

Local Tracking and Mapping for Direct Visual
SLAM

Scientific work for obtaining the academic degree
Master of Science (M.Sc.) in Mechanical Engineering
at the Department of Mechanical Engineering of the Technical University of Munich

Supervisor Prof. Dr.-Ing. Manfred Hajek
 Chair of Helicopter Technology

Advisors Nikolaus Demmel, M.Sc.
 Computer Vision Group – Department of Informatics

 Tim Mehling, M.Sc.
 Chair of Helicopter Technology

Submitted by Pablo Rodríguez Palafox
Submission date October 14, 2019 in Garching bei München

Statement of Authorship

I hereby declare that the work presented in this thesis has been performed and interpreted solely
by myself, using no other than the specified sources and resources.

Ich versichere hiermit, dass ich die von mir eingereichte Abschlussarbeit selbstständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Garching, October 14, 2019 Pablo Rodríguez Palafox

Acknowledgements

I would like to start thanking Prof. Dr. Daniel Cremers and Prof. Dr.-Ing. Manfred Hajek for offering
me the possibility to pursue my Master’s Thesis as a collaboration project between the Computer
Vision Group of TUM’s Department of Informatics and the Chair of Helicopter Technology of
TUM’s Department of Mechanical Engineering. Additionally, I would like to express my sincere
gratitude to Nikolaus Demmel and Tim Mehling for their continuous support and many fruitful
discussions along the project. Finally, I would like to thank Vladyslav Usenko and Hide Matsuki
for their valuable insights and recommendations.

Abstract

Recently, direct approaches to Visual Odometry (VO) have shown great accuracy and robustness,
outperforming feature-based methods in some scenarios [13]. Such direct VO systems have been
combined with both feature-based place recognition techniques and pose-graph optimization in
order to reduce the accumulated drift when revisiting already mapped areas [20]. However, in this
line of work the front-end odometry estimator does not incorporate the updated map information.
Inspired by the recent Direct Sparse Mapping (DSM) [64], in this thesis we present a direct SLAM
system that localizes the camera in a local map similarly to ORB-SLAM’s [47] local tracking and
mapping, but leveraging direct image alignment and photometric bundle adjustment instead of
features. We implement and describe in detail all major components, including direct image align-
ment (in its forward additive and inverse compositional variants), map point selection and depth
initialization, keyframe and landmark management (in particular the reuse of previously mapped
regions to ensure a consistent representation of the scene), and local window Photometric Bundle
Adjustment (PBA), which are combined into a modular and flexible direct SLAM framework. A
coarse-to-fine scheme and a robust error function (based on the t-distribution) further ensure the
stability of both tracking and PBA. Additionally, our system is not limited to the pinhole model.
Unlike other existing implementations, it can work directly on distorted images, thus being suit-
able for fish-eye lenses, much like Omnidirectional DSO [42]. Experiments on realistic synthetic
data from a game-engine-based simulator with both pose and structure ground-truth allow us to
validate the individual components of the system as well as the overall performance. With this
thesis we contribute a proof of concept for a direct SLAM system that locally reuses map point
information, as well as an extensible framework for further research in this field.

Contents

Abbreviations and Symbols III

List of Figures V

List of Tables VII

1. Introduction 1
1.1. Contribution . 2
1.2. Outline . 3

2. Related Work 5
2.1. Indirect Monocular SLAM and VO . 5
2.2. Direct Monocular SLAM and VO . 6

3. Preliminaries 9
3.1. Notation . 9
3.2. Landmark Parametrization . 9
3.3. Calibration . 10

3.3.1. Geometric Camera Calibration . 11
3.4. Rigid-body Motion . 14

3.4.1. Transformation of a 3D Point . 15
3.4.2. Lie Algebra . 18

3.5. Least Squares . 21
3.5.1. General Approach . 21
3.5.2. Bayesian Derivation . 24
3.5.3. Weighted Least Squares . 25

3.6. Miscellaneous . 27
3.6.1. Coupled and Decoupled Increments . 27

4. Approach 29
4.1. Covisibility Window . 30

5. Front-End 33
5.1. Initial Frame Tracking . 33

5.1.1. Forward Additive Algorithm . 34
5.1.2. Inverse Compositional . 37

5.2. Keyframe Creation . 39
5.3. Keyframe Removal . 40

I

Contents

6. Back-End 43
6.1. Point Management . 43

6.1.1. Candidate Point Selection . 43
6.1.2. Candidate Point Tracking . 44
6.1.3. Candidate Point Activation . 49

6.2. Photometric Bundle Adjustment . 52
6.2.1. Relative-Absolute Pose Formulation . 53
6.2.2. Relative-Absolute Pose Jacobians . 58
6.2.3. Robustification Through Iteratively Reweighted Least Squares 59

6.3. Outlier Management . 63

7. Evaluation 65
7.1. Candidate Point Selection and its Influence on Direct Image Alignment 65
7.2. Comparison of the Forward Additive and the Inverse Compositional Algorithms for

Direct Image Alignment . 67
7.3. Qualitative Evaluation of Candidate Point Tracking 68
7.4. Qualitative and Quantitative Evaluation of our Solver Implementations for Photo-

metric Bundle Adjustment . 70
7.5. Qualitative and Quantitative Evaluation of the Direct SLAM Method on a Synthetic

Sequence . 73

8. Conclusion 77

A. Relative-Absolute Pose Jacobian Derivation 79
A.1. Derivation through the Chain Rule . 81

Bibliography 85

II

Abbreviations and Symbols

Acronyms

3D 3-dimensional

ARI Average Runtime per Iteration
ATE Absolute Trajectory Error

BA Bundle Adjustment
BoW Bag-of-Words

CPU Central Processing Unit

DIA Direct Image Alignment
DoF Degree of Freedom
DSCM Double Sphere Camera Model

EKF Extended Kalman Filter
EUCM Extended Unified Camera Model

FA Forward Additive

G-N Gauss-Newton
GPU Graphical Processing Unit

i.i.d. independent and identically distributed
IC Inverse Compositional
IMU Inertial Measurement Unit
IRLS Iteratively Reweighted Least Squares

L-M Levenberg-Marquardt
LC Loop Closure
LCW Local Covisibility Window

MAD Median Absolute Deviation

PBA Photometric Bundle Adjustment

III

Acronyms

PDF Probability Density Function
PGO Pose-Graph Optimization

RANSAC Random Sample Consensus
RGB-D Red-Green-Blue-Depth
RPE Relative Pose Error

SLAM Simultaneous Localization and Mapping
SSD Sum over Squared Distances

TR Total Runtime

UAV Unmanned Aerial Vehicle
UCM Unified Camera Model

VIO Visual Inertial Odometry
VO Visual Odometry

IV

List of Figures

1.1. Duplication of landmarks in Visual Odometry versus their reuse in Simultaneous
Localization and Mapping systems . 2

3.1. Inverse Distance Parametrization . 10
3.2. Schematic representation of the Unified and the Extended Unified Camera Models 12
3.3. The Double Sphere Camera Model . 13

4.1. Overview of the visual SLAM system . 30
4.2. Computation of the Local Covisibility Window . 31

5.1. Schematic representation of the Forward Additive approach 35
5.2. Schematic representation of the Inverse Compositional approach 38

6.1. Candidate point selection . 44
6.2. Stereo matching for central camera models . 45
6.3. Inverse distance computation from the best match after epipolar curve search . . 47
6.4. Candidate point tracking and their upgrading to landmark 51
6.5. Residual pattern . 52
6.6. Probabilistic error modeling . 62

7.1. Influence of candidate point selection on camera tracking 66
7.2. Candidate point tracking and their upgrading to landmark 69
7.3. Example of the refinement of structure throughout subsequent operations of can-

didate point tracking . 70
7.4. Test map before Photometric Bundle Adjustment 71
7.5. Example of Photometric Bundle Adjustment . 73
7.6. Example of landmark reuse . 74
7.7. Screenshots of a map reconstructed using our direct SLAM system on a synthetic

test sequence . 75
7.8. Screenshots of a map reconstructed using our direct SLAM system on a partial

sequence of the complete synthetic test sequence 76

V

List of Tables

2.1. Comparison of the contributions and properties of several direct systems 8

7.1. Influence of candidate point selection on the Relative Pose Error after Direct Image
Alignment . 66

7.2. Comparison of the Forward Additive and Inverse Compositional Approaches for
Direct Image Alignment . 68

7.3. Comparison between different solvers for the Photometric Bundle Adjustment prob-
lem allowing a maximum of 50 iterations per level 71

7.4. Comparison between different solvers for the Photometric Bundle Adjustment prob-
lem when allowing a maximum of 50 iterations per level 72

7.5. Absolute Trajectory Error for the complete and partial sequences 74

VII

1. Introduction

Simultaneous Localization and Mapping (SLAM) and Visual Odometry (VO) are key components
of many emerging technologies, ranging from autonomous cars and Unmanned Aerial Vehicles
(UAVs) to virtual and augmented reality. In essence, both try to recover the camera poses and a
map of the viewed scene from a video feed in real time.

VO systems only build a temporary map to track the subsequent camera poses. They typically use
a sliding-window of active keyframes –selected frames that provide more and better information
than merely using consecutive frames– and marginalize map points and keyframes that leave the
field of view. Consequently, if the camera revisits previously mapped areas, already marginalized
points and keyframes cannot be reused and the system needs to duplicate them. This can cause
motion drift and map inconsistencies.

In contrast, SLAM methods aim to build a persistent map of the scene by processing map point
reobservations. Therefore, map points (which we will also refer to as landmarks) and keyframes
that leave the field of view are not marginalized but rather retained and marked as inactive. Such
map points and keyframes can be reactivated later on according to covisibility criteria. (Note that
two keyframes are in general considered covisible if they observe several landmarks in common.)
Explicitly managing map point reobservations and building a network of keyframes connected not
only temporally but also in terms of the scene region they view can greatly help reduce motion
drift. Figure 1.1 exemplifies this key insight of reusing landmarks instead of duplicating them when
revisiting previously mapped areas.

Traditionally, feature-based or indirect methods have dominated the field of SLAM and VO. How-
ever, recent direct approaches [13] have shown great accuracy and robustness, even outperform-
ing feature-based systems in some scenarios. Typically, both indirect and direct methods take a
probabilistic approach, where noisy observations f̂ are taken as input and used to compute an
estimator ✓ for the unknown model parameters (camera poses and world structure). Employing a
Maximum Likelihood approach one can find the model parameters ✓ that maximize the probability
of obtaining the measurements f̂ , i.e., ✓⇤

:= argmax✓ p(f̂ |✓).

Indirect methods preprocess the raw sensor measurements to produce an intermediate represen-
tation, commonly denoted as features. This is typically approached by extracting a set of sparse
keypoints (e.g., Harris corners [25]) from the image and matching them across different frames to
establish correspondences. Direct approaches, on the other hand, use the actual sensor values
– light intensity striking one of the several tiny camera sensors from a certain direction over a
certain time period – as observations f̂ in this probabilistic model. Therefore, instead of being
limited to corners, direct approaches can sample information from across all available image

1

1. Introduction

New KF

(a) VO

New KF

(b) SLAM

Figure 1.1.: Duplication of map points (which we will also refer to as landmarks) in VO versus their reuse
in SLAM systems. In (a), already mapped points hosted in, i.e., relative to, an old keyframe
(orange camera) are duplicated when the sensor at the current position (blue camera) revisits
the region. Thus, some landmarks (blue) will be mere duplicates of previously mapped
landmarks (orange), which is how VO systems typically function. In contrast, SLAM methods
attempt to reuse landmark information to better localize the sensor within the map (b), therefore
avoiding point duplication.

data, including edges and surfaces with low intensity variation. This increases robustness in
environments with little to no texture, such as walls.

Moreover, current direct approaches have been combined with both feature-based place recog-
nition techniques –well-known from indirect SLAM methods such as ORB-SLAM [47]– and sub-
sequent Pose-Graph Optimization (PGO) to reduce the accumulated drift when revisiting a previ-
ously mapped area [20]. However, in this line of work the front-end odometry estimator does not
incorporate the updated map information.

1.1. Contribution

In this thesis we investigate a direct SLAM approach that localizes the camera in a local map
similar to ORB-SLAM’s local tracking and mapping, but leveraging Direct Image Alignment (DIA)
and Photometric Bundle Adjustment (PBA) instead of features. To this end, and inspired by the
recent DSM by Zubizarreta et al. [64], we retain map points and keyframes that leave the field
of view and re-activate them according to covisibility criteria, effectively building a direct SLAM
system.

We implement and describe in detail all major components of this direct SLAM, including DIA [3,
30] (in its forward additive and inverse compositional variants), point selection and initialization,
keyframe and landmark (map point) management (in particular the reuse of previously mapped
regions to ensure a consistent representation of the scene), and local window PBA, which are
combined into a modular and flexible direct SLAM framework.

Moreover, we implement a coarse-to-fine scheme and a robust error function (based on the fitting

2

1. Introduction

of the t-distribution to the photometric residuals) to ensure the stability of both camera tracking
(DIA) and PBA. Furthermore, our implementation for such time-consuming modules, i.e., camera
tracking and PBA, is highly parallelized.

Additionally, the system we develop in this thesis is not limited to the pinhole model. Unlike other
existing implementations, such as DSO [13] or DSM [64], our direct SLAM can work directly on
distorted images, thus being suitable for fisheye lenses, much like Omnidirectional DSO [42].

Finally, our implementation is highly modular and flexible, allowing the user, for instance, to select
between four different camera models, two solvers for camera tracking or two PBA implementa-
tions (either using a Ceres-based [1] solver or a custom solver implemented by ourselves.)

Experiments on realistic synthetic data from a game-engine-based simulator with both pose and
structure groundtruth allow us to validate the individual components of the system as well as the
overall performance of our method. With this thesis we contribute a proof of concept for a direct
SLAM system that locally reuses map point information, as well as an extensible framework for
further research in this field.

1.2. Outline

This work is organized as follows. In Chapter 2 we present an overview of the state-of-the-art in
both direct and indirect SLAM and VO systems. Chapter 3 introduces basic theoretical concepts
that we use throughout the thesis. We give an overview of the developed approach in Chapter
4 and further delve into the proposed system in Chapters 5 and 6. Experimental results are
presented in Chapter 7. Finally, Chapter 8 concludes the thesis and provides an outlook on
possible future lines of work.

3

2. Related Work

Typically, a real-time SLAM or VO system consists of two separate threads, namely tracking
and mapping. The first approaches to SLAM were indirect or feature-based. Recently, direct
monocular SLAM methods have been proposed.

2.1. Indirect Monocular SLAM and VO

Feature-based methods split the overall problem –recovering scene structure and camera poses
from images– into two steps: first, a set of salient image features is extracted from the image and
matched to other features in previous frames using invariant feature descriptors; second, based
on this correspondence matching the camera motion and the scene geometry can be computed
through epipolar geometry and the minimization of the reprojection error.

This decoupling and in particular the preliminary abstraction step render the resulting system both
less complex and real-time capable. However, this also reduces information to the feature type
employed, typically corners and blobs [25]. Information contained in straight or curved edges,
ubiquitous in man-made environments, is thus discarded. Even though edge-based [34, 12]
and region-based [9] features have been proposed to overcome this limitation, the complexity in
the estimation of the high-dimensional feature space renders such approaches difficult to use in
practice. Moreover, feature-based SLAM and VO systems rely on the quality of feature detectors
and matching strategies, mostly optimized for speed rather than precision. This causes drift in
the motion estimate, which needs to be compensated through the use of costly outlier estimation
methods such as Random Sample Consensus (RANSAC) [16].

Several works have been proposed that leverage features for the problem of SLAM. Davison
in [10] presents a real-time monocular SLAM system (MonoSLAM) within an Extended Kalman
Filter (EKF)-based framework. Civera et al. in [6] extend MonoSLAM and include an inverse
parametrization of depth, which we also employ in our work. A cornerstone in visual SLAM
was proposed by Klein and Murray in PTAM [35], where the tasks of tracking and mapping
are parallelized for the first time into two separate threads, thus demonstrating the feasibility of
maintaining a persistent map of the scene through the use of Bundle Adjustment (BA). In [47]
Mur-Artal et al. present ORB-SLAM, a full SLAM system that puts together traditional geometric
BA with map reuse capability, Loop Closure (LC) and a relocalization module. Its management of
map point reobservations in the BA is arguably its most important feature, which makes it up to
date one of the most accurate monocular SLAM methods in several scenarios.

5

2. Related Work

Regarding VO, OKVIS [38] proposes a feature-based Visual Inertial Odometry (VIO) system
that achieves real-time operation by limiting optimization to a bounded window of keyframes,
marginalizing geometry and cameras that fall outside this local window.

2.2. Direct Monocular SLAM and VO

Direct methods [27] work directly with the intensity values of the image pixels instead of extracting
intermediate features. This allows them to exploit all the information contained in the image
–including edges and weak intensity variations–, and have been shown to outperform feature-
based approaches in therms of robustness in sparsely textured environments [39]. Furthermore,
the more costly computation of the photometric error in comparison to the reprojection error is
compensated by not having to compute features or invariant descriptors.

The first direct monocular SLAM methods relied on tracking and mapping planar patches [28,
46, 53, 43] to estimate structure and motion, either by taking a filtering approach [28, 46] or by
employing nonlinear least squares optimization [53, 43, 50], but in all cases estimating the surface
normals of the patches. Real-time performance in these works is only possible by tracking a few
selected planar regions and on small datasets, as reported by the authors in [46, 53, 43]. In [7]
and later extended in [8], Comport et al. proposed a stereo-based VO system where the local
planarity assumption is relaxed and direct tracking is done with respect to arbitrary 3-dimensional
(3D) structures.

For Red-Green-Blue-Depth (RGB-D) sensors, DIA is well established, both as VO [32, 60, 45]
or full SLAM systems [31]. However, only more recently monocular direct VO algorithms have
appeared that perform in real time. In [56, 48, 49], fully dense depth maps are computed for every
keyframe through a variational formulation, i.e., by minimizing a global and spatially-regularized
energy functional. New frames are tracked through direct whole-image alignment using the depth
map of previous keyframes. These approaches, however, require a state-of-the-art Graphical
Processing Unit (GPU) to run in real time.

To eliminate the need of a GPU, a semi-dense depth filtering formulation was proposed in [15],
which allows for real-time operation on a Central Processing Unit (CPU) or even on a smartphone
[52] by only using pixels characterized with a strong gradient. In SVO [17] a hybrid semi-direct
monocular VO is presented where new points are tracked using the photo-consistency assump-
tion and then optimized using the reprojection error, achieving high frame rates on embedded
platforms.

