

Photometric Bundle Adjustment for Globally Consistent Mapping

Simon Klenk

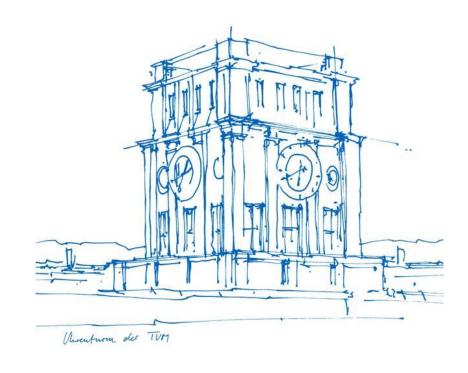
Technische Universität München

Chair of Computer Vision & Al

Master Thesis

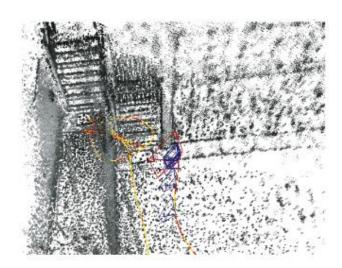
Advisor: M.Sc. Nikolaus Demmel

Supervisor: Prof. Dr. Daniel Cremers

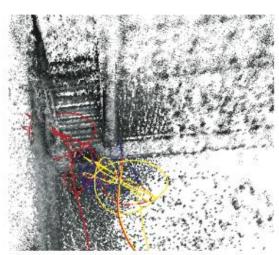


Motivation: Improving Photometric Maps

Before Loop Closure



After Loop Closure



Direct Sparse Odometry with Loop Closure [1]

Stairs converges to one object

Even more Improvement:

Photometric
Bundle
Adjustment

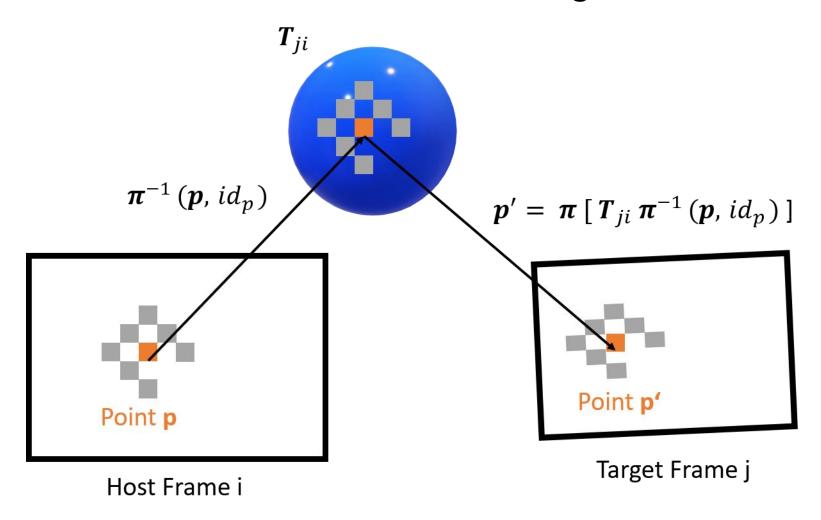
Research Question:

Is the current implementation without alternative?

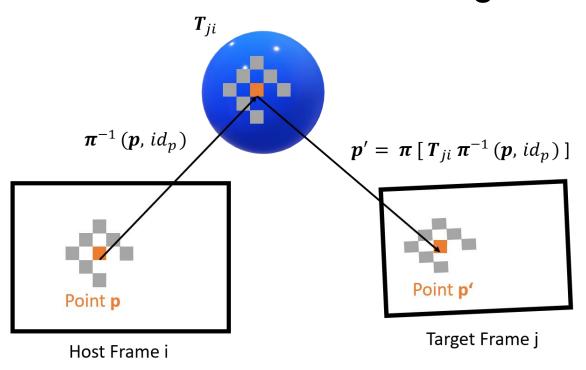
Evaluation:

