
Exploring SO(3) logarithmic map:

degeneracies and derivatives

Zhakshylyk Nurlanov

Abstract

In this work, we investigate the SO(3) logarithmic map from various points of view. First, we
propose two numerically stable solutions to the degenerate case of the logarithmic map (from SO(3)
rotation matrices to so(3)-Lie algebra vectors) when the angle of rotation is close to or exactly pi.
Second, we observe and theoretically prove that the Jacobian of the logarithmic map in a manifold
sense (as the linear map between tangent spaces) can be found as a chain of Jacobians in a numerical
sense of the logarithmic map and box plus operator via extending logarithmic map over the SO(3)
manifold. Moreover, we show that the result of the chain rule does not depend on the extension
of the log map, even though the numerical Jacobians of different extensions are different. These
results ensure that we do not run into degenerate cases in practical implementations of optimization
algorithms, such as with the Ceres solver library, for applications like pose graph optimization. We
have proposed corresponding improvements to the implementation of SO3 in the popular Sophus
library.

1 SO(3) exponential map

1.1 Axis-angle to Matrix

The map:

exp : so(3) 7→ SO(3) (1a)

ω 7→ R3×3 (1b)

is well-defined, surjective, and corresponds to the matrix exponentiation, which has the closed-form
solution: the Rodrigues’ formula from 1840, that is

eω ≡ matexp(ω∧) = I3 +
sin θ

θ
ω∧ +

1− cos θ

θ2
(ω∧)2 (2)

where the angle θ = |ω| and ω∧ is the skew symmetric matrix generated by the 3-vector ω.
We can define a unit vector, representing the axis of rotation, as n = ω

|ω| = (n1, n2, n3) with respect

to a fixed Cartesian coordinate system, and the angle of rotation θ = |ω| around this axis. One can
show that the Rodrigues’ formula (eq. 2) for the rotation matrix R(n, θ) representing rotation around
axis n about the angle θ in the coordinate form can be written as:

R(n, θ) =

 cos θ + n2
1(1− cos θ) n1n2(1− cos θ)− n3 sin θ n1n3(1− cos θ) + n2 sin θ

n1n2(1− cos θ) + n3 sin θ cos θ + n2
2(1− cos θ) n2n3(1− cos θ)− n1 sin θ

n1n3(1− cos θ)− n2 sin θ n2n3(1− cos θ) + n1 sin θ cos θ + n2
3(1− cos θ)

 (3)

1

It is also usefull to derive the following representation of rotation matrix:

R(n, θ) = PR(z, θ)P−1 (4)

where P is an orthogonal matrix, i.e. P−1 = P>, and R(z, θ) is a standart rotation matrix around z-
axis about angle θ:

P =

n3n1√
n2
1+n2

2

−n2√
n2
1+n2

2

n1

n3n2√
n2
1+n2

2

n1√
n2
1+n2

2

n2

−
√
n2

1 + n2
2 0 n3

 , R(z, θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (5)

1.2 Axis-angle to Quaternion

The exponential map can be also directly mapped as a unit quaternion (qr qx qy qz)
>:

exp : so(3) 7→ SO(3) (6a)

ω 7→ SU(2) (6b)

eωq =

(1, 0, 0, 0)> , if ω = (0, 0, 0)>cos

|ω|
2
,
sin
|ω|
2

|ω|
ω

>

, otherwise
(6c)

2 SO(3) logarithm map

2.1 Matrix to Axis-angle (baseline)

The map:

log : SO(3) 7→ so(3) (7a)

R3×3 7→ ω (7b)

is well-defined for rotation angles θ ∈ (0, π), surjective, and is the inverse of the exp function defined
above. From Rodrigues’ formula (eq. 3) or from rotation matrix factorization and trace properties
(eq. 4) it follows that:

cos θ =
1

2
(tr(R)− 1) (8a)

sin θ = (1− cos2 θ)1/2 =
1

2

√
(3− tr(R))(1 + tr(R)) (8b)

where sin θ ≥ 0 is a consequence of the convention for the range of the rotation angle, θ ∈ [0, π].

