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Abstract

Relative pose estimation of two camera views is a fundamental problem in computer
vision. While many algorithms to solve this problem have been proposed, almost all
struggle with purely rotational motion given no additional information. Kneip et al.
proposed the normal epipolar constraint (NEC) that allows for rotation estimation
independent of the translation. However, their approach is highly dependent on
accurate feature positions in both frames. This work presents the novel probabilistic
normal epipolar constraint (PNEC) for relative pose estimation. The PNEC overcomes
the NEC limitation by accounting for anisotropic and inhomogeneous uncertainties
in the feature positions in the target frame. To this end, a novel objective function,
along with an efficient optimization scheme, is derived that effectively estimates the
rotation while maintaining real-time performance. Experiments on synthetic data
demonstrate that the novel PNEC improves upon the original NEC and yields more
accurate rotation estimates. Furthermore, this thesis shows the integration of the PNEC
into a state-of-the-art monocular rotation-only odometry system. This new PNEC visual
odometry consistently achieves improved results for the real-world KITTI dataset.
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1. Introduction

Motivation Extracting 3D geometry from multiple images is a widely researched
topic in computer vision. Its numerous applications include mobile robots, autonomous
driving, and augmented or virtual reality. Essential for the extraction of 3D geometry is
the identification of the camera pose of an image. This knowledge is often obtained by
relative pose estimation between two images of the same scene. Relative pose estimation
is the building block of many geometric vision algorithms like visual odometry (VO)
or structure from motion (SfM). Estimating the relative rotation is especially important
for VO systems since small errors quickly lead to a drift in estimation.

Most approaches to VO systems either use the essential or fundamental matrix [42,
50, 40] or maintain a 3D representation of the surrounding structure for relative pose
estimation. Both approaches have deteriorating performance for purely rotational
motion in common and require additional techniques like model selection or additional
inertial information [32]. The normal epipolar constraint [33] for estimating rotation
independent of the translation does not suffer for purely rotational motion. However,
the normal epipolar constraint, like many other relative pose estimation algorithms,
does not consider the quality of the features used. Apart from outliers in the feature
correspondences that are removed, every match contributes equally to the final re-
sult. However, the two-dimensional error distribution of a feature correspondence is
dependent on the image region and the method used for extraction. Therefore, each
feature correspondence exhibits a different error distribution, which leads to unequal
contributions to the problem. A feature located on an edge is not very accurately
localized parallel to it but possesses a high accuracy perpendicular to the edge. An
equal weighting of the feature correspondences loses this anisotropic information of
the feature position. The benefit of incorporating uncertainty information into relative
pose estimation has been shown for fundamental matrix estimation [6].

Problem Statement and Contributions The goal of this work is to incorporate uncer-
tainty information about the feature position into the normal epipolar constraint (NEC)
to achieve accurate rotation estimates even in cases of pure rotation. From the proba-
bilistic description of a feature position in the image, we derive a novel energy function
that accounts for the quality in the feature matches based on uncertainty information
by propagating it to energy function residual. This new energy function is a weighted
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1. Introduction

version of NEC energy function. We show that optimizing the energy function of the
PNEC is not a trivial task, and we break it down into two sub-problems for which
efficient yet not optimal solutions are known. This thesis presents an efficient optimiza-
tion scheme to minimize the energy function based on the eigenvalue-based solver for
the NEC, the self-consistent-field (SCF) method for the sum of generalized Rayleigh
quotients (GRQs), and a least-squares refinement that achieves real-time performance.
We present further analysis of the geometry of the PNEC and its energy function.
We focus on singularities that arise from the PNEC formulation. A regularization is
proposed that removes these singularities from the PNEC energy function.

We evaluate our method on simulated data and the popular KITTI odometry dataset.
We show that together with uncertainty extracted from Kanade-Lucas-Tomasi tracks
the PNEC outperforms a NEC state-of-the-art rotation-only odometry system.

Outline Ch. 2 gives an overview over the related work in the field. We summarize
popular techniques for relative pose estimation in Sec. 2.1, two approaches to feature
extraction in Sec. 2.2, the usage of positional uncertainty in geometric vision in Sec. 2.3,
and give an overview of visual odometry systems in Sec. 2.4. Furthermore, we introduce
the work related to the sum of GRQs relevant to this work. In the method section Ch. 3
we first summarize the NEC (see Sec. 3.1) and from there derive the PNEC and its
energy function in Sec. 3.2. Sec. 3.3 shows the optimization scheme for the PNEC used
throughout this work, while Sec. 3.4 presents additional insight into the energy function
from which we derive an effective regularization scheme for the PNEC used in practical
applications. Experiments validating the effectiveness of the PNEC compared to the
NEC are given in Ch. 4. Sec. 4.1 investigates the frame-to-frame rotation estimation of
the PNEC with experiments on synthetic data. Sec. 4.2 evaluates the performance for
real-world data in an odometry setting. We discuss the performance of the PNEC in
Ch. 5 and present potential future work based on the experimental results. This thesis
concludes with a summarization of the work presented (see Ch. 6).
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2. Related Work

The focus of this thesis is the integration of uncertainty in the feature positions into the
NEC. We aim to improve frame-to-frame rotation estimation for application in visual
odometry. Therefore, the discussion of the related work is limited to the following as-
pects: giving an overview of the different methods for relative pose estimation; the usage
of uncertainty information for relative pose estimation; the difference between matching-

based and tracking-based approaches to correspondences extraction; an overview of
different visual odometry systems with a focus on rotation-only algorithms. For an addi-
tional, broader overview, we refer the reader to the books by Szeliski [67] and by Hartley
and Zisserman [24] as well as to the overview papers for bundle adjustment [69] and
simultaneous localization and mapping [7], which is closely related to odometry.

2.1. Relative Pose Estimations

Relative pose estimation is the task of estimating the rotation and translation between
two viewpoints. It is a long-standing problem in the field of computer vision, with
the first known solution proposed in 1913 by Kruppa [34]. Most methods proposed
to solve this task fall into two categories, feature-based [31, 47, 48, 71] or direct [14, 13].
Feature-based methods rely on previously computed feature correspondences extracted
from the images. Direct methods use the intensity differences between the two images.

While direct methods have gained lots of popularity in the last years, they rely
on photometric consistency. Therefore, they are sensitive to lighting and illumination
changes in the scene [65]. In general problems, e.g. structure from motion or long-term
relocalization, such appearance changes (lighting and weather) frequently violate the
photometric consistency assumption [65]. Feature-based methods are considerably
more robust to these effects. This work extends a feature-based rotation estimation
method, and therefore this section will focus on these methods in the following.

The feature-based methods proposed over the years differ in the geometric constraints
used and the minimum number of points needed. Many methods [42, 50, 62, 40, 35]
base their solution on the essential matrix in the case of a calibrated camera, or the
fundamental matrix in the general case. Both matrices link the position of the feature
correspondence pair in the epipolar geometry.
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2. Related Work

One of the earliest works to use the essential matrix is the eight-point-algorithm by
Longuet-Higgins [42] that requires at least eight correspondence pairs and results in a
linear solver. While the eight-point-algorithm has been criticized for its sensitivity to
noise, the defense by Hartley [25] shows its good performance given careful normal-
ization. However, this algorithm is not suitable in certain configurations, e.g. purely
rotational motion of the camera or a coplanarity of the points used [32].

The latter scenario can be addressed by algorithms using the minimal required
number of five correspondences. Nistér [50] proposed a solution using this minimal
number by utilizing polynomials and root bracketing. A recent approach [15] with
the same number of points uses quaternions for directly estimating the relative pose
resulting in more noise resilience. However, neither of the essential matrix-based
algorithms allow for relative pose estimation in the presence of noise if the translation
between the two viewpoints is near to or equal to zero [32]. A common problem of
these approaches is that given a small translation the essential matrix tends to zero.

A popular way to address this shortcoming, from which not only essential matrix-
based methods suffer, is to use sensor fusion to incorporate inertial information into the
relative pose estimation leading to visual-inertial odometry systems [38, 49, 64]. Recent
works have also proposed different geometric constraints to address these problems
without inertial information [41, 33].

The antipodal-epipolar constraint by Lim et al. [41] makes use of antipodal rays, decou-
pling the translational and rotational motion of the camera. Each component can then
be solved in a lower dimension than the original. Antipodal rays require cameras with
a field-of-view of over 180 degrees, and therefore the constraint cannot be used with a
single pinhole camera.

As the antipodal-epipolar constraint, the normal epipolar constraint (NEC) by Kneip
et al. [33] also decouples the rotational motion of the camera from the translational
motion, resulting in a constraint that allows the estimation of the rotation independent
of the translation given at least five correspondence pairs. It was first introduced by
Kneip et al. [33] as the epipolar plane normal coplanarity constraint and later renamed
to the normal epipolar constraint [10], which we will also use throughout this work.
In their first paper, Kneip et al. [33] proposed a Gröbner basis solver for a system of
polynomial equations leading to a complex optimization of the NEC for exactly five
points. However, due to the complexity of this solver and its numerical instabilities
for purely rotational motion, Kneip and Lynen [32] presented an eigenvalue-based
solver that expands the use of the NEC to more than five points. While the NEC is
recapped in more detail in Sec. 3.1 we refer the interested reader to [33] for a more
detailed derivation of the constraint, to [32] for an elegant optimization scheme of the
eigenvalue-based solver, and to [36] for an in-depth investigation into the geometry of
the NEC.
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2. Related Work

2.2. Feature Correspondence Generation

Feature-based VO systems like PTAM [31] and ORB-SLAM [47, 48] need feature
correspondence pairs between images. This section presents different methods to
generate feature correspondences between a pair of images. It focuses on feature

extraction and matching and feature tracking approaches to emphasize their differences.
Both, feature extraction and matching [47, 48] and feature tracking [71] methods find their
use in VO systems.

Feature extraction and matching is one of the most commonly used approaches to
generate feature correspondences [66, 75]. It is a two-step method of first finding and
describing keypoints in the image and then matching the extracted keypoints of two
images based on their description to find correspondences. While this core mechanic
stays the same, a variety of algorithms have been proposed that differ in the kind of
features used and the method of matching them. Some of the most popular keypoint
extraction algorithms are SIFT [43], SURF [3], and ORB [56]. A more detailed overview
of the different algorithms and techniques can be found in the book by Nixon et al. [52].

Unlike feature extraction and matching, feature tracking does not need to extract
keypoint in both images. A widely used example of a feature tracker is the Kanade-
Lucas-Tomasi (KLT) tracker [44, 68, 58]. Features extracted in one image are tracked in
another image using a directed search by optimizing a cost function. Over the years,
different approaches to the optimized cost function have been made, resulting in a
wide variety of formulations. The KLT tracker of [71] also used in this work makes
use of the inverse compositional formulation [2] resulting in efficient computation of the
Hessian needed for optimization. An overview of the most popular formulations can
be found in [1] with additional information in [44, 68] and a multi-paper series starting
with the excellent paper by Baker and Matthews [2].

2.3. Uncertainty for Feature Correspondences

The accurate determination of feature positions in images is difficult. Due to image
noise, feature positions in the image cannot be localized with perfect accuracy. Estimat-
ing this positional uncertainty has been an extensively researched topic in computer
vision [17, 61, 57, 77]. Different methods have been proposed that incorporate the
aspects of the different feature extractors, that include the Förstner corner detector [61]
and the Harris corner detector [6, 54], to obtain better results. Zeisl et al. [76] have
presented a method for uncertainty estimation for the SIFT [43] and SURF [3] detectors
with an emphasis on anisotropic and inhomogeneous covariances information, so that
not every feature follows the same error distribution. The importance of uncertainty
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information, however, is not only limited to feature extraction. Dorini and Goldenstein
[12] have shown how to directly integrate this positional uncertainty into KLT tracking.

Integrating this positional uncertainty into the alignment problem has been of interest
in the photogrammetry community [46], as well as in the computer vision community
[6, 30], and has been investigated from a statistical perspective [28, 29]. Early works
have debated the usefulness of uncertainty information for estimating the parameters
of the fundamental matrix. Brooks et al. [6] used covariance information from the
Harris corner detector beneficially and investigated the effects of correctly extracted
covariance matrices of the error distribution for estimating the fundamental matrix.
Kanazawa et al. [30] also showed the theoretical benefits of uncertainty information
but questioned its practical use. Given that covariance matrices are too similar, nearly
isotropic and homogeneous, no substantial information can be gained for estimating
the fundamental matrix. Kanazawa et al. argued that corner detectors are designed
to extract keypoints with a similar structure resulting in similar covariance matrices,
limiting their use. However, Zeisl et al. [76] have demonstrated the possibility to extract
anisotropic and inhomogeneous covariances in practical situations.