More recently, Engel et al. [13] presented DSO, the first fully direct VO method based on the
joint optimization of all involved parameters (camera intrinsics and extrinsics plus geometry, rep-
resented as inverse depth in a reference frame) over a window of recent keyframes. Within this
PBA formulation, a photometrically calibrated model for image formation is also taken into ac-
count. In DSO, keyframes and points that leave the field of view of the latest camera position are
marginalized, following the approach presented by OKVIS [38].

6

2. Related Work

All of the monocular direct approaches described above are pure visual odometries, where the
motion of the camera is only tracked locally and map points are not reused by means of loop-
closures. This causes inconsistencies in the map and, eventually, drift in the camera motion
estimation. To address this issue, VO systems are commonly extended in the following manner.
First, a feature-based place recognition algorithm detects LCs between keyframes. Then, a pose-
graph is constructed where keyframes are represented as vertices and the transforms between
keyframes as edges or constraints. The optimization of such a pose-graph using a generic graph
optimization framework like g2o [36] produces a consistent, global map.

In LSD-SLAM [14], large-scale loop-closure keyframes are detected using FAB-MAP [24], an
appearance-based mapping algorithm. Moreover, the inherent scale-ambiguity of monocular
SLAM is accounted for by representing camera poses as 3D similarity transforms instead of
rigid body motion, similarly to what [55] proposes. LSD-SLAM was the first scale-aware direct
monocular SLAM method for large-scale environments. In a similar fashion, LDSO [20] extends
DSO with a conventional ORB-based Bag-of-Words (BoW) [19] module, also employing g2o [36]
for graph optimization.

While LSD-SLAM and LDSO are capable of dealing with LCs and thus reducing motion and scale
drift considerably, they still present the following limitations: (1) LC detection relies on feature
repeatability, thus missing many corrections; (2) the objective functions of the odometry and the
pose-graph optimization differ; (3) even though the trajectory is spatially corrected, map points are
not reused, but rather duplicated when revisiting already mapped areas. The recently proposed
DSM [64] addresses these issues by reusing map points to build a persistent representation of
the scene. Similarly to ORB-SLAM, reobservations in DSM are processed within the local-window
PBA, which allows for more accurate estimates. However, DSM only works for the pinhole model
and does not include a manual solver for PBA. Moreover, its code is not yet publicly available,
unlike that of DSO [13] or LDSO [20].

Table 2.1 summarizes the contributions of our approach and compares its features with the
properties of state-of-the-art systems. In a nutshell: (1) our direct SLAM method is built in a
modular fashion, so as to enable future rapid extensions, much like a framework. This compares
positively with other systems, whose code is less accessible in terms of readability, thus being
more complex to extend and modify. The lack of such a modular, flexible and extensible framework
has largely motivated this thesis; (2) including a custom solver for the time-consuming PBA
problem and (3) allowing to easily select between different camera models differentiates our work
from DSM [64]; (4) moreover, as opposed to [13, 20, 42], we include a coarse-to-fine approach,
(5) the use of the t-distribution as a robust weight estimator for the PBA, and (6) the reuse of map
point reobservations to ensure a consistent map, as also recently proposed in DSM [64].

7

2. Related Work

Co
de

av
ai

la
bl

e
M

od
ul

ar
Co

de
Fi

sh
ey

e
le

ns
es

Cu
st

om
PB

A
so

lve
r

Co
ar

se
-to

-fi
ne

PB
A

Ro
bu

st
in

flu
en

ce
fu

nc
tio

n

M
ar

gi
na

liz
at

io
n

Lo
ca

l m
ap

re
us

e
G

lo
ba

l L
C

/ P
G

O

DSO X X X
Omni DSO X X X

LDSO X X X X
DSM ? X X X

Ours X X X X X X X

Table 2.1.: Comparison of the contributions and properties of several direct systems. The properties
compared are as follows. Code available: whether the code is publicly available; Modular
code: whether the code can be easily extended with new features or modules; Fisheye lenses:
whether the system can directly be deployed on sequences recorded with fisheye lenses;
Custom PBA solver: whether the system implements a custom solver for the costly PBA
problem; Custom PBA solver: whether a coarse-to-fine optimization scheme is employed in
the PBA in order to account for large displacements by increasing the convergence radius of
PBA; Robust influence function: whether a robust influence function based on the actual
residual distribution (in contrast to simply using the Huber norm) is employed to down-weight
the influence of outliers in the PBA; Marginalization: whether marginalization is employed to
remove variables in order to maintain the set of variables below a certain size; Local map
reuse: whether old map points are reused (in contrast to duplicating them) when revisiting a
previously mapped region; and Global LC / PGO: whether global loop closures are detected
and corrected by means of a pose-graph optimization.

8

3. Preliminaries

In this chapter, we first present the notation used throughout the thesis, as well as the parametriza-
tion we use for the landmarks (or map points) in our map. The models for the image formation
process (Section 3.3) and for motion representation (Section 3.4) are also described. A brief in-
troduction to the least squares technique for parameter estimation is given in Section 3.5. Finally,
additional miscellaneous background is given in Section 3.6.

3.1. Notation

Throughout this work, light lowercase letters (u) denote scalars or functions, matrices are repre-
sented by bold uppercase letters (R) and bold lowercase letters represent vectors (t).

3.2. Landmark Parametrization

We employ the inverse distance parametrization [6] for our landmarks (or map points). Instead
of parametrizing a landmark by its 3D coordinates p, we defined it by its (unit-length) bearing
vector

b =
p

kpk , (3.1)

which, as p, is defined relative to the landmark’s host frame (i.e., the camera frame in which the
landmark "lives"), and by the inverse distance

dp =
1

kpk (3.2)

from the point to the camera’s center of projection. This formulation allows us to write the 3D
coordinates of the landmark as follows:

9

3. Preliminaries

Host frame

p = kpkb =
b

dp

Chost
b

Figure 3.1.: Inverse Distance Parametrization. We parametrize a 3D point by its bearing vector b =
p

kpk
relative to the point’s host frame (where the point "resides") and its inverse distance dp =

1
kpk .

p =
b

dp
. (3.3)

Figure 3.1 visualizes the relation between the different variables.

In Equation (3.3), if dp is zero or close to zero then we refer to p as a point at infinity. In a practical
sense, a point at infinity can be a point on the horizon. (As will become apparent below, such a
point cannot be used to estimate translation, but does help in estimating rotation.) We describe
how to deal with such points towards the end of Section 3.4.1.

3.3. Calibration

The complete image formation process comprises a geometric and a photometric camera model.
While the former projects a 3D point onto the 2D image plane, the latter maps real-world energy
gathered by a pixel on the sensor, i.e., irradiance, to an intensity value. In indirect approaches,
where feature extractors and descriptors are designed to be highly robust to photometric noise,
the geometric model suffices, whereas in direct approaches a photometric model can be greatly
beneficial, as reported in [13]. For simplicity, in this work we only employ a geometric camera
model. However, a future extension that includes the photometric model analogously to DSO [13]
or DSM [64] is possible in a straight forward manner.

10

3. Preliminaries

3.3.1. Geometric Camera Calibration

Given the intrinsic parameters c of a camera, the projection function describes the mapping

⇡c : R3 ! ⌦ ⇢ R2
; p 7! u (3.4)

of a 3D point p = (x, y, z)
> 2 R3 into the 2D image plane ⌦ ⇢ R2, where pixel coordinates

are denoted as u = (u, v)
> 2 ⌦ [26]. In turn, we can define the camera’s inverse projection

function

⇡
�1
c : ⌦! R3

; u 7! b(u) (3.5)

as an unprojection of the image coordinates u to the bearing vector of unit-length

b = ⇡
�1
c (u) 2 R3

, (3.6)

which corresponds to the same vector as that presented in Equation (3.1). It is important to notice
that b implicitly defines the ray of all the 3D points that project into the same image location.

Various geometric camera models exist. In the remainder of this section we present the projection
and unprojection functions for the well-known pinhole model, the Extended Unified Camera Model
(EUCM) and the Double Sphere Camera Model (DSCM). We refer the reader to [61] for a more
in-depth study of different geometric camera models.

Pinhole Camera Model

The pinhole camera model abstracts the camera to an infinitely small hole, the pinhole, and
the image plane. Only light rays that fall through the pinhole and intersect the image plane get
projected. This model has four intrinsic parameters, c = (fx, fy, cx, cy)

>, and we can define the
projection function as follows:

⇡c(p) =

✓
fx

x
z

fy
y
z

◆
+

✓
cx

cy

◆
. (3.7)

To unproject a 2D point back to 3D we can use the following function:

11

3. Preliminaries

↵
1�↵

�

Figure 3.2.: Schematic representation of the Unified and the Extended Unified Camera Models. [61]

⇡
�1
c (u) =

1q
m2

x +m2
y + 1

0

@
mx

my

1

1

A , (3.8)

mx =
u� cx

fx
, (3.9)

my =
v � cy

fy
. (3.10)

In theory, ⌦ = {p 2 R3 | z > 0}, which limits the field-of-view to less than 180�. In practice,
however, this limit is even smaller, typically reducing the allowed field-of-view of the pinhole model
to 120�.

Extended Unified Camera Model

The EUCM [33] can be viewed as a generalization of the Unified Camera Model (UCM) [23],
both being suitable for fisheye cameras [44]. While the latter projects the 3D point onto the unit
sphere and then onto the image plane, in the former the sphere is substituted by an ellipsoid
(Figure 3.2).

The EUCM has six intrinsic parameters, namely c = (fx, fy, cx, cy,↵,�)
>, ↵ 2 [0, 1], � > 0,

and defines the projection function as:

⇡c(p) =

fx

x
↵d+(1�↵)z

fy
y

↵d+(1�↵)z

!
+

✓
cx

cy

◆
, (3.11)

d =

p
�(x2 + y2) + z2. (3.12)

Note that the EUCM degrades to a regular UCM for � = 1. Moreover, for ↵ = 0 the model

12

3. Preliminaries

↵
1�↵

⇠

Figure 3.3.: The Double Sphere (DS) projection model proposed by Usenko in [61].

degrades to the pinhole model.

The unprojection function of the EUCM is defined as follows:

⇡
�1
c (u) =

1q
m2

x +m2
y +m2

z

0

@
mx

my

mz

1

A , (3.13)

mx =
u� cx

fx
, (3.14)

my =
v � cy

fy
, (3.15)

r
2
= m

2
x +m

2
y, (3.16)

mz =
1� �↵2

r
2

↵

p
1� (2↵� 1)�r2 + (1� ↵)

, (3.17)

Double Sphere Camera Model

In [61] the DSCM is presented, which better fits cameras with fish-eye lenses, has a closed-form
inverse, and does not require computationally expensive trigonometric operations, in contrast
to the Kannala-Brandt camera model [29]. This model projects a 3D point consecutively onto
two concentric unit spheres with centers shifted by ⇠. Then, the point is projected onto the
image plane using the pinhole model shifted by ↵

1�↵ (Figure 3.3). This model has six parameters
c = (fx, fy, cx, cy, ⇠,↵)

> and a projection function defined as follows:

13

3. Preliminaries

⇡c(p) =

fx

x
↵d2+(1�↵)(⇠d1+z)

fy
y

↵d2+(1�↵)(⇠d1+z)

!
+

✓
cx

cy

◆
, (3.18)

d1 =
p
x2 + y2 + z2, (3.19)

d2 =
p
x2 + y2 + (⇠d1 + z)2. (3.20)

To backproject a point on the image plane back to 3D the following equation can be employed:

⇡
�1
c (u) =

mz⇠ +
p
m2

z + (1� ⇠2)r2
m2

z + r2

0

@
mx

my

mz

1

A�

0

@
0

0

⇠

1

A , (3.21)

mx =
u� cx

fx
, (3.22)

my =
v � cy

fy
, (3.23)

r
2
= m

2
x +m

2
y, (3.24)

mz =
1� ↵2

r
2

↵

p
1� (2↵� 1)r2 + 1� ↵

. (3.25)

3.4. Rigid-body Motion

A rigid-body motion (or rigid-body transformation) is a map

g : R3 ! R3
; p 7! g(p) (3.26)

which preserves the distance and orientation between any two points p and q, i.e.:

kp� qk = kg(p)� g(q)k 8p,q 2 R3
, (3.27)

g(p)⇥ g(q) = g(p⇥ q) 8p,q 2 R3
. (3.28)

The preservation of length and orientation allows us to define the motion g of a rigid body by
computing the motion of a Cartesian coordinate frame attached to it. Such a transformation can
be decomposed into the motion of the frame’s origin by a translation t 2 R3 and the change in
orientation of the frame by a rotation. In total, a rigid-body motion has six degrees of freedom,
three accounting for translation and three for rotation.

While several representations exist to express rotation, in this work we define it by a 3 ⇥ 3

orthogonal matrix R with det(R) = +1, i.e., an element of the special orthogonal group

14

3. Preliminaries

SO(3) = {R 2 R3⇥3 | R>
R = I, det(R) = +1}. (3.29)

Therefore, a complete rigid-body motion can be expressed as a 4⇥ 4 transformation matrix T of
the Special Euclidean group SE(3), which has the form

T =

✓
R t

0 1

◆
(3.30)

and inverse:

T
�1

=

✓
R

> �R>
t

0 1

◆
. (3.31)

3.4.1. Transformation of a 3D Point

We can define the rigid-body transformation of a point p 2 R3 with bearing vector b and inverse
distance dp as follows:

g(p) , g(T,p) , g(T,b, dp) = p
0
= Rp+ t (3.32)

= R
b

dp
+ t. (3.33)

Representing point p0 in homogeneous coordinates, i.e.:

ep ,
✓

p

1

◆
=

0

BB@

x

y

z

1

1

CCA , (3.34)

allows us to directly use the rigid-body transformation matrix T to simultaneously apply the rotation
and translation onto p, producing the transformed point in homogeneous coordinates

ep0
= Tep =

✓
R t

0 1

◆✓
p

1

◆
=

0

@ R
b

dp
+ t

1

1

A =

✓
p
0

1

◆
. (3.35)

We can therefore introduce the map

15

3. Preliminaries

eg(ep) , eg(T, ep) , eg(T,b, dp) = ep0 (3.36)

as the rigid-body transformation applied to points in their homogeneous coordinates.

Any number of rigid-body motions can be concatenated by left-multiplying the corresponding
transformation matrices. Moreover, the identity transformation, i.e., no motion, is defined by
R = I and t = 0, resulting in gidentity(p) = p.

Throughout this thesis, camera poses Tc , Twc are elements of the Special Euclidean group
SE(3) that transform the coordinates of a point relative to the camera frame epc = (x, y, z, 1)

> into
the world frame, giving

epw = Twc epc. (3.37)

Inverse Distance Formulation

To be able to deal with 3D points p at infinity (i.e., with dp = 0) when transforming and projecting
them into the image plane we leverage the following insight. All 3D points along the line between
the transformed point p0 and the center of projection of the camera project into the same image
location. In other words, when scaling point p0 with a constant k it holds true that

⇡c(p
0
) = ⇡c(kp

0
). (3.38)

With this in mind, we can scale p
0 with dp. By doing so we remove the latter from the denominator

in Equation (3.33), thereby producing the scaled point

p
0
s = dpp

0
= Rb+ dpt, (3.39)

where now dp can safely be zero. Again, note that

⇡c(p
0
) = ⇡c(p

0
s). (3.40)

We can formulate the above transformation using homogeneous coordinates. Note that the
homogeneous coordinates of a point can be multiplied by a non-zero constant without modifying
the underlying euclidean coordinates. Denoting by epd the homogeneous coordinates of point p
that have been multiplied by dp, and further assuming for now that dp 6= 0, we have that both ep
and epd represent the same 3D point in space, namely

16

3. Preliminaries

ep =

0

BB@

x

y

z

1

1

CCA
(3.3)
=

0

BB@

bx/dp

by/dp

bz/dp

1

1

CCA , (3.41)

and

epd = dpep =

0

BB@

bx

by

bz

dp

1

CCA =

✓
b

dp

◆
. (3.42)

It should be observed that Equation (3.41) is only valid when dp 6= 0, while Equation (3.42) is
always valid.

Nevertheless, as long as dp 6= 0, transforming epd

ep0
d = Tepd =

✓
R t

0 1

◆✓
b

dp

◆
=

✓
Rb+ dpt

dp

◆
(3.39)
=

✓
p
0
s

dp

◆
(3.43)

is equivalent to transforming ep (cf. Equation (3.35)). Indeed, if we normalize ep0
d by dividing each

of its components by the last one (i.e., by dp), and still assuming that dp 6= 0, we obtain ep0 back
as defined in Equation (3.35):

ep0
=

1

dp

✓
p
0
s

dp

◆
=

0

@
p
0
s

dp

1

1

A(3.39)
=

✓
p
0

1

◆
. (3.44)

Since Equation (3.44) is only valid when dp 6= 0, in this work we employ the formulation given by
Equation (3.43), which effectively allows to transform any point, including points at infinity, given
that dp can safely be zero or close to zero.

For completeness, we can also introduce the map

egd(epd) , egd(T, epd) , egd(T,b, dp) = ep0
d (3.45)

as the rigid-body transformation applied to points in their unnormalized homogeneous coordinates
(cf. Equation (3.42)). We can also extend the projection of 3D points into the image plane as
defined in (3.4) to also accept a point in its homogeneous coordinates (both in its normalized, i.e.,
last component 1, or unnormalized version). To this end, we define a 3⇥ 4 matrix M as

17

3. Preliminaries

M =
�
I3⇥3 0

�
(3.46)

that extracts the first three components from the homogeneous representation of a point. Thus,
projecting for instance ep0 (normalized homogeneous coordinates) and ep0

d (unnormalized homo-
geneous coordinates) produces, respectively,

⇡c(ep0
) , ⇡c(Mep0

)
(3.44)
= ⇡c(p

0
), (3.47)

⇡c(ep0
d) , ⇡c(Mep0

d)
(3.43)
= ⇡c(p

0
s), (3.48)

where both projections are equivalent, as discussed above (cf. Equation (3.40)).