Kitti odometry 00-10 Euroc MAV

PBA Cost Formulation: Direct Image Error

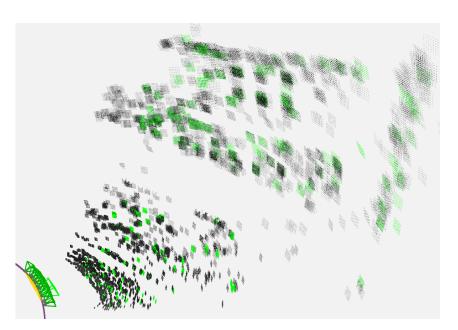


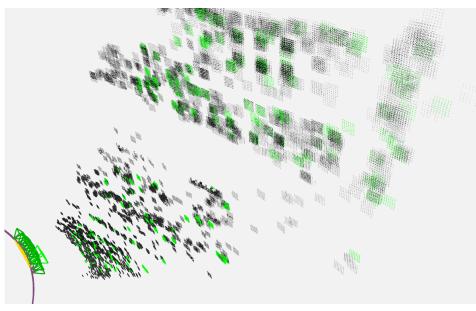
PBA Cost Formulation: Direct Image Error



$$E_{photo} = \sum_{frames} \sum_{points} \sum_{obs} \sum_{pattern} \| I_j [p'] - I_i [p] \|_{Huber}$$
Residual

Residual Pattern Geometry



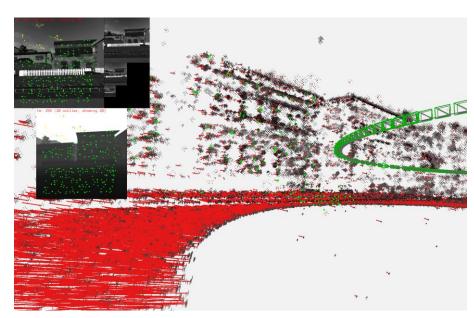


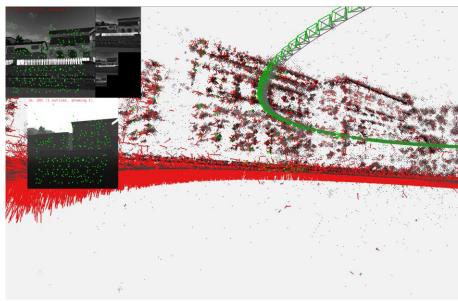
Spherical Patterns (inverse distance)

 $0.675 ATE_{avg}$

Planar Patterns (inverse depth) 0.684 *ATE*_{avg}

Residual Pattern: Normal Vectors





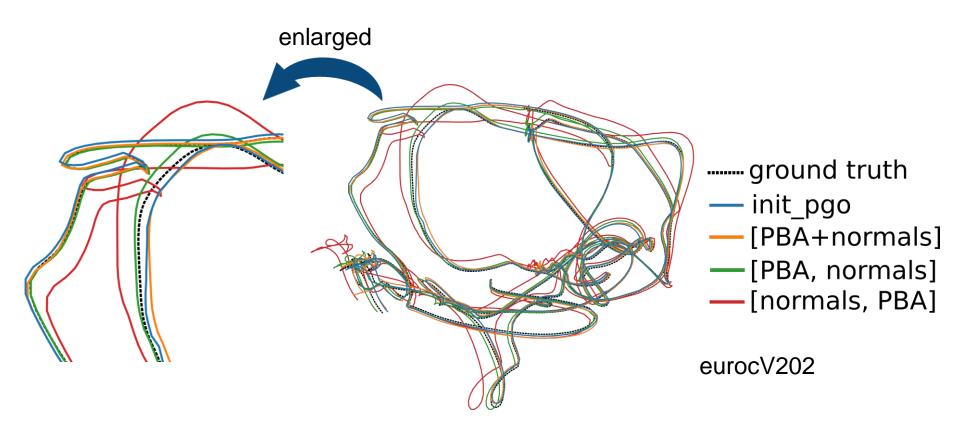
Initialization

How to optimize the normal vectors?