2

Then from Rodrigues’ formula (eq. 3) and Taylor approximation it follows that logarithmic map
can be implemented as follows:

ω = [log(R)]∨ =
θ

2 sin θ

[
R−R>

]∨
=

θ

2 sin θ
(R32 −R23, R13 −R31, R21 −R12)>, (9a)

ω = 0.5 · (1 +
1

6
θ2 +

7

360
θ4)
[
R−R>

]∨
, if abs(3− trR) < 10−8 (9b)

The above implementation is the most common, however, it diverges at a special case when the
angle of rotation θ is close to π. Nevertheless, it is possible to describe the log map at these edge
cases when sin θ = 0, that is θ = 0 or θ = π. In both cases (from eq. 3) Rij = Rji, and ω can not be
determined by eq. 9. However, the angle θ is derived from eq. 8, and inserting it to the Rodrigues’
formula 2:

ω = (0, 0, 0) if θ = 0,

ω

|ω|
= n =

(
ε1

√
1

2
(1 +R11), ε2

√
1

2
(1 +R22), ε3

√
1

2
(1 +R33)

)>
, if θ = π (10)

where the individual signs εi = ±1 (if ni 6= 0) are determined up to an overall sign (since R(n, π) =
R(n,−π)) via the following relation:

εiεj =
Rij√

(1 +Rii)(1 +Rjj)
, for i 6= j, Rii 6= −1, Rjj 6= −1 (11)

2.2 Matrix to Angle-axis (around π)

There is an alternative approach for working around the case θ = π, which determines the axis of
rotation n for angles close to π without numerical issues. We define matrix:

S ≡ R + R> + (1− trR)I3 (12)

Then the Rodrigues’ equation in coordinate form (eq. 3) yields:

njnk =
Sjk

3− tr(R)
, tr(R) 6= 3 (13)

To determine n up to an overall sign, we simply set j = k in eq. (13), which fixes the value of n2
j .

If sin θ 6= 0, the overall sign of n is determined by eq. (9). If sin θ = 0 then there are two cases.
For θ = 0 (corresponding to the identity rotation), S = 0 and the rotation axis n is undefined, but
the logarithmic map can be derived as in 9b. For θ = π, the ambiguity in the overall sign of n is
immaterial, since R(n, π) = R(n,−π), so we can fix the sign of maximal component ni to be positive
and derive the signs of all other components according to the signs of corresponding Sij .

3

2.3 Matrix to Quaternion

The transformation from rotation matrix R to quaternion q = (qr qx qy qz)
> = (qr,q

>
v)> is well-

defined for all angles due to resolving ambiguities through case differentiation.

if tr(R) > 0

t =
√

1 + tr(R), qr = 0.5 · t, qv = 0.5/t · (R−R>)∨ (14a)

else if R11 ≥ R22, R11 ≥ R33

t =
√

1 +R11 −R22 −R33, qx = 0.5 · t,
qr = 0.5/t · (R3,2 −R2,3), qy = 0.5/t · (R2,1 +R1,2), qz = 0.5/t · (R3,1 +R1,3) (14b)

else if R22 > R11, R22 ≥ R33

t =
√

1 +R22 −R33 −R11, qy = 0.5 · t,
qr = 0.5/t · (R1,3 −R3,1), qz = 0.5/t · (R3,2 +R2,3), qx = 0.5/t · (R1,2 +R2,1) (14c)

else if R33 > R11, R33 > R22

t =
√

1 +R33 −R11 −R22, qz = 0.5 · t,
qr = 0.5/t · (R2,1 −R1,2), qx = 0.5/t · (R1,3 +R3,1), qy = 0.5/t · (R2,3 +R3,2) (14d)

2.4 Quaternion to Axis-angle

The logarithm map can be directly given from a unit quaternion q = (qr qx qy qz)
> = (qr,q

>
v)>:

log : SO(3) 7→ so(3) (15a)

SU(2) 7→ ω (15b)

ω = 2 arccos(qr)
qv
||qv||2

(15c)

Or the numerically more stable implementation:

q = sign(qr)q (16a)

ω =

(
2

qr
− 2

3
· ||qv||

2
2

q3
r

)
qv, if ||qv||2 < ε (16b)

ω = 4 arctan

(
||qv||2

qr +
√
q2
r + ||qv||22

)
· qv
||qv||2

, else (16c)

3 Jacobian of SO(3) logarithm map

3.1 Inverse Jacobian of exponential map

According to the definition of derivatives on manifold, the (right) Jacobian of logarithm map will be
expressed as the linear mapping between two tangent spaces:

∂ log(R� x)