Finally, it can be of interest to compute the inverse distance dp0 of the transformed point p0 as a
function of the inverse distance dp of the original point p, which can be easily derived as follows:

dp0 , 1

kp0k
(3.39)
=

1���p0
s

dp

���
=

dp

kp0
sk

. (3.49)

3.4.2. Lie Algebra

While the representation of translation as a vector t is canonical –the three components of t
correspond to the three degrees of freedom–, this is not true when representing a rotation with a
rotation matrix R, since it requires nine parameters for only three degrees of freedom. (Note that
enforcing orthogonality (R>

R = I) and det(R) = +1 imposes six constraints and only leaves
three free parameters.)

To obtain a minimal representation of a rigid-body transformation G 2 SE(3) (and, in general, of
an element in any Lie group) we can use the parameters of the associated Lie algebra, which for
the case of SE(3) is denoted as se(3).

Exponential Map

For any Lie group the tangent space at the identity is the corresponding Lie algebra. In particular,
for SE(3) any transformation matrix T 2 SE(3) has a representation in its Lie algebra se(3)

through a 6⇥ 1 velocity vector ⇠ known as the twist coordinates, which we denote as

⇠ =

✓
⌫
!

◆
, (3.50)

18

3. Preliminaries

where ⌫ = (⌫1, ⌫2, ⌫3)
> is the linear velocity (related to translation) and ! = (!1,!2,!3)

> the
angular velocity (related to rotation). The mapping from the Lie algebra to the Lie group is given
by the exponential map (or matrix exponential):

exp : se(3)! SE(3); b⇠ 7! e
b⇠
, (3.51)

T = e
b⇠
, (3.52)

where b⇠ 2 se(3) is a 4⇥ 4 matrix known as the twist, defined as

b⇠ ,
✓

⌫
!

◆^
,
✓
b! ⌫
0 0

◆
=

0

BB@

0 �!3 !2 ⌫1

!3 0 �!1 ⌫2

�!2 !1 0 ⌫3

0 0 0 0

1

CCA 2 R4⇥4
. (3.53)

Again, note that the set of all twists form the tangent space at the identity, which is precisely
the Lie algebra, and the matrix exponential maps an element from the tangent space to the
corresponding matrix Lie group.

Typically, applying the hat-operator to a vector u 2 R3 creates a skew-symmetric matrix bu
(sometimes denoted as [u]⇥) of the form

bu , [u]⇥ =

0

@
0 �u3 u2

u3 0 �u1
�u2 u1 0

1

A 2 R3⇥3
. (3.54)

With a slight abuse of notation, when applied to the twist coordinates ⇠ 2 R6 in Equation (3.53),
the b·-operator creates a 4⇥ 4 matrix with the 3⇥ 3 skew-symmetric matrix b! in the upper left and
the translational velocity parameters ⌫ in the last column (plus a row of zeros at the last row).

The exponential map in Equation (3.52) has a closed form solution [41] given by

e
b⇠
=

✓
e
b!

V⌫
0 1

◆
, (3.55)

where e
b! can be obtained through Rodrigues’ formula through

e
b!
= I+

sin(k!k)
k!k

b! +
1� cos(k!k)

k!k2
b!2

, (3.56)

and V is defined as

19

3. Preliminaries

V = I+
1� cos(k!k)

k!k2
b! +

k!k � sin(k!k)
k!k3

b!2
. (3.57)

The exponential map has similar properties to the exponential function, including

@ exp(tb⇠)
@t

= b⇠ exp(tb⇠) = exp(tb⇠)b⇠, (3.58)

and

if b⇠1b⇠2 = b⇠2b⇠1 =) exp(b⇠1) exp(b⇠2) = exp(b⇠1 + b⇠2). (3.59)

Given a rigid-body transformation A 2 SE(3), it can also be shown that

A exp(b⇠)A�1
= exp(Ab⇠A�1

). (3.60)

We refer the reader to [51] (2002, pp.2) for proof and to Strasdat’s PhD thesis [54] for a concise
summary of Lie Groups.

Logarithmic Map

The inverse mapping from the Lie group to the Lie algebra is called the logarithmic map, and for
the Special Euclidean group SE(3) it is defined as follows:

log : SE(3)! se(3); log(e
b⇠
) 7! b⇠, (3.61)

b⇠ = log(T). (3.62)

Adjoint Map

Let A 2 SE(3), the adjoint representation of SE(3) is a map

AdjA : se(3)! se(3); AdjA(b⇠) , Ab⇠A�1
. (3.63)

Since function Adj(·) is a linear operator, there exists a matrix Ad(A) 2 R4⇥4 such that

20

3. Preliminaries

Ad(A) · ⇠
V

= Ab⇠A�1
(= AdjA(b⇠)). (3.64)

In particular, the adjoint map of SE(3) is

Ad(A) =

✓
R btR
0 R

◆
. (3.65)

Applying property (3.60) to the above definition we obtain

exp(Ad(A) · ⇠
V

) = A exp(b⇠)A�1
, (3.66)

thus allowing us to move the exponential map from the right-hand side to the left-hand side of A
[54], i.e.:

A · exp(b⇠) = exp(Ad(A) · ⇠
V

) ·A. (3.67)

3.5. Least Squares

3.5.1. General Approach

The method of least squares is a standard approach in regression analysis to approximate the
solution of overdetermined systems, where an exact solution is typically not available due to
noise or a too simplified model. The goal is to estimate the parameters ✓ = (✓1, ✓2, . . . , ✓m)

>

of a model f(✓) that minimize the sum of squared errors (or Sum over Squared Distances
(SSD)) between n observations f̂ = (f̂1, f̂2, . . . , f̂n)

> and the corresponding model’s values
f(✓) = (f1(✓), f2(✓), . . . , fn(✓))>, i.e.:

ELS(✓) = (f(✓)� f̂)>(f(✓)� f̂) =
nX

i

(fi(✓)� f̂i)
2
=

nX

i

(ri(✓))
2
, (3.68)

where ri(✓) = fi(✓)� f̂i is the i
th residual. The best parameters ✓LS are those that minimize the

total error ELS:

✓LS = argmin
✓

ELS(✓). (3.69)

21

3. Preliminaries

We can calculate the partial derivatives of ELS with respect to the parameters ✓ and set them
equal to zero, obtaining

@ELS(✓)

@✓
=

nX

i

@ri(✓)

@✓
2ri(✓) = 0, (3.70)

where solving for ✓ provides the least squares solution ✓LS. Note that a unique solution may only
exist if the number of observations n is greater or equal than the number of parameters m in the
model. This is not a problem in practice, since typically we encounter largely overconstrained
systems with many more observations than parameters.

Linear Least Squares

If fi(✓) is linear in its parameters ✓, i.e.:

flin(✓) = a
>
i ✓, (3.71)

with ai 2 Rm, then Equation (3.69) is a linear least squares problem whose solution can be
obtained in closed form as follows. By first plugging flin(✓) into Equation (3.70)

nX

i

a
>
i

⇣
a
>
i ✓ � f̂i

⌘
= 0, (3.72)

then transposing the whole equation and applying the matrix property (AB)
>

= B
>
A

>, we
obtain

nX

i

ai

⇣
a
>
i ✓ � f̂i

⌘
= 0. (3.73)

Rearranging terms we can write the above equation as

nX

i

aia
>
i ✓ =

nX

i

f̂iai. (3.74)

Finally, stacking all n vectors ai 2 Rm as row vectors into a matrix

22

3. Preliminaries

A =

0

BBB@

a
>
1

a
>
2
...
a
>
n

1

CCCA
2 Rn⇥m

, (3.75)

we can write the so-called normal equations

A
>
A✓ = A

> f̂ , (3.76)

whose solution is the parameter vector ✓.

Non-Linear Least Squares

When fi(✓) has a non-linear dependence on ✓ the least squares method is referred to as non-
linear least squares. The procedure in this case if to first obtain a linear dependence on the model
parameters ✓ by linearizing the residuals ri(✓) using a first order Taylor expansion at ✓ = ↵:

rlin,i(✓)
��
✓=↵

= ri(↵) +
@ri(✓)

@✓

����
✓=↵

(✓ �↵) = ri(↵) + Ji(↵)(✓ �↵), (3.77)

where the row vector Ji(↵) 2 R1⇥m is the Jacobian of the i
th residual evaluated at ✓ = ↵. Since

Equation (3.77) is an approximation of ri(✓) at ✓ = ↵, the solution has to be obtained iteratively.
At every iteration k + 1 the residual is relinearized around the last solution ✓k, giving

rlin,i(✓)
��
✓=✓k

= ri(✓k) + Ji(✓k)(✓k+1 � ✓k) = ri(✓k) + Ji(✓k)�✓, (3.78)

where �✓ is the increment that needs to be computed and later added to the previous solution,
i.e.:

✓k+1 = ✓k +�✓. (3.79)

To compute �✓ we can plug Equation (3.78) into (3.70), obtaining

nX

i

Ji(✓k)
>
⇣
ri(✓k) + Ji(✓k)�✓

⌘
= 0, (3.80)

nX

i

Ji(✓k)
>
Ji(✓k)�✓ = �

nX

i

Ji(✓k)
>
ri(✓k). (3.81)

23

3. Preliminaries

Rewriting the above equations into matrix notation gives

J(✓k)
>
J(✓k)�✓ = �J(✓k)>r(✓k), (3.82)

where J(✓k) 2 Rn⇥m is the Jacobian matrix with Ji(✓k) 2 R1⇥m stacked as row vectors;
r(✓k) 2 Rn⇥1 is the stacked vector of all residuals.

This procedure –iteratively relinearizing the residual term at the last estimate and solving the
resulting normal equations– is known as the Gauss-Newton (G-N) method. Convergence is not
ensured; in fact, G-N does not even guarantee a descent in the error. For this reason, the solution
is highly influenced by the initial estimate ✓0, which should be therefore close to the true solution.
One extension to the G-N method –among others– is the Levenberg-Marquardt (L-M) algorithm:

✓
J(✓k)

>
J(✓k) + � diag

�
J(✓k)

>
J(✓k)

�◆
�✓ = �J(✓k)>r(✓k), (3.83)

which behaves like a gradient descent method when the parameters are far from their optimal
value (by means of increasing a dampening factor �), and like the G-N method when the param-
eters are close to their optimal value (small �). Such an optimization procedure ensures that at
every step the cost is reduced, but also encourages super-linear convergence close to a local
minimum.

3.5.2. Bayesian Derivation

The least squares approach can also be derived from a Bayesian perspective by maximizing the
a posteriori likelihood of the parameters ✓ given the observations f̂ :

✓MAP = argmax
✓

p(✓ | f̂). (3.84)

Applying Bayes’s rule we obtain

✓MAP = argmax
✓

p(f̂ | ✓) p(✓)
p(f̂)

, (3.85)

where we can drop p(f̂) as it does not depend on ✓, giving

✓MAP = argmax
✓

p(f̂ | ✓) p(✓). (3.86)

24

3. Preliminaries

Assuming a uniform distribution for p(✓), i.e., assigning a constant probability to all possible
parameters (essentially), we can also drop p(✓), thus obtaining

✓MAP = argmax
✓

p(f̂ | ✓). (3.87)

By further assuming that all observations f̂ are independent and identically distributed (i.i.d.) we
get

✓MAP = argmax
✓

nY

i

p(f̂i | ✓). (3.88)

Minimizing instead the negative log-likelihood can help us simplify computation later on:

✓MAP = argmin
✓

nX

i

� log(p(f̂i | ✓)). (3.89)

When p(f̂i | ✓) follows a normal distribution N (f̂i, µ,�) with µ = f(xi,✓) and standard devia-
tion �, Equation (3.89) amounts to

✓MAP = argmin
✓

nX

i

1

2�2
(f̂i � f(xi,✓))

2
= argmin

✓

nX

i

1

2�2
(ri(✓))

2
, (3.90)

which is equivalent to Equation (3.69), since 1
2�2 is constant and can be dropped. Note that we

can derive the same formulation by assuming p(ri | ✓) = N (ri(✓), 0,�) instead.

3.5.3. Weighted Least Squares

Due to the quadratic term in Equation (3.68), outliers, i.e., observations that produce large resid-
uals ri(✓) and that cannot be explained by the model, have a heavy (negative) influence on the
estimated parameters. The influence of these outlier observations can be mitigated by replacing
the quadratic term x

2 with a robust error function ⇢(x), thus rewriting Equation (3.69) as

✓WLS = argmin
✓

EWLS(✓) = argmin
✓

nX

i

⇢(ri(✓)). (3.91)

The weighted least squares solution ✓WLS can be found by computing the partial derivatives of
Equation (3.91) with respect to ✓ and equating it to zero, i.e.:

25

3. Preliminaries

@EWLS(✓)

@✓
=

nX

i

@ri(✓)

@✓
 (ri(✓)) = 0, (3.92)

where (x) is defined as the influence function and is the derivative of the robust error function
⇢(x), i.e., (x) = ⇢

0
(x). Bearing in mind that

w(x) =
 (x)

x
=
⇢
0
(x)

x
, (3.93)

we can derive the alternative formulation

@EWLS(✓)

@✓
=

nX

i

@ri(✓)

@✓
w(ri(✓))ri(✓) = 0. (3.94)

Note that Equation (3.94) also minimizes the Iteratively Reweighted Least Squares (IRLS) problem
[58]

EIRLS(✓) =
nX

i

w(ri(✓))
�
ri(✓)

�2
, (3.95)

where each weight wi(ri(✓)) scaling its corresponding residual ri(✓) will be treated as constant
during every iteration. (This is an approximation, but allows us obtain linear normal equations.)
We can incorporate the weights into the normal equations (cf. Equation (3.82)) by means of a
diagonal n⇥ n matrix W = diag(w1, w2, . . . , wn), finally obtaining

J(✓k)
>
WJ(✓k)�✓ = �J(✓k)>Wr(✓k), (3.96)

where both the weights and the new parameter estimates need to be recomputed until conver-
gence.

Robust Scale Estimator

If residuals follow a normal distribution, i.e., p(ri | ✓) = N (ri(✓),0,�), then the robust error
function is ⇢(x) =

1
2(

x
�)

2, the influence function (x) =
x
�2 , and the weight function results

in w(x) =
1
�2 . However, when the residuals follow a distribution p(ri | ✓) such that the scale

parameter � cannot be factored out of the weight function (in contrast to the normal distribution),
then � must be estimated as well.

Since outliers have a large influence on the scale �, typically robust methods are employed in

26

3. Preliminaries

order to obtain a reliable estimate. A very common robust estimator for the scale is obtained
through the use of the Median Absolute Deviation (MAD), which provides a robust scale estimate
that we denote �̂, and obtained as follows:

�̂(x) = c ·MAD (3.97)
= c ·median(|x�median(x)|), (3.98)

where c = 1.4826 is a constant scale factor if the data is normally distributed.

3.6. Miscellaneous

3.6.1. Coupled and Decoupled Increments

Incrementing an element T 2 SE(3) with an increment �T with the form

�T =

✓
�R �t

0 1

◆
(3.99)

can be achieved either in a coupled or a decoupled manner. Moreover, the increment can be
added to the element either as a left or right increment. Throughout this work we use the left-
incremental approach, for which a coupled increment would result in

T��T ,
✓

�R �t

0 1

◆✓
R t

0 1

◆
,
✓

�RR �Rt+�t

0 1

◆
, (3.100)

which essentially amounts to multiplying the two elements of group. A decoupled approach, on
the other hand, would increment the current T as follows:

T��T ,
✓

R t

0 1

◆
�
✓

�R �t

0 1

◆
,
✓

�RR t+�t

0 1

◆
. (3.101)

The decoupled increment may be preferred in general, and specially when t is large, since a small
increment in rotation �R could cause too big of an increase in the translational component of the
resulting SE(3) element. Moreover, this decoupled increment is less computationally expensive
than its coupled counterpart.

Furthermore, obtaining the increment �T can as well be obtained in a coupled or decoupled
manner. The former corresponds to applying the exponential map as defined in (3.55) to the
increment in its twist form b⇠ as defined in (3.53), thus giving

27

3. Preliminaries

�T = exp(b⇠) = exp

 ✓
⌫
!

◆^
!
. (3.102)

The decoupled alternative, on its part, generates the increment �T by computing a rotational
increment �R from the angular velocity !, i.e.:

�R = exp(b!) (= e
b!
), (3.103)

and simply uses the linear velocity ⌫ as the translational increment �t, resulting in

�T =

✓
exp(b!) ⌫

0 1

◆
. (3.104)

Computing �T through the decoupled approach (Equation (3.104)) is less computationally ex-
pensive than employing Equation (3.102), since in the former we do not compute V (cf. Equations
(3.55) and (3.57)).

28

4. Approach

The system we present in this work jointly optimizes structure (map points) and motion (camera
poses) by minimizing the photometric error. In contrast to [13] we do not follow a sliding window
plus marginalization scheme, but rather rely on both temporal and covisibility constraints, thus
being able to reuse old map points when possible, as proposed in [64]. This strategy allows us to
build a consistent map with few duplicate map points, as we describe in Section 4.1.

As is common in most SLAM systems [35, 47, 13], our method consists of a tracking front-end
and an optimization back-end, which can run in two parallel threads:

1. The tracking thread uses DIA to track a new frame against a local map at frame rate, while
also marking tracked frames as keyframes when necessary. The front-end of the system is
covered in Chapter 5.

2. The mapping thread uses newly tracked frames to trace candidate points from active
keyframes similarly to [15]. Furthermore, if the new frame was marked as keyframe by
the tracking thread, we recompute the local window of active keyframes, possibly activating
candidate points (i.e., upgrading them to landmarks) and running PBA to jointly optimize
over the newly active window of keyframes and their hosted landmarks. Outlier removal,
occlusions detection and point deduplication are also taken care of in the back-end, which
we present in Chapter 6.

We use a relative point formulation (where landmarks in the map are relative to their host frame)
plus an inverse distance parametrization (cf. Section 3.2). Additionally, we keep the "direction" of
a point fixed (cf. b in Equation (3.1)) and only optimize one Degree of Freedom (DoF) (i.e., the
inverse distance), as employed by other direct approaches [13, 64, 42].

Note that camera intrinsic parameters are estimated in advance through calibration and are not
further refined during operation.

Figure 4.1 presents and overview of the system. The key aspect to it is the Local Covisibility
Window of active keyframes, which we describe next.

29

4. Approach

Input Video

Keyframe Management

Need KF?

Refine
candidate point

initialization

Create
new KF

Recompute Local
Covisibility Window

SE(3)
alignment to

Local
Covisibility

Window

Optimization of Local
Covisibility Window

Tracking

YesNo

Create tracking
reference

Figure 4.1.: Overview of the visual SLAM system presented in this work.