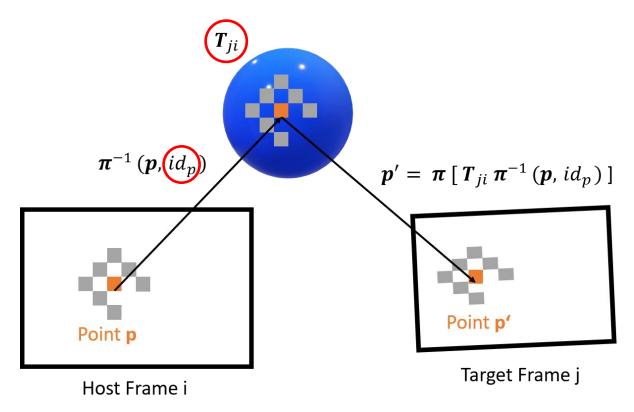
After normal vector optimization

Residual Pattern: Normal Vectors

	[PBA, normals]	[normals, PBA]	[PBA + normals]		
all sequences	0.672	0.762	0.731		

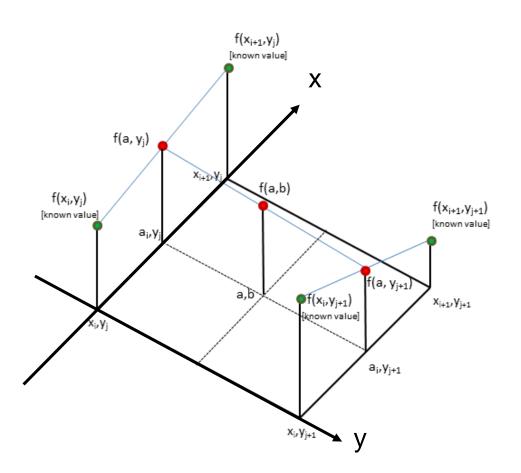


Where else did we have a closer look?



$$E_{photo} = \sum_{frames} \sum_{points} \sum_{obs} \sum_{pattern} ||I_{j}[p'] - I_{i}[p]||_{Huber}$$

Host-Target Transformation: Interpolation in Target

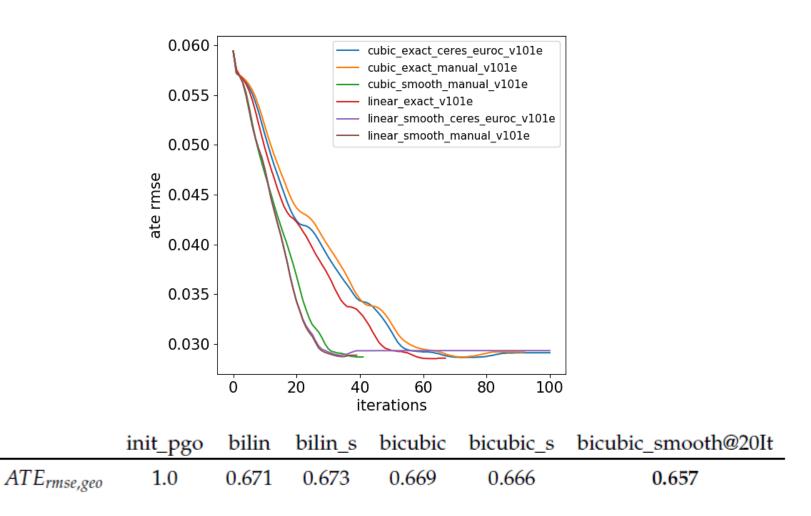


Computing exact gradients

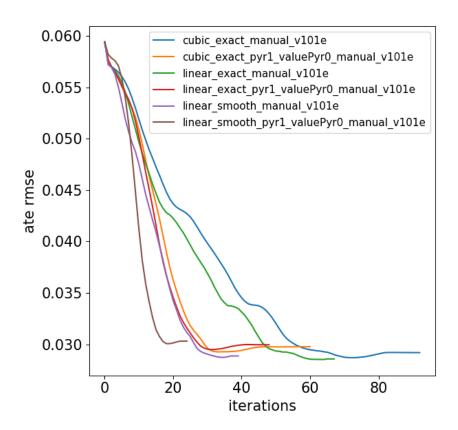
Computing **smooth gradients**: using gradient image (central differences)

Bilinear interpolation [2]

