

Dominik Muhle Technische Universität München Fakultät für Informatik Chair of Computer Vision & Artificial Intelligence München, 23. September 2021

Rotation Estimation under Uncertain Feature Positions

The normal epipolar constraint (NEC) decouples the rotation from the translation The NEC is based on the coplanarity of the epipolar plane normal vectors

- L. Kneip, R. Siegwart, and M. Pollefeys. Finding the exact rotation between two images independently of the translation. In European Conference on Computer Vision (ECCV), 2012.
- L. Kneip and S. Lynen. Direct optimization of frame-to-frame rotation. In IEEE International Conference on Computer Vision (ICCV), 2013.

The normal epipolar constraint (NEC) decouples the rotation from the translation The NEC is based on the coplanarity of the epipolar plane normal vectors

• L. Kneip, R. Siegwart, and M. Pollefeys. Finding the exact rotation between two images independently of the translation. In European Conference on Computer Vision (ECCV), 2012.

• L. Kneip and S. Lynen. Direct optimization of frame-to-frame rotation. In IEEE International Conference on Computer Vision (ICCV), 2013.

The normal epipolar constraint (NEC) decouples the rotation from the translation The NEC is based on the coplanarity of the epipolar plane normal vectors

• L. Kneip, R. Siegwart, and M. Pollefeys. Finding the exact rotation between two images independently of the translation. In European Conference on Computer Vision (ECCV), 2012.

• L. Kneip and S. Lynen. Direct optimization of frame-to-frame rotation. In IEEE International Conference on Computer Vision (ICCV), 2013.

Rotation Estimation

Two camera views

$$\boldsymbol{R} \in SO(3), \boldsymbol{t} \in \mathbb{R}^3 : \|\boldsymbol{t}\| = 1 \tag{1}$$

The normal vector

$$\boldsymbol{n}_i = \boldsymbol{f}_i \times \boldsymbol{R} \boldsymbol{f}_i' \tag{2}$$

For rotation estimation n_i is not in the *epipolar normal plane*

$$\boldsymbol{e}_i = |\boldsymbol{t}^\top \boldsymbol{n}_i| \tag{3}$$

 \rightarrow Optimization problem

$$E(\boldsymbol{R}, \boldsymbol{t}) = \sum_{i} e_{i}^{2} = \sum_{i} |\boldsymbol{t}^{\top} \boldsymbol{n}_{i}|^{2}$$

$$= \boldsymbol{t}^{T} \sum_{i} \boldsymbol{n}_{i} \boldsymbol{n}_{i}^{T} \boldsymbol{t}$$
(4)
(5)

(6)

(7)

Normal Epipolar Constraint

Rotation Estimation

The optimization problem is of the quadratic form

$$E(\boldsymbol{R},t) = t^{\top} \boldsymbol{M}(\boldsymbol{R}) t$$

Reducing it to a rotation estimation without translation

$$\min_{\substack{\boldsymbol{R} \in \text{SO}(3) \\ t: \|\boldsymbol{t}\| = 1}} \boldsymbol{t}^\top \boldsymbol{M}(\boldsymbol{R}) \boldsymbol{t} = \min_{\substack{\boldsymbol{R} \in \text{SO}(3) \\ \boldsymbol{R} \in \text{SO}(3)}} \boldsymbol{t}^\top \lambda_{\min}(\boldsymbol{M}(\boldsymbol{R})) \boldsymbol{t}$$
$$= \min_{\substack{\boldsymbol{R} \in \text{SO}(3) \\ \boldsymbol{R} \in \text{SO}(3)}} \lambda_{\min}(\boldsymbol{M}(\boldsymbol{R}))$$

gives an eigenvalue based optimization scheme

- L. Kneip and S. Lynen. Direct optimization of frame-to-frame rotation. In IEEE International Conference on Computer Vision (ICCV), 2013.
- S. Lee and J. Civera. Rotation-only bundle adjustment. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

Incorporate uncertainty into the NEC

Propagate the uncertainty through the energy function

Energy Function

The propagation of the unit bearing vector covariance Σ_i through the linear functions gives a variance of the error term

$$\sigma_i^2 = \boldsymbol{t}^\top \hat{\boldsymbol{f}}_i \boldsymbol{R} \boldsymbol{\Sigma}_i \boldsymbol{R}^\top \hat{\boldsymbol{f}}_i^\top \boldsymbol{t}$$
(8)

The weighted optimization function

$$E_P(\boldsymbol{R}, \boldsymbol{t}) = \sum_{i} \frac{|\boldsymbol{t}^{\top} \boldsymbol{n}_i|^2}{\sigma_i^2} = \sum_{i} \frac{\boldsymbol{t}^{\top} \boldsymbol{n}_i \boldsymbol{n}_i^{\top} \boldsymbol{t}}{\boldsymbol{t}^{\top} \hat{f}_i \boldsymbol{R} \boldsymbol{\Sigma}_i \boldsymbol{R}^{\top} \hat{f}_i^{\top} \boldsymbol{t}}$$
(9)

