the above approximation is valid. We investigate four dampening
strategies for the camera poses Hessian Acc = Ãcc + λ Mcc, using:
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1. The diagonal of the Schur complement as in the current implementation, i.e.
Mcc = diag(S)

2. The upper diagonal of the original Hessian matrix, i.e. Mcc = diag(Ãcc)

3. The identity Mcc = I

4. No dampening Mcc = 0 (corresponds to Gauss-Newton (GN) but enforcing a cost
decrease by the condition in line 11, algorithm 1)

For each of the presented camera dampening options, we either set the dampening
of Dll = D̃ll + λ Mll to Mll = 0 (no dampening) or we use use the original Hessian
Mll = diag(D̃ll). In the special case of dampening the camera matrix by the identity,
we also employ Mll = I for the pose Hessian. Furthermore, we compare convergence
results of pure GN and LM with no dampening.

Results

no landmark dampen landmark dampen
camera dampen: Schur Original I None Schur Original I None

all sequences 0.688 0.691 0.671 0.683 0.691 0.691 0.677 0.668

Table 4.29: Four different camera pose Hessian dampening Mcc options, with and
without landmark dampening. All dampening options yield very similar
results for all sequences, except on Kitti03, Kitti08, Kitti09, where the identity
outperforms the others. Hence, we recommend to use camera dampening
by the identity or the Schur matrix if runtime and memory efficiency is
important. Explicitly computing the diagonal of the Hessian is not advanta-
geous. ATErmse,geo relative to init_pgo, geometric mean over all sequences.

Dampening with the original matrix, as proposed in the traditional LM algorithm,
performs similar compared to the Schur complement. It can be concluded that the
approximation of using the Schur complement is quite reasonable. Using the identity
matrix yields the best results by a small margin. The theoretical problem with the
identity is that it dampens landmark and pose increments by the same unit, even though
they might be of extremely different scale. Therefore, we would have expected a slight
disadvantage of the identity vs. using the original matrix. Note that all dampening
options yield very similar results for all sequences, except on Kitti03, Kitti08, Kitti09,
where the identity outperforms the others. This might be related to the expected issue
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of numerical instabilities in our solver as mentioned before. Without considering the
mentioned Kitti sequences, we cannot find a systematic advantage in convergence
behaviour of the identity over any other dampening matrix.

Whether or not the landmark part of the Hessian is damped does not play a significant
role, except when no camera dampening is performed. This exception is due to the fact
that in the case of no dampening on neither poses nor landmarks, we actually perform
a modified GN algorithm: Since there is no λ it is similar to GN, but we still enforce
a cost decrease for every step as in LM. The pure GN method without enforcing a
cost decrease, results in even higher ATE, namely ATErmse,geo = 0.779 if landmarks are
dampened, ATErmse,geo = 0.747 without dampening. Detailed results for pure GN vs.
LM without any dampening can be found in Table 4.30.

Figure 4.19 shows the convergence of cost and ATE for three examples from Table
4.30. For Kitti01 and Kitti08, the ATE start to completely diverge after the first 5-10
iterations in the case of pure GN (displayed in blue). Enforcing a decrease in the
cost results in earlier termination of LM because it cannot find a cost decrease. This
ensures that the cost and or ATE does not increase unboundedly. As an exception, GN
performs better on Kitti02 than our preferred LM method. Note that the cost and ATE
are generally noisier for GN. Overall, we prefer using the LM method since it performs
better on average and does not result in huge final ATE because of wrong update steps.