∂x

∣∣
x=0

=
∂ log(R exp (x))

∂x

∣∣
x=0

= J−1
r

∣∣
3×3

(17)

4

where (see cheatsheets1,2) J−1
r is known as the inverse right Jacobian of exponential mapping:

ω = log(R), θ = ||ω||2 (18a)

J−1
r = I +

ω∧

2
+

(
1

θ2
− 1 + cos(θ)

2θ sin(θ)

)
(ω∧)2, if θ ∈ [ε, π − ε], (18b)

J−1
r = I +

ω∧

2
+

(
1

π2
+

(π2 − 8)(θ − π)

4π3

)
(ω∧)2, if θ ∈ (π − ε, π], (18c)

J−1
r = I +

ω∧

2
+

(
1

12
+

θ2

720

)
(ω∧)2, if θ ∈ [0, ε) (18d)

We can also express the derivative of boxplus operator �:
∂(R� x)

∂x

∣∣
9×3 or 4×3

=
∂(R exp (x))

∂x
using the derivative of exponential map [Gallego and Yezzi, 2013] and the derivative of composition
[Blanco, 2010]. These derivatives are well-defined and their form depend on the representation of
exponential map.

3.2 Jacobian of extended log map

However, the derivative ∂ log(R)
∂R is not defined in a common sense, because an arbitrary perturbation

of R ∈ SO(3) or R ∈ SU(2) (here, R can be either rotation matrix or unit quaternion) might take
it out of the manifold. If we extend the logarithmic map log(R) out of the manifold to the smallest
open super set of the manifold O(SO(3)) ⊃ SO(3), i.e. extended log map:

log : O(SO(3)) 7→ so(3) ⊆ R3 (19)

then we would be able to define derivative of log map in a numerical sense.
Using the results in a previous subsection and a chain rule we can check the following relation:

∂ log(R� x)

∂x

∣∣
x=0

=
∂log(R)

R

∣∣
3×9 or 3×4

· ∂(R� x)

∂x

∣∣
x=0

∣∣
9×3 or 4×3

(20)

Depending on the implementation of extended logarithmic map log we can derive different Ja-

cobians ∂log(R)
R . Above we described 3 different implementations of log map (matrix to angle-axis)

denoted as: ”baseline”, ”around π”, and through ”quaternion” (as the composition of two maps). All
of them can be naturally extended to O(SO(3)) with minor changes, i.e. ensuring that cos and sin
are in [−1, 1] range, and that the argument of a square root is non-negative via clipping the invalid
values into valid ranges. In the experimental notebook3 we derive the analytical Jacobians for each of
the extended log maps, compare them against numerical differentiation and test the chain rule (20).

Interestingly, the result of the chain rule (20) does not depend on the implementation of
an extended logarithmic map, although the Jacobians of extended log maps are different.
This experimental result needs further theoretical analysis together with deriving the conditions for
extending the maps where the result holds.

1https://docs.leggedrobotics.com/kindr/cheatsheet_latest.pdf
2https://ingmec.ual.es/~jlblanco/papers/jlblanco2010geometry3D_techrep.pdf
3https://github.com/nurlanov-zh/so3_log_map/blob/main/so3_log_map_analysis.ipynb

5

https://docs.leggedrobotics.com/kindr/cheatsheet_latest.pdf
https://ingmec.ual.es/~jlblanco/papers/jlblanco2010geometry3D_techrep.pdf
https://github.com/nurlanov-zh/so3_log_map/blob/main/so3_log_map_analysis.ipynb

3.2.1 Jacobian of extended log map (baseline)

Given an input rotation matrix R:

R =

 R11 R12 R13

R21 R22 R23

R31 R32 R33

it can be shown that:

∂ log(R)∨

∂R

∣∣∣∣
3×9

=

 0 0 0 0 0 −1
2 0 1

2 0
0 0 1

2 0 0 0 −1
2 0 0

0 −1
2 0 1

2 0 0 0 0 0

 , if cos θ > 1− ε

 a1 0 0 0 a1 −b 0 b a1

a2 0 b 0 a2 0 −b 0 a2

a3 −b 0 b a3 0 0 0 a3

 , otherwise

(21)

where the order of the 9 components is assumed to be raw-major (R11, R12, ...) and:

cos θ =
tr(R)− 1

2

sin θ =
√

1− cos2 θ a1

a2

a3

 =
[
R−R>

]∨ θ cos θ − sin θ

4 sin3 θ
=

 R32 −R23

R13 −R31

R21 −R12

 θ cos θ − sin θ

4 sin3 θ

b =
θ

2 sin θ

3.2.2 Jacobian of extended log map (around π)

1 def Dx_log_x_pi(R):

