Computer Vision Group
Department of Informatics
Technical University of Munich

Direct Object Tracking

Guided Research Presentation
28.04.2021

Korobov Nikita

Supervisors:
Nikolaus Demmel, Aljosa Osep

©2021 Technical University of Munich



Motivation

e Tracking of objects is “must have” for an autonomous system;

e Static SLAM can benefit from tracking of dynamic objects [1].

Goal

e Build 3D-2D MOT system using direct methods.

[1] Yang, Shichao, and Sebastian Scherer. "Cubeslam: Monocular 3-d object slam.



Related work LI
Dynamic SLAM

e Dynamic scenes are difficult for standard SLAM systems;
e Excluding dynamic parts may help in SLAM [1];
e SLAM and tracking of dynamic objects may be coupled [2].

3D MOT

e Use 3D info to improve 2D tracking [3, 4];
e Use motion model based tracker given detections [5];

e Use 2D-3D appearance based association [6].

[1] Yang, Shichao, and Sebastian Scherer. "Cubeslam: Monocular 3-d object slam.”

[2] Ballester, Irene, et al. "DOT: Dynamic Object Tracking for Visual SLAM."

[3] Osep, Aljosa, et al. "Combined image-and world-space tracking in traffic scenes."

[4] Luiten, Jonathon, Tobias Fischer, and Bastian Leibe. "Track to reconstruct and reconstruct to track."

[5] Weng, Xinshuo, et al. "AB3DMOT: A Baseline for 3D Multi-Object Tracking and New Evaluation Metrics."

[6] Baser, Erkan, et al. "Fantrack: 3d multi-object tracking with feature association network."
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Direct Image Alignment

For each pixel in mask;
Image pyramid,;
e Depth is known for one frame;

e Photometric error.



2D tracking
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e Sparse optical flow; D1 | | |

e Opportunistic tracking: try 3D, if fails, then 2D;
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e Helps to keep the tracklet if 3D tracking fails. [ ] Trackedin 2D
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Direct Sparse Odometry

e Sparse points;

e Joint optimization of depth and poses;

e Photometric error.



Accumulated point clouds

Dashed line - GT trajectory.
Solid line - estimated trajectory.
Red anchor point - reference frame.




Object localization

e No 3D supervision is required;

e Dataset specific assumptions;

e Object existence is guaranteed in the

accumulated point cloud;

e Finite number of bbox hypothesis;

e Bbox size correction.

Red - occupied cells.
Blue line - convex hull.
Green dashed rectangle - bounding box hypothesis.
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Evaluation 3D MOT metric m

e MOTA imbalances DetA and AssA -> HOTA;
e HOTA -> integration over similarity thresholds;

e 3D loUis 0 for non-overlapping objects -> detection is counted as FP, GT as FN -> 3D GloU,;

1
cro = ANB _ C\(ANB) HOTA — / J/AssA, * DetA,du
AUB C 0
C is the smallest enclosing bbox
/\\
2 \ B Misses + FP + Switches
’ < R MOTA =1- a7
/
/




Demo



https://docs.google.com/file/d/1MjqbNQaG2cE7hkhWKMbbB8ta7cS08_IG/preview
https://docs.google.com/file/d/1XYBdBxeyqC7n2O9Cci9YJCy8t3JT7Rwz/preview

Experiments Tm

e KITTI object tracking dataset [7], validation split (11 sequences);
e Competitors: PointRCNN [1], DispRCNN [2], DSGN [3], AB3DMOT [4] (as tracker);
e HOTA[5] + 3D GloU [6].

[1] Shi, Shaoshuai, Xiaogang Wang, and Hongsheng Li. "Pointrcnn: 3d object proposal generation and detection from point cloud."
[2] Sun, Jiaming, et al. "Disp r-cnn: Stereo 3d object detection via shape prior guided instance disparity estimation.”

[3] Chen, Yilun, et al. "Dsgn: Deep stereo geometry network for 3d object detection."

[4] Weng, Xinshuo, et al. "AB3DMOT: A Baseline for 3D Multi-Object Tracking and New Evaluation Metrics."

[5] Luiten, Jonathon, et al. "HOTA: A higher order metric for evaluating multi-object tracking."

[6] Xu, Jun, et al. "3D-GloU: 3D generalized intersection over union for object detection in point cloud.”

[7] Geiger, Andreas, Philip Lenz, and Raquel Urtasun. "Are we ready for autonomous driving? the kitti vision benchmark suite."