Host-Target Transformation: Interpolation in Target

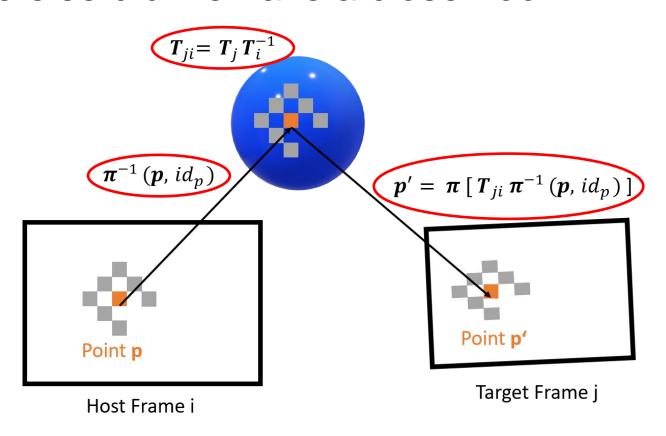


Host-Target Transformation: Interpolation in Target



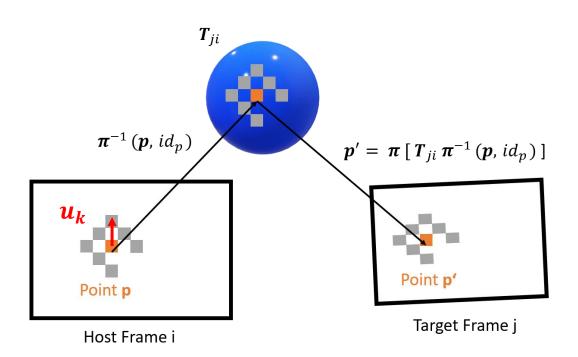
Smooth gradients are similar to interpolating on image pyramid

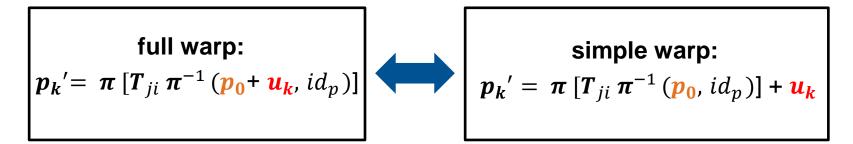
Where else did we have a closer look?

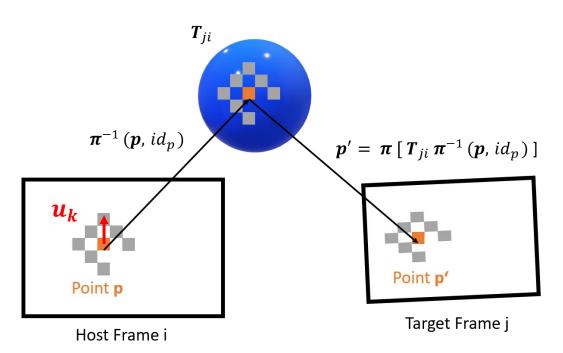


 $E_{photo} = \sum_{frames} \sum_{points} \sum_{obs} \sum_{pattern} ||I_{j}[p'] - I_{i}[p]||_{Huber}$

full warp: $\mathbf{p_k}' = \boldsymbol{\pi} \left[\mathbf{T}_{ji} \, \boldsymbol{\pi}^{-1} \left(\mathbf{p_0} + \mathbf{u_k}, i d_p \right) \right]$







full warp:

$$|\boldsymbol{p_k}' = \boldsymbol{\pi} [\boldsymbol{T_{ji}} \boldsymbol{\pi}^{-1} (\boldsymbol{p_0} + \boldsymbol{u_k}, id_p)]|$$

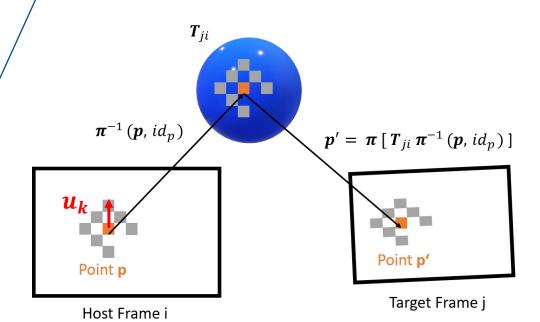
simple warp:
$$p_{k}' = \pi \left[T_{ji} \pi^{-1} \left(p_{0}, id_{p} \right) \right] + \mathbf{u}_{k}$$

exact full warp:

Warp all exactly

approximate full warp:

- Warp by 1st order Taylor at p_0
- Jacobian only for central pixel p₀



$$p_{k}' = \pi \left[T_{ji} \pi^{-1} \left(p_{0} + u_{k}, id_{p} \right) \right]$$
exact \longrightarrow approximate

simple warp:
$$p_{k}' = \pi \left[T_{ji} \pi^{-1} \left(p_{0}, id_{p}\right)\right] + u_{k}$$

DSO pattern

warp:	exact	approx	simple
all	0.707	0.693	0.693

$$p_{k}' = \pi [T_{ji} \pi^{-1} (p_0 + u_k, id_p)]$$

simple warp:
$$p_{k}' = \pi \left[T_{ji} \pi^{-1} \left(p_{0}, id_{p} \right) \right] + \mathbf{u}_{k}$$

DSO pattern

warp:	exact	approx	simple
all	0.707	0.693	0.693
euroc-ok	0.688	0.691	0.690
euroc-fail	1.183	0.997	1.006

$$p_{k}' = \pi [T_{ji} \pi^{-1} (p_0 + u_k, id_p)]$$

simple warp:
$$p_{k}' = \pi \left[T_{ji} \pi^{-1} \left(\mathbf{p_0}, id_p \right) \right] + \mathbf{u_k}$$

DSO pattern

warp:	exact	approx	simple
all	0.707	0.693	0.693
euroc-ok	0.688	0.691	0.690
euroc-fail	1.183	0.997	1.006
kit-no-loop	0.719	0.724	0.702
kit-loop	0.548	0.568	0.579

full warp: $\begin{vmatrix} \mathbf{p_k'} = \pi \left[\mathbf{T_{ji}} \, \pi^{-1} \left(\mathbf{p_0} + \mathbf{u_k}, i d_p \right) \right] \\ \text{exact} & \Rightarrow \text{approximate} \end{vmatrix}$

simple warp:
$$p_{k}' = \pi \left[T_{ji} \pi^{-1} \left(p_{0}, id_{p} \right) \right] + \mathbf{u}_{k}$$

	Ι	DSO pattern		9x9 sparse			13x13 sparse		
warp:	exact	approx	simple	exact	approx	simple	exact	approx	simple
all	0.707	0.693	0.693	0.739	0.743	0.787	0.785	0.796	0.847
euroc-ok	0.688	0.691	0.690						
euroc-fail	1.183	0.997	1.006						
kit-no-loop	0.719	0.724	0.702						
kit-loop	0.548	0.568	0.579	-					

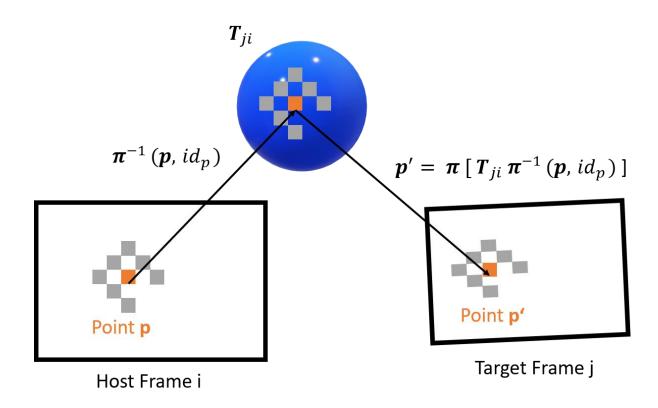
full warp:

$$p_{k}' = \pi [T_{ji} \pi^{-1} (p_0 + u_k, id_p)]$$

simple warp:
$$p_{k}' = \pi \left[T_{ji} \pi^{-1} \left(p_{0}, id_{p} \right) \right] + \mathbf{u}_{k}$$

	DSO pattern		9x9 sparse			13x13 sparse			
warp:	exact	approx	simple	exact	approx	simple	exact	approx	simple
all	0.707	0.693	0.693	0.739	0.743	0.787	0.785	0.796	0.847
euroc-ok	0.688	0.691	0.690	0.738	0.731	0.779	0.795	0.796	0.930
euroc-fail	1.183	0.997	1.006	0.996	0.996	0.986	1.015	1.013	1.010
kit-no-loop	0.719	0.724	0.702	0.778	0.781	0.766	0.736	0.774	0.699
kit-loop	0.548	0.568	0.579	0.566	0.566	0.603	0.579	0.582	0.640

Where else did we have a closer look?