2.4. Visual Odometry Systems

Visual odometry is the task of recreating the trajectory of a camera motion from a
stream of images. The basis of all visual odometry (VO) systems is the relative pose
estimation between a pair of images or multiple images. This section gives an overview
of VO systems with a focus on rotation-only odometry systems due to their relevance
to this thesis.

The different approaches to relative pose estimation as presented in Sec. 2.1 lead
to different VO systems. Algorithms that use feature-based relative pose estimation
include PTAM [31] and ORB-SLAM [47, 48] with feature extraction and matching
but also approaches with KLT tracks [71]. In recent years direct methods like LSD-
SLAM [14] and DSO [13] have gained popularity.

A common problem of VO systems is a drift in the trajectory estimation over time.
Small errors in the estimated rotation and translation accumulate, worsening the overall
estimate with time. Reducing the error of the relative pose between two images also
reduces this drift. Furthermore, additional methods allow further reduction of long-
term drift in visual odometry. The following will give examples of some of the most
popular approaches.

Bundle adjustment, for example, used in [59], tries to jointly optimize the position
of 3D structure and the poses of multiple camera viewpoints by exploiting covisibility
of the same features in multiple views. The advantage over two-view relative pose
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estimation is the additional information that can be inferred about a feature in 3D space
due to the different viewpoints. Additionally, it allows for the inclusion of different
feature types like points, lines, and curves. An introduction to bundle adjustment and
an overview of different approaches can be found in the excellent survey by Triggs et

al. [69].
Including multiple views in the optimization increases the necessary computational

resources. This is common to approaches that consider the covisibility of features
between more than two directly subsequent images [59, 13, 10]. To keep the optimization
as a constant time algorithm, Sibley et al. [59] proposed a sliding window approach
for closely approximating the all-time maximum likelihood estimate of all images.
Similar approaches that keep the number of images optimized constant over the whole
stream have been made for pose graph optimization [10] and with a more sophisticated
keyframe-based approach for direct methods [13].

Leutenegger et al. [38] argue for the usage of keyframes for visual odometry. Not
every frame provides useful information to the odometry problem that was not already
included in previous frames. Discarding these frames results in a sparse graph of
keyframes and landmarks for optimization. To keep the optimization fast old keyframes
are marginalized out, leaving an optimization window. In contrast to previous sliding
window approaches, the time between two keyframes can be arbitrarily large. The
keyframe approach has also found its application in direct methods with DSO [13].

Pose graph optimization is a concept not only found in visual odometry but also in
odometry and SLAM in general. It estimates the set of poses from pairwise relative
pose estimates [8]. A special case of pose graph estimation is rotation averaging, where,
instead of optimizing a graph of poses, only a graph of relative rotations is optimized.
Averaging out the inaccuracies of the single relative rotation estimations leads to an
improved result. Dellaert et al. [11] showed how to obtain globally optimal solutions
for rotation averaging for rotations in any dimension by relaxing the problem to even
higher dimensions. Chatterjee and Govindu [9] propose an iteratively reweighted least-
squares approach to rotation averaging resulting in an algorithm suited for large-scale
problems. MRO [10] combines this approach with a sliding window on the graph
optimization to obtain a constant time rotation-only odometry algorithm.

Loop closure allows the elimination of large-scale drift in the pose estimations by
revisiting locations. Given that a camera sees the same structure at different times of
the image stream, loops in the trajectory can be identified (loop detection), leading to
new constraints for the camera motion.

Loop detection requires place recognition in order to work. A popular technique
used in [47, 10] is to use a bag-of-words [51] to describe images based on their features
in order to find similar images over a large time difference. LDSO [18], a direct method
also utilizes a bag-of-words in order to identify loops in the trajectory. A more thorough
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overview of different approaches for loop detection can be found in [72].
In ORB-SLAM [47] constraints between subsequent images, sharing observations of

enough points, and loop constraints found by loop detection are stored in a covisibility
graph. These constraints are used for pose graph optimization as in [63] to reduce
long-term drift. Further examples that use pose graph optimization for loop closure for
direct methods can be found in [14] and [18].

Common among these approaches to visual odometry is that without additional
information, their performance deteriorates for purely rotational motion, given no
additional information. Sec. 2.1 already illustrated the problems with essential or
fundamental matrix approaches. But not only these approaches are badly constrained
for pure rotations. Methods that have a 3D representation of the feature position like the
direct method DSO [13] find it infeasible to maintain them. Panoramic representations
without depth information are needed as a fallback [19, 55] but make the initialization
of new points in 3D difficult.

A popular method to address purely rotational motion is to incorporate complemen-
tary data in the form of inertial measurements into the relative pose estimations leading
to visual-inertial odometry systems [38, 49, 64]. The NEC introduced by Kneip et al.
[33] allows for VO systems to handle pure rotations without inertial information. It is
used as a relative pose estimation basis for several rotation-only odometry systems [37,
10].

Rotation-Only Bundle Adjustment (ROBA) [37] expands the eigenvalue-based relative
rotation estimation of the NEC [32] to multiple views. It combines the ideas of the NEC
with bundle adjustment that allows for rotation-averaging with optimization directly
on the image features. ROBA optimizes the relative rotations over a covisibility graph
using a gradient-based optimization algorithm.

Monocular Rotational Odometry (MRO) [10] also builds a covisibility graph over
relative rotations obtained by the eigenvalue-based optimization of the NEC [32] using
ORB features. Absolute rotations are obtained by a windowed rotation averaging
version of [9]. MRO also includes a bag-of-words loop closure to address long-term
drift.

2.5. Sum of Generalized Rayleigh Quotients

The sum of generalized Rayleigh quotients (GRQs) is a generalization of the Rayleigh
Quotient. While recent applications in data science and wireless communications lead
to optimization problems over the sum of GRQs, the energy function derived in Sec. 3.2
leads to a similar optimization. While the sum of GRQs is explained in more detail in
Sec. 3.3.2, this section gives an overview of recent advances made in the optimization
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of the sum of GRQs.
Optimizing the sum of GRQs over the unit sphere has been of interest recently in

the community of data science and wireless communications [78, 79, 4]. While this
thesis is in neither of these fields of study, the resulting energy function obtained by
incorporating uncertainty into the NEC is a sum of GRQs in the translation. Therefore,
the advances made in the optimization of the sum of GRQs are of interest to this work.

Zhang [78] shows how to optimize the sum of two GRQs which was later expanded
to an arbitrary number of GRQs by Zhang and Chang [79]. Due to its relation to
eigenvector and eigenvalues, Zhang and Chang [79] proposed a numerical optimization
with the self-consistent-field (SCF) method. The SCF method finds frequent use in the
field of electronic structure calculations but also lends itself to optimize the sum of
GRQs over the unit sphere. Since the sum of GRQs exhibits many local minima, the
SCF method outperforms generic manifold optimization. However, convergence to a
global optimum is not guaranteed. A more thorough investigation into the sum of
GRQs can be found in [4] which also expands the SCF to a trust-region SCF for better
convergence.
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3. Method

The following chapter starts by stating the notation used throughout this work. Then
we introduce the NEC by Kneip et al. [33] (see Sec. 3.1). Sec. 3.2 explains how to
integrate uncertainty information into the NEC. We show how to propagate the
uncertainty through the NEC to derive the PNEC energy function. Sec. 3.3 shows that
the optimization scheme proposed by Kneip and Lynen [32] for the NEC cannot be
applied naively to the PNEC. We propose an optimization scheme tailored to the PNEC
energy function. The chapter closes with further investigations into the PNEC energy
function, with respect to singularities, in Sec. 3.4. We also present implementation
details for covariance information extraction from KLT tracks.

Since this thesis is also the topic of a submission by multiple authors most figures,
tables, and algorithms are identical. An overview over parts not created by the author
of this thesis can be found in Appendix C.

Notation The following notation is used in this work. Vectors (e.g. f 2 Rn) are
denoted by bold lowercase letters and matrices (e.g. S 2 Rn⇥n) by bold uppercase letters.
The superscript > applied to a vector or matrix denotes the respective transposed. k · k
is the Euclidean norm of a vector. The hat operator applied to a vector u 2 R3 gives a
skew symmetric matrix û 2 R3⇥3 that allows the cross product between two vectors to
be written as a matrix-vector product, i.e. u⇥ v = ûv. When talking about absolute or
relative camera poses a rigid-body transformation is used to describe its orientation and
position. It is represented by a rotation matrix R 2 SO(3) and a unit length translation
t 2 R3 for the orientation and position, respectively. ktk = 1 is imposed since the
two-view problem is scale invariant. Any additional notation used in this work is
introduced when appropriate.

3.1. Normal Epipolar Constraint

This section summarizes the main idea of the NEC proposed in [33] and derives the
energy function used in [37]. For a more detailed explanation of the NEC and more
insight into the geometry of the problem the reader is referred to [33, 32, 37, 36].

The NEC is a constraint on the epipolar plane normal vectors created from feature
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3. Method

Figure 3.1.: Geometry of the NEC [33]. Each observed feature results in a correspon-
dence pair represented by unit bearing vectors f

i
and f

0
i

in the host frame (O) and the
target frame (O0), respectively. Each pair, together with translation spans an epipolar
plane (yellow, orange, red) with a corresponding normal vector ni given by Eq. 3.4. All
epipolar planes intersect in the translation (dashed line). The normal vectors span the
epipolar normal plane (gray). For visual clarity only three feature correspondences are
shown.

correspondences of two camera frames. Given a host frame and a target frame observing
the same scene, an object generates a feature correspondences (xi, x

0
i
) in the coordinate

systems of the camera views. The relationship

xi = Rx
0
i
+ t (3.1)

between the object position in the target frame x
0
i

and in the host frame xi is given by
the relative rotation R and translation t between the two frames.

The position of the feature correspondence can be described by a pair of two unit-
bearing vectors ( f

i
, f
0
i
). In the host frame by

f
i
=

xi

kxik
(3.2)

and in the target frame by

f
0
i
=

x
0
i

kx0
i
k , (3.3)

respectively. Each of the bearing vector pairs, together with the translation vector spans
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3. Method

an epipolar plane. Each plane is represented by its normal vector

ni = f
i
⇥ R f

0
i
, (3.4)

the epipolar plane normal vector. Since the translation vector spans the epipolar plane, all
normal vectors are orthogonal to t, making them coplanar. Together they span a plane
that has t as its normal vector. We refer to this plane as the epipolar normal plane in this
work. Fig. 3.1 shows the geometry of the NEC with the epipolar planes, the normal
vectors, and the epipolar normal plane.

The rotation between two camera frames can be estimated by enforcing the copla-
narity of the epipolar plane normal vectors. For an estimated rotation R the normal vector
constructed from the rotation and a feature correspondence pair will not necessarily
be orthogonal to the translation t and therefore not lie in the epipolar normal plane. The
residual is given by the normalized epipolar error [37]

ei = |t>ni|, (3.5)

i.e. the Euclidean distance of the normal vector to the epipolar normal plane. A least
squares energy function

E(R, t) = Â
i

e
2
i

= Â
i

|t>( f
i
⇥ R f

0
i
)|2 (3.6)

is constructed over all feature correspondences pairs. Sec. 3.3 shows how this energy
function is minimized in order to estimate the rotation.

3.2. Probabilistic Normal Epipolar Constraint

This section expands on the idea of the NEC by correctly accounting for uncertainty
information of feature positions in the constraint. Sec. 3.2.1 presents how to derive
uncertainty information of the unit bearing vectors from the uncertainty in the image
plane features using the unscented transform. We show in Sec. 3.2.2 how to propagate
this uncertainty even further to the residual to obtain the weighted PNEC energy
function.

3.2.1. Uncertainty Propagation

The PNEC accounts for error in the feature position of feature correspondence pairs.
The formulation of the PNEC presented in this work considers the error to be entirely
in the target frame (see Fig. 3.2). An equivalent formulation can be derived analogously
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host frame target frame

Figure 3.2.: Illustration of feature correspondences with feature position uncertainties.
The feature position error is considered to be in the target frame. The probabilistic
normal epipolar constraint (PNEC) expands the NEC by incorporating this uncertainty
of this error. The PNEC assumes a Gaussian error distribution represented by the
covariance ellipses in the target frame.

for a position error in the host frame.
The PNEC assumes that the error distribution follows as 2D Gaussian distribution on

the image plane. For each correspondence pair the error distribution is characterized
by a 2D covariance matrix S2D,i. To derive the PNEC energy function this covariance
is propagated through to the NEC residual Eq. 3.5 to estimate the distribution of the
residual.

The first step obtains a 3D error distribution Si of the bearing vector f
0
i

by using
the unscented transform [70] to project S2D,i onto the unit sphere. The following
paragraphs give an overview over the unscented transform and show how it is used to
obtain Si for omnidirectional and pinhole cameras.

