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Abstract

Many augmented reality and robotic applications rely on fiducial markers for reliable and
accurate estimation of the relative 3D pose between camera and an object. This thesis
introduces a new fiducial system design based on 3× 3 grids of individual circles. Our
method is specifically designed to work well with fisheye cameras, which produce significant
amounts of image distortion. By combining individual ellipse detections with geometric
heuristics our method is able to reliably detect markers even at the edges of distorted
camera field-of-views. Using all circle locations for pose estimation leads to more robust
results compared to previous state of the art methods. We also describe a novel way of
composing individual fiducial tags into larger grids. This enables the use of larger markers
without adapting the detection pipeline, resulting in additional occlusion resistance and error
detection. Our marker coding system facilitates grids up to sizes of 19× 19 circles, which
is especially useful for the calibration of large field-of-view cameras. Experiments on both
simulated datasets as well as real world examples show the robustness of our marker system
in comparison to existing state of the art methods.
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1 Introduction

With the still ongoing rise in popularity of augmented reality applications as well as an
increasing number of robots in use in industry and personal areas, there has been more and
more research focused into methods which solve the problem of 3D tracking and environmen-
tal localization. In order to accurately project an artificual overlay onto the environment for
immersive augmented reality, one first has to determine the 3D position of the camera which
is capturing a given scene. A similar challenge is presented by many robotic applications
in which a robot has to be localized reliably in predetermined environments. While there
exist a multitude of possible solutions to these problems such as performing simultaneous
localization and mapping (SLAM) to localize a camera in an unknown environment while
simultaneously generating a map, the most common one has been the use of specifically
designed fiducial markers. Fiducial markers can be seen as artificially constructed patterns
designed to be easily recognizable and distinguishable. A key aspect which sets them apart
from many SLAM algorithms is that the 3D position of a marker can even be recovered
with only one image captured with a single camera. In SLAM one generally either needs a
stereo camera setup or additional depth information to recover 3D structure from images.
While fiducial markers, also called (fiducial) tags, often look similar to 2D barcodes such
as QR codes, they aim towards solving very different problems. QR codes try to maximize
the amount of general purpose information present in one marker to transmit payloads of
multiple hundred bytes such as URLs. They also do not have to be detected correctly in
challenging conditions such as unusual viewing angles or difficult lighting, as the person
holding the camera is in charge of roughly aligning the camera with the code. Nor do they
allow to recover the relative 3D position of a QR code relative to the capturing camera. Visual
fiducial markers on the other hand are specifically designed to be recognizable in challenging
environments and focus more on accurate detections of a tag than actual information content.
They still encode some information to be able to detect and distinguish multiple unique
markers present in the same image. The goal is to accurately recover the 3D position of a tag
relative to the camera even when the marker is far away, viewed at a low angle or slightly
obstructed.

1.1 Problem Statement

The design of visual fiducial tags is quite challenging, as a number of key characteristics factor
into their performance. In order to be used in real world applications tags should be detected
reliably even at large distances and unusual viewing angles. Ideally, the tag should still be
detected correctly if parts are occluded by other objects in a scene. Determining whether a
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1 Introduction

tag is present in an image is usually done in a two step approach. First, one needs to actually
find the pixels making up a marker in an image and second, the information encoded in
these pixels has to be recovered. Selecting a recognizable geometric shape for the markers is
a prerequisite for the first step while using an appropriate coding scheme for the tag payload
provides some error tolerance to accidentally detecting random objects and image artifacts as
valid fiducials. Many applications also require the detection algorithm to run in real time
to process a camera feed at 30 frames per second. Finally, the method should be able to
provide very stable estimates of the 3D marker position, as e.g. overlays in augmented reality
applications would otherwise jitter, leading to an unpleasant user experience. Since more and
more robotic and augmented reality applications make use of large field-of-view cameras
to observe a larger portion of the surroundings for tracking and object detection, fiducial
markers should also work well with the quite significant image distortion produced by such
cameras. Many current methods, however, are not designed for high distortion camera lenses,
as they often make very strict assumptions about the nature of the camera projection.

In this thesis, we introduce a new fiducial marker system based on 3× 3 grids of circles that
specifically provides accurate detections for high distortion cameras such as fisheye cameras.
The main contributions of this work are:

• We describe a method of achieving sub-pixel detection precision of fiducial markers
based on aggregating individual detections of circles in input images into circle grids
using local geometric heuristics which are not affected by image distortion.

• We design our markers to be detected reliably in all regions of highly distorted images
such as produced by large field-of-view cameras with e.g. fisheye lenses, without the
need for costly preprocessing steps such as undistorting the input image. This is a use
case currently not covered by many existing state of the art methods and is especially
useful for many robotic applications using these kinds of cameras.

• We describe an easy to implement coding system based on Lyndon words and optional
error-detection and correction schemes to provide rotationally unique tag identifiers.

• We introduce a novel way of composing individual fiducials into larger marker grids to
increase detection robustness and error-correction capabilities.

• We provide experimental results on a set of synthetic and real world benchmarks
comparing our method to state of the art fiducial systems.

1.2 Outline

We will start by introducing and reviewing related fiducial systems in the next chapter.
Afterwards, Chapter 3 covers the theoretical foundations used in later chapters such as the
mathematical representations of ellipses, different camera models and the methods for 3D
pose estimation used in our implementation. Subsequently we will give a high level overview
of our marker system design and explain the underlying design decisions in Chapter 4
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1 Introduction

before diving into the actual marker detection pipeline in Chapter 5. In Chapter 6, we will
introduce our novel way of composing individual fiducial markers into larger grids. Chapter 7
then gives an overview of the experimental results of our marker system on both synthetic
datasets as well as real world examples. Finally, Chapter 8 will close of this thesis by shortly
summarizing our contributions and presenting avenues for future work.
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2 Related Work

This chapter aims to give a short overview over the many different designs of existing fiducial
marker systems. While the individual markers often differ quite strongly, their basic design
can mostly be attributed to one of three categories. Markers with a square outer border, ones
based around circular features and ones that use a specific topological, geometric structure.

2.1 Square Fiducial Markers

Most practically used fiducial marker systems are based around square features. In general,
these markers are made up of a black, square border containing some black and white features
to encode a tag identifier. One of the older while still quite frequently used implementations
is ARToolkit [1]. While ARToolkit uses simple symbols like latin letters to encode the
tag identifier most newer marker designs that build upon it have adopted a QRCode-like
black and white binary pixel grid to encode their payload. Some prime examples are the
ARTag [2] and ARToolkitPlus [3] fiducial systems. Other widely used fiducial system are
AprilTag [4], [5] and ArUco [6] which improved upon ARTag and ARToolkitPlus in terms
of identifier encoding and detection accuracy. Generally all of the previously mentioned
marker systems follow the same basic detection pipeline. First, all approaches try to find the
square border that encompasses every marker. In some fiducial systems like AprilTag this
is done by fitting line segments to the image gradient, then building quads from these line
segments. In others like ArUco the image is first binarized using adaptive thresholding. Then
a contour following algorithm is employed to find all convex four-corner polygons. After
generating these marker candidates, a homography is computed to remove the perspective
distortion of the tag. Recovering the marker payload is done by overlaying a grid on top
of the undistorted binary image. ARToolkit correlates the sampled grid points against the
known tag symbols (e.g. latin characters). In most other fiducial systems the sampled grid
points directly represent the decoded tag identifier. At this point most square fiducial markers
use specific coding systems to generate tag identifiers resulting in different error detection
and correction schemes. In addition to differentiating between multiple tags in a given scene
these marker identifiers are also used to reliably recover the orientation of a detected fiducial.
AprilTag e.g. uses lexicodes to generate rotationally unique code words. A slightly more
recent addition to the family of square markers was introduced by Benligiray et al. in 2019
as STag [7]. Their basic detection process is similar to that of AprilTag or ArUco as they
first detect the quad representing the outer marker border. In a second step before payload
decoding they exploit the more accurate localization of circles by fitting an ellipse to the
inner circle of the tag to refine the corner positions as well as the homography later used
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ARToolkit [1] ARTag [2] ARToolkitPlus [3] AprilTag [4], [5]

ArUco [6] STag [7] ChromaTag [8]

Figure 2.1: Existing square fiducial marker systems.

for payload detection. While the basic principle behind STag’s payload encoding follows the
idea of using a binary pixel grid, they propose to encode bits using circles instead of squares
and merge them using morphological operations which they claim is more robust to slight
localization errors.

A mentionable exception to the described detection pipeline is presented by ChromaTag [8].
While the method still uses a square border around the tag its payload is encoded using
distinctive color patterns. Instead of initially trying to detect the square border itself the color
patterns are used to discard false positives in the early detection stages thereby achieving faster
detections. Similar to the other square fiducial markers ChromaTag also uses a homography
to remove the perspective distortion before decoding the marker payload. Examples for all of
the marker systems discussed in this section can be seen in Figure 2.1.

The main disadvantage of fiducial systems which rely on a square border for marker
detection is that they do not work well in heavily distorted images as produced by fisheye
cameras. Straight lines in a marker, which make up the square border, can be distorted and
bent significantly if markers are captured at the edges of a fisheye camera’s field-of-view. This
renders the basic detection scheme of many square markers unusable as they generally rely
on detecting a four sided quad for initial marker detection, often based on detecting straight
lines as a first step. The solution of first undistorting the whole input image is also not quite
ideal as it requires additional processing steps and leads to some loss in image detail during
undistortion.
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CCC [9] Cho et al. [10] InterSense [11] RuneTag [12]

CCTag [13] Pi-Tag [14] FourierTag [15], [16]

Figure 2.2: Existing circular fiducial marker systems.

2.2 Circular Fiducial Markers

Very early work towards using circular features for fiducial markers was done by Gatrell et
al. [9] who introduced the concept of using concentric contrasting circles (CCC). This was
later extended by Cho et al. [10] by using multiple colored concentric rings to achieve a
larger detection range. One of the downsides of these early methods is the limited amount of
payload (or lack thereof) that can be encoded in a marker. A later work by Naimark et al. [11]
extended the original concept by reserving two inner rings subdivided into 45° radial sectors
to encode up to 15 bits of payload. When introducing CCTag, Calvet et al. [13] extended
the original work of Gatrell et al. by using multiple concentric black circles and employing
theoretical gradient properties of concentric circles to get a robust detection pipeline. By
altering the width of its concentric rings CCTag is able to encode different tag identifiers.
A similar looking, but fundamentally different marker system was proposed by Satter et al.
[15] and Xu et al. [16], named FourierTag which encodes payload information as a circular
grayscale frequency image. Another fiducial system similar to that of Naimark et al. was
introduced with RuneTag [12]. By placing circles in concentric rings RuneTag achieves high
occlusion resilience while being able to encode a large number of unique marker identifiers.

A method which is quite similar to the fiducial system proposed in this work is Pi-Tag [14].
Here circles are laid out in a square with the distance ratios between circular features encoding
the marker identifier. It is important to note that while not using homographic projections to
remove perspective projection, most fiducial systems discussed in this section still assume a
regular projective geometry to decode their marker payload. The exception here being the
very basic systems by Gatrell et al. and Cho at al., CCTag as well as Fourier Tag, as these only
use properties of concentric rings to encode marker payloads.
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D-touch [17], [18] BullsEye [19]
ReacTIVision [20],
[21], [22]

TopoTag [23] LFTag [24]

Figure 2.3: Existing topological fiducial marker systems.

A crucial downside of many of the marker systems describe above is that they cannot be
used for camera or marker pose estimation as they provide too few point correspondences.
The exception being Pi-Tag and RuneTag as they each use multiple circles to build one marker.
Both of these two systems, however, also do not work well for distorted fisheye images
without an initial undistortion step, as they incorporate the assumption of an ideal projective
geometry into their marker detection scheme.

Figure 2.2 shows an example for every marker designs discussed in this section.

2.3 Topological Fiducial Markers

The third major category of fiducial marker systems is based around the idea of exploiting
the topological information present in certain marker geometries for easier detection and
localization. A very early such design is D-touch [17], [18]. To detect its fiducials D-
touch proposes to build adjacency graphs of connected components in an input image.
By comparing the adjacency information in the captured image with the known topology
of markers the method is then able to recover the position of fiducials. Due to its strict
topological requirements D-touch is only able to provide one distinct marker design. This
problem was later solved by ReacTIVision [20], [21], [22] which introduced a left heavy depth
sequency of the adjacency graph to encode a larger number of unique tag identifiers. Another
method called BullsEye [19] uses a black ring border with three white notches encoding its
orientation around a segmented payload ring which encodes the tag identifier (similar to
InterSense). All three methods, however, do not provide a way to perform 3D pose estimation
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using the detected fiducials as the markers contain too few feature points. Two later methods
called TopoTag [23] and LFTag [24] solve this problem by using more feature points while
still being able to encode a large number of unique tag identifiers. In the case of TopoTag the
topological structure itself, similar to ReacTIVision, is used to encode the marker identifier
while LFTag uses relative position differences in its feature points to distinguish different
markers. Similar to the previous sections, an example for each fiducial design can be found
in Figure 2.3.