4.1. Covisibility Window

We follow the strategy presented in [64] by Zubizarreta et al. and leverage a combination of
temporal and covisible keyframes to form a Local Covisibility Window (LCW) of active keyframes
on which to run PBA, where by covisible keyframes we refer to keyframes that observed landmarks
hosted in any of the temporal keyframes. The formation process of the LCW is schematized in
Figure 4.2.

The temporal part is a sliding window of temporally connected keyframes as in [13], which is
responsible of creating new map points and maintaining accuracy during exploration. When a
new keyframe is required based on the criteria presented in Section 5.2, it is inserted into the
temporal window (I0 in the third stage of Figure 4.2). Moreover, to maintain a fixed number of
temporal keyframes Nt (4 in our experiments) we remove an old keyframe from the temporal part
according to the criteria presented in Section 5.3.

To build the covisibility part of the LCW we project the landmarks hosted in the temporal keyframes
into every other old keyframe (i.e., all the keyframes that are not part of the temporal window). We
will select a maximum of Nc covisible keyframes (15 in our experiments), those that observe most
landmarks hosted in the temporal window. Out of these Nc covisible keyframes we aim to activate
a maximum of Nac active covisible keyframes (3 in our experiments), whose poses and hosted
landmarks will be optimized during PBA. As described in [64], the intuition behind these active

30

4. Approach

Temporal

Covisible

New KF

Temporal
New KF

Temporal

Inactive Covisible

Inactive

Active Covisible

New KF

!" !# !$

!%

!&!'

!(

1

2

3

Figure 4.2.: Computation of the LCW, based on that presented in [64]. When a new keyframe is created,
1 , we project all landmarks hosted in the current temporal window of Nt keyframes (blue

cameras) into old keyframes (gray cameras in 1). We then select those old keyframes
that share the most observations with the temporal window, resulting in an initial set of Nc

covisible keyframes (light orange cameras in 2). Finally, in 3 we project the landmarks
hosted in this initial list of Nc covisible keyframes into the new keyframe (green camera), and
select a maximum number of Nac active covisible keyframes based on how many of their
hosted landmarks fall into depleted areas of a distance map that we build for the last keyframe.
Active covisible and temporal keyframes (and their hosted landmarks) will be included in the
local window PBA. Covisible keyframes that are not activated are kept as inactive covisible
keyframes, and will contribute observations of active landmarks to the PBA.

31

4. Approach

covisible keyframes is to incorporate already mapped areas into the local optimization before
activating new map points, thus avoiding map point duplication and ensuring map consistency. To
this end, active covisible keyframes are selected based on how many of their hosted points fall
into depleted areas of a distance map that we build for the newly created temporal keyframe (I0).
This distance map registers, for every pixel, the distance Manhattan distance to the closest map
point projection.

The remaining Nic = Nc � Nac covisible keyframes will remain inactive during PBA, meaning
their poses and hosted landmarks will remain fixed during PBA. Nevertheless, they will be part of
the optimization in that they will contribute observations of active landmarks to the optimization,
thus helping fix the scale and pose gauge.

Next, we describe the system’s front-end in Chapter 5, while in Chapter 6 we present the back-
end of the system, delving into point management (Section 6.1), PBA (Section 6.2) and outlier
management (Section 6.3).

32

5. Front-End

5.1. Initial Frame Tracking

Every new frame is initially tracked with respect to a tracking reference using conventional two-
frame DIA, where the tracking reference is the result of projecting all active landmarks into the
latest keyframe, where by active landmarks we refer to those hosted in either temporal or active
covisible keyframes (cf. Section 4.1). We use a multi-scale image pyramid approach to deal with
large displacements. Moreover, we have explored the use of a constant velocity model versus
simply initializing the pose of the new frame with that of the previous frame. We have found the
latter to be a better choice, as also concluded in [30].

As in [52] and [13], when down-scaling the inverse distance map of the tracking reference (the
latest keyframe), a pixel is assigned an inverse distance value if at least one of the source pixels
in the finer level has a valid inverse distance value. When there are more than one valid values,
the pixel in the coarser level will be assigned the largest inverse distance, which corresponds to
the closest point to the camera, thus helping to avoid occlusions early on.

Given the intensity images of a host frame Ih (i.e., the last keyframe) and a target frame It

(i.e., the new frame to be tracked), as well as the inverse distance map of the host frame, DIA
consists in computing the camera motion that transforms both images into a common viewpoint
where the intensity differences between both intensity images is zero for all pixels. This definition
is only valid under the photo-consistency assumption, where all viewed surfaces are assumed
to be Lambertian, i.e., they have the same radiance when viewed from any angle. In practice,
the summed intensity difference, or error, over all pixels is never zero due to occlusions, moving
objects and sensor noise. However, we can still estimate the unknown camera motion T

⇤ 2 SE(3)

between two camera frames by minimizing the SSD as follows:

T
⇤
= argmin

T

X

u2⌦h

⇣
It(u

0
)� Ih(u)

⌘2
, (5.1)

where ⌦h ⇢ R2 is the set of all image coordinates in the host frame with valid inverse distance
values, and u

0 the transformed pixel coordinates

33

5. Front-End

u
0
= w(T,u) = ⇡c

⇣
egd
�
T,⇡

�1
c (u), dp

�⌘
, (5.2)

= ⇡c

�
egd(T, epd)

�
, (5.3)

= ⇡c(ep0
d). (5.4)

In the above equations, dp denotes the inverse distance associated to the pixel coordinates u

in the host frame, whereas epd are the unnormalized homogeneous coordinates of the 3D point
relative to its host frame, as defined in (3.42), i.e.:

epd =

✓
b

dp

◆
. (5.5)

Further, ep0
d represents the transformed 3D point in unnormalized homogeneous coordinates

(cf. Equation (3.43)):

ep0
d =

✓
p
0
s

dp

◆
=

0

BB@

x
0
s

y
0
s

z
0
s

dp

1

CCA , (5.6)

and T 2 SE(3) is the relative transformation matrix mapping 3D points from host to target frame,
i.e., T = Tth. The rigid-body transformation of a 3D point in its (unnormalized) homogeneous
coordinates egd(epd) was presented in (3.45), while the projection function ⇡c(ep0

d) of a point in its
homogeneous coordinates (either normalized or unnormalized) was defined in (3.48). Finally, w
is the warping function that combines all transformations mapping a pixel u in the host frame to
u
0 in the target frame.

DIA is a non-linear least squares problem, but a distinct minimum is often available as demon-
strated in [30]. As presented in Section 3.5, to solve a non-linear least squares problem we can
perform a linearization around a point using a Taylor expansion and solve the resulting normal
equations. This is performed iteratively until convergence.

In Baker and Matthews [3] equivalent formulations for the linearization of the DIA problem are
presented. Next, we describe two of them, namely the Forward Additive (FA) and the Inverse
Compositional (IC) approaches.

5.1.1. Forward Additive Algorithm

In the FA formulation the problem is relinearized around the last estimate at every iteration. This
approach assumes that a current estimate of the transformation parameter T is known and then
iteratively solves for increments ⇠ to the parameters. In this way, the incrementally solved residual
term amounts to

34

5. Front-End

Ih It

u

w(T� ⇠,u)

Figure 5.1.: Schematic representation of the FA approach, where Ih and It represent the host and target
frames, respectively.

ri(T� ⇠) = It(w(T� ⇠,u))� Ih(u), (5.7)

where we use a left-multiplicative formulation to concatenate the increments b⇠ 2 se(3) (recall
⇠ 2 R6) with the previous estimate T 2 SE(3), i.e.,:

T� ⇠ := exp(b⇠)T. (5.8)

Figure 5.1 gives a schematic view of the FA approach.

At every iteration we linearize the residuals around the last estimate T (cf. Equation (3.78)), which
gives

rlin,i(T� ⇠) = ri(T) + Ji⇠, (5.9)

where

ri(T) = It(u
0
)� Ih(u) (5.10)

= It(w(T,u))� Ih(u) (5.11)

= It

⇣
⇡c

�
egd(T,⇡

�1
c (u), dp| {z }
ep0
d

)
�⌘
� Ih(u). (5.12)

The solution to the least squares problem built upon the above linearized residual is

35

5. Front-End

⇠ = �
X

u2⌦h

H
�1

J
>
i

⇥
It(u

0
)� Ih(u)

⇤
, (5.13)

where H is the Hessian matrix and has the form

H =

X

u2⌦h

J
>
i WJi. (5.14)

Note that Ji is the 1 ⇥ 6 Jacobian of the i
th residual with respect to an increment ⇠ to the

parameters T evaluated at ⇠ = 0. Applying the chain rule we can decompose it into a product of
Jacobians

Ji = JIJ⇡Jg (5.15)

=
@It(u)

@u

����
u=u0=⇡c(ep0

d)

· @⇡c(
ep)

@ep

����
ep=ep0

d=egd(T,epd)

· @egd(T� ⇠, epd)

@⇠

����
⇠=0

, (5.16)

where JI is the 1 ⇥ 2 image gradient in the x and y direction; J⇡ is the 2 ⇥ 4 Jacobian matrix
of the projection function with respect to the (unnormalized) homogeneous coordinates of the
transformed 3D point ep0

d; and Jg is the 4⇥ 6 Jacobian matrix of the rigid body motion with respect
to its six parameters (cf. Equation (3.50)).

The form of J⇡ depends on the camera model employed (cf. Section 3.3), while JI and Jg present
the same form regardless of the camera model. Assuming, for instance, a pinhole camera model
for J⇡, the three Jacobians are

JI =
@It(u)

@u

����
u=u0=⇡c(ep0

d)

=
�
rIt,x rIt,y

�
, (5.17)

J⇡ =
@⇡c(ep)
@ep

����
ep=ep0

d=egd(T,epd)

=

0

@ fx
1
z0s

0 �fx x0
s

z0s
2 0

0 fy
1
z0s

�fy y0s
z0s

2 0

1

A , (5.18)

Jg =
@egd(T� ⇠, epd)

@⇠

����
⇠=0

=

0

BB@

dp 0 0 0 z
0
s �y0s

0 dp 0 �z0s 0 x
0
s

0 0 dp y
0
s �x0s 0

0 0 0 0 0 0

1

CCA , (5.19)

where Jg can be derived as follows:

Jg =
@g(T� ⇠, epd)

@⇠

����
⇠=0

= lim
⇠!0

exp(b⇠)Tepd �Tepd

⇠
. (5.20)

36

5. Front-End

By further performing a first order approximation of exp(b⇠)

exp(b⇠) ⇡ I+ b⇠ (5.21)

we can write

Jg = lim
⇠!0

(I+ b⇠)Tepd �Tepd

⇠
= lim

⇠!0

b⇠Tepd

⇠
(3.43)
= lim

⇠!0

b⇠ ep0
d

⇠
. (5.22)

Plugging the definition of the twist (cf. Equation (3.53)) and the definition of ep0
d (cf. Equation

(3.43)) into (5.22) gives

Jg = lim
⇠!0

✓
bw ⌫
0 0

◆✓
p
0
s

dp

◆

✓
⌫
w

◆ = lim
⇠!0

✓
bwp

0
s + ⌫dp
0

◆

✓
⌫
w.

◆ = lim
⇠!0

✓
�cp0

sw + ⌫dp
0

◆

✓
⌫
w

◆ , (5.23)

where in the last step we have inverted the order of the cross-product bwp
0
s, since by definition we

have bwp
0
s = �cp0

sw. Solving the limit gives us the final expression for Jg:

Jg =

✓
dpI �cp0

s

0 0

◆
, (5.24)

which corresponds to that presented already in Equation (5.19).

Note that all three Jacobians, namely JI , J⇡ and Jg have to be recomputed across iterations,
since they all depend on the transformed point ep0

d or its projection u
0 onto the target frame.

5.1.2. Inverse Compositional

The IC approach also assumes that a current estimate of T is available. However, it iteratively
solves for an incremental warp w(⇠,u) instead of an additive update ⇠ to T [2]. Moreover, the
roles of the host and target frames are reversed. Therefore, instead of linearizing

ri(T� ⇠) = It(w(T� ⇠,u))� Ih(u) (5.25)

with respect to ⇠, we linearize

37

5. Front-End

u

w(I� ⇠,u)
w(T,u)

Ih It

Figure 5.2.: Schematic representation of the IC approach, where Ih and It represent the host and target
frames, respectively.

ri(⇠) = Ih(w(I� ⇠,u))� It(w(T,u)), (5.26)

where I is the identity transform. Figure 5.2 provides a schematic view of the IC approach.

Performing a first order Taylor expansion on the above residual term gives

rlin,i(⇠) = Ih(w(I� 0,u))| {z }
Ih(u)

+Ji

��
(⇠=0,u)

⇠ � It(w(T,u)), (5.27)

where we have assumed without loss of generality that w(I� 0,u) is the identity. The solution to
the least squares problem built upon the linearized residual in (5.27) is

⇠ = �
X

u2⌦h

H
�1

J
>
i [Ih(u)� It(w(T,u))] (5.28)

=

X

u2⌦h

H
�1

J
>
i [It(w(T,u))� Ih(u)] , (5.29)

where H is the Hessian matrix, i.e.:

H =

X

u2⌦h

J
>
i WJi. (5.30)

Note that Ji does not depend on the current parameter estimate T. On the contrary, it is constant
across iterations and can be precomputed once per pyramid level. Again, particularizing J⇡ for
the case of a pinhole camera model, the resulting Jacobians in the IC approach are

38

5. Front-End

JI =
@Ih(u)

@u

����
u=u

=
�
rIh,x rIh,y

�
, (5.31)

J⇡ =
@⇡c(ep)
@ep

����
ep=epd

=

fx

1
bz

0 �fx bx
b2z

0

0 fy
1
bz

�fy by
b2z

0

!
, (5.32)

Jg =
@egd(⇠, epd)

@⇠

����
⇠=0

=

0

BB@

dp 0 0 0 bz �by
0 dp 0 �bz 0 bx

0 0 dp by �bx 0

0 0 0 0 0 0

1

CCA . (5.33)

Therefore, the IC algorithm amounts to iterating through the following four steps until convergence,
as described in [2]:

1. Compute It(w(T,u)).

2. Compute It(w(T,u))� Ih(u).

3. Re-evalutate the product J>
i WJi, since the weights W change across iterations.

4. Compute ⇠ using Equation (5.29).

5. Update the current warp: w(T,u) = w(T,u) � w(⇠,u)�1.

Updating the warp amounts in this particular case to left-incrementing the identity transform with
the computed increment ⇠ and then right-multiplying the inverse of the resulting SE(3) element to
the current estimate as follows:

T = T(I� ⇠)�1
. (5.34)

5.2. Keyframe Creation

Similarly to DSO and DSM, we combine different criteria to determine if a tracked frame needs to
become a keyframe:

1. A new keyframe is required if the field of view changes, which we can detect by computing
the mean square optical flow from the latest keyframe to the latest frame

f :=

1

n

nX

i=1

ku� u
0k2
! 1

2

. (5.35)

39

5. Front-End

2. Camera translation, while not necessarily changing the field of view, can cause occlusions
and disocclusions. This can be measured by the mean optical flow without rotation

ft :=

1

n

nX

i=1

ku� u
0
tk2
! 1

2

, (5.36)

where u
0
t is the transformed pixel position with R = I3⇥3, i.e., no rotation.

3. Another way to compute parallax between the tracked frame and the latest keyframe is
through the product p between the estimated translation vector t and the mean inverse
distance ⇢ of the keyframe’s inverse distance map, i.e.:

p = k t⇢ k. (5.37)

These criteria are easy to obtain after initial frame alignment, and a weighted sum over these
quantities allows us to determine if the tracked frame is required as keyframe. In particular, a new
keyframe is spawned if

wf f + wft ft + wp p > 1. (5.38)

After a new keyframe is created, new candidate points are selected in this newly added keyframe,
which we cover in Section 6.1.1. Moreover, the LCW of active keyframes is recomputed, as it was
described in Section 4.1.

5.3. Keyframe Removal

As described in Section 4.1, we aim to maintain a fixed number of temporal keyframes in the
LCW. Therefore, after creating a new keyframe, recomputing the LCW, running PBA, removing
outliers and projecting all active landmarks into the newly added keyframe (to create the tracking
reference), we will select a keyframe from the temporal window for removal. We follow the strategy
presented in [13] to select a keyframe for removal. Let I0 . . . In be the set of active keyframes,
with I0 being the newly added keyframe (see also stage 3 in Figure 4.2):

1. Apart from the newly added keyframe I0, we always keep the latest two keyframes I1 and
I2, which avoids premature fixation of keyframes’ poses before they can be well optimized.

2. To have keyframes evenly distributed across space, we drop the keyframe Ii that maximizes

40

5. Front-End

s(Ii) =
p
d(I1, Ii)

NtX

j=3

(d(Ii, Ij) + ✏)
�1

, (5.39)

where d(Ii, Ij) is the Euclidean distance between keyframes Ii and Ij , and ✏ a small
constant. This strategy keeps active keyframes well-distributed in 3D space, rendering high
parallax between them and therefore increasing accuracy.

As mentioned above, before removing the selected temporal keyframe, we project into the new
keyframe (I0) all landmarks hosted in the keyframes that were active in the last PBA, including
that selected for removal. By doing so, we generate a new tracking reference for the alignment of
subsequent frames.

41

6. Back-End

6.1. Point Management

As described in [13], image data is highly redundant, and in general simply using as much data
points as possible does not necessarily bring about more benefits. On the contrary, Engel et al.
show that sampling from from across all available data, including weakly textured or repetitive
regions and edges, does increase performance.

In this work, we also aim at maintaining a fixed number Nl of active landmarks (Nl = 2000 in
our experiments) that are distributed equally across space and active keyframes. In every new
keyframe, we initially select Ncps candidate points (Section 6.1.1), which are then individually
tracked in subsequent frames in order to obtain an initial coarse estimate of their inverse distance
(Section 6.1.2). Finally, distinctive candidate points with low uncertainty in their inverse distance
estimate might be activated (i.e., upgraded from candidate point to landmark) and therefore
added to the optimization if required (Section 6.1.3).

6.1.1. Candidate Point Selection

For every new keyframe, we aim at selecting Ncps candidate points (where Ncps = 2000 in our
experiments) that are (1) well-distributed across the image and (2) locally salient in terms of their
gradient magnitude.