The Unscented Transform The unscented transform approximates the mean and
covariance of a Gaussian distribution after applying a non-linear transformation to
it. Given an initial distribution X ⇠ N (µ

X
, SX) and a non-linear function y = f (x)

the unscented transform computes a Gaussian approximation Yu ⇠ N (µ
Y

, SY ) of the
distribution of Y . The unscented transform computes the mean and covariance from
selected points to which the non-linear transformation is applied. Fig. 3.3 illustrates
the difference of using the unscented transform to a linear approximation for a pinhole
camera in 2D. Given a covariance matrix SX with rank n the unscented transforms

13



3. Method

(a) linear approximation (b) unscented transform

Figure 3.3.: Illustration of the difference between linear approximation (a) and unscented
transform (b) for the projection of the image plane covariance onto the bearing vector
with unit length (in 2D). The linear approximation of the projection gives a covariance
tangential to the unit-sphere—the covariance matrix does not have full rank. The
unscented transform projects multiple points onto the unit sphere and captures the
non-linearity of the projection—the covariance matrix has full rank.

selects 2n + 1 points as well as corresponding weights around the mean using

x0 = µ
X

w0 =
k

n + k

x
i,i+n

= µ
X

±
p

n + kCi i = 1 . . . n

wi,i+n =
1

2(n + k)
i = 1 . . . n,

(3.7)

where Ci is the i-th column of the matrix C such that Sx = CC
>. k controls the spread

of the points, which is set to its default value k = 1 in this work. A popular way to
compute C is using the Cholesky-decomposition of SX . The non-linear function f (x) is
applied to the points

z
i
= f (x

i
) (3.8)
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resulting in 2n + 1 points of the new distribution. The mean and covariance of this new
distribution are computed

µ
Y

=
2n+1

Â
i=0

wizi
,

SY =
2n+1

Â
i=0

wi(z
i
� µ

Y
)(z

i
� µ

Y
)>

(3.9)

using the weights. For the PNEC we project the 2D covariance S2D of the target frame
feature in the image onto the unit-sphere in 3D.

The Unscented Transform for Omnidirectional Cameras Feature points for omnidi-
rectional cameras are not located on a 2D plane, but on a sphere in 3D. Their covariance,
still assumed to have rank 2, is therefore embedded in 3D space. The covariance matrix
Sspherical 2 R3⇥3 does not have full rank. Since it is not positive definite, the Cholesky-
decomposition is not defined for it. In order to still use the unscented transform for
omnidirectional camera the Cholesky-decomposition of a 2⇥ 2 sub-matrix CC

> = S2D
of the form ✓

S2D 0
0> 0

◆
= RSspherical R

>. (3.10)

is used. A matrix R that gives us such a form is the rotation matrix

R =
1
kµk

0

BB@

kµk � µ2
1

kµk+µ3
� µ1µ2

1+µ3
�µ1

� µ1µ2
1+µ3

kµk � µ2
2

kµk+µ3
�µ2

µ1 µ2 µ3

1

CCA , (3.11)

where µi denotes the i-th entry of the vector µ. R aligns the feature point with the
z-axis and the covariance with the xy-plane.

Using this realignment of the covariance matrix the points for the unscented transform
are selected as

x0 = µ
X

x
i,i+n

= µ
X

±
p

n + kR
>
✓

Ci

0

◆
i = 1 . . . n .

(3.12)

For omnidirectional cameras we use the non-linear function

f (x) =
x

kxk , (3.13)
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the projection onto the unit sphere.

The Unscented Transform for Pinhole Cameras Feature points for pinhole cameras
are located on the image plane with 2D covariance matrices for which the Cholesky-
decomposition is defined. Points for the unscented transform are selected according to
Eq. 3.7. The non-linear function

f (x) =
K
�1

x

kK�1
xk

(3.14)

is given by the unprojection of the point with the inverse camera matrix [24] and
subsequent projection onto the unit sphere.

3.2.2. The Probabilistic Normal Epipolar Constraint Energy Function

Because the uncertainty in the image is only a few pixels, the approximation using the
unscented transform is reasonable since the non-linear function is locally well approxi-
mated by a linear function. The covariance of the bearing vector f

0
i
, obtained by the

unscented transform, is then propagated through the linear functions of the normalized
epipolar error (Eq. 3.4 and Eq. 3.5) to give the univariate Gaussian distribution of the
residual error N (0, s2

i
), with the variance

s2
i
(R, t) = t

>
f̂

i
RSiR

>
f̂

i

>
t . (3.15)

The variance is incorporated into the energy function by using a Mahalanobis distance
instead of the Euclidean distance. We obtain the PNEC energy function

EP(R, t) = Â
i

e
2
i

s2
i

= Â
i

|t>( f
i
⇥ R f

0
i
)|2

t
>

f̂
i
RSiR

>
f̂

i
>t

, (3.16)

a weighted version of the NEC energy function. The following discusses the optimiza-
tion of the PNEC energy function for rotation estimation.

3.3. Optimization

Kneip and Lynen [32] presented an elegant eigenvalue-based optimization scheme
for the NEC. Sec. 3.3.1 shows why we cannot naively apply this eigenvalue-based
optimization to the PNEC. The rest of this section proposes a scheme to estimate the
rotation and translation using the PNEC by optimizing its energy function. Similar
to the NEC optimization is split up into two sub-problems, over the translation (see
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Sec. 3.3.2) and the rotation (see Sec. 3.3.3). Algorithms tailored to each sub-problem
are presented. They are employed alternately to get an iterative optimization scheme.
Furthermore, a refinement is proposed to improve the results (see Sec. 3.3.4).

3.3.1. Eigenvalue Based Optimization

The optimization of the NEC energy function can be split up into two sub-problems,
an optimization over the rotation and an analytical optimization over the translation.
Solving the rotation-only sub-problem leads to an eigenvalue-based optimization
scheme independent of the translation. Following [37], the energy function of the NEC
Eq. 3.6 can be rewritten as E(R, t) = t

>
M(R)t using the symmetric and positive-semi-

definite Gramian matrix

M(R) = Â
i

( f
i
⇥ R f

0
i
)( f

i
⇥ R f

0
i
)>. (3.17)

In this form, the energy function is quadratic in t such that the optimization over
the translation can be done analytically. The solution is given by the eigenvector
corresponding to the smallest eigenvalue lmin of M(R).

This leaves the sub-problem of optimizing the matrix M(R) such that the overall
energy is minimized. Because t is chosen to be the eigenvector, the minimization

min
R2SO(3)
t: ktk=1

t
>

M(R)t = min
R2SO(3)

t
>lmin(M(R))t

= min
R2SO(3)

lmin(M(R))
(3.18)

is reduced to minimizing lmin over R. Kneip and Lynen [32] give an interpretation of
this sub-problem as optimization over the normal vectors as a point cloud and M(R)
as a second order momentum matrix. Furthermore, they propose optimizing over R

using a Levenberg-Marquardt algorithm [39, 45].
While the energy of the NEC in t is given by a Rayleigh quotient of the form

E(R, t) =
t
>

M(R)t

t
>

t
, (3.19)

the energy function of the PNEC in t is given by the sum of generalized Rayleigh
quotients (GRQs) of the form

EP(R, t) = Â
i

t
>

Ait

t
>

Bit
(3.20)
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(a) 50 points (b) 100 points (c) 500 points (d) 1000 points

Figure 3.4.: Fibonacci lattice point generation for different number of points in 3D.
The Fibonacci Lattice distributed a given number of points equally on the surface of
a sphere. This distribution is used a sampling for different starting points of the SCF
algorithm. See Alg. 2 for more details.

and thus the optimization over t is not simply given by an eigenvalue as for the NEC.

3.3.2. Optimizing over t

Optimizing the sum of GRQs has been of interest for data science and wireless commu-
nications [78, 79, 4]. Recent advances by Zhang et al. [79] have shown the self-consistent-
field (SCF) [26] outperforming generic manifold optimization. The following shows
how the SCF algorithm is used to optimize the PNEC energy function over t.

Self-Consistent-Field Algorithm The self-consistent-field (SCF) algorithm for the
sum of GRQs optimizes energy functions of the following form

EP(R, t) = Â
i

t
>

Ait

t
>

Bit
+ t
>

Dt , (3.21)

where Ai, D are symmetric matrices and Bi are symmetric, positive definite matrices.
For the PNEC the matrices are given by

Ai = f̂
i
R f
0
i
f
0
i

>
R
>

f̂
i

> ,

Bi = f̂
i
RSiR

>
f̂

i

> + cI3 ,
D = 0 ,

(3.22)

where Bi needs a regularization term to make it positive definite. The SCF algorithm
is an iterative process for optimizing the energy function. The main step of the SCF
algorithm is to compute the E-matrix [4, Eqn. (2.3)], for the PNEC a 3⇥ 3 symmetric
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Algorithm 1: SCF Optimization w/ Globalization
Data: Fixed rotation R̃

Result: Optimized translation t
⇤

1 Sample the Fibonacci Lattice with K points (cf. Alg. 2)
{t̄k}k  FibonacciLattice(K)

2 Select the starting point with minimal Energy (cf. Eq. 3.16)
t0  arg mink EP(R̃, t̄k)

for s 1 to S do
3 Construct the E-matrix (cf. Eq. 3.23)

Es  E(R̃, t̄s�1)

4 Eigendecompose Es 2 R3⇥3 using Es = E
>
s

l1, l2, l3, v1, v2, v3  eig(Es) s.t. l1  l2  l3

5 Set ts as the eigenvector with maximal eigenvalue
ts  v3

end

matrix given by
E(R, t) = Â

i

wi ·
⇣

t
>

Bit · Ai � t
>

Ait · Bi

⌘
,

wi = (t
>

Bit)
�2 · ’

j

t
>

Bjt .
(3.23)

The weights of the form wi = (t
>

Bit)�2 are used to avoid numerical instabilities arising
from the common factor ’j t

>
Bjt. The translation t for the next iteration is given by

the eigenvector to the maximal eigenvalue of E. Alg. 1 summarizes the steps of the SCF
optimization.

Although the SCF algorithm outperforms generic manifold optimization, it is not
guaranteed to converge to the global optimum. To improve the results of the SCF, we
use a simple yet effective globalization strategy in this work. Optimizing the PNEC
energy function for t over the unit sphere in R3 has low dimensionality. Sampling
evenly distributed points on the unit sphere using the Fibonacci lattice [21] gives initial
points tk. The initial point with the lowest energy value is picked and used as the
starting value for the SCF-Iteration. Alg. 2 details the Fibonacci-lattice-based point
generation on the sphere in R3.
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Algorithm 2: Fibonacci Lattice Point Generation
Data: Number of points K

Result: Points on the sphere {t̄k = (xk, yk, zk)}k

1 Compute the golden ratio angle
f p · (3�

p
5)

for k 1 to K do
2 Compute the k

th
y-coordinate yk 2 [�1, 1]

yk  1� 2 · k�1
K�1

3 Compute the radius in the x-z-plane

rxz  
q

1� y2
k

4 Compute the remaining coordinates xk, zk for t̄k

xk  rxz · cos((k� 1)f)

zk  rxz · sin((k� 1)f)

end

3.3.3. Optimizing over R

The eigenvalue-based optimizer, proposed by Kneip and Lynen [32], efficiently estimates
the rotation using the NEC with a Levenberg-Marquardt approach. Estimating the
rotation using the PNEC energy function can be done similarly. While the rotation
estimation cannot be decoupled completely from the translation, an optimization
scheme similar to the popular iteratively reweighted least squares (IRLS) is employed
that reuses the idea of Kneip and Lynen [32].

Given an estimate of the rotation and translation (Rp, tp) a fixed weight s̃i = si(Rp, tp)
is computed for all feature correspondences pairs. Instead of optimizing the eigenvalue
of the unweighted matrix M(R) (see Eq. 3.17) the eigenvalue of the weighted matrix

MP(R; {s̃i}i) = Â
i

( f
i
⇥ R f

0
i
)( f

i
⇥ R f

0
i
)>

s̃2
i

(3.24)

is optimized. Due to the fixed weights the matrix only depends on the rotation R, such
that the optimizer of Kneip and Lynen [32] can be employed.

3.3.4. Least Squares Refinement

The previously proposed optimization techniques are efficient in estimating the rotation
and translation. However, they are not guaranteed to find a minimum of the PNEC
energy function. We use a least-squares refinement strategy to further improve the
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Algorithm 3: PNEC Optimization Scheme
1 Initialize weights s̃i,0  1 8i

for s 1 to S do
2 Optimize over R (cf. Sec. 3.3.3)

Rs  Opt
R

lmin(MP(R; {s̃i,s�1}i))

3 Optimize over t (cf. Sec. 3.3.2)
ts  Opt

t
EP(Rs, t)

4 Update the weights (cf. Eq. 3.15)
s̃i,s  si(Rs, ts) 8i

end
5 Least-Squares Refinement (cf. Sec. 3.3.4) using (RS, tS) as starting value

R
⇤, t
⇤  Opt

R,t EP(R, t)

results. It is effective in finding a local minimum of the energy function given a starting
point [53].