Results of 3D MOT

TUT

Tracker | Detector HOTA | DetA | AssA | DetRe | DetPr | AssRe | AssPr | LocA
GloU
AB3DMOT | PointRCNN (LiDAR) | 73.85 7092 | 77.38 | 81.37 | 79.27 | 8093 | 90.27 | 88.74
AB3DMOT DSGN (12 Gb) 48.46 47.08 | 53.59 | 50.58 | 76.23 | 55.75 | 9141 | 81.70
AB3DMOT DSGN (full) 55.78 5294 | 6241 | 5756 | 76.17 | 64.84 | 91.66 | 82.11
AB3DMOT DispRCNN (vob) 67.21 66.18 | 69.59 | 69.79 | 84.43 | 72.00 | 91.09 | 85.92
AB3DMOT DispRCNN (pob) 67.35 6749 | 68.28 | 71.71 83.16 | 70.65 | 89.07 | 85.27
Ours Bbox 49.16 46.50 | 54.06 | 54.32 | 56.00 | 59.51 68.11 | 70.77
IoU
AB3DMOT | PointRCNN (LiDAR) | 65.59 61.65 | 70.67 | 72.38 | 70.51 7514 | 8298 | 81.80
AB3DMOT DSGN (12 Gb) 40.60 3532 | 51.93 | 40.08 | 60.40 | 55.19 | 84.29 | 75.10
AB3DMOT DSGN (full) 46.51 39.82 | 59.71 | 46.00 | 60.87 | 63.46 | 85.44 | 75.89
AB3DMOT DispRCNN (vob) 58.37 | 55.57 | 63.40 | 61.59 | 71.31 67.06 | 8245 | 78.59
AB3DMOT DispRCNN (pob) 57.62 | 55.519 | 61.24 | 61.346 | 71.145 | 64.71 | 80.342 | 78.243
Ours Bbox 31.60 2690 | 39.05 | 3548 | 36.58 | 4593 | 51.27 | 65.07

3D MOT task; HOTA with 3D GloU and HOTA with 3D loU.



Results of 2D MOT

Tracker Detector MOTA | MOTP | IDs | FP | FN
AB3DMOT PointRCNN (LiDAR) 75.62 | 8697 | 28 | 701 | 1110
AB3DMOT DSGN (12 Gb) 5724 | 87.03 | 204 | 224 | 2797
AB3DMOT DSGN (full) 64.64 | 8893 | 130 | 314 | 2223
AB3DMOT DispRCNN (vob) 84.05 89.97 | 64 | 91 | 1048
AB3DMOT DispRCNN (pob) 87.76 89.99 | 65 | 93 | 1067
MOTSFusion RRC + BB2SegNet 94.0 - 9 | 45 | 400

CIWT Regionlets 74.38 82.85 | 26 - 2
Ours BB2SegNet for 2D + Convex hull for 3D | 89.13 8218 | 78 | 192 | 550

2D bounding box MOT evaluation on validation set. For 3D methods the 3D

bounding box is projected on the image plane.




Ablation study
Setup HOTA | DetA | AssA | DetRe | DetPr | AssRe | AssPr | LocA
LibELAS depth [29] 4435 | 4030 | 51.53 | 48.65 | 5043 | 57.57 | 65.78 | 69.19
SGBM Depth [28], OpenCV 38.87 | 36.08 | 43.62 | 44.77 | 46.37 | 50.89 | 58.85 | 68.06
W/0 RANSAC pose initialization | 48.00 | 45.11 | 52.81 | 52.17 | 56.78 | 58.16 | 68.08 | 71.04
W /o DIA failure filtering 48.04 | 45.88 | 52.47 | 53.43 55.69 57.61 68.09 | 70.56
W /o DSO optimization 48.67 | 46.05 | 53.29 | 5343 | 56.37 | 58.67 | 68.00 | 70.82
W /o 2D tracking 46.69 | 4597 | 49.26 | 53.24 | 56.41 | 53.79 | 68.82 | 70.73
With GT masks 51.17 | 4598 | 5890 | 54.18 | 54.75 | 66.02 | 66.40 | 70.348
Baseline 50.88 | 48.67 | 54.66 | 56.40 | 58.21 | 60.09 | 68.57 | 71.65
Full system 49.16 | 46.50 | 54.06 | 54.32 | 56.00 | 59.51 | 68.11 | 70.77

e Baseline: tracking as in full system, but object detection is from single depth map (rather

than accumulated point cloud);

HOTA + 3D GloU

e Method significantly relies on the accurate depth map;

e 2D tracking significantly helps to associate the detections, when 3D tracking fails.




Full version vs Baseline

MOTP3D =

MOTP3D by distance range
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Conclusion

e Sparse and direct method to track objects in 2D and 3D;

e No 3D supervision required;

e Promising results for 3D and 2D MOT;
e HOTA + GloU as the 3D MOT metric.

Future work

e Better 3D object detector in point cloud,;

e Need for fair evaluation of the competing methods. B —

. e