The alternative form

$$E_P(\boldsymbol{R}, \boldsymbol{t}) = \boldsymbol{t}^\top \sum_{i} \frac{\boldsymbol{n}_i \boldsymbol{n}_i^\top}{\boldsymbol{t}^\top \hat{\boldsymbol{f}}_i \boldsymbol{R} \boldsymbol{\Sigma}_i \boldsymbol{R}^\top \hat{\boldsymbol{f}}_i^\top \boldsymbol{t}} \boldsymbol{t}$$
(10)

Optimization over t

Optimization over the translation is the minimization of a sum of generalized Rayleigh quotients.

$$\min_{\boldsymbol{t}: \|\boldsymbol{t}\|=1} E_{\boldsymbol{P}}(\boldsymbol{t}) = \min_{\boldsymbol{t}: \|\boldsymbol{t}\|=1} \sum_{i} \frac{|\boldsymbol{t}^{\top} \boldsymbol{n}_{i}|^{2}}{\sigma_{i}^{2}} = \sum_{i} \frac{\boldsymbol{t}^{\top} \boldsymbol{n}_{i} \boldsymbol{n}_{i}^{\top} \boldsymbol{t}}{\boldsymbol{t}^{\top} \hat{\boldsymbol{f}}_{i} \boldsymbol{R} \boldsymbol{\Sigma}_{i} \boldsymbol{R}^{\top} \hat{\boldsymbol{f}}_{i}^{\top} \boldsymbol{t}}$$
(11)

No optimal solution is known for this problem.

The self-consistent field algorithm performs better than generic manifold optimization.

• L. Zhang. On optimizing the sum of the rayleigh quotient and the generalized rayleigh quotient on the unit sphere. Computational Optimization and Applications, 54, 2013.

Optimization over **R**

The rotation estimation cannot be decoupled from the translation

$$\min_{\boldsymbol{R}\in \mathrm{SO}(3)} \boldsymbol{E}_{\boldsymbol{P}}(\boldsymbol{R}) = \min_{\boldsymbol{R}\in \mathrm{SO}(3)} \boldsymbol{t}^{\top} \sum_{i} \frac{\boldsymbol{n}_{i} \boldsymbol{n}_{i}^{\top}}{\boldsymbol{t}^{\top} \hat{\boldsymbol{f}}_{i} \boldsymbol{R} \boldsymbol{\Sigma}_{i} \boldsymbol{R}^{\top} \hat{\boldsymbol{f}}_{i}^{\top} \boldsymbol{t}} \boldsymbol{t}$$
(12)

Fixing the weights $\sigma'_i^2 = \sigma_i^2(\mathbf{R}_t, \mathbf{t}_t)$ allows for the NEC eigenvalue-based optimization

$$\min_{\mathbf{R}\in \mathrm{SO}(3)} E_P(\mathbf{R}) \approx \min_{\mathbf{R}\in \mathrm{SO}(3)} \mathbf{t}^\top \sum_i \frac{\mathbf{n}_i \mathbf{n}_i^\top}{\sigma'_i^2} \mathbf{t} = \min_{\mathbf{R}\in \mathrm{SO}(3)} \mathbf{t}^\top \mathbf{M}_P(\mathbf{R}) \mathbf{t}$$
(13)

Full Optimization

The iterative eigenvalue-based optimization is refined with a least-squares optimization

Singularities

The PNEC energy has a singularity for $t = f_i$

This is removed by considering covariance of the form $\sigma'_{i}^{2} = \sigma_{i}^{2} + c$.

Frame-To-Frame Rotation Estimation

Synthetic experiments for omnidirectional cameras

Noise Types

Different noise types

Frame-To-Frame Rotation Estimation

Frame-to-frame estimation of the PNEC and NEC

For simulated experiments with anisotropic inhomogeneous noise

Visual Odometry System

Integration of the PNEC into the rotation only visual odometry algorithm MRO.

• C. Chng, Á. Parra, T. Chin, and Y. Latif. Monocular rotational odometry with incremental rotation averaging and loop closure. Digital Image Computing: Techniques and Applications (DICTA), 2020.

KITTI Odometry Dataset

	MRO		KLT	NEC	KLT-PNEC	
					(Ours)	
Seq.	RPE_1	RPE_n	RPE_1	RPE _n	RPE ₁	RPE _n
00	0.36	8.67	0.127	4.935	0.121	4.706
)1*	0.29	16.03	0.692	<u>25.548</u>	0.853	27.783
)2	0.29	16.03	0.087	5.876	<u>0.101</u>	<u>6.010</u>
)3	0.28	5.47	0.056	<u>2.453</u>	0.060	1.410
)4	<u>0.04</u>	1.08	0.042	<u>0.792</u>	0.038	0.531
)5	0.25	11.36	<u>0.085</u>	<u>4.641</u>	0.056	2.746
)6	0.18	4.72	<u>0.144</u>	4.443	0.081	2.967
)7	0.28	7.49	0.074	5.207	0.070	2.149
)8	0.27	9.21	0.063	5.593	0.056	2.909
)9	0.28	9.85	<u>0.104</u>	3.526	0.081	<u>3.866</u>
10	0.38	13.25	0.086	<u>5.094</u>	0.071	4.012

Table: * In seq. 01 the KLT implementation fails and produces many wrong tracks due to self-similar structure. Since neither tracks nor covariances are correct, we omit this sequence in the ablation study.