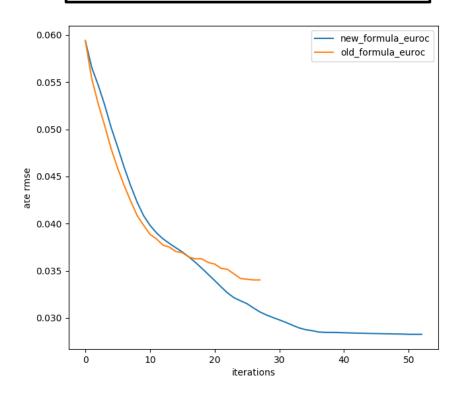


$$E_{photo} = \sum_{frames\ points\ obs\ pattern} \sum_{points\ obs\ pattern} \left\| I_j\left[p' \right] - I_i\left[p \right] \right\|_{t-distribution}$$

Robust Norms: t-distribution

ours:
$$w_{i,t} = \frac{1}{\sigma_t^2} \frac{v+1}{v+\left(\frac{r_i}{\sigma_t}\right)^2}$$

old [3]:
$$W_{i, t} = \frac{v+1}{v+\left(\frac{r_i}{\sigma_t}\right)^2}$$



cost:
$$c = \sum_i w_{i,t} r_i^2$$

Robust Norms: t-distribution

$$c = \sum_{i} w_{i,t} r_i^2$$

TDist weight

weight:	$w_{i,corrected}$	$w_{i,old}$
all sequences	0.708	0.708
euroc-ok	0.627	0.702
euroc-fail&eurocV202	1.355	1.053
kit-no-loop	0.520	0.584
kit-loop	0.720	0.683

ours:
$$w_{i,t} = \frac{1}{\sigma_t^2} \frac{v+1}{v+\left(\frac{r_i}{\sigma_t}\right)^2}$$
 old [3]: $w_{i,t} = \frac{v+1}{v+\left(\frac{r_i}{\sigma_t}\right)^2}$

Robust Norms: t-distribution

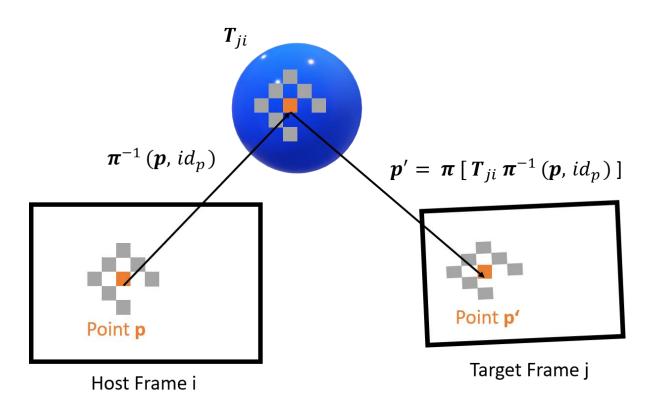
$$c = \sum_{i} w_{i,t} r_i^2$$

TDist weight

weight:	$w_{i,corrected}$	$w_{i,old}$	average CoV	_
all sequences	0.708	0.708	0.58	_
euroc-ok	0.627	0.702	0.65	((-))
euroc-fail&eurocV202	1.355	1.053	0.74	$CoV = \frac{var(\{\sigma\})}{mean(\{\sigma\})}$
kit-no-loop	0.520	0.584	0.51	$mean(\{\sigma\})$
kit-loop	0.720	0.683	0.41	

ours:
$$w_{i,t} = \frac{1}{\sigma_t^2} \frac{v+1}{v+\left(\frac{r_i}{\sigma_t}\right)^2}$$
 old [3]: $w_{i,t} = \frac{v+1}{v+\left(\frac{r_i}{\sigma_t}\right)^2}$