We can generally conclude, that the most important feature of our non-linear op-
timization algorithm is the cost decrease check. It does not matter whether the true
non-linear cost or the intermediate quadratic costs are used for this check, see Section
4.10. We can also conclude that applying at least some dampening to the LM Hessian
does help, but it is not very crucial which kind of dampening matrix is used. It is
sufficient to use the Schur complement, or alternatively to only dampen the landmarks
which is computationally very cheap as well. This behaviour can be explained by the
fact that the dampening only plays a significant role once λ is large, i.e. when many
iterations have been performed. However, once we have performed between 10 to 30
iterations, in most cases the cost and ATE are very close to their final value. Therefore,
using the dampening only plays a role in minor improvements at the end.
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carlacircle 0.024 0.014 0.014 

eurocMH01 0.034 0.015 0.015 

eurocMH02 0.019 0.014 0.014 

eurocMH03 0.087 0.042 0.042 

eurocMH04 2.669 2.879 2.828 

eurocMH05 0.070 0.074 0.073 

eurocV101 0.040 0.033 0.033 

eurocV102 0.058 0.042 0.038 

eurocV103 1.218 2.197 1.202 

eurocV201 0.026 0.014 0.014 

eurocV202 0.053 0.056 0.054 

eurocV203 1.318 3.055 1.318 

ki�00 11.217 5.330 5.223 

ki�01 115.157 121.917 96.376 

ki�02 27.671 18.764 27.297 

ki�03 2.916 1.106 0.896 

ki�04 1.149 0.737 0.752 

ki�05 5.123 3.371 3.352 

ki�06 14.593 5.690 5.736 

ki�07 3.079 1.311 1.321 

ki�08 130.317 262.354 130.317 

ki�09 75.914 57.538 62.812 

ki�10 

 

ATErmse, geo 

17.238 

 

1.00 

10.098 

 

0.747 

12.713 

 

0.683 

Table 4.30: Detailed results for pure GN vs. LM without any dampening. The only
difference between the two versions is that the LM algorithm terminates if we cannot
decrease the cost with the current update step. LM terminates after approximately
100 iterations on average, whereas GN reaches the maximum number of iterations.
Both versions perform similar for most sequences, but GN produces significantly
higher ATE on a few sequences, e.g. eurocV103, eurocV203, kitti01, kitti03, kitt08.
Hence, we recommend using LM, preferably with some kind of dampening to
achieve even better averaged ATE, see Table 4.29.
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(a) Kitti01

(b) Kitti02

(c) Kitti08

Figure 4.19: Convergence behaviour of pure GN (blue) vs. LM without any dampen-
ing (orange). For Kitti01 and Kitt08, pure GN produces a large ATE, for Kitt02 it
is slightly better. We prefer the LM method because it performs better on average
and does not result in huge final ATE because of wrong update steps such as the
GN method.
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4.12 Pre-Processing: Geometric Occlusion Detection

Motivation
Most presented methods have not shown a major improvement in terms of final ATE.
We assume that this is because PBA optimization is quite stable in itself, i.e. agnostic to
the proposed changes. In general, PBA heavily depends on the initialization. In this
experiment, we implement a basic occlusion detection algorithm as pre-processing step
before PBA to improve its initialization.

Experiment
Our occlusion detection algorithm is visualized in Figure 4.20 for a PBA problem
consisting of only two frames A and B. The algorithm proceeds as follows:

1. For each frame, we determine the central pixel of all host and all target points. In
Figure 4.20, the algorithm is currently working on frame A, where points A1, A2
are hosted and the target points B1′, B2′, B3′ are projected. We have implemented
a parallelized version across frames in our manual solver.

2. Inside the current frame A, we check the 2D distance in pixels of each host-target
and each target-target pair. A host-target pair consists of a hosted point in A
and a reprojected point BX′. A target-target pair consists of two non-identical
target points which are reprojected from any frame into frame A. Pairs which
are closer than the threshold min_dist_pixels proceed to next step, in the example
pair < A2, B3′ > and pair < B1′, B2′ >. In Figure 4.20 these pairs are enclosed by
a blue ellipse.

3. Now, we check the distance of the point in 3D relative to the host camera. In case
of a close host-target pair < AY, BX′ >, we mark the target point as occluded if
its distance to the host camera dist(BX′) is greater by a factor of dist_ f actor than
the hosted point’s distance dist(AY′), i.e. dist(BX′) > dist_ f actor ∗ dist(AY′).