2 trR = R[0, 0] + R[1, 1] + R[2, 2]

3 cos_theta = max(min (0.5 * (trR - 1), 1), -1)

4 sin_theta = np.sqrt(1 - cos_theta * cos_theta)

5 theta = np.arctan2(sin_theta , cos_theta)

6 R_minus_R_T_vee = np.array([R[2, 1] - R[1, 2],

7 R[0, 2] - R[2, 0], R[1, 0] - R[0, 1]])

8

9 if abs(3 - trR) < 1e-8:

10 # return Jacobian of log map at Theta = 0

11 return np.array ([[0, 0, 0, 0, 0, -0.5, 0, 0.5, 0],

12 [0, 0, 0.5, 0, 0, 0, -0.5, 0, 0],

13 [0, -0.5, 0, 0.5, 0, 0, 0, 0, 0]])

14

15 S = R + R.transpose () + (1 - trR) * np.eye(3)

16 rest_tr = 3 - trR

17 n = np.ones (3)

18 # Fix modules of n_i

19 for i in range (3):

6

20 n[i] = np.sqrt(max(0, S[i, i] / rest_tr))

21 max_i = np.argmax(n)

22

23 # Fix signs according to the sign of max element

24 for i in range (3):

25 if i != max_i:

26 n[i] *= np.sign(S[max_i , i])

27

28 # Fix an overall sign

29 if any(np.sign(n) * np.sign(R_minus_R_T_vee) < 0):

30 n = -n

31

32 dn_dR_11 = np.zeros (3)

33 dn_dR_22 = np.zeros (3)

34 dn_dR_33 = np.zeros (3)

35 if abs(n[0]) > np.finfo(float).eps:

36 dn_dR_11 [0] = (S[0, 0] + rest_tr) / (2 * n[0] * rest_tr * rest_tr)

37 dn_dR_22 [0] = (S[0, 0] - rest_tr) / (2 * n[0] * rest_tr * rest_tr)

38 dn_dR_33 [0] = dn_dR_22 [0]

39 if abs(n[1]) > np.finfo(float).eps:

40 dn_dR_11 [1] = (S[1, 1] - rest_tr) / (2 * n[1] * rest_tr * rest_tr)

41 dn_dR_22 [1] = (S[1, 1] + rest_tr) / (2 * n[1] * rest_tr * rest_tr)

42 dn_dR_33 [1] = dn_dR_11 [1]

43 if abs(n[2]) > np.finfo(float).eps:

44 dn_dR_11 [2] = (S[2, 2] - rest_tr) / (2 * n[2] * rest_tr * rest_tr)

45 dn_dR_22 [2] = dn_dR_11 [2]

46 dn_dR_33 [2] = (S[2, 2] + rest_tr) / (2 * n[2] * rest_tr * rest_tr)

47

48 dtheta_d_R_11 = -sin_theta * 0.5 + cos_theta * 0.5 * (dn_dR_11.dot(

R_minus_R_T_vee))

49 dtheta_d_R_22 = -sin_theta * 0.5 + cos_theta * 0.5 * (dn_dR_22.dot(

R_minus_R_T_vee))

50 dtheta_d_R_33 = -sin_theta * 0.5 + cos_theta * 0.5 * (dn_dR_33.dot(

R_minus_R_T_vee))

51

52 dtheta_d_R_12 = cos_theta * 0.5 * (-n[2])

53 dtheta_d_R_13 = cos_theta * 0.5 * (n[1])

54 dtheta_d_R_23 = cos_theta * 0.5 * (-n[0])