A major difference between the class of circular or square markers designs and markers
based around topological information is that the latter is generally more robust to larger
distortions in the input images as they do not assume a standard projective geometry during
their detection process. This means, markers like TopoTag or LFTag are in principle more
robust in applications using large field of view cameras such as fisheye lenses. There are some
notable exceptions such as CCTag but this general rule holds for most approaches introduced
in Section 2.1 and Section 2.2.
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3 Preliminaries

This chapter covers the mathematical basics and preliminaries needed to understand the
fiducial marker design and detection process presented in this work. At first, the mathematical
foundations behind ellipse representations will be introduced, followed by a deeper look at
different camera models. Finally, the two approaches this work uses for 3D pose estimation,
linear methods and nonlinear optimization will be explained in more detail. To keep a
consistent notation throughout the thesis, we will use bold faced lowercase symbols for
vectors (e.g. x ∈ R3) and bold faced uppercase symbols for matrices (e.g. R ∈ R3×3).

3.1 Ellipse Representations

Since one of the major steps in our fiducial detection pipeline consists of the detection and
estimation of ellipses in input images it will be helpful to take a closer look at the different
mathematical representations as they will be used in later chapters.

Ellipses are a special case of conic sections of which the most general representation, which
includes all degenerate cases, can be represented by the equation

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0. (3.1)

This representation also clearly shows that a conic section is a generalization of a circle,
since we can obtain the equation for a unit circle x2 + y2 = 1 by substituting A = 1, B =

0, C = 1, D = 0, E = 0, F = −1. Rearranging Equation 3.1 results in the widely used matrix
representation [

x y
] [ A B/2

B/2 C

] [
x
y

]
+
[
D E

] [x
y

]
+ F = 0, (3.2)

which can be written more concisely by using homogenous coordinates x = [x, y, 1]T as

xTCx = 0, (3.3)

C =

 A B/2 D/2
B/2 C E/2
D/2 E/2 F

 . (3.4)

Here, C is often called the matrix representation of the conic where the determinant det(C)

determines the type of conic. If and only if det(C) > 0 then the equation describes a true
ellipse. If det(C) < 0 the equation represents a hyperbola and if det(C) = 0 a parabola. A
more concise way of formulating the constraint of a conic representing an actual ellipse is to
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3 Preliminaries

a
θ

b

x

y

c

Figure 3.1: Standard representation of an ellipse with major and minor axis lengths a and b,
offset to the coordinate origin c and angle θ.

use the discriminant of Equation 3.1. As stated in [25], a conic is an ellipse if this discriminant
B2 − 4AC is negative. In case the conic parameters can be arbitrarily scaled this inequality
constraint can be changed to the equality constraint 4AC − B2 = 1 by incorporating the
scaling.

Another property of the conic matrix is that given its inverse C−1, also called the dual conic
matrix, we can formulate a constraint for a 2D line ax + by + c = 0, described in homogenous
coordinates as l = [a, b, c]T, which is tangent to the conic if it satisfies

lTC−1l = 0. (3.5)

Similar to the conic matrix, its dual can also be represented using six parameters as

C−1 =

 A∗ B∗/2 D∗/2
B∗/2 C∗ E∗/2
D∗/2 E∗/2 F∗

 . (3.6)

We can also have a look at deriving the ellipse representation from a unit circle. Any ellipse
can be regarded as an affine image of the generic unit circle described by x2 + y2 = 1. This
means there exists an affine matrix A transforming points on the unit circle x = [x, y, 1]T to
points on the ellipse x̂ = [x̂, ŷ, 1]T as x̂ = Ax, where A is defined as

A =

[
L c
0 1

]
(3.7)

with L representing the linear part of the affine transformation and c being the center of the
ellipse. If the standard representation of the ellipse with major and minor axis lengths a and
b and the rotation angle θ are known the linear transformation can be written as the product
of an orthonormal rotation matrix Q and a diagonal scaling matrix S as

L = QS =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
a 0
0 b

]
. (3.8)

For non-zero a and b this transformation is always invertible which means we can transform
points on an ellipse back to the unit circle via x = A−1 x̂. A graphical representation of these
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ellipse parameters can be found in Figure 3.1. To derive the conic matrix C from this affine
representation we can start with the matrix representation of a unit circle

xT

1 0 0
0 1 0
0 0 −1

 x = xTDx = 0 (3.9)

Using the inverse affine ellipse transformation A−1 we can now formulate a matrix equation
for the ellipse as

(A−1 x̂)TDA−1 x̂ = x̂T A−TDA−1 x̂ = x̂TCx̂, (3.10)

where C = A−TDA−1 denotes the matrix representation of the ellipse.
Since we will mostly use the inverse conic matrix for our ellipse estimation and detection

in later chapters, it is also helpful to represent the inverse in terms of affine parameters:

C−1 = ADAT (3.11)

=

[
L −c
0 −1

] [
LT 0
cT 1

]
(3.12)

=

[
LLT − ccT −c
−cT −1

]
. (3.13)

As the matrix representation is only defined up to a scalar, we can normalize it for a nicer
representation with 1 in the bottom right corner:

C−1 =

[
ccT − LLT c

cT 1

]
(3.14)

=

[
M c
cT 1

]
. (3.15)

This formulation also shows a useful property of the inverse conic matrix as we can directly
observe the ellipse center c from the matrix. To recover the axis lengths a and b and rotation
θ from a given inverse conic matrix C−1 one can simply perform eigendecomposition on the
squared linear part as

LLT = QS2QT (3.16)

where the squared linear part is easily computed from the inverse conic matrix as LLT =

ccT −M. The axis lengths can be computed by taking the squareroot of S2, and the angle can
be computed as θ = atan2(Q21, Q11).

3.2 Camera Models

Almost all computer vision applications that work with a combination of 2D images and 3D
data such as poses or 3D points need a proper theoretical model representing the camera used
to capture images. This is especially true for fiducial markers as many designs incorporate
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Figure 3.2: A schematic depiction of the pinhole camera model marking the optical center
C, principal point p and focal length f . A point X in the three dimensional scene
is projected onto the image plane as point x by casting a ray from X through the
camera center C. Illustration taken from [26].

specific assumptions about the intrinsics of cameras they can be used with. In order to better
reason about the differences between marker designs and better understand some of the
design decisions behind this work’s fiducial design, this section will introduce two of the
most widely used camera models, the pinhole camera and the Kannala-Brandt model.

The main purpose of a camera model is to provide a mathematical representation for
the projection of a three dimensional scene onto a two dimensional canvas. This is usually
formulated using two functions, the camera projection function π : R3 → R2 and its inverse,
the reprojection function π−1 : R2 → R3. These describe how a point in Euclidean coordinates
in three dimensional space is mapped onto the two dimensional image plane and vice versa.
Interested readers may refer to [26], [27] or the short summary in [28] which represent the
basis of this section.

3.2.1 Pinhole Camera

The pinhole camera model can be seen as the simplest description of a physical camera and
incidentally also directly represents the principle behind the first cameras of the 19th century.
It makes the theoretical assumption that all light rays emitted from objects in a given scene are
projected onto the image plane through a straight line passing through the optical center C.
Unfortunately, when projecting a real scene through a pinhole onto a flat surface, i.e. when
the image plane lies behind the camera center, the projection will appear upside down. This
is the reason why a second equivalent, but only theoretical representation of the pinhole
model is more widely used in practice in which the image plane lies in front of the camera
center. An illustration of this can be seen in Figure 3.2.

This basic idea now leads to a simple mathematical representation for the pinhole model,
mapping a point x = [x, y, z]T ∈ R3 in a scene onto the point u = [u, v]T ∈ R2 in the image
plane using the projection function

π(x) : [x, y, z]T 7→
[

fx
x
z
+ px, fy

y
z
+ py

]T
. (3.17)
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In this formulation the principal point p = [px, py]T generally does not lie at the coordinate
origin of the image plane, hence the additional offset. Additionally, we do allow differing
focal lengths fx and fy for both axes of the image plane, as in addition to the actual focal
length, fx and fy describe the scaling factor to convert world coordinates to pixels which
might be different in x- and z-direction. Overall, we can nicely summarize all parameters of
the pinhole model in a vector i = [ fx, fy, px, py]T which describes the intrinsic characteristics
of a specific physical camera.

For many three dimensional applications we also need a closed-form formulation of the
camera reprojection function π−1, e.g. when triangulating a point which was observed from
different viewpoints in multiple images. As all 3D points that lie on a straight line through the
camera center are projected onto the same 2D point in the image plane, distance information
is lost when applying the inverse camera projection. We therefore only obtain a vector of
unit length that describes the ray the original 3D point was situated on. This can be quite
easily seen in Figure 3.2 as all points on the line between X and the camera center C are
projected onto the same point x in the image plane. The reprojection function π−1 can simply
be described in a closed form as

π−1(u) :
[

u
v

]
7→ 1√

m2
x + m2

y + 1

mx

my

1

 , (3.18)

mx =
u− px

fx
, (3.19)

my =
v− py

fy
. (3.20)

The standalone pinhole camera model generally does not work well with general application
cameras as it does not incorporate any concept of camera lens distortion. In practice it
is therefore often either combined with a distortion function or only applied to already
undistorted images. A more suitable approach for cameras that produce a large amount of
image distortion, such as fisheye lenses, is to directly use camera models that incorporate an
adequate distortion model.

3.2.2 Kannala-Brandt Camera

A more general camera model that is also able to properly capture the intrinsics of cameras
with larger lens distortions was introduced by Kannala and Brandt in 2006 [29] and is mostly
referred to as the Kannala-Brandt camera model. The basic idea behind the model is to use a
higher order polynomial of the angle between the principal axis and the incoming light ray
to describe the distortion produced by different lenses. This polynomial is then combined
with a pinhole projection to produce the final camera projection function. The original paper
by Kannala and Brandt introduced their model with up to 23 parameters, however, only a
smaller number of parameters is used in most practical use cases. We will only use eight
parameters in this work as this is the most widely used convention.
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3 Preliminaries

Figure 3.3: Illustration of the Kannala-Brandt camera model. The distortion model d(θ) is
first applied to a point P in the scene which is then projected onto the point p
in the image plane via a traditional pinhole model. Here d(θ) is described by a
higher order polynomial which is only dependent on the angle θ between the
original projection ray and the principal axis. Point p′ shows the projection using
an ideal pinhole model without any distortion. Figure taken from [29].

To explain the mathematical formulation of the Kannala-Brandt model, we first need to
introduce the polynomial distortion coefficient. The simplified model introduces a slight
constraint as it assumes all camera lenses to be symmetric, i.e. any distortion only depends
on the angle θ between the principal camera axis and the incoming projection ray. For a more
intuitive depiction see Figure 3.3. The distortion of a point P projected onto the image plane
as p using an ideal pinhole model is now described by relating the distance d of the projected
point to the principal point with the angle θ between the projection ray and the principal axis
as

d(θ) = θ + k1θ3 + k2θ5 + k3θ7 + k4θ9. (3.21)

This distortion coefficient is then incorporated into the ideal pinhole model, resulting in the
camera projection function

π(x) =
[

u
v

]
= d(θ)

[
fx

x
r

fy
y
r

]
+

[
px

py

]
, (3.22)

r =
√

x2 + y2, (3.23)

θ = atan2(r, z), (3.24)

enabling us to represent a Kannala-Brandt camera with an intrinsic vector

i = [ fx, fy, px, py, k1, k2, k3, k4]
T. (3.25)
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Unfortunately, as polynomials of degree nine in general do not have analytical inverses, the
reprojection function does not have a closed form formulation. Given a point u = [u, v]T in
the image plane the corresponding angle θ∗ has to be recovered by solving d(θ) = ru using

mx =
u− px

fx
, (3.26)

my =
v− py

fy
, (3.27)

ru =
√

m2
x + m2

y. (3.28)

Afterwards, the inverse projection function can be written as

π−1(u) =

sin(θ∗)mx
ru

cos(θ∗)my
ru

cos(θ∗)

 . (3.29)

Since the Kannala-Brandt model probably is the most widely used camera model for large
field-of-view lenses, we will be using it in this work, as our marker design specifically targets
fisheye cameras. The main drawbacks of the model are its need to numerically solve a ninth
degree polynomial and its use of expensive trigonometric operations. These performance
limitations will not be too essential, however, as we will only use the reprojection function for
a relatively small number of points in our input images.