Using the Levenberg-Marquardt algorithm the least squares formulation of the PNEC
with the residuals

ri(R, t) =
t
>( f

i
⇥ R f

0
i
)q

f̂
i
RSiR

>
f̂

i
>

(3.25)

is optimized over the rotation R and the translation t simultaneously. The results of
the previously presented iterative optimization scheme are used as the starting values.
Manifold optimization [27] ensures that neither the constraints for the rotation nor the
translation are violated. The special orthogonal group SO(3) is used for the rotation
and for the translation spherical coordinates with the radius fixed to 1 ensure that
ktk = 1. Alg. 3 shows the complete optimization scheme with the iterative optimization
and the least squares refinement.

3.4. Further Investigations

This section gives further insight into the PNEC energy function as well as imple-
mentation details. We use uncertainty information provided by KLT tracks on visual
odometry datasets throughout this work. Sec. 3.4.1 looks at implementation details for
extracting the covariance in the image from these KLT tracks and can be skipped by
readers not interested in the implementation details. Sec. 3.4.2 shows that the PNEC
leads to singularities in certain geometrical configurations. We investigate them and
present a simple yet effective regularization to avoid them. Furthermore, Sec. 3.4.3
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Figure 3.5.: Illustration of the relation between the energy function E(x) (dotted blue),
the normalized distribution p(x) (orange), and the Laplace approximation centered
on the mode x

⇤ of p(x) (dashed green). The Laplace approximation gives a Gaussian
distribution based on an energy function. It is used to approximate the error distribution
of the KLT tracks for the PNEC.

gives a geometric interpretation of the energy function and its singularities.

3.4.1. Extracting Covariances in the Image from Kanade-Lucas-Tomasi
Tracks

In order to use the PNEC the uncertainty of a feature position has to be determined.
This section presents a method to extract such information in the form of a covariance
matrix for a KLT tracking system used in [71]. We use this tracking in the odometry
dataset experiments of this work. The covariance matrix is based on the Gaussian
approximation of a Boltzmann distribution derived from an energy function.

Given an energy function E(x) : Rd ! R its Boltzmann distribution [5, Eqn. (8.41)] is
the associated probability distribution

p(x) = Z
�1 exp(�E(x)) (3.26)

with the normalization constant Z > 0, such that
R •
�• p(x) = 1. Around a minimum of

E(x), which is a maximum of the Boltzmann distribution, the probability distribution
can locally be approximated as a Gaussian distribution using the Laplace approximation

[5, Sec. 4.4]. Fig. 3.5 illustrates the relationship between the energy function, its
Boltzmann distribution, and the Gaussian approximation. Around the local minimizer
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Figure 3.6.: Covariance ellipses for position uncertainties on KITTI seq. 07. The tracks
are generated using the Gaussian approximation of the KLT tracking energy function.
The PNEC correctly considers the anisotropic inhomogeneous error distributions of
the features. For visualization purposes the covariances are sub-sampled and enlarged.
Only a sub-image is shown.

x
⇤ of E(x), the Gaussian approximation has the mean µ = x

⇤ and inverse covariance

S�1 =
d

2

dx2 E(x)

����
x=x⇤

, (3.27)

where d
2

dx2 denotes the Hessian matrix.
The KLT tracking implementation [71] used in this work tracks a patch P, a pattern

of pixels, from the host to the target frame. The energy function optimized for this
tracking is

EKLT(T) = Â
p2P

✓
Ih(p)

Īh

� It(T(p))
Īt

◆2

, (3.28)

with the mean intensity in the host frame

Īh =
1

|P| Â
p2P

Ih(p) (3.29)

and the target frame

Īt =
1

|P| Â
p2P

It(T(p)), (3.30)

respectively. The transformation of a track between the host and target frame is given
by T, |P| denotes the number of pixels in P. The implementation in [71] uses an
inverse compositional formulation [2] for more efficient tracking. A proxy for Eq. 3.28
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is optimized, and therefore, we get an approximation of the Hessian of the energy
function. The Hessian has to be computed only once in the host frame. We refer a
reader more interested in KLT tracking and its different formulations to [44, 68] and
the excellent paper by Baker and Matthews [2], the first in a multi-paper series.

Due to the inverse compositional formulation only needing the host frame its sub-
script is dropped in the following such that the host frame is denoted by I. The Hessian
of the energy function is computed with the Gauss-Newton approximation using the
Jacobian. The system of equations to compute the Hessian is given by

Jp
i
= |P|

rI(p
i
) Âp2P I(p)� I(p

i
) Âp2PrI(p)

⇣
Âp2P I(p)

⌘2

Ji = Jp
i

✓
1 0 �pi,y
0 1 pi,x

◆

HSE(2) =
�

J1 J2 . . . Jn

�

0

BBB@

J1
J2
...

Jn

1

CCCA

SSE(2) = H
�1
SE(2)

(3.31)

where rI(p) is the image gradient and Jp
i

the Jacobian w.r.t. the pixel position.
All patches are tracked w.r.t. a SE(2) transform, that includes a 2D translation and

rotation so the Hessian as well as the covariance matrix is of size 3⇥ 3. Only a 2⇥ 2
covariance sub-matrix of the patch in the host frame is relevant for the PNEC. The
sub-matrix is given by the marginal over the translational coordinates. This is obtained
by selecting the upper left 2⇥ 2 sub-matrix S2D,h of SSE(2). To project the covariance
matrix into the target frame and correctly account for the rotation in the tracking
transformation T between the two frames the covariance matrix is rotated by the 2D
rotation matrix of the transformation

S2D,t = RT S2D,hR
>
T . (3.32)

S2D,t is covariance matrix is used in the PNEC to calculate the variance (see Eq. 3.15).

3.4.2. Singularities of the Probabilistic Normal Epipolar Constraint

Switching from the Euclidean distance to the Mahalanobis distance for the energy
function introduces singularities. This section investigates them in more detail and
shows a simple yet effective regularization to avoid them.
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Figure 3.7.: Visualization of the energy functions of the NEC, the PNEC, and the PNEC
with regularization proposed in Sec. 3.4.2. The plot visualizes the energy functions in a
neighborhood of a feature f

i
with regard to the translation t (in polar coordinates). The

center of the circles depicts t = f
i
. The PNEC has a finite discontinuity in the center for

t = f
i

with only a directional limit exists (see Sec. 3.4.2). The proposed regularization
removes the discontinuity and maintains the shape of the energy function otherwise.

The singularities of the PNEC arise if the variance s2
i

(Eq. 3.15) vanishes. This is
the case if the translation is parallel to a bearing vector in the host frame t = f

i
,

because f̂
i

>
t = f

i
⇥ t = 0 makes the denominator 0. Due to the different optimization

approaches of the eigenvalue based optimization and the least squares refinement the
singularity behaves differently and has to be investigated separately. Nevertheless, a
unified solution to avoid this singularity is shown.

The Singularity in the Eigenvalue-Based Optimization The matrix MP used in the
eigenvalue-based optimization of the rotation has no equivalent term to f̂

i

>
t in the

numerator and therefore tends to infinity for t ! f
i
. Since the position of the singularity

is independent of the translation the eigenvalue-based optimization can be dominated
by a single pair of ( f

i
, f
0
i
).

The Singularity in the Least-Squares Refinement In contrast to the eigenvalue-based
optimization, the energy function of the least-squares refinement includes the term
f̂

i

>
t in the numerator and the denominator. This can be seen if the energy function is

rewritten as

e
2
P,i(R, t) =

|(t⇥ f
i
)>R f

0
i
|2

(t⇥ f
i
)>RSiR

>(t⇥ f
i
)

. (3.33)

The residual is bounded and possesses a finite discontinuity. Fig. 3.7 illustrates the
value of the residual near the singularity. We present the directional limit for this
finite discontinuity later. The discontinuity is finite, and therefore, the singularity is
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less problematic than in the eigenvalue-based optimization. However, it still poses
challenges. While the function values of the residual are finite, the derivative is not
bounded. The unbounded derivative is problematic for optimization.

Removing the Singularity To address the singularity in both cases, the eigenvalue-
based optimization and the least-squares refinement, we employ a simple yet effective
regularization scheme. A variance of the form s0

i

2 = s2
i
+ c removes the discontinuity

and the singularity. The same type of regularization is also used in the SCF computation
of Bi to give it full rank (see Eq. 3.22).

Figure 3.8.: Approaching the singularity on the unit sphere using spherical coordinates.
For q ! 0 the feature vector f

i
! t resulting in a directional limit of the residual. The

direction from which the singularity is approached is determined by f.

The Directional Limit The following shows that the singularity of the PNEC residual
has no limit. This is shown by deriving the directional limit on the unit sphere. We
present the directional limit of f

i
! t instead of the directional limit of t ! f

i
, since it

does not change the limit but more accurately reflects real world scenarios. To derive
this directional limit spherical coordinates of the form

x = r

0

@
sin q sin f
� sin q cos f

cos q

1

A (3.34)
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are used, with the radius r fixed to 1. Without loss of generality

t =

0

@
0
0
1

1

A (3.35)

is chosen, since every problem can be rotated as a whole in 3D such that this holds for
t. Approaching t on the unit sphere with the feature vector f

i
is now done by writing

it in spherical coordinates as

f
i
(q, f) =

0

@
sin q sin f
� sin q cos f

cos q

1

A , (3.36)

where f represents the direction of the approach. Fig. 3.8 illustrates this approach on
the unit sphere. Letting q ! 0 implies f

i
! t such that our directional limit is given by

lim
q!0

|(t⇥ f
i
(q))>R f

0
i
|2

(t⇥ f
i
(q))>RSiR

>(t⇥ f
i
(q))

. (3.37)

The cross product is given by

t⇥ f
i
(q) = � sin q

0

@
cos f
sin f

0

1

A = � sin qk (3.38)

with k being the unit length vector orthogonal to f
i

and t. The limit then simplifies to

lim
q!0

|(t⇥ f
i
(q))>R f

0
i
|2

(t⇥ f
i
(q))>RSiR

>(t⇥ f
i
(q))

= lim
q!0

sin2 q

sin2 q

|k>R f
0
i
|2

k
>

RSiR
>k

=
|k>R f

0
i
|2

k
>

RSiR
>k

.

(3.39)

The above equation shows that the directional limit for q ! 0 exists and depends on
the direction k. Consequentially, the limit of the residual does not exist.
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3.4.3. Geometric Interpretations of the Probabilistic Normal Epipolar
Constraint

This section takes an in-depth look into the derivation of the PNEC energy function
as a Mahalanobis distance. We give a geometric reasoning for why the regularization
removes the singularity of the PNEC.

For the PNEC the epipolar normal plane is described in homogeneous coordinates by

p =

✓
t

0

◆
(3.40)

and the covariance with its singular value decomposition as

Sn,i = R
>
i

V iRi, V i = diag(a
2, b

2, c
2) , (3.41)

from which the whitening transform is derived. Applying it to the epipolar normal plane

gives a new transformed plane as
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The original Mahalanobis distance

dM =
q4q

q2
1 + q2

2 + q2
3

(3.43)

is now given by the distance of the origin to the transformed plane, giving the PNEC
energy function by squaring it.
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Given this geometric interpretation of the PNEC, its singularity can now be explained
geometrically. The main characteristic of the distribution of ni is that its covariance
matrix Sn,i = f̂

i
RSiR

>
f̂

i

> only has rank 2. Since ni = f
i
⇥ R f

0
i

is derived as a cross
product its distribution has to be orthogonal to f

i
. It lies in 3D space on a 2D plane

orthogonal to f
i

(note that f
i

is not random while f
0
i

is random). A Mahalanobis
distance can only be defined for points on this plane. For f

i
6= t this 2D plane and the

epipolar normal plane intersect in a single line giving a meaningful Mahalanobis distance.
This does not hold for f

i
= t.

The regularization shown in Sec. 3.4.2 resolves this problem by removing the 2D
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constraint on the Mahalanobis distance by giving the covariance matrix full rank. This
can be seen by the equivalent formulations of the regularization as

t
> (Sn,i + cI3) t = t

>Sn,it + ct
>

I3t

= t
>Sn,it + c ,

(3.45)

where Sn,i + cI3 has full rank.
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4. Experiments

To evaluate the PNEC, we compare it to the NEC in different experiments. We utilize
synthetic data to validate its performance in frame-to-frame rotation estimation. Its
performance in a visual odometry (VO) setting is evaluated on real-world data.

On the simulated data, we compare the optimization of the NEC and PNEC for two
different camera types over different noise types and noise intensities in Sec. 4.1.2.
Furthermore, an evaluation of the SCF for translation estimation is done in Sec. 4.1.4.
An ablation study in Sec. 4.1.5 shows the effect of each step in the optimization scheme
of Sec. 3.3.