This scenario is illustrated in Figure 4.20 for B3′. We do not mark hosted points as
occluded. Similarly, in the case of a close target-target pair such as < B1′, B2′ >,
we mark the point which is more distant to the host camera by the factor
dist_ f actor. In the example, both B1′ and B2′ have similar distances, hence
we do not mark any point as occluded.

4. All points marked as occluded are removed from the list of observations before
running PBA. Since we require a minimum number of observations for a landmark
when setting up our PBA routine, some landmarks might be completely removed
due to our occlusion detection algorithm.
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Figure 4.20: Occlusion detection algorithm in frame A visualized. Frame A hosts point
A1 and A2, frame B hosts B1, B2, B3. Bold letters indicate points in 3D. The dash
indicates reprojected points, for example B1’ is the projection of B1 onto frame A.
To decrease the runtime of our geometric occlussion detection, the algorithm is
parallelized across frames.

Results
We found that using dist_ f actor ≈ 1.04 ∼ 1.07 and min_dist_pixels ≈ 4 ∼ 6 gives the
best averaged result. We use the DSO pattern. Note that we only calculate the pixel
distance between central pixels. Therefore, the distance min_dist_pixels needs to be
increased for larger pattern sizes. Even when the central pixels are distant from each
other, large patterns might still overlap.

[dist_ f actor, min_dist_pixels] None [1.05, 6] [1.05, 4] [1.07, 6]

all sequences 0.672 0.661 0.662 0.665

euroc-ok 0.684 0.673 0.672 0.669
euroc-fail 1.015 1.013 1.02 1.020

kit-no-loop 0.652 0.701 0.684 0.701
kit-loop 0.540 0.508 0.516 0.531

Table 4.31: Geometric occlusion detection results. None denotes the results without
applying our occlusion detection algorithm. Our occlusion detection al-
gorithm can slightly improve the averaged ATE. We use the Huber loss
function with global τ = 5.0.ATErmse,geo relative to init_pgo, geometric mean
over respective sequences.
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Looking at the result in Table 4.31, it becomes evident that our occlusion detection
algorithm mostly improves the sequences containing loop closures. This can be ex-
plained by the fact that most sequences without loop closures usually do not contain as
many simple occlusions of the kind described in this section above.

Figure 4.21 shows the alignment of trajectories with and without occlusion detection
algorithm on Kitti00. Even though ATE varies a lot on Kitti00, qualitatively there is
only a slight improvement visible in the alignment. It is a general issue, that the ATE is
not a perfect measure for global consistency. This can further be seen in Figure 4.22,
where both our occlusion detection algorithm and the comparison without occlusion
detection fail. In both cases, the trajectory contains many more discontinuities which
are neither present in the ground truth nor in init_pgo. By separating our dataset into
the four categories of euroc-ok, euroc-fail, kit-loop and kit-no-loop, we alleviate this
problem slightly. In further studies it would be very advisable to also include other
metrics into the global consistency evaluation, e.g. a point to plane distance for the point
cloud as proposed in DSM [63].

ground truth
init_pgo
no occlusion detection
occl_distFactor1.05_Pixel6

 

Figure 4.21: Aligned trajectories after geometric occlusion detection on Kitt00. Even
though our occlusion detection algorithm yields only 4.563 meters final ATE
instead of 5.216 meters without occlusion detection, both trajectories look sim-
ilar after projection to the xy-world plane. From this we can conclude that it
is not sufficient to simply compare ATE for different configurations. We use
dist_ f actor = 1.05 and min_dist_pixels = 6

87



4 Experiments and Results

ground truth
init_pgo
no occlusion detection
occl_distFactor1.05_Pixel6

Figure 4.22: Aligment after geometric occlusion detection on eurocV103. We use
dist_ f actor = 1.05 and min_dist_pixels = 6. This plot shows the general problem
that (averaged) ATE is not the only metric which should be used to determine
global consistency: On eurocV103, using our occlusion detection algorithm yields
lower ATE, even though both trajectories fail. By dividing our dataset into euroc-
ok, euroc-fail, kit-loop and kit-no-loop, we can compensate for such cases to a
certain extent.