3.3 Pose Estimation

One of the main applications of fiducial marker systems is to track objects in 3D space. This
is usually done by attaching one or more markers to a tracked object such as a robot. The
inverse use case of placing markers in a static environment and tracking the camera position
is also quite common. It is important to note that there is no essential algorithmical difference
between tracking the camera motion based on static markers or recovering object positions
in static camera frames. To recover the 3D position of a marker one needs to compute its
six degrees of freedom (6DoF) pose with respect to the camera pose from 2D and 3D point
correspondences. These correspondences can be easily found by matching the detected 2D
marker features in input images with the known positions of marker features in a 3D reference
coordinate frame relative to the marker itself. The problem of pose estimation from 2D - 3D
point correspondences, also often called the Perspective-n-Point (PnP) problem, has been
tackled in numerous ways and this section aims at giving a short introduction into the general
problem, its formulation and the algorithmic approaches we use in the implementation of
our fiducial markers.

To keep a consistent notation throughout this thesis we will use the matrix representation
of 3D positions in which a pose consisting of a rotation R ∈ SO(3) and a translation t ∈ R3

is represented as a tuple g = (R, t) or when using homogenous coordinates as a full 4× 4
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matrix

T =

[
R t
0 1

]
∈ SE(3). (3.30)

The traditional formulation of 6DoF pose estimation now takes a number of points in 3D
space pi ∈ R3 in a known reference coordinate frame, e.g. the world coordinate frame, and
their 2D projections onto a camera image plane p′i ∈ R2. Using this information the goal is
to recover the pose of the camera g = (R, t) in the reference coordinate frame. Provided the
camera is calibrated, i.e. we have all necessary intrinsics for a selected camera model, the
relation between 3D points in world coordinates and 2D points in image coordinates can be
expressed as

αiπ
−1(p′i) = Rpi + t. (3.31)

Here αi denotes the distance of the 3D point to the camera center as a camera reprojection does
not provide the depth information of reprojected points. Instead, it only provides so-called
bearing vectors describing a ray from the corresponding 3D point through the camera center.
Using the relation described by Equation 3.31 the goal of pose estimation is to recover R and
t from a given set of point correspondences. This formulation is often called the absolute
pose problem or central PnP problem in computer vision literature.

3.3.1 Linear solutions

The most popular approach to solving the PnP problem is to use algebraically linear solutions
whose computational complexity lies in O(n), scaling linearly with the number of point
correspondences n. They are generally based on solving linear equations which lead to unique
solutions irrespective of initialization. Most earlier approaches to solving the PnP problem
with linear algorithms constrained themselves to the special case of the P3P problem in which
a fixed number of 3 point correspondences is given. An example for such an approach is
the one introduced by Kneip et al. [30]. Probably one of the most used algorithms, called
EPnP, was introduced by Lepetit et al. [31] which was the first solution able to deal with an
arbitrary number of points n ≥ 4 while still maintaining a computational complexity in O(n).
Another relatively recent approach was introduced by Kneip et al. in 2014 [32], called UPnP.
The main advantages of UPnP compared to other methods is that it provides all possible
solutions in ambiguous cases instead of just a single one. As the mathematical details behind
the algorithms are quite involved, interested readers may refer to the original papers for more
details.

3.3.2 Non-linear Optimization

Another quite common approach to the PnP problem is to simply solve it using nonlinear
optimization. Unfortunately, this entails a more expensive computational approach than linear
methods, such as UPnP, due to the need to use iterative solvers, and almost always requires a
decent initialization to converge. Due to these limitations it is often used in combination with
a linear time method where e.g. UPnP is used to get an initial estimate of the optimal camera
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pose which is then refined in a nonlinear optimization. As this approach results in good pose
estimation accuracy we will be using it in our implementation as described in later chapters.

To pose the original PnP correspondence problem described in Equation 3.31 in terms of
a nonlinear optimization problem, we first have to derive an error residual for each point
correspondence. Since the reprojection π−1(p′i) is only defined up to a scalar αi and otherwise
returns a unit direction vector (also called a bearing vector) we can rewrite Equation 3.31 as

π−1(p′i) =
Rpi + t
‖Rpi + t‖ . (3.32)

Now that we are only dealing with unit vectors we can employ the vector dot product to
obtain a scalar residual function as

ri(R, t) = 1− 〈π−1(p′i),
Rpi + t
‖Rpi + t‖〉. (3.33)

While this is not equivalent to Equation 3.32 it still results in a smooth error function that is
0 when both vectors are parallel, which in our case means they are equal as both are unit
vectors, and increases when the angle between them increases. This can be easily seen as
〈a, b〉 = ‖a‖‖b‖ cos θ = cos θ for arbitrary vectors a and b with ‖a‖ = ‖b‖ = 1. This means
the dot product in Equation 3.32 is equal to the cosine of the angle between the reprojected ray
and the unit bearing vector. Employing this error residual in e.g. a non-linear least squares
formulation as

f (R, t) =
1
2

n

∑
i=1

r2
i (R, t) (3.34)

enables us to solve for the camera pose g = (R, t) using an appropriate solver such as
the Levenberg-Marquardt method. Another way of formulating a non-linear optimization
problem for pose estimation is to optimize the pixel reprojection error

1
2

n

∑
i=1
|π(Rj pi + t)− p′

i |2. (3.35)

While the two options are roughly interchangeable we decided on using the bearing vector
approach as this is the one implemented in the OpenGV library [33], which we use in our
implementation.
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4 Marker Design

Before diving into the finer details of our fiducial system in Chapter 5, we aim to give a high
level overview over some of the more general design decisions behind our markers. First,
we introduce the kind of fiducial features that make up our markers in Section 4.1. Second,
we will explain the geometric layout of our markers in Section 4.2. Finally, Section 4.3 will
describe the method we use to encode different marker identifiers as well as enforce rotational
uniqueness in our tags. As introduced in Chapter 2, there are basically three kinds of fiducial
marker designs: Square, circular and topological markers, each with its particular advantages
and drawbacks. In terms of geometric layout and fiducial features our method can be seen as
a hybrid, combining aspects from both circular and topological markers.

Figure 4.1: Example marker.

4.1 Fiducial Features

As shown in the exemplary marker in Figure 4.1, each one of our markers is made up of nine
individual circles. This basic design is similar to Pi-Tag [14] and RuneTag [12] which also
use circles as the basic fiducial features and arrange them into a square (Pi-Tag) or concentric
circles (RuneTag). The main reason behind using circular features is, that when observed
with an ideal pinhole camera they are always projected onto ellipses in the resulting image.
This makes them quite easy and reliable to detect even under difficult lighting conditions
or motion blur. For example by using the method introduced by Ouellet et al. [34]. Even
though we are not using an ideal pinhole camera in practice but rather fisheye lenses with
large distortions, this basic assumption still holds reasonably well as the relatively small
circles aren’t distorted too heavily and therefore still project onto ellipses. An additional
advantage of circular features over square features is that the position of an ellipse can be
detected more accurately, especially in the presence of noise, compared to detecting corners
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Large circle, b = 0. Small circle, b = 1. Hollow circle, b = 2.

Figure 4.2: Different circular fiducial features providing a ternary digit of information per
circle.

of a quad based on intersecting lines. Another aspect of using individual circles instead
of a single connected topology such as a square border is, that each circle can be detected
individually by only looking at a small, local image area. The individual circle detections can
then be aggregated into markers by regarding their respective relative positions to each other.
In contrast many square markers such as AprilTag perform their initial marker candidate
detection by searching an image for lines forming a quad which represents the square border
around the tag. As lines are bent significantly in very distorted images, a line based detection
scheme breaks for large field-of-view cameras when a marker takes up a lot of image area
and therefore is very distorted. Since we specifically tailored our method to also work well
with fisheye lenses with significant distortion, this was an important consideration.

Our marker design does not alter the geometric layout to encode marker payloads as done
by Pi-Tag or RuneTag but directly encodes information into our circular features. Figure 4.2
shows the three different kinds of circles used to provide a sufficient alphabet to encode up
to 39 = 19683 unique identifiers in a marker made up of 9 circles. As we will see later in
Section 4.3, the real information content of a marker is a lot smaller, as aspects such as error
correction and rotational uniqueness need to be considered as well. We also looked at using a
subset of the ternary alphabet for markers, as in theory markers only made up of small and
hollow circles could be detected better at larger ranges but found no significant difference in
detection precision and recall during testing.

4.2 Geometric Layout

The basic geometrical structure of our fiducial markers is that of a 3× 3 grid of individ-
ual circles, as seen in Figure 4.1. Instead of detecting a square border (e.g. AprilTag) or
topologically structured connected components (TopoTag), our method finds markers from
individually detected ellipses in given input images. The first step of our detection pipeline
consists of scanning an image for all circular, or rather elliptical shapes. In a second step
we then determine which set of 9 of these individual ellipses together are laid out in the
basic geometry of a 3× 3 grid. The main reason behind placing individual circles in a grid
instead of a circular arrangement like in RuneTag is that it reduces the number of possible
rotations of a tag. An important aspect of the coding system of every fiducial marker design
is to enable the efficient recovery of a tag’s rotation. Choosing a circular arrangement for
8 circles would lead to 8 possible rotations, meaning more bits in each code word have to
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be invested to encode the marker rotation. Due to the specific geometry of a grid we can
easily distinguish corner points from edge points in the grid’s border and therefore reduce
the number of marker rotations which have to be covered by the coding system to 4. The
rationale for using a small 3× 3 grid instead of a larger one is closely tied to our approach to
marker detection. After finding all elliptical shapes in an input image we perform a k-nearest-
neighbor search to find the 8 closest neighbors for each detected ellipse. By employing some
geometric heuristics we are able to determine whether an ellipse, together with its neighbors
fit the quite specific geometry of a 3× 3 grid. The main advantage of this approach is that it
operates only locally on small image areas which are not as prone to distortions, making it
robust even for fisheye cameras. Larger grids would cover larger image areas and thus, as
a whole, be distorted more significantly making simple geometric heuristics more difficult
to use. Using a k-nearest-neighbor search with larger grids than 3× 3 would also lead to a
significantly increased computational complexity as this search is done for each individual
ellipse detected in an image. The finer details of the detection process will be described later
on in Chapter 5. The need for larger markers can, however, be simply covered by composing
multiple individual markers into a larger grid which will be explained in more detail in
Chapter 6. The ability to compose individual markers into a larger grid by overlapping
multiple markers also factored into our design decisions, as it rules out the classical square or
topological marker approach of including a border around the marker for easier detection.

4.3 Code Words

The final aspect of our marker design is the approach we take to encode marker identifiers.
For this we use a ternary alphabet Σ = {0, 1, 2} as illustrated in Figure 4.2. As already
sketched in the previous section only the four corners of the marker are used to encode its
rotation while the remaining five circles can be freely filled with arbitrary payload or have
bits reserved for error correction. To easily generate rotationally unique code words for the
four corners we use Lyndon words. These describe the set of non-empty words which are
strictly smaller in lexicographic order than all of their rotations. A linear time algorithm to
generate all Lyndon words of a given length was introduced by Duval in 1983 [35]. For a
ternary alphabet there exist 18 Lyndon words of length 4:

L4 ⊂ Σ4 = {0001, 0002, 0011, 0012, 0021, 0022, 0102, 0111, 0112, (4.1)

0121, 0122, 0211, 0212, 0221, 0222, 1112, 1122, 1222}. (4.2)

This results in a theoretical number of 18 · 35 = 4374 unique marker identifiers we are able to
encode while enforcing rotational uniqueness. In practice we decided to increase our error
tolerance by additionally enforcing a minimum Hamming distance of 2 between Lyndon
words to account for potential ellipse detection errors. The maximum set of Lyndon words
satisfying this condition can be easily found by performing an exhaustive search over the
power set of all 18 words. This leaves us with 8 words to encode our rotation:

L∗4 ⊂ Σ4 = {0001, 0022, 0102, 0111, 0212, 0221, 1112, 1222} (4.3)

20



4 Marker Design
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Figure 4.3: Payload encoding scheme for our markers. A code word, in this example
021110121, is encoded into a marker starting at the top left ellipse, progress-
ing clockwise around the center with the center ellipse representing the last
digit.