On the real-world data, the NEC and the PNEC are evaluated on the KITTI dataset
[20] with regard to frame-to-frame rotation estimation and long-term drift. For the
experiments, the PNEC optimization is integrated into the VO algorithm MRO by Chng
et al. [10]. Furthermore, we replace the ORB features with KLT tracks. The results of this
new VO algorithm are compared to the standard MRO as reported in [10], and MRO
using the same KLT tracks instead of ORB features (see Sec. 4.2.2). We evaluate the
effect of each step in the PNEC optimization scheme in an ablation study in Sec. 4.2.3.
An additional experiment is done on the ICL-NUIM dataset to determine the accuracy
of the covariances obtained by KLT tracking as stated in Sec. 3.4.1 (see Sec. 4.3).

Appendix A presents an overview of the parameters used in the experiments.

4.1. Simulated Experiments

The experiments on simulated data evaluate the performance of the PNEC in a frame-
to-frame setting. The experiments consist of randomly generated two-view problems
with known correspondences. The generation of the problems follows the outline
proposed by Kneip and Lynen [32] very closely. Nevertheless, the outline is repeated in
this work and the differences to the original experiments are emphasized. Since the
experiments of Kneip and Lynen are only done for omnidirectional cameras but not for
the widely used pinhole cameras, every experiment is repeated for pinhole cameras.
The performance is evaluated using

erot := 6 (R
>

R̃), and

et := arccos (t
>

t̃)
(4.1)
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(a) isotropic homoge-
neous

(b) isotropic inhomo-
geneous

(c) anisotropic homo-
geneous

(d) anisotropic inho-
mogeneous

Figure 4.1.: Illustration of different noise types based on Brooks et al. [6]. The shape
and size between the covariances varies greatly depending on the noise types. Most
experiments are repeated for all noise types to show the effects the anisotropy and
inhomogeneity have on the PNEC optimization.

as error metrics between the ground truth R, t and the estimated values R̃, t̃, where
6 (·) returns the angle of the rotation matrix.

4.1.1. Experiment outline

This section gives an overview of the setup used in the following experiments on
simulated data. It starts by presenting an overview of the classification of different
noise types by Brooks et al. [6]. We repeat most experiments for all noise types to
capture the effects the different sizes and shapes of the error distributions have on
the energy function and its optimization. We then describe the generation of the
individual problems for omnidirectional and pinhole cameras where we closely follow
the setup by Kneip and Lynen [32]. Each experiment type is repeated for both camera
types, although Kneip and Lynen [32] emphasize that their eigenvalue-based solver is
particularly well suited for omnidirectional cameras. Since a large portion of available
cameras are pinhole cameras, we decided to evaluate the performance of the PNEC on
them as well. An overview of the parameters used for the simulated experiments can
be found in Appendix A.

Noise Types Each experiment is repeated for different noise types to capture their
effect on the performance of the PNEC. This work uses the classification by Brooks et

al. [6] for different noise types. Fig. 4.1 illustrates the four different noise types used in
the experiments. The following gives an overview of how to generate the covariance
matrices for each noise type.

The covariance matrices are generated using the following parameterization

S2D = sRa

✓
b 0
0 1� b

◆
R
>
a (4.2)
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with a scaling factor s, an anisotropy term b, and a 2D rotation matrix

Ra =

✓
cos a � sin a
sin a cos a

◆
. (4.3)

The parameters for isotropic homogeneous noise are s = 1, b = 0.5, and a = 0. For
isotropic inhomogeneous noise they are b = 0.5, a = 0, and s is sampled uniformly
between 0.5 and 1.5 for each covariance. For anisotropic homogeneous noise s = 1, b is
sampled uniformly between 0.5 and 1 once for each experiment, and a is sampled
uniformly between 0 and p for each covariance. For anisotropic inhomogeneous noise
all parameters are uniformly sampled for each covariance, s between 0.5 and 1.5, b
between 0.5 and 1, and a between 0 and p.

Omnidirectional Cameras This experiment recreates the one by Kneip and Lynen [32]
with some alterations. The following describes the outline and emphasizes deviations
from the original.

A single two-view problem is generated randomly by fixing the position and ori-
entation of the first camera frame to the origin and identity rotation. The second
camera frame is generated relative to the first one. The translation offset is chosen
from a uniform distribution of a random direction with a maximum length of 2. The
orientation offset is generated with randomly generated Euler angles with a maximum
magnitude of 0.5 radian. For each experiment, random points are generated around
the origin. Their Euclidean distance to the origin is chosen uniformly between 4 and
8. These points are transformed into both camera frames and projected onto a sphere
assuming an omnidirectional camera with a focal length of 800 pixel, giving bearing
vectors for each feature. In contrast to the original experiment by Kneip and Lynen [32],
we only add noise on the bearing vector of the second camera frame instead of both. To
compensate for the lack of noise in the first camera frame, we scale the noise offset in
the second camera frame by a factor of 2. The noise is added in the tangential plane of
the bearing vector. It is sampled using the covariance matrices later used in the PNEC
optimization. Unlike the original setup, this work repeats the experiment for each noise
type classified by Brooks et al. [6] using the parameterization presented in Eq. 4.2.

Pinhole Cameras Since the experimental setup for pinhole cameras is similar to
omnidirectional cameras, we only present their differences and refer the reader to the
previous paragraph for more details.

The camera positions of the two-view problem are generated like for omnidirectional
cameras. The points are generated such that they are in view of the pinhole cameras.
This is done by generating points in the image plane of the first camera with an image
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width of 1200 pixel and an image height of 800 pixel. These points are then unprojected
using a random depth between 2.0 and 5.0. The unprojected points in 3D are projected
back into both camera frames with a pinhole camera model with a focal length of 800
pixel. Noise is added in the image plane.

4.1.2. Noise Levels

Motivation The energy function of the PNEC Eq. 3.16 accounts for the individual
shapes and sizes between the error distributions of different feature correspondences.
The overall noise level does not influence the relative weighting. This experiment
investigates both methods similar to the experiment by Kneip and Lynen [32, Sec. 4.4].
It evaluates whether the noise levels have a similar influence on the PNEC as on the
NEC. To show the performance of the PNEC for purely rotational motion, the whole
experiment repeated with the translation of the second camera fixed to the origin.

Experiment To investigate the influence of noise levels, we generate 10 000 problems
for each different intensity of noise. We look at noise levels ranging from smaller than a
pixel on average to more than a few pixels (we exclude no noise since a zero covariance
matrix does not work with the PNEC). Both the NEC and the PNEC use the same
10 points generated for each individual problem, and the PNEC uses the covariance
matrix of the error distribution used to generate the offset. The starting point for both
algorithms is the same, generated randomly around the ground truth rotation. As
in [33], a maximum derivation of 0.01 radian is chosen so that both methods spot
the global minimum. To compare both approaches, we average the results for each
noise level and present the rotational and translational error as given by Eq. 4.1. Due
to its relevance for real-world data (see Fig. 3.6), we focus on the experiments with
anisotropic and inhomogeneous noise. However, the results for the other noise types
are also presented.

Results Fig. 4.2 present the results for the omnidirectional camera experiment for
anisotropic inhomogeneous noise. It shows the average errors over 10 000 random prob-
lems for each noise level. Fig. 4.2a and Fig. 4.2b depict the rotational and translational
error for the experiment as described in the outline. Fig. 4.2c shows the rotational error
for the pure rotation experiment. No translational error is presented for pure rotation
since the chosen cosine error metric is not defined for such a case. The PNEC achieves
lower error in all cases consistently, outperforming the NEC.

Fig. 4.3 shows the results for the NEC and PNEC over different noise levels for
anisotropic inhomogeneous noise for pinhole cameras. Similar to the omnidirectional
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Figure 4.2.: Frame-to-frame rotation estimation experiments for omnidirectional cameras
over different noise intensities. Results are averaged over 10,000 randomly generated
problems for anisotropic inhomogeneous noise for each noise intensities. The PNEC
consistently outperforms the NEC [32] for all noise levels. This holds for in the general
case (Fig. 4.2a and Fig. 4.2b), respectively, as well as for pure rotation (Fig. 4.2c).
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Figure 4.3.: Experiments for pinhole cameras repeated for different noise levels. For
more details see Fig. 4.2. The PNEC consistently outperforms the NEC [32] for all noise
levels. This holds for in the general case (Fig. 4.3a and Fig. 4.3b), respectively, as well
as for pure rotation (Fig. 4.3c).

camera experiment, the PNEC outperforms the NEC consistently. However, the over-
all error is higher for pinhole cameras. A more detailed analysis reveals that the
relative difference in the performance between both methods is slightly smaller for
pinhole cameras for experiments with translation. It is larger for experiments without
translation.

Fig. 4.4 and Fig. 4.5 depict the results for the other noise types for omnidirectional
and pinhole cameras, respectively. As for anisotropic inhomogeneous noise, the PNEC
consistently achieves better results than the NEC.

This experiment shows the effectiveness of the PNEC for rotation estimation. It
consistently outperforms the NEC. The experiments over different noise types show
the effects the directionality and the inhomogeneity of the covariances have on the
optimization. Having anisotropic inhomogeneous noise is the most beneficial for PNEC
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optimization. However, even for isotropic homogeneous noise, the PNEC still achieves
better results than the NEC. This shows that the geometry of the problem also has
an influence on the weighting of the feature correspondences. While the covariance
matrices Si of the error distributions are the same for each correspondence, the variance
of each residual s2

i
is still different. Additionally, the results of this experiment support

the finding of Kneip and Lynen [32] that the NEC (and to the same extent the PNEC)
is constrained better for omnidirectional cameras. Another important finding of the
presented experiments is that the PNEC consistently achieves excellent results for
purely rotational motion, although it models a non-zero translational problem.

4.1.3. Energy-Error Correlation

Motivation Next to the results in the error metrics, we investigate the ability of the
energy function to model the rotation estimation problem. This experiment evaluates
how strong the correlation between the energy function and the rotational error is.
Because the optimization scheme for the PNEC does not guarantee a globally optimal
solution, we investigate how good the minima that the PNEC reaches are in comparison
to the NEC.

Experiment For this experiment, we use the results of the previous one (see Sec. 4.1.2),
but we focus on the relation between the energy function and the rotational error metrics.
First, the median energy function values over the different noise levels for the NEC
and the PNEC are presented. The scale of the energy function ranges over several
magnitudes, making the average susceptible to single problems dominating the whole
experiment. Therefore, we choose to show the median energy function values rather
than the average values. We investigate the correlation between the energy function and
the rotational error in two ways. First, by counting how often a lower energy function
also leads to a lower rotational error. Second, by calculating the correlation coefficient
for each noise type. To eliminate the scale of the energy function from the correlation
coefficient we look at the correlation between erot,pnec � erot,nec and the quotient of the
energy functions EP,pnec/EP,nec.

Results We first present the results for omnidirectional cameras as a whole and then
for pinhole cameras.

Fig. 4.6 shows the energy function values for all experiments for omnidirectional
cameras. The results show that the optimization of Sec. 3.3 is effective in minimizing
the energy function, outperforming the NEC constantly. Furthermore, the results show
that the PNEC energy function is independent of the overall noise scale of the problem.
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Noise Type w t w/o t

isotropic homogeneous 61.13 38.83 53.61 45.85
0.01 0.03 0.27 0.27

isotropic inhomogeneous 62.34 37.62 54.54 44.94
0.01 0.03 0.27 0.26

anisotropic homogeneous 64.07 35.91 58.84 40.80
0.00 0.02 0.19 0.17

anisotropic inhomogeneous 64.65 35.33 59.32 40.37
0.00 0.02 0.17 0.15

Table 4.1.: Comparison of energy and error. Each cell gives the percentage of how
often the PNEC has: lower energy and error (upper left); lower energy and higher
error (upper right); higher energy and lower error (lower left); higher energy and
higher error (lower right). The percentage is calculated over all 320 000 experiments
(32 different noise scales with 10 000 experiments).

Noise Type w t w/o t

isotropic homogeneous 0.35 0.20
isotropic inhomogeneous 0.34 0.20
anisotropic homogeneous 0.31 0.25
anisotropic inhomogeneous 0.29 0.24

Table 4.2.: Correlation coefficient between erot,pnec � erot,nec and EP,pnec/EP,nec for omni-
directional cameras over different noise types over all 320 000 experiments (32 different
noise scales with 10 000 experiments).

Tab. 4.1 gives an overview of how often the rotational error and the energy function
of the PNEC are better than for the NEC. The PNEC achieves a lower energy function
value than the NEC in over 99% of the problems for all experiment types. This lower
energy function also leads to a lower rotational error in a majority of these cases.
However, a lower energy value results in a higher rotational error in a large percentage
of the problems.

Tab. 4.2 gives the average correlation coefficient of the correlation matrix between
the difference in the rotational error erot,pnec � erot,nec and the quotient of the energy
functions EP,pnec/EP,nec. The results show a consistent correlation between the energy
function and the rotational error. The correlation is higher for experiments with
translation than for experiments with pure rotation for each experiment type.