4.13 Pre-Processing: Photometric Occlusion Detection Using
ZNCC

Motivation
In this experiment, we use the ZNCC as a score between the the Np pixels of the
residual pattern in the host and in the target. Based on the ZNCC, we decide whether
or not to remove the observation before calling the PBA routine. If the ZNCC falls
below zncc_min, we mark the target observation as occluded and remove it. Similar
to the geometric occlusion detection algorithm in Section 4.12, we remove only the
corresponding target observations.

Results
For our standard pattern from DSO consisting of 8 pixels (see Figure 4.11), it is very
difficult to find a suitable threshold. After an extensive parameter search for zncc_min
we can only present very minor improvements. The ATE is quite agnostic for any
0 < zncc_min < 0.9 as can be seen in Table 4.32.
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zncc_min none 0.1 0.5 0.75 0.9

all sequences 0.672 0.673 0.671 0.674 0.670

Table 4.32: Photometric occlusion detection for DSO pattern with 0 < zncc_min <

0.9. ZNCC between 0 < zncc_min < 0.9 barely influences the result.
ATErmse,geo relative to init_pgo, geometric mean over all sequences.

Interestingly, the ATE starts to deteriorate once the threshold is chosen above 0.9, see
Table 4.33. This is because too many observations are removed and the optimization
becomes less constrained.

zncc_min none 0.925 0.95 0.975 0.985 0.995

all sequences 0.672 0.674 0.677 0.689 0.710 0.798

Table 4.33: Photometric occlusion detection for DSO pattern with zncc_min > 0.9.
ZNCC larger than 0.9 deteriorates the results. ATErmse,geo relative to init_pgo,
geometric mean over all sequences.

From these results, we suspect that for a residual pattern consisting of only 8 pixels,
the ZNCC cannot be estimated reliably. Therefore, no suitable threshold can be found
for such a small pattern. We additionally performed the photometric occlusion detection
on a larger pattern of 25 pixels (9x9 sparse pattern in Figure 4.11). Here it has proven
to be easier to find a suitable threshold. We can decrease the ATErmse,geo from 0.738 to
0.722 by using zncc_min = 0.9.

To conclude, our photometric occlusion detection algorithm only works on larger
patterns. A pattern size of 8 pixels is too small to define a threshold, because the
ZNCC estimate is not reliably enough. Note that the photometric occlusion detection is
computationally very efficient, see Table 4.34. This table shows the average runtime
per sequence for the photometric and geometric occlusion detection algorithms. It
also shows the average runtime for the complete PBA procedure. Note that the total
runtime contains all pre- and postprocessing steps which are not necessary when using
our PBA pipeline in a real application. For example, we align our estimated poses in
every iteration to the ground truth poses and compute the ATE. Also, we compute
and output many intermediate debugging variables. Removing the runtime options
which are used for development is also expected to decrease total runtime significantly.
Furthermore, in a real SLAM application we can limit the number of iterations since
in most scenarios the first few iterations decrease the cost and ATE by far the most.
The total runtime is expected to drop at least by a factor of 3 to 4 when the proposed
measures are taken.
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total PBA geometric (parallel) photometric

∅ runtime per sequence 735 s 10.13 s 0.24 s

Table 4.34: Average runtime per sequence for our occlusion detection algorithms in
seconds. The geometric version is parallelized and still takes around 40
times longer than the simple photometric occlusion detection. The total PBA
runtime includes all pre- and postprocessing steps as well as computation
of ATE in every iteration.
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In this thesis, we have evaluated numerous modifications of the PBA formulation.
Overall, PBA has proven to be quite agnostic to many of the proposed changes. However,
we could show that the interpolation schemes in the target image significantly alter
the optimization. Our current recommendation is to use a smooth interpolation for
the first few iterations followed by an exact interpolation. Bicubic interpolation has a
slight advantage in terms of final ATE but is more expensive to compute than bilinear
interpolation.