Before applying any error correction to the remaining five ternary digits we therefore obtain
a library size of 8 · 35 = 1944. To describe full 9 digit code words we follow the convention
highlighted in Figure 4.3. A code word, e.g. 021110121, is denoted following its encoding
in a real tag. The top left ellipse in a marker represents the first digit. We then progress
clockwise around the border of the 3× 3 grid with the center ellipse encoding the last digit.
Incorporating our rotational uniqueness constraints from Equation 4.3 we can hence formally
describe the set of valid marker identifiers as

L ⊂ Σ9 = {a1a2a3a4a5a6a7a8a9 | ai ∈ Σ, (a1a3a5a7) ∈ L∗4 , (a2a4a6a8a9) ∈ Lecc}, (4.4)

with Lecc ⊂ Σ5 describing arbitrary error correction properties for the remaining payload
which does not have to fulfil the rotational uniqueness constraints. To compare different
rotations of a given code word, one simply needs to shift the first 8 digits leaving the last
digit unchanged, as the location of the center ellipse is not affected by rotation. Rotating the
code word 021110121 by 90◦ means we have to shift the first 8 digits by 2 positions resulting
in the rotated word 111012021.

Error detection and correction

In the definition shown in Equation 4.4 our marker codes only contain a small degree of error
detection which is given by using Lyndon words of length 4 with a minimum Hamming
distance of 2 to encode the corner ellipses. To achieve better error detection or even some
error correction, we can use the payload encoded by the remaining 5 non-corner ellipses,
described by (a2a4a6a8a9) ∈ Lecc. As these do not have to be rotationally unique we can
use arbitrary coding schemes to increase error detection and correction capabilities. One
could, for example, use the last digit (representing the center ellipse) to encode some sort
of checksum. A possibility would be to enforce a last digit a9 such that the sum of the code
word is divisible by 3. Such a simple checksum would enable the detection of a bit flip on any
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of the 9 digits by reducing the library size to 8 · 34 = 648. Depending on the requirements for
practical applications in terms of library size and robustness to erroneous detections, this is a
parameter that can be easily tweaked in concrete implementations.
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5 Detection Process

After introducing the required preliminaries in Chapter 3 and going over the basic ideas
and considerations behind this work’s fiducial marker design in Chapter 4, this chapter will
introduce the actual marker detection process. A schematic representation of the detection
pipeline is provided in Figure 5.1. We start by thresholding the input image to obtain a
binarized version for easier processing. A set of candidate ellipse locations is generated
through a connected component analysis using the binarized image. Ellipses are subsequently
fitted to each candidate. We then employ some local geometric heuristics based on a k-nearest-
neighbor search to find possible markers from the set of detected ellipses. Afterwards, the
payload of each marker candidate is decoded and checked for validity. Finally, the pose of
each detected marker relative to the camera is estimated.

Image Binarization Ellipse Candidate Detection Ellipse Fitting

Marker Candidate DetectionCode Word DecodingPose Estimation

Figure 5.1: Schematic overview over the detection pipeline

5.1 Adaptive Thresholding and Binarization

To binarize the input image we use a technique called adaptive thresholding as described
in [36]. The basic idea behind adaptive thresholding is to compare the intensity of each pixel
to the average intensity in a local neighborhood around it. This enables the method to deal
with changing lighting conditions within an image. A key aspect of adaptive thresholding is
the usage of the integral image to speed up the thresholding process, as it enables the efficient
computation of sums over large image areas. The integral image I(x, y) can be computed
iteratively in one pass over an input image f (x, y) as

I(x, y) = f (x, y) + I(x− 1, y) + I(x, y− 1)− I(x− 1, y− 1), (5.1)

enabling the efficient computation of a sum over any rectangular image area with upper left
corner (x1, y1) and lower right corner (x2, y2) as

x2

∑
x=x1

y2

∑
y=y1

f (x, y) = I(x2, y2)− I(x2, y1 − 1)− I(x1 − 1, y2) + I(x1 − 1, y1 − 1). (5.2)
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(a) Original image (b) Thresholded image (c) Ellipse candidates (d) Detected ellipses

(e) Marker candidates (f) Valid markers (g) Pose Estimation

Figure 5.2: Detection pipeline run for an example image.

After computing the integral image, the adaptive thresholding process performs one more
pass through the input image. The intensity of each pixel is compared to the average intensity
in a s × s window centered around the pixel. The resulting binarized image f ′(x, y) can
therefore be mathematically described as

f ′(x, y) =
{

0 if s2 f (x, y) ≤ t ·∑(x′,y′)∈S f (x′, y′)
1 otherwise

(5.3)

where (x′, y′) ∈ S describes all pixels indices within the s × s window around a given
pixel at position (x, y) and t ∈ (0, 1) represents the threshold value. For simplicity this
formulation does not take the borders of the image into account, actual implementations will
perform border checks and adapt the average computation respectively. The result of such a
thresholding step can be seen in Figure 5.2b.

5.2 Ellipse Detection

After binarizing the input image we proceed to detect all ellipses that resemble our fiducial
features and could potentially be part of a tag. This is done in a two step approach. First, we
generate a set of ellipse candidates, represented by oriented bounding boxes. These are then
refined by fitting ellipses and performing some rudimentary filtering.
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Figure 5.3: Example of overlapping ellipse candidates when using axis-aligned bounding
boxes.

5.2.1 Ellipse Candidate Detection

The basic idea behind our ellipse candidate generation is to simply run a connected com-
ponents analysis on the binary image and regard each connected component as a potential
fiducial feature, an ellipse. While this crude approach obviously results in many false positives,
i.e. many ellipse candidates which are not valid ellipses, it has a high recall, guaranteeing
to include basically all actual ellipses while still restricting our overall search space. For our
implementation we use the two-pass connected components algorithm introduced by Wu et
al. [37]. Interested readers may refer to our implementation or the original paper for more
details. After retrieving all connected components in an input image our initial approach to
generating ellipse candidates was to simply use axis-aligned bounding boxes encompassing
each connected component. An ellipse would then be fitted to the image area, described by
the bounding box. While this worked quite well in most cases, the nature of axis-aligned
bounding boxes means that they will overlap in some edge cases when ellipses are distorted
heavily and captured at roughly 45◦ angles. See Figure 5.3 for a visual example. Due to this
issue we decided on using oriented bounding boxes to describe ellipse candidates. After
connected components labeling, we perform an additional pass through the labeled image
to find the centroids ci ∈ R2 of each component. We then compute the covariance matrix of
each component as

Σi =
1

|Mi| − 1 ∑
x∈Mi

(x− ci)
T(x− ci). (5.4)

Here Mi denotes the set of coordinates of all pixels belonging to the component with index i.
The orientation of a bounding box encompassing all component pixels can now be found by
performing an eigendecomposition of the covariance matrix. The two eigenvectors ni,1 and
ni,2 of Σi can be seen as normals to the edges of the oriented bounding box. To recover the
dimensions of the bounding box, a final pass over each connected component is needed in
which each initial box spanned by the two normals ni,1, ni,2 and the component centroid ci is
iteratively enlarged to enclose all component pixels. As a final step in the ellipse candidate
generation, we filter out bounding boxes that are either too small or too large. In our testing
we found that bounding boxes with an area smaller than a few pixels (e.g. 4− 8) or ones with
a maximum dimension

max(bbox_width, bbox_height) >
1
3

min(image_height, image_width) (5.5)
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are unlikely to resemble valid ellipses that are part of a marker. An exemplary result of the
ellipse candidate generation process can be seen in Figure 5.2c.

5.2.2 Ellipse Fitting

In order to fit actual ellipses to the image areas selected by the ellipse candidate search
described in the previous section, we use the gradient based ellipse estimation algorithm
introduced by Ouellet et al. [34]. Recall from Section 3.1 the dual representation of an ellipse,
more generally a conic. Ouellet et al. employ the dual conic constraint which states that a line
l ∈ R3 is tangent to a conic if it satisfies lTC−1l = 0. If a set of tangent lines li = [ai, bi, ci] is
given in homogenous coordinates, the dual conic matrix can be directly estimated using a
linear least-squares approach by minimizing

Φ(θ) = ∑
i∈R

(lT
i C−1(θ)li)

2. (5.6)

Here, R is the set of tangent lines to be taken into account and θ ∈ R6 = [A∗, B∗, C∗, D∗, E∗, F∗]T

is the six-dimensional parameter vector describing C−1. Incorporating the constraint 4AC−
B2 = 1, which restricts the conic matrix to pure ellipses, into Equation 5.6 we obtain a
modified matrix form [

∑
i∈R

kikT
i

]
θ′ = ∑

i∈R
−kic2

i , (5.7)

where ki = [a2
i , aibi, b2

i , aici, bici]
T ∈ R5. The modified parameter vector θ′ ∈ R5 contains the

first five elements of θ as the introduced ellipse constraint forces F∗ = 1 by fixing the scaling.
This formulation can be solved using a singular value decomposition (SVD). The in-depth
derivation behind this formulation can be found in the original paper.

To apply this theoretical framework to an actual image, Ouellet et al. simply consider a line
through each pixel xi ∈ R2 described by the image gradient ∇Ii = [Iui, Ivi]

T at that pixel. The
gradient defines the normal of a line passing through the pixel as

li = [Iui, Ivi,−∇IT
i xi]

T. (5.8)

When given a bounding box B we can now find the ellipse that bests fits the pixels contained
in B by solving Equation 5.7 and incorporating Equation 5.8 for each pixel xi ∈ B. We obtain
the inverse conic matrix C−1 from which we can obtain ellipse parameters such as axis lengths,
angle and center, as described in Section 3.1.

5.2.3 Hollow Ellipse Fitting

Special care needs to be taken during ellipse estimation for our markers, as the original
method by Ouellet et al. is not able to properly estimate black ellipses with white interiors.
These, however, are an important aspect of our marker design’s payload encoding. If we
simply incorporate all gradient pixels in a given ellipse candidate bounding box, the resulting
ellipse will be skewed if it contains a white interior circle as can be seen in Figure 5.4. This is

26



5 Detection Process

Figure 5.4: Detection of hollow ellipses without and with filtering gradient pixels.

because the gradients of the pixels belonging to the border between the actual black ellipse
and the interior white ellipse are pointing in the opposite direction of the gradients of the
actual ellipse border pixels. Regarding these pixels during estimation will therefore lead to a
slightly smaller ellipse, as it will be skewed towards the inner white circle. To combat this
problem we filter the gradient pixels which are to be included in Equation 5.7. We use the
bounding box center as a rough estimate of the ellipse center and only include pixels for
which the gradient direction represents a white to black transition from the pixel towards
the estimated ellipse center. This works quite well in practice, as the bounding box center
is guaranteed to lie within the inner white circle if the ellipses are large enough. Some
exemplary results of the ellipse fitting process can be seen in Figure 5.2d. The figure also
shows that due to the very crude ellipse candidate generation which regards all connected
components as potential ellipses we obtain a large number of false positive ellipse detections
after the ellipse fitting.

5.3 Marker Candidate Detection

After detecting and fitting all ellipses present in an input image, the next step in our detection
pipeline is to generate marker candidates. A marker candidate represents some assortment
of 9 ellipses which fit the geometry of our 3 × 3 circle grid. The basic idea behind our
detection process is to regard the local neighborhood of each detected ellipse and check if
eight neighboring ellipses and the ellipse itself fit the distinct geometric pattern of a 3× 3
grid. The straightforward approach of only checking the eight nearest neighbors of each
ellipse unfortunately does not work in practice. In some cases, for example when looking
at a marker at a very low viewing angle, other image artifacts or ellipses of other nearby
markers can be closer to the center ellipse than some of the other ellipses belonging to the
same marker. Such an example can be seen in Figure 5.5. In order to accommodate these edge
cases we therefore have to consider a larger number of closest neighboring ellipses when
looking for a valid marker.

In our implementation we use the excellent nanoflann library [38] to run a k-nearest-
neighbor search for every ellipse in the input image. Here k ≥ 8 is a parameter of our
detection pipeline and can be adapted depending on the use case. Once we obtain the set of k
neighbors, denoted as N, for a given ellipse i ∈ {1, . . . , n} we perform a couple of heuristic
filtering steps to determine whether a subset of 8 ellipse neighbors N′i ⊆ Ni with |N′i | = 8
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Figure 5.5: A marker captured at a low viewing angle surrounded by additional ellipses. The
eight nearest neighbors of the markers central ellipse are highlighted and do not
correspond to the eight ellipses making up the border of the 3× 3 circle grid.

fit the geometry of a 3× 3 grid together with ellipse i as the center. In the following ci ∈ R2

denotes the center of ellipse i. First of all we compute the distance of each neighbor to the
center ellipse as

dj = ‖cj − ci‖, j ∈ Ni. (5.9)

We also search for the neighbor k ∈ Ni closest to the center ellipse. We compute the angle
between each neighbor and the closest neighbor k relative to the center ellipse:

θj = atan2(cky cix − ckx ciy , ckx cix + cky ciy). (5.10)

We use the closest ellipse as a reference point as it is guaranteed to be part of the marker as
long as no additional artifacts are present inside the 3× 3 grid. The list of neighbors is then
sorted by the relative angle θ for easier processing. The sorted list of neighbors combining the
relative angle and distance then provides the basis for a number of heuristic filtering steps
which can be summarized as

1. Discard outlier ellipses with too small angular differences.

2. Find an ellipse lying opposite of the closest neighbor w.r.t the center ellipse.

3. Find the closest ellipse in each marker half as divided by the line through the closest
ellipse and the center.

4. Perform a brute force search to find the best way of placing the remaining ellipses into
a 3× 3 grid.

5. Perform a final sanity check such that the resulting marker candidate fits a 3× 3 grid.

We will now explain this process step by step and also provide the rationale behind each
heuristic.