KITTI Odometry Dataset

Figure: Trajectory generate from rotation estimations on seq. 06, seq. 08, and seq. 10

Ablation Study

	ΟΜΝΙ		PINHOLE		KITTI	
Metric	e _{rot}	e _{rot}	e _{rot}	<i>e</i> _{rot}	RPE_1	RPE _n
Noise level [px]	1.0	3.0	1.0	3.0		
NEC	0.143	0.240	0.313	0.537	0.087	4.256
PNEC w/o LS	0.120	0.206	0.272	0.472	<u>0.074</u>	4.088
PNEC only LS	0.108	0.191	0.252	0.439	0.140	5.523
PNEC (Ours)	<u>0.114</u>	<u>0.199</u>	0.262	<u>0.459</u>	0.073	3.131

Table: Ablation study on synthetic data and the KITTI dataset (averaged results)

Runtime

	MRO	KLT-NEC	KLT-PNEC
feature creation matching	36 120	23	23
optimization	5	33	54
total time (ms)	161	56	77

Table: Runtime study on the KITTI dataset. PNEC achieves real-time performance.

Rotation Estimation under Uncertain Feature Positions

Backup

SCF

Iterative algorithm for the optimization over t

$$E_P(\boldsymbol{R},t) = \sum_i \frac{t^{\top} \boldsymbol{A}_i t}{t^{\top} \boldsymbol{B}_i t} + t^{\top} \boldsymbol{D} t,$$

with

$$\begin{aligned} \mathbf{A}_i &= \hat{\mathbf{f}}_i \mathbf{R} \mathbf{f}_i' \mathbf{f}_i^\top \mathbf{R}^\top \hat{\mathbf{f}}_i^\top, \\ \mathbf{B}_i &= \hat{\mathbf{f}}_i \mathbf{R} \boldsymbol{\Sigma}_i \mathbf{R}^\top \hat{\mathbf{f}}_i^\top + c \mathbf{I}_3, \\ \mathbf{D} &= \mathbf{0}. \end{aligned}$$

Compute the *E*-matrix, a 3×3 symmetric matrix given by

$$E(\mathbf{R}, t) = \sum_{i} w_{i} \cdot \left(t^{\top} \mathbf{B}_{i} t \cdot \mathbf{A}_{i} - t^{\top} \mathbf{A}_{i} t \cdot \mathbf{B}_{i} \right),$$

$$w_{i} = (t^{\top} \mathbf{B}_{i} t)^{-2} \cdot \prod_{i} t^{\top} \mathbf{B}_{i} t.$$

Backup

Metrics

$$\mathsf{RMSE}(\Delta) := \left(\frac{1}{m}\sum_{i=1}^{m}E_{i}^{2}\right)^{\frac{1}{2}} \tag{18}$$

over $m := n - \Delta$ residuals for frame pairs that are a "time-step" Δ apart.

$$E_i := \angle ((\boldsymbol{R}_i^\top \boldsymbol{R}_{i+\Delta})^\top (\tilde{\boldsymbol{R}}_i^\top \tilde{\boldsymbol{R}}_{i+\Delta}))$$
(19)

between the ground truth $(\mathbf{R}_i^{\top}\mathbf{R}_{i+\Delta})$ and the estimated $(\tilde{\mathbf{R}}_i^{\top}\tilde{\mathbf{R}}_{i+\Delta})$ relative rotations.

$$\mathsf{RPE}_1 := (RMSE)(1) \tag{20}$$

$$\mathsf{RPE}_n := \frac{1}{n} \sum_{\Delta=1}^n \mathsf{RMSE}(\Delta)$$
(21)

$$e_{rot} := \angle (\mathbf{R}^{\top} \tilde{\mathbf{R}}), \text{ and}$$

 $e_t := \arccos(\mathbf{t}^{\top} \tilde{\mathbf{t}})$ (17)

between the ground truth $\boldsymbol{R}, \boldsymbol{t}$ and the estimated values $\tilde{\boldsymbol{R}}, \tilde{\boldsymbol{t}}$, where $\angle(\cdot)$ returns the angle of the rotation matrix.

Dominik Muhle Technische Universität München Fakultät für Informatik Chair of Computer Vision & Artificial Intelligence München, 23. September 2021