To this end, we first split the image into a grid of N ⇥ N -sized regions (we use N = 64 in our
experiments). A gradient threshold gi is computed for each region i individually as the sum of the
median absolute gradient gi of all pixels within the region and a global constant gth, i.e.:

gi = gi + gth, (6.1)

where gth = 7 in our experiments (following DSO’s recommendation).

We then divide the image into blocks of size d⇥ d and select the image location within the current
block that surpasses the gradient threshold gi of the region in which the block resides. If the
threshold is not surpassed, no candidate is selected for the current block.

43

6. Back-End

(a) Setting A (b) Setting B

Figure 6.1.: Candidate point selection. Using a gradient-based threshold for a given region i of gi + gth

allows us to select points that are both well-distributed across the image and with a sufficiently
high gradient magnitude relative to the surrounding pixels (a). On the other hand, employing a
threshold four times greater, and therefore being more strict, produces an unequal distribution
of points (b).

As in DSO, the block-size d is recomputed continuously so as to produce the desired amount of
candidate points. If too many points were created using a certain block-size for a given keyframe,
two things will take place: on the one hand, for the current keyframe we will subsample the desired
number of candidates from the initial (too large) set; on the other hand, we will reduce d such that
for the next keyframe fewer candidates are selected already from the beginning (hopefully without
the need to perform a subsequent subsampling).

Figure 6.1 shows two examples of candidate point selection, and how the threshold gi described
above plays an important role in selecing well-distributed points across the whole image.

6.1.2. Candidate Point Tracking

After tracking a new frame, for each active keyframe in the temporal window we track each of its
candidate points individually by searching along the epipolar curve in the newly tracked frame and
minimizing the photometric error (6.21). An uncertainty measure can additionally be computed,
such that it constrains the discrete search for the candidate point in the subsequent tracked frame.
This tracing procedure gives us an inverse distance for each candidate point, which will serve as
a coarse initialization when upgrading the candidate to landmark and activating it for the PBA.

In [50] and later in [42] it was presented how to perform stereo matching for any central camera
model, where epipolar lines are actually curves [23]. Similarly to [5, 42], we consider two points
p
s
min,p

s
max 2 R3 that lie on the unit sphere (see Figure 6.2) around the center of projection Ccur

of the current tracked frame:

44

6. Back-End

Ccur

Current frameKeyframe

dmax

dmin

pL

p
s
max

p
s
min

pL = ↵p
s
max + (1� ↵)ps

min

Ckf

Figure 6.2.: Stereo matching for central camera models, based on that presented in [42].

p
s
min , ⇡s(MTepdmin), (6.2)

p
s
max , ⇡s(MTepdmax), (6.3)

which correspond to the minimum and maximum inverse distances dmin, dmax of the search
interval. T 2 SE(3) is the relative transformation matrix mapping 3D points from the keyframe
to the newly tracked frame, whereas M extracts the first three coordinates of a 3D point in its
homogeneous coordinates (cf. Equation (3.46)). The map

⇡s : R3 ! R3
; p 7! p

s
=

p

kpk (6.4)

projects a 3D point onto the unit sphere, and epd = (bx, by, bz, dp)
> are the unnormalized homoge-

neous coordinates of the point relative to its host frame (cf. Equation (3.42)). The epipolar curve
is then defined as the projection uL(↵) of the linearly interpolated line pL(↵) between p

s
min and

p
s
max into the image plane

uL(↵) , ⇡c(pL(↵)), (6.5)

where

pL(↵) , ↵p
s
max + (1� ↵)ps

min with ↵ 2 [0, 1]. (6.6)

45

6. Back-End

Under this framework, searching along the epipolar curve amounts to starting at uL(0) and
incrementing ↵ every iteration in such a way that the corresponding pixel increment on the image
plane equals approximately 1 pixel. To this end, we can employ the inverse of the norm of a
first-order Taylor approximation of uL to obtain an increment to ↵, which we denote by �↵, i.e:

�↵ ⇡
��JuL

��
↵

���1
, (6.7)

with:

JuL

����
↵

=
@uL

@↵

����
↵

=
@⇡c

@pL

����
pL(↵)

· @pL(↵)

@↵

����
↵

(6.8)

=
@⇡c

@pL(↵)

����
pL

· (ps
max � p

s
min). (6.9)

Note that @⇡c
@pL

��
pL(↵)

depends on the camera model. The relation between all the above variables
is visualized in Figure 6.2.

Inverse Distance Computation from the Best Match

Searching along the epipolar curve and looking for the image location that produces the lowest
photometric error allows us to determine the best position on the image plane of the 3D point’s ob-
servation in the new keyframe. The next step is to compute the inverse distance of the underlying
3D point p with respect to its host frame, i.e., dp.

From Section 3.4.1, and assuming for now dp 6= 0, we know that the transformed point p0 relative
to the current tracked frame can be computed as follows:

p
0
= Rp+ t (6.10)

= R
b

dp
+ t, (6.11)

where b = ⇡
�1
c (u) (cf. Equation (3.6)) is the bearing vector of point p. Moreover, we can compute

the transformed bearing vector b0 (again, relative to the current tracked frame) as

b
0
=

p
0

kp0k =

R
b

dp
+ t

���R b

dp
+ t

���
. (6.12)

Figure 6.3 shows a schematic view of the geometric relationship between the above variables.
For conciseness, let r0, r1 and r2 represent the rows of the rotation matrix R, and tx, ty and tz

46

6. Back-End

Ckf

Ccur

b
0

b

1
dp

Figure 6.3.: Inverse distance computation from the best match after epipolar curve search.

the three components of the translation vector t. Let us also compute, for instance, the first two
components of b0, namely

b
0
x =

p
0
x

kp0k =

r0 · b
dp

+ tx

kp0k (6.13)

and

b
0
y =

p
0
y

kp0k =

r1 · b
dp

+ ty

kp0k . (6.14)

Assuming for now that b0y 6= 0, we can divide the former by the latter, obtaining

b
0
x

b0y
=

r0 · b
dp

+ tx

r1 · b
dp

+ ty

. (6.15)

Rewriting the above equation as

47

6. Back-End

b
0
x
r1 · b
dp

+ b
0
xty = b

0
y
r0 · b
dp

+ b
0
ytx (6.16)

and multiply (6.16) by dp gives

b
0
xr1 · b+ dpb

0
xty = b

0
yr0 · b+ dpb

0
ytx. (6.17)

We can finally solve for dp (i.e., the inverse distance of the candidate point relative to its host
keyframe) as follows:

dp =
b
0
yr0 · b� b

0
xr1 · b

b0xty � b0ytx
. (6.18)

Note that Equation (6.18) also works for infinitely far away points, for which dp = 0. In such case,
we have that b0

= Rb, which can be derived by making dp tend to zero in Equation (6.12), i.e.:

b
0
dp!0 = lim

dp!0

R
b

dp
+ t

���R b

dp
+ t

���
. (6.19)

We can multiply both the numerator and the denominator by dp, thus obtaining

b
0
dp!0 = lim

dp!0

Rb+ dpt

kRb+ dptk
= lim

dp!0

Rb

kRbk = Rb, (6.20)

where kRbk = kRk · kbk = 1 · 1 = 1, which derives from the corresponding definitions of R and
b.

When b
0
= Rb, the numerator in Equation (6.18) becomes zero, and so does the resulting inverse

distance dp, thus demonstrating the validity of (6.18) for infinitely far away points.

Note, however, that Equation (6.18) is not valid when b
0
y is zero (cf. Equation (6.16)), nor when the

denominator in (6.18) equates zero. The latter case can occur in either of the following cases:

1. if b0x = b
0
y = 0,

2. if tx = ty = 0,

3. or if t and b
0 are parallel in the x and y dimensions.

To ensure that none of the above cases take place we can exploit the fact that Equation (6.18)
can be derived from any pair out of the triplet (bx, by, bz). Therefore, as denominator in Equation

48

6. Back-End

(6.16) we will always choose the largest component of b0.

Moreover, out of the remaining two components of b0 we will select that which maximizes the
value of the denominator in Equation (6.18), discarding the candidate point if in the best-case
scenario the denominator is still too close to zero.

Note as well that non-zero translation in at least one dimension is also a straight forward assump-
tion, since the epipolar curve search does not make sense otherwise.

Finally, if b0 and t point in the exact same direction we cannot retrieve an inverse distance, which
relates to the fact that estimating depth close to the focus of expansion is ill-posed.

6.1.3. Candidate Point Activation

When the LCW is recomputed after the creation of a new keyframe, candidate points hosted in
any of the temporal keyframes might be upgraded to landmarks (and possibly also activated to be
part of the next local PBA) if required.

Candidate points can have either of the following status:

• Uninitialized : the candidate point was not even traced once.

• Skipped : the point has already been traced successfully, to the extent that it was not traced
in the last frame to avoid unnecessary computation.

• BadConditioned : the point was traced in previous frames, but not in the last one due to bad
conditioning of the epipolar curve search for this point in particular.

• OutOfBounds: the point fell out of bounds in the last frame. It could still have been traced
successfully in previous frames, and it may still be traced in the subsequent frame.

• Outlier : the point’s photometric error in the last frame surpassed a threshold, but it is
allowed to be traced in subsequent frames.

• OutlierForSure: the point’s photometric error has surpassed a threshold in two consecutive
frames, leading to the marking of the point as a fixed outlier.

• Good : the point was traced successfully in the last frame.

When activating candidate points for their addition to the PBA we go over all the temporal
keyframes, starting from the newest (I1 in Figure 4.2). At this moment, all candidate points
that are marked as Outlier or OutlierForSure will be removed forever from the list of candidate
points of the current temporal keyframe.

49

6. Back-End

On the other hand, the candidate point is proposed for activation if it meets all of the following
conditions:

1. The candidate point’s status is either Skipped, BadConditioned, OutOfBounds or Good,

2. the quality of the discrete search is bigger than 3 (where we define quality as the photometric
error ratio between the best and the second-best match),

3. the length in pixels of (a linear approximation of) the epipolar curve is smaller than 8 pixels,

4. and, finally, the candidate’s inverse distance is non-negative.

When a candidate point meets all the above requirements, its inverse distance is then optimized
against all active keyframes in the LCW in a structure-only PBA, i.e., camera poses are fixed.
Only those candidates that can be optimized with low uncertainty against all active keyframes are
further proposed for activation, where we use the inverse of the candidate point’s 1⇥ 1 Hessian
as an approximation of the point’s covariance.

Furthermore, after this structure-only optimization we compute the photometric error of the can-
didate point in each of the active keyframes using the final estimate of dp, rejecting those ob-
servations which surpass a given threshold. This allows us not only to obtain the visibility of the
candidate point in the LCW but also to prevent the introduction of high-residual observations into
the full PBA, which otherwise would degrade the solution.

Finally, we will only upgrade the candidate point to the being a landmark if its projection into the
new keyframe (I0) falls into a depleted (unexplored) region of a previously built distance map of
the new keyframe, where every pixel in such distance map indicates the distance in pixels to the
closest projection of an active landmark.

Figure 6.4 shows an example sequence of candidate point tracking along three subsequently
tracked frames. In this example, the third tracked frame is marked as keyframe. Consequently,
the LCW is recomputed and new candidate points are upgraded to become landmarks (purple
points on the last row of Figure 6.4), which will densify the previous map (blue points). Moreover,
some of the candidate points that are not upgraded to landmark will be discarded and removed
forever, but other (those potentially upgradable) will remain as candidate points (dark red points
on the third row of Figure 6.4).

50

6. Back-End

Will remain as
Candidate Points

Upgraded to
Landmarks

Fr
am

e
1

Fr
am

e
2

Fr
am

e
3

–
[n

ew
 K

ey
fr

am
e]

Candidate Points

Candidate Points

Previous
Landmarks

Figure 6.4.: Candidate point tracking and their upgrading to landmark.

51

6. Back-End

Figure 6.5.: Residual pattern. Pattern Np proposed in [13] for energy computation, where the bottom-right
pixel is omitted so that the number of pixels in the patch is a power of two for more efficient
computation.

6.2. Photometric Bundle Adjustment

Following [13] we define the photometric error of a point u hosted in the keyframe Ih and observed
in a target keyframe It as the weighted SSD over a small patch of pixels centered around pixel
u:

Eu ,
X

ui2Nu

⇢
�
It(u

0
i)� Ih(ui)

�
=

X

ui2Nu

⇢(ri), (6.21)

where Nu is the set of pixels in the patch; ⇢(·) is a robust error function (cf. Section 3.5.3) and
u
0
i is the transformed pixel position given by Equation (5.4). As in [13], we use 8 pixels arranged

in a spread pattern as shown in Figure 6.5. According to [13], such a pattern provides a good
trade-off between computational costs, robustness to motion blur and information gain.

In terms of notation, we will use ⇣ 2 SE(3)
n⇥Rm to represent all optimized variables, i.e., n active

keyframes and m active landmarks, giving a total of d = 6n +m parameters. Furthermore, we
will use ✏ 2 se(3)

n ⇥ Rm to denote the increments to the parameters ⇣. Incrementing the current
state estimate is given by

⇣(t+1)
= ⇣(t) � ✏, (6.22)

where the �-operator presented in (5.8) has been extended here to all optimized parameters; for
parameters other than SE(3) camera poses it represents conventional addition.

After the creation of a new keyframe, as already presented throughout previous sections, the LCW
(cf. Figure 4.2) is recomputed and all model parameters are optimized by minimizing the the full
photometric error over all active keyframes and active map points in the LCW, which we can write
as

Ephoto =
X

Ih2K

X

u2Uh

X

t2obs(u)

Eu, (6.23)

where K is the set of all active keyframes in the LCW, Uh the set of all active landmarks in
keyframe Ih and obs(u) the set of all keyframes, either active temporal, active covisible or inactive

52

6. Back-End

covisible (cf. Figure 4.2) that observe point u.

Equation (6.23) can be minimized using the iteratively reweighted G-N algorithm, which provides
a good trade-off between flexibility and speed, or the L-M algorithm, which interpolates between
G-N and the method of gradient descent. In either case, to account for those residuals for which
the initial solution is not within the convergence radius we employ a coarse-to-fine scheme, where
the solution in each level is employed as initialization in the next (finer) level.

For a given level, starting from an initial estimate ⇣(0), in each iteration t we compute the weights
wi (according to the robust error function ⇢) and photometric residuals ri to then estimate an
increment ✏ given by

✏ = �H�1
b, (6.24)

H = J
>
WJ, (6.25)

b = J
>
Wr, (6.26)

which results from solving for the minimum of a second order approximation of (6.23) with fixed
weights (cf. Equation (3.96)). (For simplicity, we describe the standard G-N algorithm, but
extending this derivation to the L-M algorithm is straightforward.)

In the above equations, r 2 Rp is the vector of all p residuals, W 2 Rp⇥p a diagonal matrix
with weights wi and J 2 Rp⇥d the Jacobian of the residuals r with respect to a left-composed
increment to all model parameters d, where the Jacobian for the residual ri (i.e., the i-th row of J)
is defined as follows:

Ji =
@ri(⇣(t) � ✏)

@✏

����
✏=0

. (6.27)

We have implemented a custom solver for the PBA, which allows to select between the G-N
and the L-M algorithms. For comparison, we have also implemented PBA using the optimization
framework Ceres [1]. Image gradients are computed using central pixel differences at integer
positions, while bilinear interpolation is employed for subpixel intensity and gradient evaluation.

6.2.1. Relative-Absolute Pose Formulation

We use the relative formulation presented in [62] for our custom PBA solver, which allows us to
perform most computations for a given host-target pair in parallel. In this formulation, we apply
the Schur complement on relative poses first and then combine the solution to solve for the
increments to the absolute poses. (Note that we do not need to differentiate between a relative
and an absolute formulation for landmarks.)

53

6. Back-End

Let us first denote the stacked vector of residuals r(✏) as

r(✏) =

0

BB@

...
r
i
(f

i
a(✏))
...

1

CCA , (6.28)

where each entry r
i
(f

i
a(✏)) is in turn the vector of all residuals generated from observations of

landmarks hosted in keyframe i. In the remainder of this section, all variables with the superscript
i will be referring to host keyframe i. Moreover, fa(·) is a vector-valued function that selects all
target frames for host frame i and expresses their poses relative to the host frame. Furthermore,
it selects the landmarks hosted in frame i out of all landmarks in the problem.

When performing the linearization of the residuals we can decompose the full Jacobian Jr (i.e.,
the Jacobian of the residuals r with respect to the parameter increments ✏) into the product of
the relative-pose Jacobians Jr (i.e., the Jacobians of the residuals r with respect to the relative
poses and landmarks) and the absolute-pose Jacobians Ja (i.e., the Jacobians of fa with respect
to the parameter increments ✏), thus giving for host keyframe i the following linearized residual:

r
i
lin(✏) = r

i
0 + J

i
r✏ = r

i
0 + J

i
r J

i
a✏|{z}
✏i

, (6.29)

where ✏i encodes the relative pose increment for the target frames of (host) keyframe i, as well
as the inverse distance increments for the active landmarks hosted in i, and r

i
0 is the vector of

residuals (for host keyframe i) at the evaluation point.

Let us now denote by n
0 the number of relative poses in which keyframe i is the host frame, and

by m
0 the number of all active landmarks hosted in keyframe i. (Recall that we defined n as the

total number of absolute poses in the PBA, and m as the total number of active landmarks.) We
can therefore define the absolute-pose Jacobian J

i
a of host keyframe i as

J
i
a =

@f
i
a(✏)

@✏
=

✓
J
i
pa 0

0 0 · · · I · · ·0

◆
2 R(6n0+m0)⇥(6n+m)

, (6.30)

J
i
pa =

0

BB@

...
J
ij
pa
...

1

CCA 2 R6n0⇥6n
, (6.31)

J
ij
pa =

✓
· · · @Tij

th

@Ti
wh

· · · @Tij
th

@Tj
wt

· · ·
◆
2 R6⇥6n

, (6.32)

where J
ij
pa has 2 non-zero entries, one for the host keyframe i and other for the target keyframe j.