Discarding outliers

If we revisit the example shown in Figure 5.5 and assume k = 15 we can see that all ellipses
in the image would be considered as neighbors of the markers center ellipse. Performing
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Figure 5.6: Illustration of the first couple of heuristic filtering steps. 1) The closest neighbor
(green) to the center of a potential marker candidate (red) is considered as part of
the marker candidate. 2) Relative angles of each neighbor are computed w.r.t. the
closest neighbor as well as the distance of each ellipse to the center. 3) Outliers with
small angular differences are discarded. The farther ellipse of the two intersected
by the purple line cannot be part of the candidate marker. 4) The ellipse opposing
the nearest neighbor (blue) is also considered to be part of the marker. 5) The
closest neighbors (orange) in each marker half as described by the dotted red line
through the closest neighbor and its opposite are also considered as part of the
candidate marker.

a brute force search to find a subset of 9 ellipses which best fits a 3× 3 grid right away
would be very expensive as this is done for each ellipse in the input image. To reduce the
number of possibilities we perform an initial filtering step to discard ellipses which obviously
cannot be part of a marker since another ellipse lies closer to the center at roughly the same
direction w.r.t. the center ellipse. This case is illustrated in Figure 5.6 by the purple line. We
can describe this process formally by using the sorted list of neighbors indices Ns as

N′s = {j ∈ Ns | @j′ ∈ Ns, j′ 6= j : diff(θj, θj′) ≤ θthresh ∧ dj′ < dj}, (5.11)

where θthresh describes the minimum angular difference between two ellipses in a valid marker
and diff(θj, θj′) denotes the difference between the two angles taking potential wrap-around at
360◦ into account. In practice, we found that a threshold of θthresh = 8◦ works quite well. Put
plainly this means we discard all ellipses where the angular difference to another neighboring
ellipse is smaller than a given threshold and the other ellipse is closer to the center. This step
is quite important in cases where the recorded marker is surrounded closely by other regular
geometric patterns such as other markers and is a prerequisite for marker composability
introduced in Chapter 6.

Finding the opposite ellipse to the closest neighbor

A property of the the geometry of a 3× 3 grid we found empirically, is that the relative
angular difference of opposing ellipses in the grid will always be roughly 180◦, regardless
of viewing angles and camera distortions. Graphically one can illustrate this by drawing a
line from any marker ellipse situated at the border of the grid through the center ellipse (see
the dotted red line in Figure 5.6). This line will always roughly intersect the marker ellipse
opposite. Starting from the ellipse closest to the marker center we use this property to look
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Figure 5.7: Histogram of the angular difference between the marker ellipse closest to the
marker center and its opposing ellipse in the 3 x 3 circle grid in a marker observed
from 28900 different simulated viewpoints with viewing angles of down to 5◦.
The full range of simulated angular differences is shown, no angles smaller than
170◦ or larger than 190◦ were measured.

for its opposing neighbor which, if there is one, we then can also be sure belongs to the same
marker. We validated this property by simulating a marker from multiple viewpoints and
recording the angles between the closest neighbor and its opposite. The results are illustrated
in Figure 5.7, which shows the angular difference of the closest neighbor to its opposite ellipse,
highlighting the consistent angular difference of 180◦ for a multitude of different viewing
angles. We therefore consider the ellipse for which

180◦ − θtolerance ≤ θj ≤ 180◦ + θtolerance (5.12)

holds also to be part of the candidate marker we are trying to find. In case this constraint
holds for multiple ellipses the one closest to the marker center is chosen. In practice we found
a θtolerance = 15◦ to work quite well, which is supported by our findings shown in Figure 5.7.

Find the closest neighbor in each marker half

Going back to the example shown in Figure 5.6, the candidate marker now consists of the
center ellipse shown in red, the closest neighbor shown in green and its opposing ellipse
highlighted in blue. As a last step before resorting to a brute force search to find the set of
ellipses best fitting a 3× 3 grid, we employ one more heuristic to restrict our search space.
When dividing the candidate marker into two halves using a line through the closest neighbor,
the center and its opposite, shown as a dotted red line in Figure 5.6, the closest neighbor in
each of those halves, shown in orange, will also be part of the actual marker in almost all
cases. This means that out of k initial nearest neighbors, 4 in addition to the center ellipse are
certainly part of the candidate marker. Excluding ellipses discarded during outlier detection,
at most k− 4 ellipses still need to be considered for the final marker candidate. In the case of
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k = 8 this leads to a trivial solution as there exists only one possibility to arrange 9 points in
a 3× 3 grid which can easily be found using the relative angles computed at the beginning.
If k > 8 we need to perform an exhaustive search over all remaining possibilities.

Exhaustive search for all possibilities of placing remaining ellipses in a 3 x 3 grid

Figure 5.8 shows the state of our example after the previous heuristic step. There are a
number of possibilities to arrange the remaining ellipses into a 3× 3 grid. As we want to
easily be able to distinguish between corner and edge ellipses in the grid for later code word
decoding, we will follow the same convention to order ellipses in a tag as introduced in
Section 4.3 to encode the actual payload in a marker. Ellipses in a tag are ordered with
a corner point first, then progressing clockwise around the center with the center ellipse
coming last. A possible ordering for a candidate marker in the example shown in Figure 5.8
would therefore be the sequence (3, 4, 5, 6, 7, 8, 9, 1), with the center point being omitted as
its position in the ordering is always constant. Fortunately, we do not have to regard all
subsequences of length 8 of the set of ordered neighbors Ns as we can make use of some
constraints. First of all, we already know the closest neighbor and its opposite to be part of
the marker candidate, essentially cutting the space of possibilities in half as we can regard
each marker half separately. Additionally we can restrict the set of possibilities for each
marker half to those that include the respective closest neighbor in each half as discussed
above. To formalize this, let S = (1, . . . , n), n ≥ 8 be the sequence of neighboring ellipses
ordered by relative angle to the closest neighbor c = 1 ∈ S. Let the ellipse opposite the closest
neighbor be denoted as o ∈ S and the closest ellipse in each marker half as h1, h2 ∈ S. An
ordering S′ ⊆ S of ellipses that could represent a valid marker candidate would have to fulfil

S′ =(1, x1, x2, x3, o, x4, x5, x6)

h1 ∈ (x1, x2, x3)

h2 ∈ (x4, x5, x6)

1 < x1 < x2 < x3 < o < x4 < x5 < x6.

(5.13)

Since at this point we do not know if the closest neighbor is a corner or an edge point in
the circle grid, we have to regard both options S′1 = S and S′2 = (x1, x2, x3, o, x4, x5, x6, 1). To
distinguish which of these possible arrangements best fits the layout of our grid, we compute
a crude, but in practice quite effective, linear interpolation error and select the arrangement
with the smallest error as the marker candidate for the selected center ellipse. Given an ellipse
ordering S′, we define this error as

eS′ = ∑
i∈{1,3,5,7}

‖1
2
(ci + c(i+2 mod 8)+1)− ci+1‖, (5.14)

where ci denotes the ellipse center coordinate of the i-th ellipse in S′. Intuitively, for a
sequence S′ we compute the ideal location of an edge ellipse as the linear interpolation of
its adjacent corner ellipses, as would be the case in the undistorted grid. The sum of the
deviation of the four edge ellipses from their ideal positions is then used as a rough alignment
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Figure 5.8: All ellipse neighbors that could be part of a marker candidate centered on the red
ellipse. Ellipses which are certainly part of the marker are shown in green, while
orange ones still have to be checked. The ellipses are enumerated in the order of
their relative angle to the closest neighbor w.r.t. the center ellipse.

error. While this approach obviously does not accurately describe real edge positions in the
presence of large distortions, the estimate is good enough in practice to reliably select the
correct subset of ellipses as the best marker candidate and also reliably distinguishes edge
points from corner points. After this step we therefore obtain an ordered subset S′ ⊆ N of the
set of neighboring ellipses with the first element of the sequence guaranteed to be a corner in
the 3× 3 marker grid.

Final marker candidate sanity check

In order to filter out more false positive detections we perform a final sanity check on the
marker candidate S′ by exploiting the properties of angular difference between opposing
ellipses which we discussed previously. So far, we only used the property illustrated in
Figure 5.7 to constrain our search space by looking for the ellipse roughly 180◦ opposite to the
nearest neighbor. In this final step we check whether every ellipse in our marker candidate
besides the center ellipse has an opposite with a relative angular difference of approximately
180◦. We hence enforce for every ellipse j that

∃j′ ∈ S′ : j′ 6= j ∧ 180◦ − θtolerance ≤ |θj′ − θj| ≤ 180◦ + θtolerance, (5.15)

and discard the marker candidates not fulfilling this constraint.

5.4 Code Word Decoding

The final step when detecting markers before being able to estimate the marker pose is to
check whether the payload of a given tag actually encodes a valid identifier. Given a marker
candidate which fits the geometry of our 3× 3 circle we therefore must first distinguish the
different kinds of ellipses present to recover the payload. As introduced in Section 4.3, we
differentiate between three kinds of ellipses to encode a digit in our code words: large, small
and large hollow ones. Most fiducial systems that encode information in the size or location
of their fiducial features such as AprilTag compute a homography to undistort the detected
marker before extracting the payload. We opted to not use this approach mostly due to
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the fact that using homographies with ellipses can be quite difficult, as the homographic
projection of an ellipse does not have to actually be an ellipse. This makes it harder to work
with ellipse parameters such as area and axis lengths as these are difficult to extract after
undistorting. We instead try to approximate the undistorted size of ellipses by relating their
size in an image with the distance to neighboring ellipses. Assume we are given a marker
candidate consisting of ellipses with indices i ∈ (1, . . . , 9), ordered such that the first ellipse
is located at the corner of a grid and the last ellipse being the grids center one. We then
approximate the radius of the ellipse with index i when undistorted to a circle as

ri =
re

dn · dg
, (5.16)

re = ‖Li [cos(θn), sin(θn)]
T‖, (5.17)

with dg denoting the true distance between circles when the marker was printed, dn the
distance to a neighboring ellipse in the detected marker candidate grid and θn the angle
between said neighbor and the ellipse we are looking at. Li simply describes the linear
transform of ellipse i as introduced in Section 3.1. Intuitively, we are assuming that the
distance between neighboring ellipses in the 3× 3 grid is distorted in roughly the same
way as the ellipses in that direction. We therefore approximate the undistorted size of the
ellipse by relating the measured distance between neighboring ellipses to the measured size
of an ellipse in the direction of that neighbor. By also dividing through the known true
distance between marker ellipses we transform the approximated size into real world units of
measurement. To make this process more robust we compute this approximation by using
all neighbors of an ellipse instead of just one and averaging over the estimates. For a border
ellipse the estimate is computed relative to its adjacent corner ellipses and the grid center.
Analogously, the adjacent edge ellipses and the center are used for corner ellipses and all
edge points are used to estimate the center ellipse size. To distinguish between large and
small circles in a candidate marker, we compare the estimated diameter with the known
diameter set when printing a marker. As a final step we also need to determine which of the
large ellipses are hollow, i.e. contain an inner white circle. For each large ellipse we simply
compute the average intensity of the binary image in the area covered by the ellipse. To
tolerate inacuraccies during ellipse fitting we first scale the actual ellipse to a smaller size
which would still encompass a potential inner, white circle. If the average intensity of this
downscaled ellipse is larger than a given threshold, i.e. the inside of the ellipse is white, we
determine a large ellipse to be hollow. A digit is then assigned to each ellipse in a marker
candidate according to the coding scheme described in Section 4.3.