The results for pinhole cameras in Fig. 4.7, Tab. 4.3, and Tab. 4.4 are similar to the
results for omnidirectional cameras. The PNEC consistently achieves lower median
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Noise Type w t w/o t

isotropic homogeneous 59.33 40.56 57.62 42.00
0.02 0.09 0.23 0.15

isotropic inhomogeneous 60.28 39.62 58.39 41.24
0.01 0.08 0.21 0.16

anisotropic homogeneous 61.89 38.04 62.41 37.29
0.01 0.06 0.20 0.10

anisotropic inhomogeneous 62.55 37.37 62.23 37.46
0.01 0.06 0.19 0.11

Table 4.3.: Comparison of energy and error. Each cell gives the percentage of how
often the PNEC has: lower energy and error (upper left); lower energy and higher
error (upper right); higher energy and lower error (lower left); higher energy and
higher error (lower right). The percentage is calculated over all 320 000 experiments
(32 different noise scales with 10 000 experiments).

Noise Type w t w/o t

isotropic homogeneous 0.19 0.16
isotropic inhomogeneous 0.19 0.17
anisotropic homogeneous 0.21 0.18
anisotropic inhomogeneous 0.23 0.18

Table 4.4.: Correlation coefficient between erot,pnec � erot,nec and EP,pnec/EP,nec for pinhole
cameras over different noise types over all 320 000 experiments (32 different noise scales
with 10 000 experiments).

energy function values than the NEC. The count of how many problems have a lower
energy value, but a greater rotational error is higher for pinhole cameras. Furthermore,
the correlation coefficient is lower.

This experiment shows the effectiveness of the optimization scheme of Sec. 3.3 to
minimize the PNEC energy function. Furthermore, it shows that the minimization of the
PNEC energy function often leads to improved results compared to the NEC. However,
it does not necessarily lead to better results. Further investigations to determine if the
optimization found the global minimum are needed. However, they are out of the
scope of this thesis. Nevertheless, a correlation between the energy function and the
rotational error is present, although it is smaller for pinhole cameras and in cases of
zero translation. Since the NEC and the PNEC are similar, this supports the findings of
Kneip and Lynen [32] that the NEC is better constrained for omnidirectional cameras.
The purely rotational experiments have a smaller correlation than their counterparts
with translation. A difference between both experiment types is the two degrees of
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freedom in the translation optimization of the energy function. The PNEC models a
two-view motion estimation that is assumed to have a translational component, and
therefore we optimize over the unit-sphere. The purely rotational experiments do not
reflect this assumption. This gives the optimization two degrees of freedom that allow
further minimization.

4.1.4. Self-Consistent-Field vs. Eigenvector

Motivation As Zhang and Chang [79] have shown, the optimization of the sum of
GRQs is not trivial and proposed the SCF method for an efficient yet not optimal
solution. This experiment investigates if the SCF method for optimization over the
translation is beneficial for the PNEC. We compare it to a simpler eigenvalue-based
solution, inspired by Kneip and Lynen [32], for the translation where the solution is
given by the eigenvector to the smallest eigenvalue of the matrix MP (see Eq. 3.24).

Experiment For this experiment, we restrict ourselves to the experiments of Sec. 4.1.2
for anisotropic inhomogeneous noise with a noise level of 1 pixel. We only look at the
experiments with translation. All experiments use the ground truth rotation R but
generate a random starting translation around the ground truth t. The direction and
the angular offset of the translation are uniformly sampled. The SCF is compared to
the eigenvalue-based solution of [32] adapted to the PNEC over different levels of the
translational offset in degrees. We compare the mean and median translational error of
all 10 000 problems.

Results Fig. 4.8 shows the results of both methods over different starting points for
omnidirectional cameras. The SCF achieves results independent of the maximum
angular offset, while the performance of the eigenvalue-based method deteriorates with
a larger starting position error. The SCF outperforms the eigenvalue-based method
overall.

Fig. 4.9 shows that the SCF outperforms the eigenvalue-based solution for translation
estimation for pinhole cameras. The gap between both methods is smaller than for
omnidirectional cameras. The eigenvalue-based solution only achieves better results
for starting points very close to the ground truth. Overall the SCF algorithm achieves
consistent results.

This experiment shows the dependency of the eigenvalue-based solution for the
translation on the starting point. In contrast, the SCF method is independent of the
starting position as a consequence of its sampling strategy on the unit sphere leading to
consistent results. Overall the SCF outperforms the simpler eigenvalue-based solution.
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Noise level [px] 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

NEC 0.103 0.144 0.172 0.196 0.218 0.241 0.252 0.271
NEC-LS 0.092 0.130 0.158 0.185 0.208 0.231 0.244 0.260
PNEC only LS 0.076 0.108 0.132 0.154 0.173 0.191 0.204 0.217
PNEC w/o LS 0.086 0.120 0.145 0.163 0.186 0.204 0.214 0.231
PNEC 0.080 0.113 0.138 0.159 0.179 0.197 0.209 0.223

Table 4.5.: Ablation study for omnidirectional cameras. Comparison between the NEC,
the NEC with a least-squares refinement of Eq. 3.6, just the least-squares refinement of
the PNEC, just the iterative optimization of the PNEC and the full PNEC.

4.1.5. Ablation

Motivation This experiment aims to investigate the influence of each component of
the optimization scheme of Sec. 3.3 for the rotation estimation on the simulated data.
Additionally, the optimization is compared to the NEC and a least-squares refinement
of the NEC energy function Eq. 3.6 to evaluate whether a similar two-step approach for
the NEC yields better results.

Experiment This experiment compares: the NEC optimization; only the iterative
PNEC optimizer (PNEC w/o LS); only the least-squares refinement (PNEC only LS);
the full PNEC optimization. Additionally, a least-squares refinement of the NEC (NEC-
LS) energy function Eq. 3.6 (with the NEC result as a starting value) is evaluated to
compare it to the full PNEC optimization. We restrict this experiment to the anisotropic
inhomogeneous noise type over selected values of the noise level. Each method starts
with the same initialization, chosen as in Sec. 4.1.2. We compare the average rotational
error over all 10 000 problems for each noise level.

Results Tab. 4.5 shows the results for omnidirectional cameras. The PNEC only LS
implementation consistently has the best results while the full PNEC implementation
is only slightly worse. The PNEC w/o least-squares refinement outperforms the NEC.
The full PNEC rotation estimation outperforms the NEC with least-squares refinement.

The ablation study for pinhole cameras in Tab. 4.6 shows the same ordering as for
omnidirectional cameras. The least-squares only approach achieves the best results on
the simulated experiments.

The ablation study shows that the full optimization approach for the PNEC is not
the best for the simulated experiment setup. It is consistently outperformed by the
least-squares only approach. Given the experimental setup with an initialization near
the ground truth, this is of little surprise since the least-squares refinement, as proposed
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Noise level [px] 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

NEC 0.229 0.314 0.384 0.438 0.488 0.540 0.575 0.603
NEC-LS 0.218 0.309 0.377 0.437 0.491 0.540 0.578 0.617
PNEC only LS 0.178 0.252 0.313 0.362 0.406 0.439 0.472 0.505
PNEC w/o LS 0.201 0.273 0.337 0.382 0.434 0.472 0.505 0.539
PNEC 0.186 0.262 0.324 0.374 0.423 0.457 0.493 0.527

Table 4.6.: Ablation study for pinhole cameras. Comparison between the NEC, the
NEC with a least-squares refinement of Eq. 3.6, just the least-squares refinement of the
PNEC, just the iterative optimization of the PNEC and the full PNEC.

in Sec. 3.3.4, is highly dependent on the starting values. Additionally, the ablation
study shows that the eigenvalue-based optimization of the PNEC outperforms the NEC
optimization and the least-squares refinement of the NEC has little impact.

4.2. Odometry Datasets

Besides the simulated experiments, the PNEC optimization of Sec. 3.3 is also evaluated
on real-world data, namely the highly popular KITTI odometry dataset [20], in a visual
odometry (VO) setting. The PNEC approach is compared to the MRO algorithm by
Chng et al. [10], which uses the NEC optimization [32] for its baseline. To have a fair
comparison, we compare the NEC and the PNEC in the baseline version. Both include
neither rotation averaging nor loop closure. Since the results of MRO reported in [10]
could not be replicated reliably, with the algorithm often terminating early due to a
lack of feature matches, this work uses the results reported in [10]. An overview of the
parameters used for the experiments on KITTI can be found in Appendix A.

4.2.1. The KITTI Odometry Dataset

The highly popular KITTI odometry dataset [20] consists of 11 sequences of varying
lengths. The sequences were recorded in and around the German city of Karlsruhe
with a car. Therefore, the setting of the dataset is an urban to a rural environment,
and forward movement is dominant. The results presented in this work are generated
from monocular camera images and compared to the ground truth. The trajectories
presented in Fig. 4.10 and Fig. 4.11 are generated with the estimated frame-to-frame
rotations and the ground truth frame-to-frame translations.

We use the definition of the rotation-only version of the Relative Pose Error (RPE) for
n camera poses as proposed in [10] to compare the methods on the KITTI dataset. The
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RPE evaluates the root-mean-square error (RMSE)

RMSE(D) :=

 
1
m

m

Â
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E
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i

! 1
2

(4.4)

over m := n � D residuals for frame pairs that are a “time-step" D apart. For the
rotation-only version of the RPE the residual

Ei := 6 ((R
>
i

Ri+D)>(R̃
>
i

R̃i+D)) (4.5)

is given by the angular error between the ground truth (R>
i

Ri+D) and the estimated
(R̃>

i
R̃i+D) relative rotations of a frame pair. To capture the local frame-to-frame rotation

error, the RPE1
RPE1 := RMSE(1) (4.6)

is evaluated. However, the RPE1 cannot measure long-term drift important to VO
systems. To measure these long-term drifts the RPEn

RPEn :=
1
n

n

Â
D=1

RMSE(D) (4.7)

is also evaluated.

4.2.2. The Baseline Method

Motivation We evaluate the performance of the PNEC for frame-to-frame rotation
estimation in a visual odometry setting. This experiment compares the PNEC to the
NEC on all KITTI sequences. To have a fair comparison of the NEC and the PNEC we
test the PNEC in the same visual odometry framework as the NEC. We choose the
MRO algorithm [10] since it already uses the eigenvalue-based NEC optimization for
its frame-to-frame rotation estimation.

Experiment We incorporate the PNEC optimization of Sec. 3.3 into MRO. For this
integration, we have to change two things.

First, the ORB feature extraction and matching used in MRO is replaced by the KLT-
based tracking implementation of [71]. The KLT tracks give the covariance information
used in the PNEC. The extraction of the uncertainty is detailed in Sec. 3.4.1. Second,
the NEC optimization of [32] is replaced by the PNEC optimization of Sec. 3.3. To
address the influences the KLT tracks have on the rotation estimation performance,
this experiment compares: MRO, NEC optimization with ORB features; KLT-NEC,
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NEC optimization with KLT tracks; KLT-PNEC, PNEC optimization with KLT tracks.
Furthermore, the RANSAC [16] routine of MRO is used to filter failed KLT tracks that
result in outliers. The same tracks are used for KLT-NEC and KLT-PNEC. The rotation
averaging and the loop closure proposed in [10] are deactivated to focus on rotation
estimation. Since we were not able to reliably reproduce the results reported in [10]
we present their results for MRO. However, Fig. 4.10 shows a qualitative trajectory for
seq. 08 of the KITTI dataset with results obtained by us that has similar metrics as
reported in the paper. The trajectory from the PNEC optimization is presented as a
comparison.

We compare all methods on the RPE1 and the RPEn metric on a single run of all
sequences.

Results Tab. 4.7 presents the results for all KITTI sequences. Except for seq. 01 the
KLT-based methods outperform ORB-based MRO significantly. A closer investigation of
this sequence finds that the KLT implementation of [71] fails and produces many wrong
tracks due to self-similar structure. Since neither tracks nor covariances are correct,
we omit this sequence in the following evaluation and the ablation study. Comparing
KLT-NEC and KLT-PNEC shows that optimizing the PNEC leads to better results in
both metrics on almost all sequences. Especially the RPEn metric for long-term drift is
improved significantly.

The results show the benefits of using the PNEC instead of the NEC for real-world
tasks of VO systems. The PNEC reduces the frame-to-frame error noticeably on most
sequences. Furthermore, it leads to significantly reduced drift. This low drift is
important in VO system and allows for accurate positional tracking over long periods
of time, even without additional techniques like loop closure.

4.2.3. Ablation Study

Motivation As for the simulated experiments, an ablation study on real-world data
gives additional insight into the optimization scheme of Sec. 3.3. This experiment aims
to investigate the influence of each component of the optimization for the rotation
estimation.