Under this framework, we can now further decompose Equation (6.24) into

54

6. Back-End

X

i

H
i

| {z }
H

(�✏) =
X

i

b
i

| {z }
b

, (6.33)

where H 2 R(n+m)⇥(n+m) and b 2 Rn+m result from summing over all host keyframes i. In
particular, for a single host i we have

H
i
= J

i
a
>
J
i
r
>
W

i
J
i
r| {z }

Hi
r

J
i
a, (6.34)

b
i
= J

i
a
>
(J

i
r
>
Wr

i
0| {z }

bi
r

). (6.35)

In the above two equations we have implicitly defined H
i
r 2 R(6n0+m0)⇥(6n0+m0) and b

i
r 2 R6n0+m0

,
where the subscript r stands for relative (in turn, a stands for absolute). Solving the normal
equation (6.33) can be simplified by first tackling the problem in its relative formulation, i.e.:

H
i
r(�✏ir) = b

i
r, (6.36)

H

i
pp H

i
pl

H
i
pl
>

H
i
ll

!

| {z }
Hi

r

✓
x
i
r

y
i

◆

| {z }
�✏ir

=

✓
b
i
p

b
i
l

◆

| {z }
bi
r

, (6.37)

where x
i
r 2 R6n0

is comprised of se(3) parameter vectors, each representing a pose increment to a
relative pose between host i and a target j. On the other hand, yi 2 Rm0

denotes the increments
to be applied to the inverse distance of each active landmark in the host frame i. (Note that yi

has no subscript, since the inverse distance of a landmark does not have an absolute or relative
formulation.) H

i
pp is a block diagonal matrix with 6 ⇥ 6 non-zero elements H

ij
pp in the diagonal,

each corresponding to the relative pose between the host keyframe i and a target keyframe j:

H
i
pp =

0

BB@

. . .
H

ij
pp

. . .

1

CCA 2 R6n0⇥6n0
. (6.38)

Matrix Hll is also a diagonal matrix, where each entry H
ik
ll 2 R corresponds to a landmark k

hosted in keyframe i:

55

6. Back-End

H
i
ll =

0

BB@

. . .
H

ik
ll

. . .

1

CCA 2 Rm0⇥m0
. (6.39)

Moreover, Hi
pl 2 R6n0⇥m0

contains the hessian blocks relating all relative poses in which i is the
host frame with every landmark k that i hosts:

H
i
pl =

0

BB@

...
H

ij
pl
...

1

CCA . (6.40)

In turn, Hij
pl 2 R6⇥m0

contains all pose-to-landmark hessian blocks for host i and target j:

H
ij
pl =

⇣
· · · H

ijk
pl · · ·

⌘
, (6.41)

where H
ijk
pl 2 R6 is the hessian block corresponding to the landmark k hosted in i and being

observed by the target frame j. Note that if landmark k is not observed by target frame j, then
H

ijk
pl = 0.

Onto this relative formulation presented above we can now apply the Schur complement [59],
yielding the following for host keyframe i:

y
i
= H

i
ll
�1

(b
i
l �H

i
pl
>
x
i
r), (6.42)

(H
i
pp �H

i
plH

i
ll
�1

H
i
pl
>
)

| {z }
Hi

r
⇤

x
i
r = b

i
p �H

i
plH

i
ll
�1

b
i
l| {z }

bi
r
⇤

. (6.43)

We can now go back to an absolute-pose formulation by means of applying Equations (6.34)
and (6.35) onto (6.43) (i.e., pre- and post-multiplying H

i
r
⇤ by J

i
pa

> and J
i
pa, respectively, and

pre-multiplying b
i
r
⇤ by J

i
pa

>) and summing over all host frames i in order to add up the effect that
each relative pose has on its corresponding two absolute poses:

X

i

J
i
pa

>
H

i
r
⇤
J
i
pa

!

| {z }
H⇤

x =

X

i

J
i
pa

>
b
i
r
⇤

| {z }
b⇤

. (6.44)

By solving normal equation (6.44) we obtain an absolute pose increment �x to each absolute
pose in the PBA. Note that we could have arrived at the same result by having started from the

56

6. Back-End

normal equation of the full system (which can be derived by plugging Equations (6.34) and (6.35)
into (6.33)):

0

BBBBB@

P
i J

i
pa

>
H

i
ppJ

i
pa · · · J

i
pa

>
H

i
pl · · ·

...
. . .

H
i
pl
>
J
i
pa H

i
ll

...
. . .

1

CCCCCA

| {z }
H

0

BBBB@

x

...
y
i

...

1

CCCCA

| {z }
�✏

=

0

BBBB@

P
i J

i
pa

>
b
i
p

...
b
i
l

...

1

CCCCA

| {z }
b

. (6.45)

Applying the Schur complement onto (6.45) yields

y
i
= H

i
ll
�1

(b
i
l �H

i
pl
>
J
i
pax|{z}
xi

), (6.46)

X

i

J
i
pa

>
H

i
ppJ

i
pa �

X

i

J
i
pa

>
H

i
plH

i
ll
�1

H
i
pl
>
J
i
pa

!
x =

X

i

J
i
pa

>
b
i
p �

X

i

J
i
pa

>
H

i
plH

i
ll
�1

b
i
l,

(6.47)

where we can reorganize Equation (6.47) and then rewrite it in terms of Hi
r
⇤ and b

i
r
⇤:

X

i

J
i
pa

>
H

i
r
⇤
J
i
pa

!

| {z }
H⇤

x =

X

i

J
i
pa

>
b
i
r
⇤

| {z }
b⇤

, (6.48)

(6.49)

thus yielding the same normal equation as (6.44). Note as well that Equations (6.46) and (6.42)
are equivalent, thereby demonstrating that both procedures lead to the same results. In any case,
the PBA amounts to the following three steps:

1. Compute relative Schur complement for every host frame i (i.e., Hi
r
⇤ and b

i
r
⇤) through

Equation (6.43)).

2. Solve for pose increment �x using Equation (6.44)).

3. Compute point increment �yi for all host frames i applying Equation (6.46)).

57

6. Back-End

6.2.2. Relative-Absolute Pose Jacobians

In this section we present the form of the two non-zero entries of the 6 ⇥ n Jacobian J
ij
pa (cf.

Equation (6.32)), namely
@Tth

@Twh
and

@Tth

@Twt
, where h, t and w refer to the host frame, the target

frame and the world frame, respectively. To simplify notation, we introduce the Exp-operator

Exp : R6 ! SE(3), (6.50)

which is a composition of the hat operator and the exponential map (cf. Section 3.4.2), i.e.:

Exp(⇠) = exp(b⇠). (6.51)

Its inverse operator can be defined as

Log : SE(3)! R3
. (6.52)

Additionally to the �-operator

T� ⇠ := exp(b⇠)T, (6.53)

which was defined already in Equation (5.8), we introduce now the -operator, which allows to
compute the difference between two rigid-body transformations

T1 T2 = Log(T1T
�1
2), (6.54)

such that

(T� ⇠) T = ⇠. (6.55)

Let us now define function f(T) as

f(T) : SE(3)! SE(3), (6.56)

where both its input parameter and the computed output are SE(3) elements. We can compute
its Jacobian from the following definition of derivative:

Jf(T) =
@f(T)

@T
= lim

⇠!0

f(T � ⇠) f(T)

⇠
. (6.57)

58

6. Back-End

The computation of the relative pose between two rigid-body frames is precisely a function f that
takes as input the absolute pose of two rigid-body frames and outputs the relative pose between
them, i.e.:

Tth , Tctch = f(Twih ,Twit) = T
�1
itct

T
�1
wit

TwihTihch , (6.58)

where the subscript i refers here to a frame attached to the Inertial Measurement Unit (IMU)
(which typically serves as the common reference frame in a multi-sensor (possibly multi-camera)
setup), w to the world’s frame and c to the camera’s frame. This general framework in which we
have introduced an IMU can easily be particularized to the non-IMU case simply by assuming an
identity transformation between the IMU frame and the camera frame, i.e., Tic = I.

Computing now
@Tth

@Twh
and

@Tth

@Twt
amounts to plugging Equation (6.58) into the definition of

Jacobian presented in (6.57) for the host and target frames, respectively, giving

@Tth

@Twh
= Jf(Twih

) =
@f(Twih ,Twit)

@Twih
= Ad(Tctih)Ad(Tihw), (6.59)

@Tth

@Twt
= Jf(Twit)

=
@f(Twih ,Twit)

@Twit
= �Ad(Tctit)Ad(Titw). (6.60)

In Appendix A we derive the above expressions in detail.

6.2.3. Robustification Through Iteratively Reweighted Least Squares

When building the LCW of active keyframes we only employ geometric criteria to determine
covisibility constraints. Photo-consistency is not taken into account at this stage, and therefore
outlier observations might still exist. The source of such outliers can be occlusions, dynamic
objects moving in the viewed scene, illumination changes, or simply sensor noise.

An interesting option to dealing with outliers is modeling their root causes by estimating their
parameters, e.g., tracking dynamic objects in the scene and estimating their motion. Alternatively,
we can suppress outliers and their effect, e.g., by choosing different probability distributions for
the residuals p(r | ⇠).

In Section 3.5.3 we presented the weighted least squares method as a means to robustify the
normal least squares problem against spurious measurements. (In a standard least squares
framework, outliers can impact negatively on the solution, since they produce large residuals that
have a high influence on the estimate through the quadratic error term.)

Recall that optimizing (6.23) is equivalent to minimizing the negative log-likelihood of the residuals
given the model parameters assuming i.i.d. residuals (cf. Section 3.5.2), i.e.:

59

6. Back-End

⇠⇤ = argmin
⇠

mX

k

log p(ri | ⇠). (6.61)

Equating the derivatives of (6.61) to zero provides the solution ⇠⇤, which is equivalent to the
reweighted least squares problem (cf. Section 3.5.3) presented in (6.23) using weights

w(ri) = �
@ log p(ri)

@ri

1

ri
, (6.62)

if we perform the approximation of treating such weights as constant in every iteration.

Note how the residual distribution p(ri) directly affects the solution of our weighted least-squares
problem. In [30] different error distributions are studied. Next, we briefly present the weighting
functions corresponding to a Gaussian and a t-distribution, as well for the case of employing the
Huber estimator as a robust m-estimator.

Gaussian Distribution

When assuming residuals to be normally distributed around zero, i.e., N (0,�
2
n), then

p(ri) / exp(
r
2
i

�2n
), (6.63)

which means that all residuals are weighted equally with

wn(ri) =
1

�2n
, (6.64)

thus leading to a standard least squares problem.

Student’s t-Distribution

The t-distribution has been proposed by several authors for robust data fitting [37, 21] and has
been extensively employed in computer vision problems [18, 22, 40]. The Probability Density
Function (PDF) of the t-distribution is defined as

p(ri | �t, ⌫) =
�(

⌫+1
2)

�(
⌫
2)
p
⇡⌫�2

✓
1 +

1

⌫

(ri)
2

�
2
t

◆� ⌫+1
2

, (6.65)

60

6. Back-End

where we have assumed zero-centered residuals, i.e., the mean µ = 0. Moreover, �t is a scaling
parameter, ⌫ the degrees of freedom [4] and �(x) = (x� 1)! the gamma function.

Note that for ⌫ ! inf the t-distribution approaches a normal distribution. Indeed, we can interpret
the t-distribution as an infinite mixture of Gaussian distributions [4]. As described in [30], this is a
more flexible model than the i.i.d. assumption when dealing with least squares problems, where
now residuals are assumed to originate from independent but non-identical distributions. In such
a case, the variance cannot be dropped from Equation (3.90) and every residual is weighted with
its inverse variance. Estimating the variance for every residual is intractable, but we can obtain a
feasible abstraction through the t-distribution, whose weighting function is given as

wt(ri) =
⌫ + 1

⌫ + (
ri
�t
)2
, (6.66)

where we have assumed the mean µ to be zero. In previous works, the value of the degrees of
freedom has been experimentally set to ⌫ = 5, first in [32] and later in [64]. In contrast to the
normal distribution, the t-distribution quickly drops the weights as residuals move to the tails, thus
assigning lower weights to outliers.

Fitting the t-distribution to the residuals amounts to computing the scale, which we estimate based
on the current residuals using

�
2
t =

1

m

mX

i

r
2
i
⌫ + 1

⌫ + (
r2i
�2
t
)

. (6.67)

The above equation is recursive and therefore has to be solved iteratively, but converges in a few
iterations, typically around five.

Before actually fitting the t-distribution, one can filter out the gross outliers by computing an
approximate initial scale �̂ through the MAD (cf. Equation (3.98)) and rejecting those residuals i

for which

ri > 3�̂. (6.68)

Huber Estimator

The Huber estimator is a popular m-estimator that decreases the influence of high-error mea-
surements without completely removing their influence, which allows to deal with reobservations.
Small residuals are given quadratic influence, while large residuals are only weighted linearly. The
Huber loss, with loss function

61

6. Back-End

Figure 6.6.: Probabilistic error modeling. The t-distribution explains the sparse photometric model better
than the normal distribution. Moreover, removing gross outliers before actually fitting the
distribution is key in both cases.

⇢ai(r) =

(
1
2r

2
, if r ai

ai r � 1
2a

2
i , otherwise

(6.69)

is convex (in contrast to other functions, e.g., the Tukey function) and therefore does not introduce
new local minima to the optimization [30]. Its weight function is given by

wh(ri) =

(1
�2
n

if |ri| < �

�
�2
n|ri|

otherwise
, (6.70)

where � can be fixed or dynamically modified each time step. For a normal distribution N (0,�
2
n)

we have � = 1.345�n [63], in which case outliers are given linear influence.

62

6. Back-End

Probabilistic Error Modeling for the Direct Sparse Model

In [30] it is concluded that the distribution of dense photometric residuals is better explained
by the t-distribution than by a normal distribution. Recently, this insight is also derived for the
sparse model in [64]. In both works it is described how the t-distribution allows to quickly drop the
weights assigned to photometric residuals as they move towards the tails, thus down-weighting
the influence of outlier observations. Figure 6.6 shows a histogram of photometric residuals to
which we have fitted both a normal (blue) and a t-distribution (red). For each case, we have
fitted the corresponding distribution before and after removing gross outliers (cf. Equation (6.68)),
where a dashed line is employed to represent the former cases. Note how the t-distribution better
fits the residual distribution compared to the normal distribution, both before and after removing
gross outliers.

6.3. Outlier Management

The stability of the PBA is largely dependent on the amount of outlier observations. Detecting
and removing such observations can be achieved differently. As in [64], we exploit the fact that an
observation is made up of a number of different values, as many as the number of pixels of the
selected pattern. As mentioned above, we employ an eight-pixel patch as originally presented in
DSO (cf. Figure 6.5). Each pixel within the patch has an associated mask, which indicates whether
the pixel is inlier or outlier. A pixel observation ri is considered an inlier if its photometric error is
lower than the 95th percentile of the error distribution of the target keyframe. This approach allows
to seamlessly have a lower threshold for challenging keyframes, thus being more permissive, and
a higher threshold for those less challenging.

Within this framework, an observation will be marked as outlier if more than 30% of the pixels in
the patch are marked as outliers, as proposed in [64], in which case the observation is removed
from the list of observations of the landmark.

The detection of outlier map points is closely related to the number of observations of that land-
mark by other keyframes in the map. Landmarks can be either mature or immature, where mature
points are those that have been observed in all three consecutive keyframes after their upgrading
from candidate point to landmark. On the one hand, if an immature point is not observed in all
three consecutive keyframes after its creation, it is discarded forever. On the other hand, a mature
landmark for which the number of observations falls below three will also be removed from the
map.

63

7. Evaluation

In this section we first evaluate our system’s main components, namely candidate point selection,
DIA (camera tracking), candidate point tracking and PBA. As test sequence we use a realistic
synthetic sequence recorded using CARLA [11], an open-source game-engine-based simulator for
autonomous driving research that provides both pose and structure groundtruth. The sequence
comprises two loops around a roundabout in a city-like environment. As a final experiment,
we run the full system on this sequence and report the obtained results, both qualitatively and
quantitatively.

7.1. Candidate Point Selection and its Influence on Direct Image
Alignment

Selecting good candidate points in a keyframe directly affects the chances of finding a correct
match during the epipolar curve search (cf. Section 6.1.2). Indeed, if a candidate point is not
distinctive enough, searching for its best match in subsequently tracked frames will typically
produce poor results. On the other hand, being too restrictive when selecting high-gradient
candidate points will typically leave large areas of the image empty. In general, this has a
negative influence on the quality of camera tracking. Next, we describe an experiment in which
we can observe this behavior. The goal is to compare the resulting Relative Pose Error (RPE) [57]
between the tracking reference and the camera to be tracked under two different initial conditions,
which we refer to as setting A and B, differing solely in the set of points used to create the tracking
reference. (Note, however, that the number of selected candidate points is Ncps = 2000 in both
cases, as described in Section 6.1.1.)

The general setup for both scenarios is as follows. Given an initial keyframe whose pose at time
t is known, as well as its intensity image and its groundtruth depth map (let us assume for this
experiment that the structure, i.e., depth, is known, rather than having to estimate it in subsequent
frames as was explained in Section 6.1.2), we want to estimate the pose of a subsequent frame
whose intensity image is also given. (See Section 5.1 for a more detailed description of camera
tracking.) The pose of this new frame is initialized with that of the keyframe. We then select
candidate points (image locations) on the keyframe’s intensity image and convert the groundtruth
depth associated to each selected pixel into an inverse distance value, thus generating a sparse
inverse distance map, such as those shown in Figure 7.1. Under such setup we can now run
either one of the algorithms presented for DIA in Section 5.1 (for this experiment we use the FA
approach) and estimate the relative pose of the new frame with respect to the keyframe.

65

7. Evaluation

(a) Setting A (b) Setting B

Figure 7.1.: Influence of candidate point selection on camera tracking. Using a gradient-based threshold
for a given region i of gi + gth allows us to select points that are both well-distributed across
the image and with a sufficiently high gradient magnitude relative to the surrounding pixels (a).
On the other hand, employing a threshold four times greater (b), and therefore being more
strict, produces an unequal distribution of points, which affects the quality of camera tracking.

Tracking accuracy, nevertheless, depends on the set of selected points with which we create the
tracking reference, which is shown in Table 7.1 for the two different settings considered: in A we
employ a gradient-based threshold of gi+gth (where i is a given region in the image as described
in Section 6.1.1). This results in an RPE of 0.2mm, which is nine times smaller than that obtained
with a threshold four times higher, i.e., 4(gi + gth), which corresponds to setting B. Figure 7.1
shows the generated tracking references for each setting, where it can be observed that in the
setting A (Figure 7.1a) points are well-distributed across the image, whereas for the setting B
(Figure 7.1b) the concentration of points is too high in some areas but insufficient in others (e.g.,
the lower half of the image).