After determining all ellipse types and their respective digits we can assemble the marker
payload. One goal of this process is to recover the marker’s orientation from the Lyndon
word encoded in its four corner points. As described in Section 4.3, a code word is encoded
into a marker with the top left ellipse representing the first digit, then progressing clockwise
around the grid border with the last digit in a code always encoding the center ellipse. Since
the detection process described in the previous sections already distinguishes between corner
and edge points in a marker candidate we can immediately construct a code word that
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represents the marker by simply starting at one of the corner points and then following our
encoding convention. Looking back at Figure 5.8 there are four possible code words for this
marker, given by rotating the marker by multiples of 90◦: 122221212, 222121122, 212112222
and 211222212. To determine which of these four (if any) describe the marker in its original
rotation, we first extract the word encoding the markers corners at positions 1, 3, 5, 7 in the
code word. If this matches one of the 8 valid Lyndon words, we have recovered the markers
orientation. Otherwise we need to check the remaining rotations. Such a code word rotation
by 90◦ can simply be achieved by shifting the first 8 digits by 2. After validating the corners
and recovering the orientation we can finish the decoding process by checking any used error
detection or correction mechanisms as explained in Section 4.3.

5.5 Pose Estimation

Finally, after detecting a valid fiducial marker, we can proceed to recover its 3D position with
respect to the camera. Since this is only possible in applications with calibrated cameras,
this step is obviously omitted when markers are used for camera calibration themselves. As
explained in Section 3.3, in order to recover the 3D pose of an object, a set of correspondences
between 2D and 3D points are required. In our case these correspondences are the 2D ellipse
centers in the detected marker image and the ideal 3D positions of our tag circles in a 3× 3
grid in a metric coordinate frame. To solve the PnP problem with the correct scale right
away, we incorporate the known distance between circles d into the 3D grid. We obtain the
correspondences between centers c′i ∈ R2 and their respective ideal positions in the 3D grid
ci = [i1 · d, i2 · d, 0]T ∈ R3 with i1, i2 ∈ {0, 1, 2} being the grid indices. We then apply the P3P
algorithm [30] in a RANSAC scheme as well as the UPNP [32] algorithm to generate several
initial pose estimates as initializations for a subsequent non-linear optimization step. We
select the pose after non-linear refinement which produces the smallest pixel reprojection error
as our final estimate of the marker position. As a small sanity check to discard erroneous
detections we discard all markers that produce a reprojection error larger than a certain
threshold ethresh. The pixel reprojection error for a pose pj = (Rj, tj) given a calibrated camera
projection function π is computed as

9

∑
i=1
|π(Rjci + tj)− c′i |. (5.18)

In practice we found that a threshold of ethresh = 25 pixels works well for images of size
848× 800. A notable difference of our marker design to square markers is that we are able to
utilize the full nine point correspondences of our 3× 3 grid for pose estimation instead of
just four corners of a square border. This should in theory lead to a more accurate and stable
pose estimate similar to methods such as Pi-Tag or TopoTag.
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In this chapter we propose a novel way of composing fiducial markers into larger grids
by exploiting the geometric structure of our tags in combination with our approach to
payload encoding. Using current methods such as AprilTag or ArUco, the way of building
larger patterns is to simply stack multiple markers into a grid, see Figure 6.1. The main
application for such marker grids is camera calibration, as it produces more 2D to 3D point
correspondences per image which can be used for camera model fitting compared to single
markers. Using marker grids for camera calibration also provides a significant advantage over
more classic calibration patterns such as checkerboards or circle grids, as e.g. implemented
by the calibration toolbox Kalibr [39]. These patterns generally cannot be detected reliably
if parts are obstructed or only a subset of the pattern is observed. Being able to still detect
a partial calibration pattern is, however, especially important for the calibration of fisheye
cameras in order to cover all areas of the camera field of view. This is because the large
distortion at the edges of the image area may lead to parts of a calibration pattern being cut
of or rendered unusable. A drawback of the straightforward AprilGrid approach is that in
the case of detection errors a whole tag with multiple point correspondences, 4 in the case
of AprilGrid, is missing instead of just a single point correspondence. Other approaches
such as TopoTag [23] or LFTag [24] support larger markers up to sizes of 4× 4, but adapt
their detection algorithm for each marker size, making it harder to implement. Instead of
stringing together separate markers, we generate a large circle grid in which every 3× 3
subgrid represents a valid fiducial, increasing both point correspondence density as well as
error tolerance due to marker overlap. Compared to AprilGrids our method is more robust
in terms of error tolerance, as the wrongful or missing detection of one circle only leads to
one missing point correspondence since every circle is part of more than one marker. With
AprilGrids a missed tag detection leads to all four corner points of that tag not being available.
Finally, as our fiducial markers are designed to work well with heavily distorted camera
lenses, these larger grids can also easily be used for fisheye and large field-of-view camera
calibration.

6.1 Grid Generation

More complex requirements on grid layouts unfortunately come with the caveat of a much
more involved grid generation process. A brute force approach of generating possible grids
and checking whether each 3× 3 subgrid forms a valid marker is not feasible due to its
exponential computational complexity. To generate valid grids we therefore resort to a
different method of incrementally building grids with a backtracking approach. First, all
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AprilGrid This work

Figure 6.1: Comparison between AprilTag grids and this work’s composable marker grid,
both providing 12× 12 point correspondences.

possible markers in all four 90◦ rotations are precomputed, resulting in 7776 = 4 · 1944 tiles.
At this point we use individual marker codes without any additional error detection which
we will explain in more detail later on. Then the first of these is selected as a starting point
of the larger grid, i.e. the top left 3× 3 subarea of the larger grid is filled. Afterwards, this
starting subgrid is extended with overlapping markers. In case of a dead end, meaning the
desired grid size has not been reached while the current incremental grid cannot be extended,
we backtrack one or multiple steps. This process is illustrated in Figure 6.2 for the generation
of a small 4× 4 grid. To start with, we take a single marker and attempt to find another tag
which can be overlapped on the bottom two rows of the 3× 3 grid. The same is done for
overlaps to the right and bottom right to fill up the 4× 4 grid. If no overlapping tag can be
found after a step before reaching the desired grid size we backtrack until there are valid,
overlapping options. While this process is able to generate all possible valid grids of a certain
size it is still very computationally expensive with an exponential worst case complexity. As
shown in Table 6.1, we can only feasibly use this approach for grid sizes of up to 6× 6. The
results also show an overwhelming number of possible 4× 4, 5× 5 and 6× 6 grids. This is
quite interesting as it would enable us to use a composed grid for normal marker applications
and obtain a very large number of unique identifiers.

Grid size Runtime Number of grids

4× 4 2.64s 262, 144
5× 5 213s 47, 807, 136
6× 6 22h50m 181, 718, 080

Table 6.1: Number of possible marker grids for different grid sizes and their respective
generation runtime with our incremental approach.

Regarding our inability to generate the full range of existing marker grids for larger sizes,
we argue that for most applications only a small number of actual large marker grids will
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Figure 6.2: Generating a marker grid by incrementally fitting individual tags.

suffice. E.g. for camera calibration only one unique grid is required in most use cases which
can easily be generated and distributed in advance. Because of this we opt for another
approach to generate grids larger than 6× 6. We formulate our grid constraints using the
theorem solver Z3 [40] which is able to very quickly determine whether a valid circle grid
exists for a given grid size and generate its structure. Unfortunately, this approach does not
enable us to provide the total number of possible grids for larger sizes. Regardless, even in
use cases where multiple unique grids are required, using Z3 is a valid option as we are able
to quickly generate multiple unique grids by simply adding logical constraints to exclude
already known grids. With Z3 we were able to determine that there exist valid grids of sizes
of up to 19× 19 circles. This is quite interesting as one could come to expect these marker
grids to be infinitely tileable. As we are starting from a limited set of initial markers, it is
conceivable and also the case here, that after a certain grid size no more overlapping tiles can
be found to extend the marker grid. A deeper insight into the theoretical background of this
phenomenon would be quite interesting, but unfortunately is out of scope for this work.

Recursive grids

There are, however, some other theoretical properties of our marker grids worth taking a
closer look at. If we were to exclude the previously stated fact of grids only existing up to a
size of 19× 19, it could be possible that recursive grid patterns existed, i.e. larger grids which
themselves would be infinitely tileable with overlap. While this is not the case for our library
of possible 3× 3 markers, there are recursive grid patterns which can be tiled infinitely when
relaxing the requirements for marker, or rather grid overlap. If allowing neighboring grids to
overlap by one row or column instead of two rows or columns, we can generate a number
of infinitely repeatable marker grids. The smallest such repeatable pattern is of size 4× 4,
the largest of size 14× 14. We currently do not have a direct application for these repeating
grids as they are harder to detect, since each subpattern is not unique in the context of the
larger, tiled grid. Nevertheless, we still regard this property as potentially useful for future
applications.

Non-repeating grids

Another property that might be desirable in marker grids is that each individual 3× 3 fiducial
is unique within the grid. This enables easier detection as the marker identifier would suffice
to determine the position in the grid upon a successful detection. Since this constraint limits
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the space of possibilities quite drastically, the largest grid which fulfills the requirement is
of size 11× 11. Compared to the common choice for AprilGrid of using a 6× 6 grid of
markers for calibration purposes which provides 12× 12 point correspondences this still
seems sufficient for many uses cases.

6.2 Grid Detection

Even with being able to efficiently generate large composable marker grids, the most important
aspect remains their accurate and robust detection. Because we require each 3× 3 subgrid
to constitute a valid fiducial marker we can use the same detection pipeline that we use for
individual tags as introduced in Chapter 5. Some of the heuristic detection steps discussed
in Section 5.3 are quite crucial for a reliable detection of individual markers which are part
of larger grids. Due to the very regular geometric patterns and overlapping markers, the
likelihood of erroneous detections is significantly larger when compared to a single tag
application. For one, it is quite important to consider a larger number of ellipse neighbors
when looking for marker candidates as not all of the 8 closest ellipses to a marker center are
part of the actual marker when looking at larger grids from low viewing angles.

To stitch together individual marker detections into an overall marker grid, there are two
options. The easiest is to make use of non-repeating grid patterns to immediately determine
the position of a marker in a grid. This would require the layout of the used marker grid
to be known in advance as would be the case in an AprilGrid-like application where only
one distinct grid is used. The second, more complex option is to incrementally construct a
grid detection from the overlapping individual marker detections. We did not implement this
approach but a possible process could be:

1. Gather all individual 3× 3 marker detections.

2. Find neighboring detections that constitute a valid overlap.

3. Aggregate neighboring detections into candidate grids.

4. Iteratively merge candidate grids with overlapping areas.

One problem with this approach which could arise for grids larger than 6× 6 is that of one
grid being detected as multiple smaller ones. This could be the case if e.g. the fourth column
of circles in a 7× 7 grid is not detected correctly, effectively splitting the grid in half. As such
a case is quite unlikely, one could perform some sanity checking and discard these detections.

Error tolerance

As discussed in Section 4.3, our marker design employs a two step approach to error detection.
First, we enforce the Lyndon words, which encode tag rotation in the four corners, to have
a Hamming distance of 2. Second, we include an optional error detection or correction
procedure, like e.g. a checksum, in the remaining 5 payload digits. As stated in Section 6.1 we
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Figure 6.3: Detection of a 7× 7 composed marker grid. We use the previously introduced
approach of detecting a non-repeating marker grid by directly mapping each
individual 3 × 3 grid to the correct position in the grid. Pose estimation is
performed using all 49 point correspondences.

use the full number of possible code words 8 · 35 = 1944 to generate our composable grids,
therefore opting to not use any sort of error correction for the 5 payload digits of each tag.
Due to the overlapping nature of individual marker code words in a composed grid, a global
error detection scheme can be implemented, as each individual circle is generally part of
multiple 3× 3 markers in a grid. This could be used to detect erroneous code words based
on neighboring markers in a composed grid by checking detected marker overlap for validity.
To not limit the number and maximum size of possible grids, we deem this level of error
tolerance to be sufficient for most applications.

6.3 Applications of Marker Grids

We propose two main applications for our composable marker grids. Large fiducial grids are
especially useful for camera calibration as the main criteria there is to generate as many 2D
to 3D point correspondences as possible to be used when fitting a camera model. A higher
density of points therefore either means more correspondences per frame or more robust
detection when using fewer points and therefore larger features. Additionally, it is essential
that the markers can also be detected from different viewing angles and in the presence of
large camera distortions such that they can be used with a multitude of different camera
models. As shown in the comparison with AprilGrid at the start of this chapter in Figure 6.1,
our method produces slightly larger fiducial features at the same point density while using
circular features instead of line intersections which should lead to more accurate estimates
and more robust detections.