55 dtheta_d_R_21 = -dtheta_d_R_12

56 dtheta_d_R_31 = -dtheta_d_R_13

57 dtheta_d_R_32 = -dtheta_d_R_23

58

59 J = np.zeros((3, 3, 3))

60

61 J[0, 0, 0] = dtheta_d_R_11 * n[0] + theta * dn_dR_11 [0]

62 J[0, 1, 1] = dtheta_d_R_22 * n[0] + theta * dn_dR_22 [0]

63 J[0, 2, 2] = dtheta_d_R_33 * n[0] + theta * dn_dR_33 [0]

64 J[0, 0, 1] = dtheta_d_R_12 * n[0]

65 J[0, 0, 2] = dtheta_d_R_13 * n[0]

66 J[0, 1, 2] = dtheta_d_R_23 * n[0]

67 J[0, 1, 0] = -J[0, 0, 1]

68 J[0, 2, 0] = -J[0, 0, 2]

69 J[0, 2, 1] = -J[0, 1, 2]

70

71 J[1, 0, 0] = dtheta_d_R_11 * n[1] + theta * dn_dR_11 [1]

72 J[1, 1, 1] = dtheta_d_R_22 * n[1] + theta * dn_dR_22 [1]

7

73 J[1, 2, 2] = dtheta_d_R_33 * n[1] + theta * dn_dR_33 [1]

74 J[1, 0, 1] = dtheta_d_R_12 * n[1]

75 J[1, 0, 2] = dtheta_d_R_13 * n[1]

76 J[1, 1, 2] = dtheta_d_R_23 * n[1]

77 J[1, 1, 0] = -J[1, 0, 1]

78 J[1, 2, 0] = -J[1, 0, 2]

79 J[1, 2, 1] = -J[1, 1, 2]

80

81 J[2, 0, 0] = dtheta_d_R_11 * n[2] + theta * dn_dR_11 [2]

82 J[2, 1, 1] = dtheta_d_R_22 * n[2] + theta * dn_dR_22 [2]

83 J[2, 2, 2] = dtheta_d_R_33 * n[2] + theta * dn_dR_33 [2]

84 J[2, 0, 1] = dtheta_d_R_12 * n[2]

85 J[2, 0, 2] = dtheta_d_R_13 * n[2]

86 J[2, 1, 2] = dtheta_d_R_23 * n[2]

87 J[2, 1, 0] = -J[2, 0, 1]

88 J[2, 2, 0] = -J[2, 0, 2]

89 J[2, 2, 1] = -J[2, 1, 2]

90

91 return J.reshape(3, 9)

3.2.3 Jacobian of extended log map (quaternion)

Jacobian of Matrix to Quaternion map:

1 def Dquaternion_DR(R):

2 """ Computes d quaternion(R) / d R , 4 x 9 Jacobian."""

3 J_quat = np.zeros ((4, 3, 3))

4 t = R[0, 0] + R[1, 1] + R[2, 2]

5 if t > 0:

6 # case 1

7 isqrt_t = 1 / np.sqrt(1 + t)

8 J_quat[0, :, :] = 0.25 * isqrt_t * np.eye (3)

9 J_quat[1, :, :] = -0.25 * isqrt_t / (1 + t) * (R[2, 1] - R[1, 2]) * np.eye (3)

10 J_quat[1, 2, 1] = 0.5 * isqrt_t

11 J_quat[1, 1, 2] = -0.5 * isqrt_t

12 J_quat[2, :, :] = -0.25 * isqrt_t / (1 + t) * (R[0, 2] - R[2, 0]) * np.eye (3)

13 J_quat[2, 0, 2] = 0.5 * isqrt_t

14 J_quat[2, 2, 0] = -0.5 * isqrt_t

15 J_quat[3, :, :] = -0.25 * isqrt_t / (1 + t) * (R[1, 0] - R[0, 1]) * np.eye (3)

16 J_quat[3, 1, 0] = 0.5 * isqrt_t

17 J_quat[3, 0, 1] = -0.5 * isqrt_t

18 else:

19 i = 0

20 if R[1, 1] > R[0, 0]:

21 i = 1

22 if R[2, 2] > R[i, i]:

23 i = 2

24 j = (i + 1) % 3

25 k = (j + 1) % 3

26 r = np.sqrt(R[i, i] - R[j, j] - R[k, k] + 1)

27 i_r = 1 / r

28 i_r_cube = 1 / ((R[i, i] - R[j, j] - R[k, k] + 1) * r)

29 r_eye = np.eye(3)