We could not improve final ATE by optimizing the 3D orientation of each residual
pattern individually, parameterized by a normal vector. The ATE increase when
first optimizing the normal vectors with fixed poses and landmarks, followed by an
optimization of poses and landmarks with fixed normals. The ATE also increases when
performing a joint optimization of normal vectors, poses and landmarks. However, we
found that by first performing regular PBA followed by a normal vector optimization as
post-processing step, the residual patterns align parallel to underlying planar geometry.
This was qualitatively confirmed on the test data set, where the residual patterns align
parallel to the road or the house walls.

In order to compensate for challenging scene illumination or unknown exposure
times, it is clearly beneficial to choose a residual formulation which takes into account
affine brightness changes to some extent. There is no noticeable advantage to optimize
these affine brightness parameters explicitly using rab versus implicitly modelling them
using for example rlssd. We expect to see further improvements if the camera response
function γ() is included as in DSO [21]. Modelling the vignetting has not shown a
significant improvement.

We found that it is sufficient to use the first order Taylor expansion of the warp
function as an approximation. Likewise, it is sufficient to approximate the motion
Jacobians using the central pixel only. These approximations hold for a residual pattern
of common size. The optimization degrades using these approximations once the
residual pattern is unreasonably large, e.g. covering more than 13x13 pixels.

Finding suitable tuning constants for the robust loss functions is difficult. Satisfactory
results can be achieved when averaging the estimated tuning constants over all datasets.
This is relevant for applications where data set characteristics are known a priori. The
lowest averaged ATE when using the robust Huber loss is achieved by setting a global
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Huber parameter of τ = 5.0. The lowest averaged ATE when using the t-distribution
is achieved when determining the weights via self-tuning approach proposed in [2].
We generally recommend to use the self-tuning approach because it selects the robust
weights in a data-adaptive manner and it can easily be used for different robust loss
functions as well. For the case of estimating the tuning constants per target frame as in
[63] or [45], we derived a corrected robust weight formulation for the t-distribution. We
found that it makes a major difference to use our corrected formula in some scenarios,
e.g. notably on a costly pre-processed photometric map of the EurocV101 sequence, see
figure 4.12.

Furthermore, we showed that in the case of robust loss functions, the second order
Triggs correction applied to the LM Hessian can improve the averaged ATE. If the
robust loss is based on the t-distribution, the Triggs correction appears to be beneficial,
even in the first few iterations of the optimization. In the case of a robust Huber loss,
the Triggs correction degrades the results. We suspect this degradation is because the
second derivative is zero in the inlier region and only outlier observations contribute
to the correction of the Hessian. Therefore, the second derivative of the loss function
needs to be analyzed before using the Triggs correction.

We could show that it is not extremely relevant which particular matrix is used to
dampen the Hessian in the LM algorithm. It is sufficient to only dampen the landmarks
based on the identity matrix or to alternatively use the diagonal of the Schur matrix to
dampen the camera block. Most importantly, it is not required to compute and store the
diagonal of the original Hessian. However, the check whether or not the current update
step actually decreases the cost in the LM routine is crucial. It seems irrelevant for PBA
whether the original non-linear cost ρ(r) = ∑N

i=1 ρ(‖ri(θ)‖2) or the intermediate OLS
costs C(r(θ)) = rlin(θ)

T W rlin(θ) of the IRLS formulation are evaluated.
Lastly, we implemented simple occlusion detection algorithms before setting up the

PBA. Our geometric occlusion detection algorithm improves performance slightly. The
proposed photometric occlusion detection algorithm based on ZNCC only results in a
performance improvement if larger residual patterns are used. If the residual pattern is
too small, no meaningful threshold can be found since ZNCC is not estimated reliably
from only a few pixels.