The second application we have in mind for our grids is to enable markers of varying
sizes while using the same detection process. Methods such as TopoTag or LFTag provide
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6 Composable Marker Grids

the option of using 3× 3 or 4× 4 markers each, but in turn have to adapt their detection
algorithm for each marker size. With our composable markers one could choose to use
4× 4, 5× 5 or even larger grids as individual markers which would provide more point
correspondences for e.g. pose estimation. As shown in Table 6.1, this would also result in
an enormous number of unique grid identifiers. An additional benefit of using composable
grids as individual fiducials is the increased error tolerance to missed circle detections. In the
case of e.g. specular reflections on a marker it is possible that the image binarization discards
some circles which would lead to a missed detection in the case of a single 3× 3 marker.
Composed marker grids represent a larger tolerance to occlusion as each individual circle,
apart from the grid corners, is part of at least two markers which means that a grid can still
be detected if one or more circles are missing.
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This chapter describes the experimental results of the fiducial marker design introduced in
the previous chapters. Our evaluation will be done on two main datasets. One generated
artificially in a 3D simulation, the other recorded using an Intel RealSense Tracking Camera
T265 [41] with a motion capture (MoCap) system providing ground truth for pose estima-
tion. We will highlight our marker’s performance with regards to detection accuracy, pose
estimation accuracy and detection speed and finally, also showcase some failure cases.

To slightly improve the detection accuracy and error tolerance of our method in this
evaluation, we implement the checksum approach to error correction described in Section 4.3
where the center ellipse of a marker is chosen such that the sum of the code word digits is
divisible by 3.

All of the presented evaluations are run single-threaded on a desktop PC with an Intel
Core i7-6700 CPU with 3.40GHz and 16 GB of RAM.

7.1 Datasets

We use both a simulated dataset as well as real images for several reasons. When evaluating
a fiducial marker in terms of theoretical detection accuracy, parameters such as viewing angle
and viewing distance are more easily controllable in a simulated environment whereas real
images include use cases with difficult, realistic lighting conditions and image noises.

7.1.1 Synthetic

For our synthetic dataset we implement a 3D simulation of our marker using OpenGL in
which one marker of size 10cm× 10cm is captured by a virtual camera at a specific viewing
angle and distance. Each evaluation is done with different camera models. We use a pinhole
model with a focal length of 280mm and a Kannala Brandt model with the same parameters
as the RealSense T265 camera used to capture our real world dataset. All simulated images
have a resolution of 848× 800 pixels, same as the RealSense T265. To also test our k-nearest
neighbor detection scheme we draw additional ellipses around the marker to mimic the
situation of additional circular objects being present in a scene close to the marker as well as
the detection within a marker grid. Some examples are shown in Figure 7.1.

Evaluation Methodology

We will primarily use the simulated data to showcase our marker designs performance with
respect to viewing distance and viewing angle. Multiple synthetic images are generated
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d = 0.075m, θ = 0◦ d = 0.15m, θ = 30◦ d = 0.7m, θ = 20◦ d = 0.9m, θ = 5◦

d = 0.075m, θ = 0◦ d = 0.15m, θ = 30◦ d = 0.7m, θ = 20◦ d = 0.9m, θ = 5◦

Figure 7.1: Examples of simulated markers with a size of 10cm× 10cm using a pinhole camera
model (top row) and Kannala Brandt camera model (bottom row) at respective
distance d to the marker and viewing angle θ.

for each viewing angle between 0◦ and 90◦ in increments of 0.5◦. This is done for viewing
distances of 0.075m, 0.15m, 0.4m, 0.7m and 0.9m. We generate multiple unique images for
each combination of viewing angle and viewing distance by introducing a slight jitter in the
camera position of ±0.1mm.

7.1.2 Real World Examples

As the basis for our real world evaluation we record several short sequences of our marker
design printed on a sheet of A3 paper in a grid with three other fiducial markers. We select
ArUco [6] as implemented in OpenCV [42], Pi-Tag [14] and STag [7] as reference fiducial
systems to compare against. ArUco, as it is one of the most widely used systems and has
proven reliable in real world applications. STag, as it promises a small improvement upon
ArUco while using similar methods and Pi-Tag, as it represents a fiducial marker quite similar
to ours with respect to using circles arranged in a square as the base fiducial features. The
four markers are laid out in a 2× 2 grid, as seen in Figure 7.2b, with each marker having
a size of 10cm× 10cm and a spacing of 4cm to neighboring markers. For ArUco we use a
marker from the "Original" library and for STag one from the "HD11" library.

Recorded Sequences

Our recorded sequences cover a wide range of use cases, from varying distances and angles
to different lighting conditions. We also include a sequence with noticeable motion blur. A
full overview of all sequences can be found in Table 7.1. Important to note here is that each
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7 Evaluation

(a) Intel RealSense T265 (b) Marker layout

Figure 7.2: Showcase of our real world dataset recording setup. (a) Intel RealSense Tracking
Camera T265 [41]. (b) Layout of the markers used in our real world evaluation
dataset: From top left to bottom right, our design, Pi-Tag [14], ArUco [6] and
STag [7].

of the three sequences low-angle-close, low-angle-mid and low-angle-far are made up of four
shorter sequences. As a low viewing angle on the test marker layout represents an advantage
to the two markers closer to the camera, we record four sequences at low angles looking at
the marker grid from each of the four possible directions.

Hardware

To record our sequences, we are using the Intel RealSense Tracking Camera T265 [41] which
features a gray-scale stereo camera setup with built-in accelerometer and gyroscope, also
called an inertial measurement unit (IMU). An image of the device can be found in Figure 7.2a.
Its two stereo cameras manage a resolution of 848× 800 with a field of view of 163◦ ± 5◦ at
a framerate of 30Hz. We calibrate the camera using a recording of an AprilGrid calibration
pattern which we use to fit a Kannala Brandt model for each of the two cameras. For this we
use the calibration utilities of the Visual SLAM toolbox Basalt [43]. To obtain a comparable
ground truth to be used when evaluating marker pose estimation accuracy, we use a motion
capture system to track the position of the camera rig with respect to some arbitrary world
coordinate frame. As the rotational center of the MoCap markers placed on the camera rig
generally does not align with that of the cameras, we again use Basalt to obtain the transform
between the MoCap measurements and the IMU coordinate frame (and therefore the camera
coordinate frames) of the capture rig. This process works by solving a joint optimization
problem for the transformations of camera to IMU and IMU to MoCap based on the MoCap
poses, AprilGrid observations and IMU measurements. Secondly, due to our recording setup
being split between different devices, the MoCap measurements and camera images are not
time aligned. As clocks may drift over time, this time offset has to be computed and applied
for each evaluation sequence individually. Basalt provides such a utility in which the time
offset is computed by again aligning the gyroscope measurements with the MoCap rotational
velocities and selecting the time offset which produces the smallest alignment error.
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7 Evaluation

Evaluation Methodology

We follow the same procedure for all of the evaluations using our real world dataset. Every
image in a sequence is run through each of the four marker detection pipelines. If a marker is
detected we obtain the coordinates of its 2D feature points as well as the marker identifier. In
the case of ArUco or STag these 2D points are the four corners of the marker, for Pi-Tag and
our marker they are the centers of the ellipses making up the marker. We first compare the
detected identifier with the correct one to rule out false positive detections for each marker.
For better comparability we decided to not use the pose estimation built into some of the
marker implementations and instead use the process introduced in Section 3.3 for all four
markers. We also apply our false positive thresholding based on pixel reprojection error
with regards to the detected fiducial features for each marker after pose estimation. As pose
estimation is not possible in all applications, e.g. for camera calibration, we will show the
number of false positives before performing pixel reprojection error thresholding.

7.2 Detection Precision

0.0° 20.0° 40.0° 60.0° 80.0°
angle [°]

0%
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0.9m

(a) Pinhole Camera
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(b) Kannala Brandt Camera

Figure 7.3: Percentage of correct detections of a marker on 100 simulated frames plotted
across viewing angles up to 90◦ for multiple viewing distances. Results are shown
for a simulation using (a) a pinhole camera model as well as (b) a Kannala Brandt
camera model.

This section will illustrate the performance of our novel fiducial marker design with regards
to detection precision. As the base metric for this evaluation we will use the number of correct
marker detections compared to the number of false positive detections in a given sequence.
As we can see from the evaluation results on the simulated dataset in Figure 7.3, our marker
design achieves consistent detections even in low viewing angles for viewing distances up to
0.4m. When increasing the distance to 0.7m we can see a sharp drop in detections starting
at angles around 45◦ to 50◦. Finally, markers are not detected reliably at a distance of 0.9m
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7 Evaluation

as the individual ellipses making up a marker are only a few pixels in size in a captured
image. The rate of false positive detections shown in Figure 7.4 highlights one of the current
problems of our detection pipeline. When viewing a marker at a low angle it is quite hard to
accurately distinguish between the different types of ellipses leading to code word decoding
errors even with the geometry of a marker being detected correctly. The figures show this
behavior quite clearly for viewing distances of 0.075, 0.15m and 0.4m, as the false positive
rate has a short spike at the same point where the the detection accuracy decreases as shown
in Figure 7.3.
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(b) Kannala Brandt Camera

Figure 7.4: Percentage of false positive detections of a marker on 100 simulated frames plotted
across viewing angles up to 90◦ for multiple viewing distances. Results are shown
for a simulation using (a) a pinhole camera model as well as (b) a Kannala Brandt
camera model.

We compare the detection accuracy of our marker design with ArUco, Pi-Tag and STag in
Table 7.2. The results highlight that while being outperformed by ArUco in most cases, our
method clearly outclasses Pi-Tag as another circle based marker system and is comparable to
STag in most cases. We would like to note that due to not assuming a projective geometry
for initial marker candidate detection and code word decoding, our detection system is
able to outperform even ArUco in the sequences pan-tilt-close-1 and planar-close-1, where
the camera is panned across the marker at a very close distance leading to large distortions
when the marker is at the edge of the camera field-of-view. In many other sequences such
as low-angle-close-1, mixed-motion-2 or shadows-1 our method achieves results which are quite
comparable to those of ArUco. We would also like to highlight that our markers are still
detectable quite reliably in the presence of larger motion blur as shown by the results for the
sequence shake. One notable shortcoming of our method is its shorter detection range when
compared to ArUco and STag as shown by the results for the sequences low-angle-far-1 and
pan-tilt-far-1.

When regarding the number of false positive detections shown in Table 7.3 it is clear that
even though our method produces a noticeable amount of false positives for simulated edge
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Figure 7.5: Mean pose translation error of marker detections on 100 simulated frames plotted
across viewing angles up to 90◦ for multiple viewing distances. Results are shown
for a simulation using (a) a pinhole camera model as well as (b) a Kannala Brandt
camera model. Errors are only shown for correct marker detections, hence the
cutoff at 45◦ of the 0.7m graph.

cases this does not matter too much in real world applications with no false positive detections
across all sequences.

7.3 Pose Estimation Accuracy

We evaluate the pose estimation accuracy of our method on our simulated dataset by compar-
ing the estimated pose computed by the detection pipeline with the ground truth pose of the
camera in the OpenGL simulation. We use the mean translation error (Figure 7.5) between
the estimated pose and the ground truth as well as the mean rotation error (Figure 7.6) to
showcase the pose estimation accuracy across a wide range of viewing angles and viewing
distances. The mean pose translation error is simply computed as

etrans =
1
n

n

∑
i=1
‖ti − tgt,i‖ (7.1)

for a number of n images with respective estimated marker pose gi = (Ri, ti) and ground
truth pose ggt,i = (Rgt,i, tgt,i). Similarly the mean rotation error is computed as

erot =
1
n

n

∑
i=1

arccos

(
tr(RiRT

gt,i)− 1

2

)
, (7.2)

which represents the average angular difference between the ground truth and the estimated
pose. We can clearly see from Figure 7.5 and Figure 7.6 that the pose estimation is especially
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Figure 7.6: Mean pose rotation error in degree of marker detections on 100 simulated frames
plotted across viewing angles up to 90◦ for multiple viewing distances. Results are
shown for a simulation using (a) a pinhole camera model as well as (b) a Kannala
Brandt camera model. Errors are only shown for correct marker detections.

stable for close viewing distances of less than 0.4m. The larger spikes in estimation error at
viewing angles lower than 20◦ for larger viewing distances can be explained due the fact that
all ellipses lie on the same plane. This means artifacts such as camera jitter or imprecise pixel
sampling in the simulation have a larger effect on the pose estimation if the marker is viewed
head on instead of at a larger angle.