30 r_eye[j, j] = -1

31 r_eye[k, k] = -1

32 J_quat [1 + i, :, :] = 0.25 * i_r * r_eye

8

33

34 J_quat[0, :, :] = -0.25 * (R[k, j] - R[j, k]) * i_r_cube * r_eye

35 J_quat[0, k, j] = 0.5 * i_r

36 J_quat[0, j, k] = -0.5 * i_r

37 J_quat [1+j, :, :] = -0.25 * (R[j, i] + R[i, j]) * i_r_cube * r_eye

38 J_quat [1+j, j, i] = 0.5 * i_r

39 J_quat [1+j, i, j] = 0.5 * i_r

40 J_quat [1+k, :, :] = -0.25 * (R[k, i] + R[i, k]) * i_r_cube * r_eye

41 J_quat [1+k, k, i] = 0.5 * i_r

42 J_quat [1+k, i, k] = 0.5 * i_r

43 return J_quat.reshape ((4, 9))

Jacobian of Quaternion to Axis-angle map:

1 def Dlog_Dquaternion2(q):

2 """ Computes d log(q) / d q , 3 x 4 Jacobian."""

3 J_vec = np.zeros((3, 4))

4 squared_n = q[1]*q[1] + q[2]*q[2] + q[3]*q[3]

5 n = np.sqrt(squared_n)

6 w = q[0]

7 squared_w = w*w

8 sign = 1

9 if w < 0:

10 sign = -1

11 w = -w

12 if squared_n < np.finfo(float).eps * np.finfo(float).eps:

13 # n (~Theta) close to 0

14 two_atan_nbyw_by_n = 2 / w - 2.0 / 3 * squared_n / (w * squared_w)

15 d_q0 = -2 / squared_w + 2 * squared_n / (squared_w * squared_w)

16 d_q1 = -4.0 / 3 * q[1] / (w * squared_w)

17 d_q2 = -4.0 / 3 * q[2] / (w * squared_w)

18 d_q3 = -4.0 / 3 * q[3] / (w * squared_w)

19 else:

20 # Regular case

21 two_atan_nbyw_by_n = 4 * np.arctan(n / (w + np.sqrt(squared_w + squared_n)))

/ n

22 d_q0 = -2 / (squared_w + squared_n)

23 c0 = (2 * w - two_atan_nbyw_by_n) / squared_n

24 d_q1 = c0 * q[1]

25 d_q2 = c0 * q[2]

26 d_q3 = c0 * q[3]

27

28 J_vec[:, 0] = sign * d_q0 * q[1:]

29 J_vec[:, 1] = d_q1 * q[1:]

30 J_vec[0, 1] += two_atan_nbyw_by_n

31 J_vec[:, 2] = d_q2 * q[1:]

32 J_vec[1, 2] += two_atan_nbyw_by_n

33 J_vec[:, 3] = d_q3 * q[1:]

34 J_vec[2, 3] += two_atan_nbyw_by_n

35 J_vec = J_vec * sign

36 return J_vec

Jacobian of Matrix to Axis-angle (through quaternion) map:

1 def Dx_log_x_quaternion(R):

2 """ Computes d log(R) / d R , 3 x 9 Jacobian."""

3 J_quat = Dquaternion_DR(R)

4 q = SO3.matrix2quaternion(R)

9

5 J_vec = Dlog_Dquaternion2(q)

6 return J_vec @ J_quat

3.2.4 Comparison of Jacobians of extended log map

1. The Jacobian of extended log map depends on the implementation of log map. All of the
implementations produce different values even for rotations with non-edge angles.

2. However, after matrix multiplication with Jacobian of the box plus at zero the values of the
product become the same.

3. The observation from previous points is violated when the extension is non-differentiable. For
example, the Jacobian around π nullifies rows corresponding to zero components of the rotation
axis, i.e. ni = 0 Jπ[i, :] = 0), because the extension around π contains sign(x) function which
is non-differentiable at zero.

4. For small angles θ close to 0: the Jacobian around π diverges (tends to infinity).

5. For large angles θ close to π: the baseline Jacobian diverges.

6. The Jacobian through intermediate quaternion representation does not diverge anywhere. Over-
all, the map through quaternion is the only one that we should use to get correct results for log
map value, autodiff jacobians, and analytical jacobians.