Future work can be divided into two directions: Similar to this thesis, further
modifications which could improve the PBA formulation should be investigated. One
idea is to systematically work out the numerical properties of our manual solver. We
cannot fully explain the solver’s behaviour in some cases. For example, in the case of
using the Identity matrix for LM dampening, we have expected to see worse results
compared to using the original Hessian matrix, because the Identity is scale agnostic.
We suspect that this unexpected result might be due to numerical properties in the
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solver. It could also be beneficial to improve the updating strategy of the dampening
parameter λ which is currently increased in every unsuccessful iteration. One possible
starting point to investigate the numerical characteristics is to try closing the gap
between our manual solver implementation and our ceres-solver implementation. Both
solvers behave slightly different even though they optimize the same cost. By choosing
the bicubic interpolation methods for either solver, the gap between them has already
been reduced. Remaining differences include the updating strategy of λ, the linear
solver implementation and the evaluation order when setting up the OLS equation
system. Furthermore, it might be fruitful to systematically determine the relationship
between the formulated cost function and our actual quantity of interest, i.e. the ATE
(and map quality). Is it possible to only apply these cost updates which do not alter the
ATE for the worse? How can the robustness of ATE be increased? To achieve this, it is
possibly necessary to use more sophisticated metrics which also take local consistency
and landmark accuracy into account.

Other promising research topics to improve PBA are more advanced occlusion and
deduplication algorithms. We expect to see a substantial performance gain if occlusions
are avoided. The proposed occlusion detection algorithms do not seem ideal yet.
Deduplication algorithms could reduce the number of redundant landmarks in 3D
space and make the optimization faster and possibly more accurate. To make the
results more significant, the system should be evaluated on an even larger collection of
different data sets. It is possible to evaluate our method on any kind of VSLAM data
set where a sufficiently accurate initialization using VO and PGO can be achieved. It
is also possible to extend our PBA routine to a stereo formulation for stereo data sets.
Furthermore, it would be very useful to perform quantitative structure evaluation, for
example using the metrics proposed in [63]. An analysis of motion and map accuracy
could provide new insights into how well PBA performs on both tasks. Another line of
work could be to compare the current PBA formulation or parts of it against alternative
methods using for example deep learning or traditional feature-based BA.

The alternative direction of future work is to integrate our PBA solver into a real
VSLAM system. To achieve this goal, a large focus needs to be put on runtime
improvements. One major runtime boost could be achieved by implementing an
inverse compositional version of the parameter update equations, see [6], [45]. More
sophisticated data structures and new parallelization techniques could also result in
a significant speedup. Furthermore, we make use of many runtime options to ease
algorithmic development in the current implementation. By removing these runtime
options, another major speedup is expected. To actually integrate PBA into a VSLAM,
many research questions are open: How many iterations of PBA should actually be
performed to reach an acceptable balance of accuracy and computational time? Can the
PBA routine profit from multiple optimization rounds? Should additional information

93



5 Conclusions

be acquired from the front-end? Which components of pre-processing should run in
the PBA back-end and which algorithms are also relevant in the front-end?
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Glossary

EM The EM-algorithm is an iterative algorithm which is generally applied to find
the maximum likelihood of probability models containing latent (un-observable)
variables [8, page 439]. 11, 19, 74

geometric mean To compare performance measures relative to a given base perfor-
mance, the geometric mean should be employed [22]. For example, in this thesis
we compare the geometric average of ATErmse over multiple sequences of different
methods relative to our initialization. Refer to equation 1.4 for details. 6, 30, 35,
50, 81

irradiance constancy If two cameras observe a 3D point from different vantage points,
the received irradiances (in Watts per square meter) in the cameras at the respec-
tive pixel positions are the same [21]. 3, 8