A possible explanation as to why we obtain worse tracking results in setting B resides in the
fact that the keyframe’s intensity image (i.e., the underlying grayscale image in either one of the
images of Figure 7.1) shows an intensity constancy along the image diagonal (essentially, the
intersection line between the road and the sidewalk). By selecting candidate points mainly on
such line, motion is left slightly unconstrained along this direction. If the camera then moves

Gradient-based threshold RPE (mm)

Before tracking - 143

Setting A gi + gth 0.2
Setting B 4(gi + gth) 1.8

Table 7.1.: Influence of candidate point selection on the RPE after Direct Image Alignment. The number of
selected points is 2000 in both cases. However, for the setting B the region-threshold employed
during candidate point selection is set to four times that employed in the setting A, which results
in worse tracking results. In particular, the resulting RPE for B is nine times higher compared to
that produced under the initial conditions of A. Nevertheless, note that in absolute terms both
settings allow to notably reduce the RPE compared to the initial value.

66

7. Evaluation

along such unconstrained direction, as it is our case, the pose estimate will be affected negatively.
Therefore, as it was already indicated by Engel et al. in DSO [13], selecting points in relatively
weakly-textured regions (e.g., bottom-left part on the intensity image in Figure 7.1), camera motion
is in general more constrained.

It should be noted, however, that regardless of the set of candidate points selected, a coarse-to-
fine scheme has to be employed to account for the large displacement. Otherwise, tracking fails
altogether in both cases. Additionally, employing a robust error function based on the fitting of
the t-distribution to the residuals (cf. Section 6.2.3) helps refine the estimate by neutralizing the
influence of outliers.

7.2. Comparison of the Forward Additive and the Inverse
Compositional Algorithms for Direct Image Alignment

We have compared our implementations for the FA and IC approaches (cf. Section 5.1). The
results are summarized in Table 7.2. For each algorithm we have a non-parallelized (FAnon-p and
ICnon-p) and a parallelized version (FAp and ICp). In the experiment we have run each version
five times. The RPE is consistently the same across runs for a given approach (regardless of
whether it uses the parallelized mode or not). Runtimes, on the other hand, are averaged over all
five runs for each of the four cases. Moreover, note that the number of iterations per level (shown
in parenthesis in Table 7.2) is also the same across runs.

We have used the same setup as that described in the previous section, with candidate points
being selected using a gradient-based threshold of gi + gth (denoted as setting A in the previous
section), so as to achieve an equal distribution of points in the image. We use 3 additional pyramid
levels (where 0 is the index of the finest level), and allow a maximum of 20 G-N iterations per level.
For each approach, namely FA and IC, we report the final RPE between the keyframe and the
tracked frame. (Note that parallelization does not affect the resulting RPE but the runtime.) We
observe that, in this particular case, IC achieves a lower RPE than FA. We have not observed,
however, that this is a fixed trend in general.

In terms of runtime, both parallelized versions (i.e., FAp and ICp) largely outperform their non-
parallelized counterparts. Moreover, we see that FA outperforms IC in terms of overall runtime
and runtime per iteration (see column i in Table 7.2). While in theory the IC formulation should
be faster (given that it can precompute the Jacobians at the beginning of every level and reuse
them at every iteration of the same level), in practice accessing the cached Jacobians increases
the overall runtime per iteration in our implementation. Nevertheless, the comparing the total FAp
vs. ICp runtime (or the FAnon-p vs. ICnon-p runtime) should be done with caution, since the total
number of iterations per level differs between approaches. In this particular example, while FA
carries out 5 iterations in the coarsest level, IC performs a total of 13 in the same level.

67

7. Evaluation

Approach

Metric

RPE

Runtime (ms)

(mm) Total

Per Level

(ms)
3 2 1 0

p i p i p i p i

FAnon-p
0.2

115.28 - 0.3 (5) - 0.9 (20) - 2 (5) - 3.7 (20)
FAp 37.6 - 0.1 (5) - 0.15 (20) - 0.2 (5) - 0.3 (20)

ICnon-p
0.14

166.1
0.7

0.37 (13)
1.3

1.1 (20)
3.8

2.5 (4)
7.2

4 (20)
ICp 56.4 0.16 (13) 0.4 (20) 0.7 (4) 1.2 (20)

Table 7.2.: Comparison of the FA and IC approaches for DIA. For each approach and mode (non-
parallelized vs. parallelized) we report the mean value of five runs. We use three additional
pyramid levels (with 0 being the index of the finest level), and allow a maximum of 20 iterations
per level. In the IC approach we precompute the Jacobians at the beginning of every level,
since they are constant across iterations. We report the precomputation runtime for each level
under the column p. For FA this precomputation runtime is zero, since Jacobians need to be
recomputed at every iteration. Columns i report the average runtime per iteration, which of
course differs at each level for a given variant. In parenthesis we show the number of iterations
performed in the corresponding level. Both the RPE and the number of iterations per level
have to be necessarily the same in the non-parallelized and parallelized modes, given that the
underlying problem being solved does not change.

7.3. Qualitative Evaluation of Candidate Point Tracking

As presented in Section 6.1.2, we use newly tracked frames to refine the inverse distance estimate
of every candidate point hosted in each one of the temporal keyframe. In Figure 6.4 we showed
how candidate points are refined across several subsequent frames. To facilitate reading we
present the same example again in Figure 7.2. In this particular case, the third frame is additionally
converted into a keyframe. Therefore, the LCW is recomputed and new candidate points are
upgraded to landmarks (purple points on the bottom part of Figure 7.2). Candidate points for
which a good inverse distance estimate is not yet available are kept as candidate points; their
inverse distance will continue to be refined across new tracked frames and, if good enough, might
be upgraded to landmarks at a later point.

Figure 7.3 visualizes another example of how candidate points are refined across subsequent
frames. Note that, at t + 1 (i.e., after having used the first subsequent tracked frame to trace
candidate points), the point cloud of candidate points for the keyframe in this example does not
present a clear structure. However, at t+ 3 (i.e., after having traced the candidate points across
three subsequent frames), some structures start to become visible, such as the plane within the
circle A.

68

7. Evaluation

Will remain as
Candidate Points

Upgraded to
Landmarks

Fr
am

e
1

Fr
am

e
2

Fr
am

e
3

–
[n

ew
 K

ey
fr

am
e]

Candidate Points

Candidate Points

Previous
Landmarks

Figure 7.2.: Candidate point tracking and their upgrading to landmark.

69

7. Evaluation

! + 1 ! + 3

…

…
A A

A A

Top view

Front view

Figure 7.3.: Example of the refinement of structure throughout subsequent operations of candidate point
tracking.

7.4. Qualitative and Quantitative Evaluation of our Solver
Implementations for Photometric Bundle Adjustment

We evaluate our custom solver for the PBA problem on a small test map with 12 cameras, which
host around 3000 landmarks in total. The map was obtained as follows. First, we ran DSO on our
synthetic test sequence. Second, we extracted 6 cameras from a first pass over a certain region
and another 6 from the second pass over the same area. This test map can be visualized in Figure
7.4. Finally, we computed all observations for each landmark based on geometric constraints
(i.e., whether a landmark reprojects or not into another frame), without any consideration about
photometric consistency between observations.

On this test map we compare our custom solver for the PBA problem versus our implementation
using the Ceres framework [1]. We do this for the non pyramidal approach (i.e., w/o employing
a coarse-to-fine scheme). Moreover, we also evaluate our custom solver w/ a coarse-to-fine
scheme. (Note that we do not have implemented a Ceres version w/ pyramid levels). Table 7.3
shows the resulting Absolute Trajectory Error (ATE) [57] as well as the Total Runtime (TR) and
Average Runtime per Iteration (ARI) when allowing a maximum of 10 iterations per level. Table
7.4 shows these same metrics for the case in which we allow a maximum of 50 iterations per
level.

70

7. Evaluation

Figure 7.4.: Test map before PBA. Out of the total 12 cameras (green pyramids), 6 correspond to the first
pass of the sensor across the region, while the other half belong to a second pass of the
sensor over the same area. The purple pyramids represent groundtruth poses, while each
of the two purple lines interpolates the groundtruth trajectory of the sensor for a given pass
over the visualized section of the scene. Black dots correspond to all landmarks hosted in the
12 cameras. Note how current poses (green pyramids) do not align with groundtruth (purple
pyramids).

Solver Type

Metric

ATE (m) TR (s) ARI (s)

Iterations

Total
Level

3 2 1 0

Manual w/o pyrs 0.00131 0.43 0.043 10 - - - 10
Ceres w/o pyrs 0.03761 2.05 0.20 10 - - - 10

Manual w/ pyrs 0.00054 2.21 0.076 29 7 3 10 9
Ceres w/ pyrs - - - - - - - -

Table 7.3.: Comparison between different solvers for the PBA problem when allowing a maximum of 10
iterations per level. TR stands for Total Runtime, whereas ARI denotes Average Runtime per
Iteration. Both are measured in seconds. The latter is computed by dividing TR between the
total number of iterations.

71

7. Evaluation

Solver Type

Metric

ATE (m) TR (s) ARI (s)

Iterations

Total
Level

3 2 1 0

Manual w/o pyrs 0.00059 1.21 0.052 23 - - - 23
Ceres w/o pyrs 0.00071 8.23 0.165 50 - - - 50

Manual w/ pyrs 0.00054 2.53 0.081 31 7 3 12 9
Ceres w/ pyrs - - - - - - - -

Table 7.4.: Comparison between different solvers for the PBA problem when allowing a maximum of 50
iterations per level. TR stands for Total Runtime, whereas ARI denotes Average Runtime per
Iteration. Both are measured in seconds. The latter is computed by dividing TR between the
total number of iterations.

For the non-pyramidal approach, note how our manual solver compares positively in terms of run-
time versus our implementation in Ceres. When allowing a maximum of 10 iterations per level, our
custom solver is around 5 times faster (0.2 / 0.043), which we can obtain from comparing the ARI
in each case. On the other hand, when allowing a maximum of 50 iterations, it is around 3 times
faster (0.165 / 0.052). In any case, it is clear that our custom solver is faster than our solver imple-
mentation using Ceres, which was to some extent expected, given the fact that when implementing
a solver manually for a particular task (in this case PBA), many optimizations can be performed
that are particular to the given problem. Realizing such optimizations in a general-purpose solver,
such as Ceres, is typically more complex and sometimes not even possible. Finally, with respect
to the final ATE, our custom solver also beats our Ceres implementation, for both the 10- and
50-iteration scenarios. This result should be treated with caution, the reason being that in both
solver types we use the L-M algorithm, whose behavior depends on the parameter � in Equation
(3.83), and on how much it is increased or decreased across iterations.

When comparing our custom solver w/ and w/o a coarse-to-fine scheme, we observe that a lower
ATE is achieved by the former, but at the expense of a higher runtime. While in theory the ARI
should be the same for both variations (i.e., w/ and w/o a pyramidal approach), in practice we see
that they differ slightly, which might be caused by the overhead of setting up the problem at every
new level.

Figure 7.5 shows how the resulting map (cameras and points) is refined after running our custom
PBA solver with a coarse-to-fine scheme for a maximum of 10 iterations per level. Regarding
camera poses, these get closer to the groundtruth poses (purple), thus the reduction in the ATE
shown in Table 7.3. Measuring the improvement for points is more difficult to quantify. Visually,
however, it can be observed how points converge into planar structures, thus resulting in a more
clear geometry.

72

7. Evaluation

PBA (Photometric Bundle Adjustment)

Before PBA

After PBA

Figure 7.5.: Example of PBA, where cameras and points are jointly optimized, resulting in cameras being
closer to their groundtruth pose and points better representing the world’s geometry.

7.5. Qualitative and Quantitative Evaluation of the Direct SLAM
Method on a Synthetic Sequence

We have evaluated our direct SLAM on our synthetic test sequence, which comprises two loops
around a roundabout in a city-like environment. The full reconstructed scene is shown in Figure
7.7, whereas Figure 7.8 shows the reconstructed map after a partial sequence (out of the complete
test sequence). Table 7.5 shows the resulting ATE for each sequence, namely 1.05m for the
complete sequence, which comprises 314 frames in total, and 0.005m for the partial sequence,
made up of 100 frames. We observe that our proposed method is not able to deal with large
loops, as can be concluded by looking at the accumulated drift of the trajectory followed by the
camera in Figure 7.7. The intuition behind this finding is that the LCW is only able to deal with
soft loop closures, given that the PBA’s radius of convergence is relatively small. Therefore, the
system fails to correct the accumulated error if the camera revisits already mapped areas with
high drift.

However, for a shorter sequence without loops, such as that shown in Figure 7.8, the final
ATE is relatively small (around 5mm). In the middle and bottom views of this figure, it can be

73

7. Evaluation

Figure 7.6.: Example of landmark reuse. Previously mapped points (orange dots) hosted in an active
covisible keyframe (orange pyramid) are reactivated for the current keyframe (light green
pyramid at the top right part of the close-up image). This avoids duplicating landmarks and
helps to reduce drift.

Frames ATE (m)

Complete sequence 314 1.05
Partial sequence 100 0.005

Table 7.5.: Absolute Trajectory Error for the complete and partial sequences.

observed how active covisible and inactive covisible keyframes (light and dark orange cameras,
respectively), get correctly selected based on covisibility constraints with respect to the keyframes
in the temporal window (blue cameras) and the last keyframe (light green camera).

Additionally, Figure 7.6 shows how previously mapped points (orange dots) hosted in an active
covisible keyframe (orange pyramid withing the close-up) can be activated and reused when
needed based on covisibility constraints with the latest keyframe (light green pyramid within the
close-up), thereby avoiding landmark duplication and maintaining a consistent map.

Overall, in this section we have shown that the individual modules that conform our system are cor-
rectly implemented, giving reasonable performance and accuracy. Moreover, we have deployed
our direct SLAM method on a large-scale synthetic automotive sequence, thus demonstrating that
the complete system is fully functional and ready to serve as a framework for future research in
the field.

74

7. Evaluation

Figure 7.7.: Screenshots of a map reconstructed using our direct SLAM system on a synthetic test se-
quence. The camera follows a circular trajectory around a roundabout in a city-like scenario.
The reconstructed camera poses closely follow groundtruth during approximately the initial
100 frames, drifting afterwards and being unable to close the loop at the end of the sequence
when returning to the initial region. This relates to the fact that the radius of convergence in
the PBA is relatively small, thus requiring that the initial estimate is close to the optimum.

75

7. Evaluation

Figure 7.8.: Screenshots of a map reconstructed using our direct SLAM system on a partial sequence
of the complete synthetic test sequence. Note how active covisible and inactive covisible
keyframes (light and dark orange cameras, respectively), get correctly selected based on
covisibility constraints with respect to the keyframes in the temporal window (blue cameras)
and the last keyframe (light green).

76

8. Conclusion

In this thesis, we have presented a direct SLAM method that explicitly deals with map point re-
observations by handling covisibility constraints between keyframes. We have implemented and
described in detail all major components, including DIA (in its forward additive and inverse com-
positional variants), map point selection and depth initialization, keyframe and point management
(in particular, the reuse of previously mapped regions to ensure a consistent representation of
the scene), and local window PBA, which have been combined into a modular and flexible direct
SLAM framework.

Furthermore, we have implemented a coarse-to-fine scheme and a robust weighting scheme
(based on the t-distribution) to further ensure the stability of both tracking and PBA, effectively
reducing the influence of spurious observations that do not follow the photo-consistency assump-
tion, such as occlusions and disocclusions. Additionally, the proposed method is not limited to the
pinhole model. Unlike other existing implementations, it has been designed to work directly on
distorted images, thus being suitable for fish-eye lenses.

We have carried out an evaluation of the system on realistic synthetic data from a game-engine-
based simulator with both pose and structure groundtruth. We have validated both the individual
components of the system as well as its overall performance, deploying the proposed method on
a large-scale synthetic automotive sequence. In doing so we have shown that the complete direct
SLAM system presented here is fully functional and ready to serve as an extensible framework
for future research in this field.

Future work comprises extending the current system with loop closure detection and subsequent
pose graph optimization –which would re-enable the benefits of the LCW even after large loops–,
as well as evaluating the method on real datasets, so as to directly compare it with state-of-the-art
approaches.

77

A. Relative-Absolute Pose Jacobian Derivation

In Section 6.2.2 we presented the form of the two non-zero entries of the 6⇥ n Jacobian J
ij
pa (cf.