Experiment The ablation study is done on all sequences of the KITTI dataset, except
on seq. 01 due to poor quality of the KLT tracks. As for the ablation study on the
simulated data (see Sec. 4.1.5) we compare: the NEC optimization; PNEC w/o LS;
PNEC only LS; PNEC. Additionally, the least-squares refinement of the NEC (NEC-LS)
energy function Eq. 3.6 is evaluated to compare it to the full PNEC optimization. For a
more detailed explanation of the methods we refer the reader to Sec. 4.1.5. All methods
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MRO [10] KLT-NEC KLT-PNEC
Seq. RPE1 RPEn RPE1 RPEn RPE1 RPEn

00 0.36 8.67 0.127 4.935 0.121 4.706
01* 0.29 16.03 0.692 25.548 0.853 27.783
02 0.29 16.03 0.087 5.876 0.101 6.010
03 0.28 5.47 0.056 2.453 0.060 1.410
04 0.04 1.08 0.042 0.792 0.038 0.531
05 0.25 11.36 0.085 4.641 0.056 2.746
06 0.18 4.72 0.144 4.443 0.081 2.967
07 0.28 7.49 0.074 5.207 0.070 2.149
08 0.27 9.21 0.063 5.593 0.056 2.909
09 0.28 9.85 0.104 3.526 0.081 3.866
10 0.38 13.25 0.086 5.094 0.071 4.012

Table 4.7.: Quantitative comparison for KITTI on the RPE1 and RPEn metrics. Best
results are bold, second-best results are underlined. Changing from ORB features to
KLT tracks improves the results of the NEC as the significant gap between MRO and
KLT-NEC shows. The results using KLT tracks are further improved by applying the
PNEC optimization. The PNEC has the best results on almost all sequences. (* In
seq. 01 the KLT implementation of [71] fails and produces many wrong tracks due to
self-similar structure. Since neither tracks nor covariances are correct, this sequence is
omitted in the ablation study.)

use the same KLT tracks and are initialized with the relative pose obtained by the
previous frame-to-frame rotation estimation.

Results Tab. 4.8 shows the results on each sequence as well as the average. Similar
to the simulated experiments PNEC only LS almost always has the best performance
of the methods. However, due to poor results on Seq. 05, it has the worst average.
Without the PNEC only LS method the full PNEC optimization performs the best on
most sequences. Overall the full PNEC optimization leads to the best performance on
average.

This experiment shows the need for the full PNEC optimization scheme. While the
least-squares only approach often performs slightly better, it is prone to large errors.
Fig. 4.11 gives a qualitative trajectory of PNEC only LS on seq. 05 where it has the worst
performance by a wide margin. PNEC only LS achieves good performance for large
parts of the sequence. However, the sensitivity of the least-squares refinement leads to
large errors in the first curve. This is of interest regarding the simulated experiments,
where the least-squares only approach consistently achieves the best results.
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NEC NEC-LS PNEC w/o LS PNEC only LS PNEC
Seq. RPE1 RPEn RPE1 RPEn RPE1 RPEn RPE1 RPEn RPE1 RPEn

00 0.127 4.935 0.122 5.948 0.119 9.155 0.117 3.706 0.121 4.706
02 0.087 5.876 0.078 5.530 0.080 7.013 0.077 4.034 0.101 6.010
03 0.056 2.453 0.071 2.703 0.066 1.930 0.054 1.449 0.060 1.410
04 0.042 0.792 0.042 0.560 0.038 0.933 0.038 0.423 0.038 0.531
05 0.085 4.641 0.058 4.046 0.061 3.949 0.806 29.520 0.056 2.746
06 0.144 4.443 0.083 2.753 0.062 1.559 0.058 3.220 0.081 2.967
07 0.074 5.207 0.080 5.520 0.091 4.069 0.068 3.988 0.070 2.149
08 0.063 5.593 0.060 5.202 0.063 5.287 0.056 2.889 0.056 2.909
09 0.104 3.526 0.099 5.508 0.079 2.770 0.058 2.062 0.081 3.866
10 0.086 5.094 0.067 3.512 0.083 4.211 0.063 3.941 0.071 4.012

Average 0.087 4.128 0.076 4.256 0.074 4.088 0.140 5.523 0.073 3.131

Table 4.8.: Ablation study. RPE1 and RPEn for all KITTI sequences and the average.
The best results are bold, second-best results are underlined. Results reveal that often
the least-squares only PNEC optimization achieves the best results. However, on seq. 05
PNEC only LS performs drastically worse than every other method. Fig. 4.11 shows
its qualitative trajectory illustrating the bad performance. On average, the full PNEC
optimization has the best results while the iterative eigenvalue-based part has the
second-best. This is in contrast to simulated experiments, where the PNEC only LS
optimization has the best results. For KITTI, it performs the worst out of all methods.

4.2.4. Runtime

Motivation VO systems are often employed in real-world applications and need to
run in real-time. Therefore, we investigate not only the rotation estimation performance
of the PNEC optimization but also its runtime. This experiment breaks down the
runtime of the different steps for the rotation estimation and compares it to the NEC
optimization.

Experiment To evaluate the runtime MRO, KLT-NEC, and KLT-PNEC (as explained
in Sec. 4.2.2) are timed on every sequence of the KITTI dataset (except seq. 01). The
average runtime for the frame-to-frame rotation estimation is calculated. We break
down the different steps of the rotation estimation. The feature creation includes the
ORB feature extraction for MRO and for the KLT-based methods the track generation in
the host-frame and tracking into the target frame. MRO also times the feature matching

that is not needed for KLT. Finally, the optimization is timed. For MRO the same
configuration as for their demo is used.
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MRO [10] KLT-NEC KLT-PNEC

feature creation 36 23 23
matching 120
optimization 5 33 54

total time 161 56 77

Table 4.9.: Average frame processing time in milliseconds. MRO needs additional
feature matching, which takes the largest amount of time. KLT-PNEC is slightly slower
than KLT-NEC, but achieves real-time performance on KITTI.

Results Tab. 4.9 shows the breakdown of the runtime as performed on a laptop with
a 2.4 GHz Quad-Core Intel Core i5 processor and 8 GB of memory. Results show
the significant benefit of using KLT tracks instead of ORB features. Both KLT-based
methods show a lower feature creation time. Additionally, no time is used for matching,
further reducing the runtime. For the optimization, the ORB-based MRO is the fastest,
whereas KLT-PNEC is the slowest. Overall both KLT-NEC and KLT-PNEC achieve
real-time performance on the KITTI dataset.

As expected the PNEC optimization, which includes more optimization steps, is
slower than the NEC if both use KLT tracks. However, the PNEC optimization is fast
enough such that it runs on real-time on the KITTI dataset. Additionally, the usage of
KLT tracks is beneficial to the runtime, especially with regard to additional techniques
like rotation averaging. The addition of further connections into the covisibility graph
does not require additional ORB feature matching.

4.3. Covariance Extraction

Motivation This experiment aims to validate whether the covariances extracted from
the KLT tracks accurately reflect the error distribution exhibited by the feature cor-
respondences. Sec. 3.4.1 details how we extract the uncertainty information in form
of covariance matrices from the KLT tracking energy function. We perform this ex-
periment on the ICL-NUIM dataset [23] because it allows for accurate determination
of the ground truth feature positions. The ICL-NUIM dataset is a synthetic dataset
that allows the accurate determination of feature positions on the image and in 3D. In
order to use a more realistic setting for the KLT tracker, we use the ICL-NUIM RGB
images with noise, but the noise-free depth images since we are interested in a very
accurate determination of the ground truth. An overview of the parameters used for
this experiment can be found in Appendix A.
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Experiment In this experiment, we do frame-to-frame tracking with KLT tracks and
compare the tracked position to the ground truth with regard to the extracted covariance
matrix. We use the same KLT tracking implementation as for the KITTI odometry
dataset. The ground truth is determined using the following projection from the host
frame into the target frame [13]

p
gt

= Pc(R
�1
gt

(P�1
c (p, dp)� tgt)) (4.8)

where Pc is the camera projection function, P�1
c the unprojection function using the

ground truth depth from the depth image, and Rgt, tgt describe the ground truth
relative pose between the two images. To validate the ground truth position in the
target frame, the image points are back-projected into the host frame. We discard points
that do not land in the vicinity of their starting point. This validation removes errors
due to occlusion or edges.

In this experiment we look at the error distribution of the KLT tracks. In order to
evaluate the covariance matrices extracted from the KLT formulation we look at the
unaltered error

ei = p
i,gt
� p

i,klt
, (4.9)

between the ground truth position p
i,gt

and the tracked position p
i,klt

, and the error

ei,w = Ci(p
i,gt
� p

i,klt
) (4.10)

after applying a whitening transformation to it, where CiC
>
i

= S�1
i

is obtained with
the Cholesky decomposition.

We compare both error distributions to the distribution of 2 independent Gaussians.
If the covariance correctly accounts for the error distribution, ew should follow the
Gaussian distribution very closely. To validate this we look at the squared sum
distribution kewk2 and the angular error distribution 6 ew. For the 2 independent
Gaussians this results in the c2

2 distribution [60], given by

c2
2 ⇠

1
2

e
�x/2 , (4.11)

for the squared sum and a uniform angular distribution. Since the covariance matrices
do not account for the overall scale of the error distribution, we scale both error
distributions such that the median of kek2 and kewk2 is equivalent to the median of the
c2

2 distribution.
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Results The distributions shown in Fig. 4.12 and Fig. 4.13 are generated from the
living room 3 and the office room 0 sequence of the ICL-NUIM dataset, respectively.
The distributions for the other sequences are depicted in Appendix B. Fig. 4.12a and
Fig. 4.13a show the squared sum distributions before and after applying the whitening
transformation as well as the c2

2 distribution on a logarithmic and a linear axis. e

and ew exhibit disproportionately more errors with a small norm compared to the
c2

2 distribution. Consequentially, they have disproportionately few errors that are
large. Applying the whitening transformation has little impact on the distribution
of the squared sum. Fig. 4.12b and Fig. 4.13b show the angular distribution. While
the angular error of e on the living room 3 sequence shows some anisotropy, it is
significantly larger the office room 0 sequence. Applying the whitening transformation
results in little anisotropy for ew on both sequences. On the office room 0 sequence, a
significant amount of anisotropy is removed.

This experiment evaluates the modeling of the tracking error distribution by the
extracted covariance matrices. Comparing the squared sum of e and ew shows that the
covariances do not capture the scale of the error correctly. Fig. 4.14 and Fig. 4.15 show
examples for the tracking of two sequences. They show that, although the tracking error
in low-textured areas is small, the uncertainty is estimated to be large. Therefore, the
error is often overestimated, resulting in a disproportionate distribution in the squared
sum. While the covariances do not correctly account for the scale, they account for the
direction of the error distribution. The dataset has many edges that are horizontally or
vertically placed in the image. The features located on these edges are expected to have
an error mostly along these edges, resulting in the large anisotropy for the unaltered
error (see Fig. 4.14b). The covariances account for this bias in the direction of the edge.
The results on the remaining sequence show similar behavior, and therefore they are
not discussed in detail. They are presented in Appendix B. Overall, this experiment
shows that not all errors follow the same distribution. The covariances capture the
anisotropy of the error distributions for the ICL-NUIM dataset.
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Figure 4.4.: Experiments for omnidirectional cameras over different noise types and
noise intensities. The results are shown for isotropic homogeneous, isotropic inhomogeneous,
and anisotropic homogeneous noise in descending order. Both the general case and the
purely rotational case are shown for each noise type. As for anisotropic inhomogeneous
noise the results are averaged over 10 000 random problems. The PNEC performs better
for all noise types. The gap size between the PNEC and NEC is dependent on the noise
type showing the effects the directionality and the inhomogeneity of the covariances
have.
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Figure 4.5.: Experiments for pinhole cameras over different noise types and noise
intensities. The results are shown for isotropic homogeneous, isotropic inhomogeneous, and
anisotropic homogeneous noise in descending order. Both the general case and the purely
rotational case are shown for each noise type. The results show a similar effect of the
directionality and the inhomogeneity of the covariances as for omnidirectional cameras
(see Fig. 4.4 for more details).
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Figure 4.6.: Energy function values for all simulated experiments for omnidirectional
cameras. Due to the volatility of the energy function the median instead of the mean
is presented. The first column shows the experiments with translation, the second
column the pure rotation experiments. The rows show isotropic homogeneous, isotropic

inhomogeneous, anisotropic homogeneous, and anisotropic inhomogeneous in descending
order. The PNEC is effective in achieving lower energy values for all experiments.
Because of the inclusion of the covariance matrices the order of magnitude of the
energy function is independent of the noise intensity.
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Figure 4.7.: Energy function values for all simulated experiments for pinhole cameras.
Due to the volatility of the energy function, the median instead of the mean is presented.
The first column shows the experiments with translation, the second column the pure
rotation experiments. The rows show isotropic homogeneous, isotropic inhomogeneous,
anisotropic homogeneous, and anisotropic inhomogeneous in descending order. The PNEC
is effective in achieving lower energy values. Because of the inclusion of the covariance
matrices, the order of magnitude of the energy function is independent of the noise
intensity.
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(a) Mean translational error (b) Median translational error

Figure 4.8.: The mean and median translational errors of the SCF algorithm and the
eigenvalue-based (EV) translation estimation over different intensities of starting value
error for omnidirectional cameras. The SCF algorithm has a consistent error over the
offset while the EV estimation performance decreases with a higher starting error. The
SCF outperforms the EV method consistently.