Accuracy on real data

Evaluating the pose estimation accuracy on our real dataset is more complicated, since the
ground truth is the camera pose with respect to an arbitrary world frame as recorded by a
motion capture system. To compare the estimated marker poses with the ground truth we
perform a standard trajectory alignment between the marker pose trajectory and the camera
trajectory, as these poses are set in different coordinate frames. Given a set of ground truth
camera poses Q1:n = {Q1, . . . , Qn | Qi ∈ SE(3)} and corresponding estimated camera poses
(inverse of the estimated marker pose) P1:n = {P1, . . . , Pn | Pi ∈ SE(3)} these two trajectories
can be aligned by finding a transform S ∈ SE(3) that minimizes the translation difference
between each pair of poses. We now denote the pairwise pose difference between the two
trajectories as

Fi = Q−1
i SPi. (7.3)

A very common error metric in many 3D computer vision applications is to use the transla-
tion component trans(Fi) to compute the absolute trajectory error (ATE). The ATE is often
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aggregated across the whole trajectory as a root mean square error (RMSE) formulated as

RMSEATE(F1:n) =

(
1
n

n

∑
i=1
‖trans(Fi)‖2

)1/2

. (7.4)

Table 7.4 shows the RMSE ATE for ArUco, STag, Pi-Tag and our method on our real world
dataset for each of the individual dataset sequences. The results show that our marker design
outperforms both ArUco and STag in terms of pose estimation accuracy. This is not surprising
since both of those methods only use the four corners of their respective square marker
border as point correspondences for pose estimation. Pi-Tag also achieves decent performance
with low trajectory errors across all sequences as it uses the centers of twelve circles as point
correspondences similar to our method. It is important to note, however, that the actual
detection accuracy of Pi-Tag shown in Table 7.2 is much lower than that of all other three
methods, which might indicate that markers are only detected in very favorable conditions
which might skew pose estimation results.

7.4 Detection Runtime

An important aspect of fiducial marker designs is their runtime and ability to be parallelized,
as many applications require real time capabilities. Table 7.5 shows the respective runtime
of our detection pipeline steps for an 848× 800 image with some clutter and one marker
present. While our implementation has not been that heavily optimized for runtime it is quite
clear that the connected component labeling process takes up over 60% of the runtime with
the image binarization and search for ellipse candidates making up most of the remainder.
This is not surprising as theses steps all perform at least one full pass over the input image,
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3.77 16.00 3.90 0.89 0.31 0.04 1.13 26.04

Table 7.5: Runtime of the individual detection pipeline steps in milliseconds.

with the connected component labelling algorithm even performing two full passes. Still, our
method achieves a per-frame runtime lower than the magical threshold of 33.3ms required
for 30 frames per second in many real time applications. It is also notable that our method is
faster than both the implementation of STag and Pi-Tag, as shown in Table 7.6, and is only
outperformed by ArUco which has been optimized heavily, as the implementation has been
part of OpenCV for quite a while. The slight difference in runtime shown in Table 7.5 and
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Marker System Runtime

ArUco 6.0ms
STag 55.9ms
Pi-Tag 69.2ms
Ours 27.8ms

Table 7.6: Average runtime per frame of the detection pipelines of ArCuo, STag, Pi-Tag and
our method across all sequences in our real world dataset.

Table 7.6 of our method stems from our experimental setup, as we use Python bindings of
our C++ implementation for large scale evaluations and pure C++ for smaller examples such
as the one-off runtime evaluation show in Table 7.5.

We would also like to note that the detection pipeline can be parallelized quite easily as
steps like image thresholding and parts of the connected component labelling process can be
tackled in a divide and conquer approach. Additionally all of the later stages starting at the
ellipse fitting operate on individual ellipses or marker candidates and can therefore also be
parallelized.

The only drawback of our method in terms of runtime is that the connected component
labeling process can generate a large number of ellipse candidates in very cluttered scenes.
This means we have to run a larger number of ellipse fittings as well as k-nearest neighbor
searches which are quite expensive. Another effect of this property are dynamic changes in
runtime as it is not solely dependant on the size of the input image, but also on the clutter
(or distinct connected components) in the image, which might be undesirable in applications
where a constant and predictable runtime for each processing step is required.

7.5 Qualitative Results

To also provide some more visual examples of our methods performance, Figure 7.7 shows
some marker detections in very challenging situations. We can see that our markers are
detected correctly at very low viewing angles, large viewing distances and even in the
presence of significant motion blur or difficult lighting conditions with parts of the marker
lying in shadow. We would also like to highlight that markers can be detected even at the
very edge of the camera field-of-view which is especially valuable for the use case of camera
calibration as it enables us to cover the whole camera lens when calibrating.

7.6 Failure Cases

This section aims to investigate some failure cases of our marker design. We will first
introduce the results of an experiment in which we compare the false positive rate of our
marker to that of ArUco and STag on a large scale image dataset which contains no actual
marker images. Secondly, we will highlight some qualitative failure cases of our markers.
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(a) Low viewing angle (b) Large image distortion (c) Large image distortion

(d) Significant motion blur (e) Difficult lighting (f) Large viewing distance

Figure 7.7: Qualitative results of marker detections in challenging situations.

7.6.1 False Positive Analysis

To give a better overview of our marker detection accuracy in more realistic settings outside
a controlled laboratory environment we use a subset of the large scene recognition dataset
provided by LabelMe [44] containing roughly 2920 images from different, mostly outdoor
scenes, as well as the indoor scene recognition dataset [45] containing 15,620 images to
represent markerless scenes. We showcase the number of false positive detections of ArUco,
STag and our method in Table 7.7. As we can see from the table, our method produces a
significantly larger amount of false positive detections than both ArUco and STag which is
one of the current shortcomings of our method. This mostly stems from two aspects of our
marker design. We first of all make very few assumptions about the geometry of a marker
when performing initial detection steps which leads to more marker candidates in the early
stages of our pipeline when compared to the straightforward and constrained search for
quads in ArUco and STag. Additionally, we currently do not implement a more sophisticated
approach to error detection than enforcing a Hamming distance of two within the Lyndon
words which encode rotation in the tag corners and a simple checksum for the center ellipse.
Since our overall library size is more constrained than that of larger ArUco variants and STag,
adding a stricter error detection encoding would decrease our library size quite significantly,
but we argue this would be tolerable as most applications do not need multiple hundred
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Marker System LabelMe Indoor Scene Recognition

ArUco 110 (3.77%) 193 (1.24%)
STag 293 (10.03%) 308 (1.97%)
Ours 2672 (91.51%) 3146 (20.15%)

Table 7.7: False positive detections on the LabelMe [44] and indoor scene recognition [45]
datsets of ArUco, STag and our method. Pi-Tag was excluded from this analysis due
to its very expensive runtime on high resolution images. We show the percentage
of images which produced at least one false positive detection in brackets.

unique markers. We would also like to add that even though a very large false positive rate is
quite undesirable in a marker design, it does not matter much for many practical applications.
In scenarios where pose estimation is performed using a calibrated camera, one can easily
perform a final filtering based on the relative pixel reprojection error of the estimated pose. In
the calibration use case a large false positive rate can be detrimental but can be adjusted for by
using a fixed calibration grid which rules out many erroneous detections. Additionally, when
using composed grids for camera calibration as introduced in Chapter 6, one can perform
additional error detection and correction on the marker grid level. As a general note for the
results in Table 7.7: The reason for the number of false positives of all markers being relatively
higher on the LabelMe dataset is due to the images generally having a higher resolution of up
to 2048× 1536 pixel compared to the much lower resolution of around 200− 400× 200− 400
pixels of the indoor scene recognition dataset. A larger image leads to more details being
present which in turn increases the probability of an erroneous detection.

7.6.2 Qualitative Examples

We want to use this section to give some qualitative examples of failed or erroneous detections
of our marker design and also explain the reason behind those failures. As highlighted
in Table 7.7 in the previous section, our method is quite prone to false positive detections,
predominantly in images with high resolution. This can be seen again in Figure 7.8, especially
in the left image, in which our method produces a large number of false positive detections.
The reason for this behavior is the large amount of small image detail, in this case the
foliage of a tree, which produces an enormous number of possible ellipses after ellipse
candidate detection and ellipse fitting. Each part of the foliage which results in a separate
connected component after thresholding is seen as an ellipse which could possibly be part
of a marker. Due to the sheer number of detected ellipses, in this case 3524, the probability
of one combination of 9 such ellipses matching the geometry of a tilted or distorted 3× 3
grid is very high. Since we do not implement a sophisticated error detection scheme in our
marker payload encoding, we currently cannot rule out all of the resulting false positive
marker candidates. It can be seen though, that most of these false positive detections are
somewhat irregular in terms of relative size and position of the detected ellipses. It is therefore
reasonable to assume that they could be filtered out with additional heuristics, or would
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Figure 7.8: Examples of false positive detections on the LabelMe dataset [44]. In images with
high frequency image detail (left) erroneous detections are much more likely.

be discarded by the previously described reprojection error thresholding in case images are
taken with a calibrated camera.

The second most common failure case which leads to false positive or missed detections is
that some digits in a marker’s code word are not recognized correctly. As shown in Figure 7.9a,
it is possible that our current method of decoding the ellipse types from a marker candidate
detection produces invalid code words, as e.g. small ellipses are accidentally detected as
large ones. This stems from the fact that our current approximative ellipse size computation
explained in Section 5.4 is not able to accurately capture the full range of possible viewing
angles and their respective ellipse distortions.

The reason for our markers not achieving good detection recall for large viewing distances
is that small and hollow ellipses grow too small or degenerate after adaptive thresholding,
rendering them undetectable with our current ellipse detection pipeline. This can be seen in
Figure 7.9b.

54



7 Evaluation

(a) Ellipse type detection failure
(b) Missed detections of small and hol-

low circles

Figure 7.9: Examples of wrongful of missed detections of our method. (a) Failure of our
ellipse type decoding process. The small ellipses at the middle horizontal edges
of the marker grid are erroneously detected as large ellipses leading either to
a missed or false positive detection. (b) Missed detections of ellipses at a large
viewing distance. Small ellipses are not detected due to too small sizes and hollow
ellipses are broken up during adapting thresholding.

55



8 Conclusion and Future Work

This thesis introduces a novel design for fiducial markers based on a 3× 3 grid of circles. The
proposed method is specifically tailored to work well with large distortion cameras such as
fisheye and large field-of-view lenses. Compared to traditional square fiducial markers such
as ArUco [6] or STag [7] tags are detected based on the individual circles and their relative
geometrical layout to each other instead of searching the image for large quads representing
a square border around a marker. Since smaller image features are generally less prone to
distortion, in addition to distorted circles still being recognizable as ellipses, our method
achieves robust detection recall even in very distorted images. Similar to other circle based
methods such as Pi-Tag [14] we also achieve a better pose estimation accuracy than ArUco or
STag as our method uses the position of all nine circles in a marker as point correspondences
for marker localization instead of just the four corners of a square marker border.

Another key feature of our marker design is its composability. Due to the geometric layout
and coding system of our 3× 3 circle grids, individual, overlapping markers can be assembled
into larger grids without changing the underlying detection process. This can be useful for
usage in camera calibration applications similar to AprilGrid in which the robust detections
of our markers, even at the edges of distorted camera field-of-views, would really shine. A
second potential use case is the ability of exploiting the very large number of unique 4× 4,
5× 5 and 6× 6 marker grids to dramatically increase the library size of potential applications
by using composed grids as individual fiducials instead of single 3× 3 markers.

There are of course a number of possible improvements and avenues for future work to
the approach presented in this thesis. For one, we only shortly introduced possible ways of
incorporating more sophisticated error detection and error correction capabilities into our
marker’s coding system. Extending our initial and very simple idea of using Lyndon words
for rotational uniqueness in addition to a crude checksum for the remaining marker payload
could improve detection precision in many applications by eliminating some of the occurring
false positive detections. We also only shortly glanced over possible implementations for
detection schemes of composed marker grids in Chapter 6, which in addition to a more
theoretical approach to marker grid generation could warrant some more in-depth research.
Especially when looking at concrete options of performing error detection and correction
not on single markers but on composed grids as a whole. In terms of general detection
performance as shown in Chapter 7, our method is still lacking behind the implementation
of ArUco in OpenCV. Investigating ways of improving the k-nearest-neighbor tag detection
scheme presented in Chapter 5, as well as the approach to ellipse type detection would
probably be the best way of improving detection recall to be on par with ArUco. Additionally,
it would be quite interesting to see more experimental results on a wider range of camera
lenses and resolutions.
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8 Conclusion and Future Work

Overall we regard our marker system as a valid alternative to state of the art methods
such as ArUco in applications where a high detection recall is required even in heavily dis-
torted images, as well as in use cases with stricter requirements on pose estimation accuracy.
Our approach to marker composability also opens the door to more dynamic usages with
differently sized markers, large numbers of 2D to 3D point correspondences and library sizes
of up to multiple million uniquely identifiable grids.
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