Equation (6.32)):

@Tth

@Twh
= Jf(Twih

) =
@f(Twih ,Twit)

@Twih
= Ad(Tctih)Ad(Tihw), (A.1)

@Tth

@Twt
= Jf(Twit)

=
@f(Twih ,Twit)

@Twit
= �Ad(Tctit)Ad(Titw), (A.2)

where h, t and w refer to the host frame, the target frame and the world frame, respectively. In

this appendix we derive the above expressions. We begin with
@Tth

@Twh
, which can be derived as

follows:

79

A. Relative-Absolute Pose Jacobian Derivation

Jf(Twih
) =

@f(Twih ,Twit)

@Twih
(A.3)

=
@T

�1
itct

T
�1
wit

TwihTihch

@Twih
(A.4)

= lim
⇠!0

Log
�
T

�1
itct

T
�1
wit

Exp(⇠)TwihTihch(T
�1
itct

T
�1
wit

TwihTihch)
�1
�

⇠
(A.5)

= lim
⇠!0

Log

0

B@T
�1
itct

T
�1
wit

Exp(⇠)

Iz }| {
TwihTihchT

�1
ihch

T
�1
wih

TwitTitct

1

CA

⇠
(A.6)

= lim
⇠!0

Log
�
T

�1
itct

T
�1
wit

Exp(⇠)TwitTitct

�

⇠
(A.7)

= lim
⇠!0

Log
�
(TwitTitct)

�1
Exp(⇠)TwitTitct

�

⇠
(A.8)

(3.66)
= lim

⇠!0

Log
�
Exp

�
Ad((TwitTitct)

�1
)⇠
��

⇠
(A.9)

= lim
⇠!0

Ad((TwitTitct)
�1

)⇠

⇠
(A.10)

= Ad((TwitTitct)
�1

) (A.11)
= Ad(TctitTitw) (A.12)
= Ad(Tctw) (A.13)
= Ad(TctihTihw) (A.14)
= Ad(Tctih)Ad(Tihw). (A.15)

Analogously, we can obtain
@Tth

@Twt
as follows:

80

A. Relative-Absolute Pose Jacobian Derivation

Jf(Twit)
=
@f(Twih ,Twit)

@Twit
(A.16)

= lim
⇠!0

Log
�
T

�1
itct

(Exp(⇠)Twit)
�1

TwihTihch(T
�1
itct

T
�1
wit

TwihTihch)
�1
�

⇠
(A.17)

= lim
⇠!0

Log

⇣
T

�1
itct

T
�1
wit

Exp(�⇠)TwihTihchT
�1
ihch

T
�1
wih

TwitTitct

⌘

⇠
(A.18)

= lim
⇠!0

Log
�
T

�1
itct

T
�1
wit

Exp(�⇠)TwitTitct

�

⇠
(A.19)

= lim
⇠!0

Log (TctitTitw Exp(�⇠)Twct)

⇠
(A.20)

= lim
⇠!0

Log (Tctw Exp(�⇠)Twct)

⇠
(A.21)

= lim
⇠!0

Log
�
Tctw Exp(�⇠)T�1

ctw

�

⇠
(A.22)

= lim
⇠!0

Log (Exp(�Ad(Tctw)⇠))

⇠
(A.23)

= lim
⇠!0

�Ad(Tctw)⇠

⇠
(A.24)

= �Ad(Tctw) (A.25)
= �Ad(Tctit)Ad(Titw). (A.26)

A.1. Derivation through the Chain Rule

Using the chain rule we can obtain the same results as in (A.15), which we briefly demonstrate.
First, we have that the relative rigid-body transform mapping points from the camera frame of the
target keyframe to the camera frame of the host keyframe can be written down as

Trel_cam(Trel_imu(Tabs_h,Tabs_t)), (A.27)

where

Trel_imu(Tabs_h,Tabs_t) = Titih = T
�1
wit

Twih , (A.28)

Trel_cam = T
�1
itct

TitihTihch . (A.29)

The partial derivative of Trel_imu (Equation (A.28)) with respect to Twih can be computed applying
the definition of Jacobian presented in Equation (6.57), giving

81

A. Relative-Absolute Pose Jacobian Derivation

@Trel_imu

@Twih
= lim

⇠!0

Log
�
T

�1
wit

Exp(⇠)Twih(T
�1
wit

Twih)
�1
�

⇠
(A.30)

= lim
⇠!0

Log

⇣
T

�1
wit

Exp(⇠)TwihT
�1
wih

Twit

⌘

⇠
(A.31)

= lim
⇠!0

Log
�
T

�1
wit

Exp(⇠)Twit

�

⇠
(A.32)

= lim
⇠!0

Log
�
Exp(Ad(T

�1
wit

)⇠)
�

⇠
(A.33)

= lim
⇠!0

Ad(T
�1
wit

)⇠

⇠
(A.34)

= Ad(T
�1
wit

). (A.35)

On the other hand, the partial derivative of Trel_cam (Equation (A.29)) with respect to Trel_imu is
obtained as follows:

@Trel_cam

@Trel_imu
=
@Trel_cam

@Titih
= lim

⇠itih!0

Log
�
T

�1
itct

Exp(⇠itih)TitihTihch(T
�1
itct

TitihTihch)
�1
�

⇠

(A.36)

= lim
⇠itih!0

Log

⇣
T
�1
itct

Exp(⇠itih)TitihTihchT
�1
ihch

T
�1
itih

Titct

⌘

⇠
(A.37)

= lim
⇠itih!0

Log
�
T

�1
itct

Exp(⇠itih)Titct

�

⇠
(A.38)

= lim
⇠itih!0

Log
�
Exp(Ad(T

�1
itct

)⇠itih)
�

⇠
(A.39)

= lim
⇠itih!0

Ad(T
�1
itct

)⇠itih
⇠

(A.40)

= Ad(T
�1
itct

). (A.41)

Combining Equations (A.35) and (A.41) finally gives

@Trel_cam

@Twih
=
@Trel_cam

@Trel_imu

@Trel_imu

@Twih
(A.42)

= Ad(T
�1
itct

)Ad(T
�1
wit

) (A.43)

= Ad(Tctit)Ad(Titw) (A.44)
= Ad(Tctw) (A.45)
= Ad(TctihTihw) (A.46)
= Ad(Tctih)Ad(Tihw), (A.47)

82

A. Relative-Absolute Pose Jacobian Derivation

which is equivalent to (A.15), demonstrating how the chain rule can be applied in such cases.

83

Bibliography

[1] S. Agarwal, K. Mierle, et al. Ceres Solver. http://ceres-solver.org.

[2] S. Baker and I. Matthews. “Equivalence and efficiency of image alignment algorithms”. In:
IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Vol. 1.
Citeseer. 2001, pp. I–1090.

[3] S. Baker and I. Matthews. “Lucas-kanade 20 years on: A unifying framework”. In: Interna-

tional journal of computer vision 56.3 (2004), pp. 221–255.

[4] C. M. Bishop. Pattern recognition and machine learning. springer, 2006.

[5] D. Caruso, J. Engel, and D. Cremers. “Large-scale direct slam for omnidirectional cameras”.
In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE. 2015, pp. 141–148.

[6] J. Civera, A. J. Davison, and J. M. Montiel. “Inverse depth parametrization for monocular
SLAM”. In: IEEE transactions on robotics 24.5 (2008), pp. 932–945.

[7] A. I. Comport, E. Malis, and P. Rives. “Accurate quadrifocal tracking for robust 3d visual
odometry”. In: Proceedings 2007 IEEE International Conference on Robotics and Automa-

tion. IEEE. 2007, pp. 40–45.

[8] A. I. Comport, E. Malis, and P. Rives. “Real-time quadrifocal visual odometry”. In: The

International Journal of Robotics Research 29.2-3 (2010), pp. 245–266.

[9] A. Concha and J. Civera. “Using superpixels in monocular SLAM”. In: 2014 IEEE Interna-

tional Conference on Robotics and Automation (ICRA). IEEE. 2014, pp. 365–372.

[10] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse. “MonoSLAM: Real-time single
camera SLAM”. In: IEEE Transactions on Pattern Analysis & Machine Intelligence 6 (2007),
pp. 1052–1067.

[11] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. “CARLA: An Open Urban
Driving Simulator”. In: Proceedings of the 1st Annual Conference on Robot Learning. 2017,
pp. 1–16.

[12] E. Eade and T. Drummond. “Edge Landmarks in Monocular SLAM.” In: BMVC. 2006, pp. 7–
16.

[13] J. Engel, V. Koltun, and D. Cremers. “Direct sparse odometry”. In: IEEE transactions on

pattern analysis and machine intelligence 40.3 (2017), pp. 611–625.

[14] J. Engel, T. Schöps, and D. Cremers. “LSD-SLAM: Large-scale direct monocular SLAM”. In:
European conference on computer vision. Springer. 2014, pp. 834–849.

85

http://ceres-solver.org

Bibliography

[15] J. Engel, J. Sturm, and D. Cremers. “Semi-dense visual odometry for a monocular camera”.
In: Proceedings of the IEEE international conference on computer vision. 2013, pp. 1449–
1456.

[16] M. A. Fischler and R. C. Bolles. “Random sample consensus: a paradigm for model fitting
with applications to image analysis and automated cartography”. In: Communications of the

ACM 24.6 (1981), pp. 381–395.

[17] C. Forster, M. Pizzoli, and D. Scaramuzza. “SVO: Fast semi-direct monocular visual odom-
etry”. In: 2014 IEEE international conference on robotics and automation (ICRA). IEEE.
2014, pp. 15–22.

[18] J. Gai and R. L. Stevenson. “Studentized dynamical system for robust object tracking”. In:
IEEE Transactions on Image Processing 20.1 (2010), pp. 186–199.

[19] D. Gálvez-López and J. D. Tardos. “Bags of binary words for fast place recognition in image
sequences”. In: IEEE Transactions on Robotics 28.5 (2012), pp. 1188–1197.

[20] X. Gao, R. Wang, N. Demmel, and D. Cremers. “LDSO: Direct sparse odometry with loop
closure”. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). IEEE. 2018, pp. 2198–2204.

[21] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. Bayesian

data analysis. Chapman and Hall/CRC, 2013.

[22] D. Gerogiannis, C. Nikou, and A. Likas. “Robust Image Registration using Mixtures of
t-distributions”. In: 2007 IEEE 11th International Conference on Computer Vision. IEEE.
2007, pp. 1–8.

[23] C. Geyer and K. Daniilidis. “A unifying theory for central panoramic systems and practical
implications”. In: European conference on computer vision. Springer. 2000, pp. 445–461.

[24] A. Glover, W. Maddern, M. Warren, S. Reid, M. Milford, and G. Wyeth. “OpenFABMAP: An
open source toolbox for appearance-based loop closure detection”. In: 2012 IEEE Interna-

tional Conference on Robotics and Automation. IEEE. 2012, pp. 4730–4735.

[25] C. G. Harris, M. Stephens, et al. “A combined corner and edge detector.” In: Alvey vision

conference. Vol. 15. 50. Citeseer. 1988, pp. 10–5244.

[26] R. Hartley and A. Zisserman. Multiple view geometry in computer vision. Cambridge uni-
versity press, 2003.

[27] M. Irani and P. Anandan. “About direct methods”. In: International Workshop on Vision

Algorithms. Springer. 1999, pp. 267–277.

[28] H. Jin, P. Favaro, and S. Soatto. “A semi-direct approach to structure from motion”. In: The

Visual Computer 19.6 (2003), pp. 377–394.

[29] J. Kannala and S. S. Brandt. “A generic camera model and calibration method for con-
ventional, wide-angle, and fish-eye lenses”. In: IEEE transactions on pattern analysis and

machine intelligence 28.8 (2006), pp. 1335–1340.

[30] C. Kerl. “Odometry from rgb-d cameras for autonomous quadrocopters”. In: Master’s Thesis,

Technical University (2012).

[31] C. Kerl, J. Sturm, and D. Cremers. “Dense visual SLAM for RGB-D cameras”. In: 2013

IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE. 2013, pp. 2100–
2106.

86

Bibliography

[32] C. Kerl, J. Sturm, and D. Cremers. “Robust odometry estimation for RGB-D cameras”. In:
2013 IEEE International Conference on Robotics and Automation. IEEE. 2013, pp. 3748–
3754.

[33] B. Khomutenko, G. Garcia, and P. Martinet. “An enhanced unified camera model”. In: IEEE

Robotics and Automation Letters 1.1 (2015), pp. 137–144.

[34] G. Klein and D. Murray. “Improving the agility of keyframe-based SLAM”. In: European

Conference on Computer Vision. Springer. 2008, pp. 802–815.

[35] G. Klein and D. Murray. “Parallel tracking and mapping for small AR workspaces”. In: Pro-

ceedings of the 2007 6th IEEE and ACM International Symposium on Mixed and Aug-

mented Reality. IEEE Computer Society. 2007, pp. 1–10.

[36] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. “g 2 o: A general
framework for graph optimization”. In: 2011 IEEE International Conference on Robotics

and Automation. IEEE. 2011, pp. 3607–3613.

[37] K. L. Lange, R. J. Little, and J. M. Taylor. “Robust statistical modeling using the t distribution”.
In: Journal of the American Statistical Association 84.408 (1989), pp. 881–896.

[38] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale. “Keyframe-based visual–
inertial odometry using nonlinear optimization”. In: The International Journal of Robotics

Research 34.3 (2015), pp. 314–334.

[39] S. Lovegrove, A. J. Davison, and J. Ibanez-Guzmán. “Accurate visual odometry from a rear
parking camera”. In: 2011 IEEE Intelligent Vehicles Symposium (IV). IEEE. 2011, pp. 788–
793.

[40] J. Loxam and T. Drummond. “Student-t mixture filter for robust, real-time visual tracking”. In:
European Conference on Computer Vision. Springer. 2008, pp. 372–385.

[41] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry. An invitation to 3-d vision: from images to

geometric models. Vol. 26. Springer Science & Business Media, 2012.

[42] H. Matsuki, L. von Stumberg, V. Usenko, J. Stückler, and D. Cremers. “Omnidirectional
DSO: Direct sparse odometry with fisheye cameras”. In: IEEE Robotics and Automation

Letters 3.4 (2018), pp. 3693–3700.

[43] C. Mei, S. Benhimane, E. Malis, and P. Rives. “Efficient homography-based tracking and
3-D reconstruction for single-viewpoint sensors”. In: IEEE Transactions on Robotics 24.6
(2008), pp. 1352–1364.

[44] C. Mei and P. Rives. “Single view point omnidirectional camera calibration from planar grids”.
In: Proceedings 2007 IEEE International Conference on Robotics and Automation. IEEE.
2007, pp. 3945–3950.

[45] M. Meilland and A. I. Comport. “On unifying key-frame and voxel-based dense visual SLAM
at large scales”. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and

Systems. IEEE. 2013, pp. 3677–3683.

[46] N. Molton, A. J. Davison, and I. D. Reid. “Locally Planar Patch Features for Real-Time
Structure from Motion.” In: Bmvc. Citeseer. 2004, pp. 1–10.

[47] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. “ORB-SLAM: a versatile and accurate
monocular SLAM system”. In: IEEE transactions on robotics 31.5 (2015), pp. 1147–1163.

87

Bibliography

[48] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. “DTAM: Dense tracking and mapping
in real-time”. In: 2011 international conference on computer vision. IEEE. 2011, pp. 2320–
2327.

[49] M. Pizzoli, C. Forster, and D. Scaramuzza. “REMODE: Probabilistic, monocular dense
reconstruction in real time”. In: 2014 IEEE International Conference on Robotics and Au-

tomation (ICRA). IEEE. 2014, pp. 2609–2616.

[50] A. Pretto, E. Menegatti, and E. Pagello. “Omnidirectional dense large-scale mapping and
navigation based on meaningful triangulation”. In: 2011 IEEE International Conference on

Robotics and Automation. IEEE. 2011, pp. 3289–3296.

[51] W. Rossmann. Lie groups: an introduction through linear groups. Vol. 5. OUP Oxford, 2002.

[52] T. Schöps, J. Engel, and D. Cremers. “Semi-dense visual odometry for AR on a smartphone”.
In: 2014 IEEE international symposium on mixed and augmented reality (ISMAR). IEEE.
2014, pp. 145–150.

[53] G. Silveira, E. Malis, and P. Rives. “An efficient direct approach to visual SLAM”. In: IEEE

transactions on robotics 24.5 (2008), pp. 969–979.

[54] H. Strasdat. “Local accuracy and global consistency for efficient visual SLAM”. PhD thesis.
Department of Computing, Imperial College London, 2012.

[55] H. Strasdat, J. Montiel, and A. J. Davison. “Scale drift-aware large scale monocular SLAM”.
In: Robotics: Science and Systems VI 2.3 (2010), p. 7.

[56] J. Stühmer, S. Gumhold, and D. Cremers. “Real-time dense geometry from a handheld
camera”. In: Joint Pattern Recognition Symposium. Springer. 2010, pp. 11–20.

[57] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. “A benchmark for the
evaluation of RGB-D SLAM systems”. In: 2012 IEEE/RSJ International Conference on

Intelligent Robots and Systems. IEEE. 2012, pp. 573–580.

[58] R. Szeliski. Computer vision: algorithms and applications. Springer Science & Business
Media, 2010.

[59] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon. “Bundle adjustment—a mod-
ern synthesis”. In: International workshop on vision algorithms. Springer. 1999, pp. 298–
372.

[60] T. Tykkälä, C. Audras, and A. I. Comport. “Direct iterative closest point for real-time visual
odometry”. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV

Workshops). Citeseer. 2011, pp. 2050–2056.

[61] V. Usenko, N. Demmel, and D. Cremers. “The Double Sphere Camera Model”. In: 2018

International Conference on 3D Vision (3DV). IEEE. 2018, pp. 552–560.

[62] V. Usenko, N. Demmel, D. Schubert, J. Stückler, and D. Cremers. “Visual-Inertial Mapping
with Non-Linear Factor Recovery”. In: arXiv preprint arXiv:1904.06504 (2019).

[63] Z. Zhang. “Parameter estimation techniques: A tutorial with application to conic fitting”. In:
Image and vision Computing 15.1 (1997), pp. 59–76.

[64] J. Zubizarreta, I. Aguinaga, and J. Montiel. “Direct Sparse Mapping”. In: arXiv preprint

arXiv:1904.06577 (2019).

88

	Abbreviations and Symbols
	List of Figures
	List of Tables
	1 Introduction
	1.1 Contribution
	1.2 Outline

	2 Related Work
	2.1 Indirect Monocular SLAM and VO
	2.2 Direct Monocular SLAM and VO

	3 Preliminaries
	3.1 Notation
	3.2 Landmark Parametrization
	3.3 Calibration
	3.3.1 Geometric Camera Calibration

	3.4 Rigid-body Motion
	3.4.1 Transformation of a 3D Point
	3.4.2 Lie Algebra

	3.5 Least Squares
	3.5.1 General Approach
	3.5.2 Bayesian Derivation
	3.5.3 Weighted Least Squares

	3.6 Miscellaneous
	3.6.1 Coupled and Decoupled Increments

	4 Approach
	4.1 Covisibility Window

	5 Front-End
	5.1 Initial Frame Tracking
	5.1.1 Forward Additive Algorithm
	5.1.2 Inverse Compositional

	5.2 Keyframe Creation
	5.3 Keyframe Removal

	6 Back-End
	6.1 Point Management
	6.1.1 Candidate Point Selection
	6.1.2 Candidate Point Tracking
	6.1.3 Candidate Point Activation

	6.2 Photometric Bundle Adjustment
	6.2.1 Relative-Absolute Pose Formulation
	6.2.2 Relative-Absolute Pose Jacobians
	6.2.3 Robustification Through Iteratively Reweighted Least Squares

	6.3 Outlier Management

	7 Evaluation
	7.1 Candidate Point Selection and its Influence on Direct Image Alignment
	7.2 Comparison of the Forward Additive and the Inverse Compositional Algorithms for Direct Image Alignment
	7.3 Qualitative Evaluation of Candidate Point Tracking
	7.4 Qualitative and Quantitative Evaluation of our Solver Implementations for Photometric Bundle Adjustment
	7.5 Qualitative and Quantitative Evaluation of the Direct SLAM Method on a Synthetic Sequence

	8 Conclusion
	A Relative-Absolute Pose Jacobian Derivation
	A.1 Derivation through the Chain Rule

	Bibliography