Where else did we have a closer look?



$$E_{photo} = \sum_{frames\ points\ obs\ pattern} \sum_{plot} \sum_{plot} \left[I_{j} \left[p' \right] - I_{l} \left[p \right] \right]_{Huber}$$

Residual Formulations

- Explicit brightness model (per image): ABOPT

$$\mathbf{r}_{ab}^{(k)} = (I_j[\mathbf{p}_k'] - b_j) - \frac{e^{a_j}}{e^{a_i}} (I_i[\mathbf{p}_k] - b_i)$$

- Implicit brightness model (per patch): LSSD, LNSSD, ZNCC/ZNSSD

$$\mathbf{r}_{lssd}^{(k)} = I_j[\mathbf{p}_k'] - \frac{\overline{\mathbf{I}}_j}{\overline{\mathbf{I}}_i} I_i[\mathbf{p}_k]$$

residuals:	SSD	LSSD	LNSSD	ABOPT
all sequences	0.693	0.658	0.670	0.666

Residual Formulations

- Explicit brightness model (per image): ABOPT

$$\mathbf{r}_{ab}^{(k)} = (I_j[\mathbf{p}_k'] - b_j) - \frac{e^{a_j}}{e^{a_i}} (I_i[\mathbf{p}_k] - b_i)$$

- Implicit brightness model (per patch): LSSD, LNSSD, ZNCC/ZNSSD

$$\mathbf{r}_{lssd}^{(k)} = I_j[\mathbf{p}_k'] - \frac{\overline{\mathbf{I}_j}}{\overline{\mathbf{I}_i}} I_i[\mathbf{p}_k] \qquad 2 * (1 - ZNCC) = ZNSSD$$

residuals:	SSD	LSSD	LNSSD	ABOPT	ZNCC	ZNSSD
all sequences	0.693	0.658	0.670	0.666	0.751	0.676

Overview of other experiments

- Huber:

- Per-target frame works, with different scale estimator (same as for t-distribution, MAD, or sample standard deviation tested)

Self-tuning M-estimation [4]:

- Achieves very good results for t-distribution
- most general and therefore preferred

- LM dampening:

 No big difference between options, most efficient should be used, e.g. only landmark dampening (identity or original Hessian or Schur)

LM step criteria:

Okay to evaluate PBA cost or linearized costs, theoretically OLS correct

Triggs correction:

- Second order correction of Hessian for robust loss
- Small improvement for t-distribution, for Huber not because only outlier contribute to corrected Hessian

Occlusion geometric & photometric:

- Simple approaches results only in very minor improvement

Conclusions

- **Use** residuals which account for brightness changes
- Use smooth gradients in the beginning, exact gradients in the end
- Use full warp: approximated version is usually fine, simple warp is too simple
- Use normal optimization as separate step after PBA
- Use self-tuning approach (or corrected formula for t-distribution)
- Use Triggs-correction for t-distribution case
- Use any kind of dampening (diagonal of Hessian/Schur or identity)

Future Work:

- different metrics required! (especially map evaluation)
- Numerical properties
- Occlusion detections / Deduplication
- Benchmark on more data & against DL / feature-based

Thanks for listening and asking questions!

Sources

[1] X. Gao, R. Wang, N. Demmel and D. Cremers, LDSO: Direct Sparse Odometry with Loop Closure, iros, October 2018

[2] Stackoverflow Answer by Niek Sanders (user: nsanders) on 10.01.2012. Question: "Bilinear interpolation to enlarge bitmap images asked on 10.01.2012. Link: https://stackoverflow.com/questions/8808996/bilinear-interpolation-to-enlarge-bitmap-images [last acces 13.06.2020]

[3] J. Zubizarreta, I. Aguinaga, and J. M. M. Montiel. "Direct Sparse Mapping." In: CoRR abs/1904.06577 (2019). arXiv: 1904.06577.

[4] G. Agamennoni, P. Furgale, and R. Siegwart. "Self-tuning M-estimators." In: 2015 IEEE International Conference on Robotics and Automation (ICRA). May 2015, pp. 4628–4635. doi: 10.1109/ICRA.2015.7139840.