Local Tracking and Mapping for Direct Visual SLAM

Pablo Rodríguez Palafox

Technical University of Munich

Chair of Helicopter Technology & Computer Vision Group

Garching, October 11, 2019

Direct Sparse Odometry, Engel et al.

When doing marginalization of keyframes / points in VO,

reusing map points

(when revisiting already mapped areas)

is not possible.

Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age, <u>Cadena et al.</u>

Original idea from: *Direct Sparse Mapping*, <u>Zubizarreta et al.</u>

πп

Approach

Overview

Approach

Overview

Approach Tracking

Approach Tracking

Approach Tracking

ТЛП

Approach

Building the Image Pyramids

Approach

(Inverse Distance Formulation)

Approach Tracking

Direct Image Alignment

Forward Additive

$$r_i(\mathbf{T} \oplus \boldsymbol{\xi}) = I_t(w(\mathbf{T} \oplus \boldsymbol{\xi}, \mathbf{u})) - I_h(\mathbf{u})$$

Inverse Compositional

$$r_i(\boldsymbol{\xi}) = I_h(w(\mathbf{I} \oplus \boldsymbol{\xi}, \mathbf{u})) - I_t(w(\mathbf{T}, \mathbf{u}))$$

Approach Tracking

Direct Image Alignment

Forward Additive

$$r_i(\mathbf{T} \oplus \boldsymbol{\xi}) = I_t(w(\mathbf{T} \oplus \boldsymbol{\xi}, \mathbf{u})) - I_h(\mathbf{u})$$

Approach Tracking

Direct Image Alignment

Inverse Compositional

$$r_i(\boldsymbol{\xi}) = I_h(w(\mathbf{I} \oplus \boldsymbol{\xi}, \mathbf{u})) - I_t(w(\mathbf{T}, \mathbf{u}))$$

πп

Approach

Overview

Approach

Candidate Point Tracking

Epipolar Curve Search

Figure based on that presented in OmniDSO

Approach

Candidate Point Tracking

πп

Approach

Overview

Recomputing Local Covisibility Window

Recomputing Local Covisibility Window

Recomputing Local Covisibility Window

πп

Approach

Overview

Approach Photometric Bundle Adjustment

- Ceres (w/o coarse-to-fine)
- Manual Solver (w/ and w/o coarse-to-fine)

Robustification

Coarse-to-Fine

Residual Distribution

Setting A

Setting B

ТШ

Results

Influence of Candidate Point Selection on Tracking

Candidate Point Tracking

Candidate Point Tracking

Candidate Point Tracking

Upgraded to Landmarks

Candidate Point Tracking

ТΠ

Candidate Point Tracking

Upgraded to Landmarks

Results

Candidate Point Tracking

Remaining as Candidate Points

Results

Candidate Point Tracking

Remaining as Candidate Points

Upgraded to Landmarks

ТШ

et_only_obs

Photometric Bundle Adjustment

Max Number of Iterations per Level: 10

	Metric								
Solver Type			Runtime (s)		Iterations				
	ATE (m) F	R			Total	Level			
				3		2	1	0	
Manual <mark>w/o pyrs</mark>	0.00131		0.43		10	-	-	-	10
Ceres w/o pyrs	0.03761		2.05		10	-	-	-	10
Manual <mark>w/ pyrs</mark>	0.00054		2.42		29	7	3	10	9
Ceres w/ pyrs	-		-		-	-	-	-	-

Full System

·

Full System

RMSE ATE: 0.00589 m

Full System

RMSE ATE: 1.05 m

Conclusion

Direct **SLAM**

+

Modular & flexible framework for future development

Future Work

- Refine system and find good balance for user-defined parameters
- Pose-graph optimization to close larger loops:

Double-window optimization (accurate pose-point & soft pose-pose)

• Test the system on real datasets (e.g., EuRoC)

Thank you very much for your attention.

Technical University of Munich Pablo Rodríguez Palafox pablo.rodriguez-palafox@tum.de