(a) Mean translational error (b) Median translational error

Figure 4.9.: The mean and median translational errors of the SCF algorithm and the
eigenvalue-based (EV) translation estimation over different intensities of starting value
error for pinhole cameras. The SCF algorithm has a consistent error over the offset
while the EV estimation performance decreases with a higher starting error. The SCF
outperforms the EV method consistently.
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Figure 4.10.: Qualitative trajectory comparison for KITTI seq. 08. The trajectory is
generated with the estimated rotations of MRO [10] and the PNEC optimization
with KLT tracks, respectively, and are combined with the ground truth translations
for visualization purposes. Computing relative rotations with the PNEC leads to a
significantly reduced drift.
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Figure 4.11.: Qualitative trajectory of the full PNEC optimization and only the least
sqaures refinement optimization (PNEC only LS) for KITTI seq. 05. The trajectory
shows that the rotation estimation using only least-squares performs excellent on large
parts of the trajectory. However, wrong estimates near the first corner result in a large
drift overall. This illustrates the necessity of the full PNEC optimization.
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Figure 4.12.: Error distribution of the KLT tracking on the ICL-NUIM sequence living
room 3. The error distributions before (e) and after (ew) applying the whitening
transformation with the extracted covariance matrices are shown. Fig. 4.12a shows the
squared sum of the error distributions and the c2

2 distribution with a logarithmic and
linear y-axis. Fig. 4.12b shows the angular error distributions. Applying the whitening
transform changes the squared sum distribution only negligible. Both distributions have
a disproportionately higher amount of small errors compared to the c2

2 distribution. e

and ew exhibit anisotropy in the angular distribution. The anisotropy is slightly smaller
after the whitening transformation.
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Figure 4.13.: Error distribution of the KLT tracking on the ICL-NUIM sequence office
room 0. For more details, see Fig. 4.12. Applying the whitening transform changes the
squared sum distribution only negligible. Both distributions have a disproportionately
higher amount of small errors compared to the c2

2 distribution. ew shows significantly
less anisotropy in the angular distribution than e. The covariances correctly account for
the direction of the error distribution.
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(a) living room 3

(b) living room 3

Figure 4.14.: Example tracks on the sequence living room 3. For visualization purposes,
only a section of the images is shown. On the left: positions of the tracks in the host
frame (blue). On the right: tracked positions (red), ground truth (green), and the
extract covariance (blue, enlarged for visualization purposes). The KLT tracker result in
good tracks even in low textured areas leading to an overestimation of the error there.
Examples in the second image Fig. 4.14b show that the anisotropy of the error on the
door is accurately represented as the error tends to be parallel to the edge. Accounting
for the bias removes anisotropy of the error distribution.
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(a) office room 0

(b) office room 0

Figure 4.15.: Example tracks on the sequence office room 0. For visualization purposes,
only a section of the images is shown. On the left: positions of the tracks in the host
frame (blue). On the right: tracked positions (red), ground truth (green), and the extract
covariance (blue, enlarged for visualization purposes). The KLT tracker results in good
tracks even in low textured areas leading to an overestimation of the error there.
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5. Discussion and Future Work

This work introduces the novel probabilistic normal epipolar constraint (PNEC) and
energy function for estimating rotation between two frames, even for purely rotational
motion, and investigates its properties. The focus of this thesis is the derivation of the
PNEC and its optimization for rotation estimation. The experiments of Ch. 4 show the
effectiveness of the PNEC to estimate the rotation on simulated data and in combination
with KLT-based tracking on real-world data. Based on the results future work can be
divided into two directions. The first direction focuses on the optimization of the PNEC
energy function with the main focus of avoiding suboptimal minima. The second
direction addresses the distribution of the feature positions and how to derive accurate
covariance matrices.

Optimizing the probabilistic normal epipolar constraint. While the optimization
scheme of Sec. 3.3 is effective in minimizing the energy function Eq. 3.16, its two-step
approach is complex. Furthermore, the ablation study on the simulated data shows,
the least-squares only refinement is superior. The experiments on real-world data,
however, show the necessity for a good initialization of the least-squares only approach.
We provide this initialization with the eigenvalue-based optimization. The proposed
optimization is effective for rotation estimation, but it is not suited to reliably find the
global optimum of the PNEC energy function. Furthermore, the investigations into the
energy function on the simulated experiments show that the optimization is prone to
local minima that seldomly lead to worse results.

In contrast to the NEC, the PNEC is not capable of decoupling the rotation estimation
from the translation leading to a more involved optimization strategy. While the rotation
optimization of Sec. 3.3.3 keeps the elegance of eigenvalue-based optimization of the
NEC [32], alternating it with the SCF algorithm for optimizing over the translation
leads to a computationally more expensive iterative optimization. While the runtime
study (see Tab. 4.9) shows that the PNEC is real-time capable, its optimization is still
slower than for the NEC.

Simplifying the PNEC optimization is a promising direction for future work. How-
ever, the optimization over the translation as a sum of GRQs on its own is an actively
studied problem for which no simple solution is known. Therefore, finding an elegant
optimization strategy for Eq. 3.16 could be difficult. One approach to streamline the
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5. Discussion and Future Work

optimization is to approximate the variances of Eq. 3.15 to remove their dependence
on the translation and/or the rotation. If a successful approximation is found, a solver
similar to the eigenvalue-based optimization of the NEC [32] can be employed as an
initialization scheme for the least-squares refinement. A non-iterative initialization
approach would speed up the rotation estimation.

Uncertainty of feature positions. While this work gives an example of how to extract
the needed covariance information, we do no in-depth analysis on how to estimate
good covariances for the PNEC. The presented covariance extraction, together with
the PNEC, results in substantial improvements on the KITTI dataset. However, the
experiments in Sec. 4.3 show this uncertainty extraction strategy to be suboptimal.
Covariances that more closely resemble the error distribution should lead to further
improvements in the results. To this end, deep learning could be employed to boost
the performance of the PNEC. Recent works have shown the benefits of deep learning
algorithms in visual odometry [73, 74, 22]. To a similar extent, deep learning algorithms
could be trained to estimate the uncertainty in a feature position.

This work only addresses the probabilistic normal epipolar constraint that follows
a tracking-based approach, having a perfectly localized feature in the host-frame
and uncertainty in the target frame. A similar version of the PNEC can be derived
analogously for feature position uncertainty in the host frame. However, neither of
these approaches is suited for feature extraction and matching like ORB. In this scenario,
one needs to consider uncertainty information in the host and the target-frame leading
to a new probabilistic normal epipolar constraint. While the derived energy function
would be more complex than the one presented in this thesis, this would expand the
utilization of the PNEC to most feature correspondence finding algorithms.
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6. Conclusions

This thesis presents a novel constraint on the rotation between two camera views. The
presented probabilistic normal epipolar constraint (PNEC) allows the integration of 2D
feature position uncertainty into the rotation estimation independent of the translation,
improving upon the normal epipolar constraint (NEC). We present a derivation of the
PNEC energy function together with a two-step optimization scheme that achieves
real-time performance on real-world data. Furthermore, we investigate the properties
of the PNEC with regard to singularities and present a regularization that removes
them. We evaluate the performance of the proposed optimization scheme on simulated
data and the real-world KITTI odometry dataset.

The experiments on simulated data show the effectiveness of the PNEC to estimate
frame-to-frame rotation compared to the NEC. While the PNEC consistently improves
upon the NEC, the benefit depends on the anisotropy and inhomogeneity of the
positional uncertainty. Experiments without a translational offset demonstrate that, like
the NEC, the PNEC does not suffer for purely rotational motion. Investigations with
the self-consistent-field algorithm show its benefits for optimizing the PNEC.

We integrate the PNEC together with a KLT tracker into a state-of-the-art VO system.
This achieves better results than the NEC on the real-world KITTI dataset. An ablation
study on the simulated data and the KITTI dataset demonstrate the necessity of the
proposed two-step optimization for consistently excellent results with the PNEC.

Investigations into the extracted covariances of the KLT tracker show them to be
suitable to estimate the shape, but not the scale, of the positional uncertainty of the
features on the ICL-NUIM dataset. Nevertheless, this covariance extraction, together
with the PNEC, leads to improvements on the KITTI dataset.

This work presents a novel way to integrate uncertainty into relative pose estimation.
The PNEC correctly accounts for this uncertainty information, leading to more accurate
relative pose estimations between a pair of images. In this thesis, we present work
that may lead to further improvements in the topic of 3D vision, particularly relative
rotation estimation in the case of pure rotation.
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A. Hyperparameter

Hyperparameter Simulated KITTI ICL-NUIM

EV iterations 20 10
SCF itertations 10 10
Fibonacci lattice points 500 500
regularization 0 10�13

KLT parameters

pattern size 52 52
grid size 30 30
pyramid-levels 4 4
optical flow iterations 40 40
optical flow max recovered distance 0.04 0.04

Table A.1.: Parameters used for the experiments.

Tab. A.1 gives an overview and a short explanation of the parameters used in the
experiments.

For the PNEC we use: EV iterations is the number of iterations in Alg. 3 before the
least squares refinement; SCF iterations is the number of iterations the SCF method
(see Alg. 1) is run; Fibonacci lattice points is the number of points we sample on the
unit sphere using the Fibonacci lattice; regularization is the regularization constant
proposed in Sec. 3.4.2 for the PNEC.

The KLT parameters are: pattern size the pattern layout of the KLT tracker, see
include/basalt/optical_flow/patterns.h in the implementation of [71] for more
details; grid size is the length of each square in the image for which a track is extracted;
pyramid-levels is the number of pyramid levels over which the KLT tracker tracks,
where the scale factor between each pyramid level is 2; optical flow iterations is the
number of iterations of tracking on each pyramid level, respectively; optical flow max
recovered distance is the maximum distance between its original position and the
forward-backward tracking position, otherwise it is discarded.
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B. Covariance Extraction
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Figure B.1.: Error distribution on sequence living room 0. The error distributions before
(e) and after (ew) applying the whitening transformation with the extracted covariance
matrices are shown. Fig. B.1a shows the squared sum of the error distributions and
the c2

2 distribution with a logarithmic and linear y-axis. Applying the whitening
transformation results in a very similar distribution. Both exhibit more small errors
than the c2

2 distribution. Fig. B.1b shows the angular error distributions. The anisotropy
of the angular distribution in both cases is very similar.
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Figure B.2.: Error distribution on sequence living room 1. For more details, see Fig. B.1.
Applying the whitening transformation results in a very similar distribution of the
squared sum. Both exhibit more small errors than the c2

2 distribution. The anisotropy
of the angular distribution is significantly smoothed after applying the whitening
transformation.
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Figure B.3.: Error distribution on sequence living room 2. For more details, see Fig. B.1.
Applying the whitening transformation results in a very similar distribution of the
squared sum. Both exhibit more small errors than the c2

2 distribution. The anisotropy
of the angular distribution is smoothed after applying the whitening transformation.
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Figure B.4.: Error distribution on sequence office room 1. For more details, see Fig. B.1.
Applying the whitening transformation results in a very similar distribution of the
squared sum. Both exhibit more small errors than the c2

2 distribution. The anisotropy of
the angular distribution is greatly reduced after applying the whitening transformation.
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Figure B.5.: Error distribution on sequence office room 2. For more details, see Fig. B.1.
Applying the whitening transformation results in a very similar distribution of the
squared sum. Both exhibit more small errors than the c2

2 distribution. The anisotropy
of the angular distribution is significantly reduced after applying the whitening trans-
formation.
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Figure B.6.: Error distribution on sequence office room 3. For more details, see Fig. B.1.
Applying the whitening transformation results in a very similar distribution of the
squared sum. Both exhibit more small errors than the c2

2 distribution. The anisotropy of
the angular distribution is greatly reduced after applying the whitening transformation.
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C. Contributions

The following contributions to this thesis were made by or are based on the direct work
by Lukas Koestler:

Sec. 3.4.1 is based on the work by Lukas Koestler.
Fig. 3.5 was made by Lukas Koestler.
Fig. 3.7 was made by Lukas Koestler.
Alg. 1, Alg. 2, Alg. 3 are taken from the paper submission. They were written down

in this form by Lukas Koestler.
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