lambertian Objects which show the same brightness independent of the observer’s
viewing angle [7]. 4, 16

photoconsistency If two identical cameras observe a 3D point from different vantage
points, the response (pixel value) in the cameras at the respective pixel position is
the same [27]. The cameras need to use same intrinsic calibration as well as the
same exposure time. This assumption only holds for lambertian objects which
show the same brightness independent of the viewing angle [7]. 2, 3, 8

residual pattern The set of Np points which belong to the same landmark in 3D space.
Points of the same residual pattern share the inverse distance (depth) parameter
id. In the case of inverse distance parameterization, the unprojected residual
pattern in 3D lies on a sphere. In the case of inverse depth parameterization, the
unprojected residual pattern forms a plane which is parallel to the image sensor.
We also refer to the residual pattern as patch. 4, 5, 10, 16, 28, 30, 32, 50, 51, 56, 57,
58, 88, 91
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Glossary

Schur complement A method for solving a linear system of a special structure, which
decomposes the system into two smaller subsystems [54]. By applying the Schur
complement to our PBA Hessian, we can solve the reduced camera system to obtain
the update of the poses. To obtain the update of the landmarks, we still need to
invert a large system. However, this is very efficient because inverting a diagonal
matrix can be performed by inverting the all entries individually. 22, 23, 80

Triggs correction A method for solving a robust cost function more exact than standard
least-squares solvers, introduced in [54]. In particular, the Hessian matrix deviates
from the standard IRLS approach by an additive factor, which leads to different
convergence behaviour. The modified Hessian can be implemented by rescaling
of Jacobians and residuals. The method converges to the same minimzer as IRLS.
Further details can be found in [60], [61]. An exemplary implementation with
improved runtime is given in the Ceres solver [4]. 24, 69

warp In the context of this thesis, the warping function describes the transformation
chain between 2D pixels of host and target image. This includes the unprojection
from the host image to 3D, a rigid body transformation in 3D, and the reprojection
from 3D to the target image [27]. We evaluate approximations to this warp
function for PBA in section 4.5. 3, 5, 10, 28, 29, 32, 44, 51, 56, 91
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Acronyms

ATE absolute trajectory error. 6, 25, 26, 33, 47, 48, 53, 71, 72, 82

BA Bundle Adjustment. 2, 9, 10, 12, 15

DOF degree of freedom. 10, 14, 15, 32

DSM Direct Sparse Mapping. 9, 10, 28, 87

DSO Direct Sparse Odometry. 2, 4, 9, 44, 50, 55, 57, 58, 86, 88, 91

GN Gauss-Newton. 20, 22, 23, 81, 82

IRLS iteratively reweighted least squares. 16, 17, 21, 24, 92, 105

LDSO Direct Sparse Odometry with Loop Closure. 4, 9, 10, 22, 26

LM Levenberg-Marquardt. 20, 21, 23, 48, 54, 71, 72, 79, 80, 81, 82, 92

MAD Median Absolute Deviation. 19, 62, 73

NLS non-linear least squares. 17, 20, 21, 23, 79

OLS linear or ordinary least squares. 17, 21, 22, 79, 92, 93, 98

PBA Photometric Bundle Adjustment. 2, 3, 8, 9, 10, 15, 16, 18, 21, 22, 23, 24, 26, 28, 33,
43, 49, 52, 55, 62, 70, 75, 79, 85, 88, 89, 91, 92, 93, 105

PGO Pose Graph Optimization. 4, 6, 8, 9, 11, 93

RMSE root mean squared error. 6

SLAM Simultaneous Localization and Mapping. 1, 9, 44, 70, 79, 89

VO visual odometry. 1, 2, 8, 9, 11, 17, 44, 93
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Acronyms

VSLAM visual SLAM. 1, 2, 8, 9, 17, 93

ZNCC zero normalized cross correlation. 10, 51, 52, 54, 88
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