4 Theoretical result

Proposition 1: Given the functions

h : X → Z, g : X → Y, f : Y → Z, h(x) = f(g(x)), ∀x ∈ X

X ⊂ Rn, Y ⊂ Rm, Z ⊂ Rk

h(x) = f(g(x)), ∀x ∈ X ⊂ Rn

Assume that functions g and h are differentiable on X, i.e.:

∃Jg(a) ∈ Rm×n : g(a+ ε)− g(a) = Jg(a)ε+ η(ε) · ε, lim
||ε||→0

||η(ε)|| = 0, ε ∈ Rn, η(ε) ∈ Rm×n

∃Jh(a) ∈ Rk×n : h(a+ ε)− h(a) = Jh(a)ε+ µ(ε) · ε, lim
||ε||→0

||µ(ε)|| = 0, ε ∈ Rn, µ(ε) ∈ Rk×n

for all a ∈ X ⊂ Rn, and ε close to the origin in Rn

The second function of composition f : Y → Z is defined on Y - manifold (curve or sphere). We can
extend f onto open superset of Y , i.e. Y ⊃ Y, Y ⊂ Rm, such that extension f is differentiable at every
point of Y . Let’s assume we have 2 differentiable extentions with different Jacobians:

∃f1 : Y → Z, f1|Y = f,

f1(g(a) + δ)− f(g(a)) = Jf1(g(a))δ + ν1(δ)δ, lim
||δ||→0

||ν1(δ)|| = 0

10

∃f2 : Y → Z, f2|Y = f,

f2(g(a) + δ)− f(g(a)) = Jf2(g(a))δ + ν2(δ)δ, lim
||δ||→0

||ν2(δ)|| = 0

Jf1(g(a)) 6= Jf2(g(a))

Then, the result of the chain rule does not depend on the extension as long as the extension is
differentiable, i.e.:

Jf1(g(a))Jg(a) = Jf2(g(a))Jg(a) = Jh(a)

Proof :

h(a+ ε)− h(a)
diff. of h

= Jh(a)ε+ µ(ε)ε =

def composite
= f(g(a+ ε))− f(g(a)) =

diff. of g
= f(g(a) + Jg(a)ε+ η(ε)ε)− f(g(a)) = (∗)

(∗) first extension
= f1(g(a) + δε)− f(g(a)) =

= Jf1(g(a))δε + ν1(δε)δε =

δε=Jg(a)ε+η(ε)ε
= Jf1(g(a))Jg(a)ε+ [Jf1(g(a))η(ε) + ν1(δε)Jg(a) + ν1(δε)η(ε)]ε =

[...]=o1(ε)→0
= Jf1(g(a))Jg(a)ε+ o1(ε)ε,

(∗) second extension
= f2(g(a) + δε)− f(g(a)) =

= Jf2(g(a))δε + ν2(δε)δε =

δε=Jg(a)ε+η(ε)ε
= Jf2(g(a))Jg(a)ε+ [Jf2(g(a))η(ε) + ν2(δε)Jg(a) + ν2(δε)η(ε)]ε =

[...]=o2(ε)→0
= Jf2(g(a))Jg(a)ε+ o2(ε)ε.

So at the end we have:

Jh(a)ε+ µ(ε)ε = Jf1(g(a))Jg(a)ε+ o1(ε)ε = Jf2(g(a))Jg(a)ε+ o2(ε)ε,

where lim
||ε||→0

||o1(ε)|| = 0, lim
||ε||→0

||o2(ε)|| = 0

Since the equality holds for arbitrary ε around origin in Rn, then the linear coefficients are equal, i.e.

Jf1(g(a))Jg(a) = Jf2(g(a))Jg(a) = Jh(a)

It ends the proof.

References

[Blanco, 2010] Blanco, J.-L. (2010). A tutorial on se (3) transformation parameterizations and on-
manifold optimization. University of Malaga, Tech. Rep, 3:6.

[Gallego and Yezzi, 2013] Gallego, G. and Yezzi, A. J. (2013). A compact formula for the derivative
of a 3-d rotation in exponential coordinates. CoRR, abs/1312.0788.

11

	SO(3) exponential map
	Axis-angle to Matrix
	Axis-angle to Quaternion

	SO(3) logarithm map
	Matrix to Axis-angle (baseline)
	Matrix to Angle-axis (around)
	Matrix to Quaternion
	Quaternion to Axis-angle

	Jacobian of SO(3) logarithm map
	Inverse Jacobian of exponential map
	Jacobian of extended log map
	Jacobian of extended log map (baseline)
	Jacobian of extended log map (around)
	Jacobian of extended log map (quaternion)
	Comparison of Jacobians of extended log map

	Theoretical result

