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Problem Statement

Figure 8. Keyframe management. Bottom rows: The 6 old
keyframes in the optimization window, overlaid with the points
hosted in them (already marginalized points are shown in black).
The top image shows the full point cloud, as well as the posi-
tions of all keyframes (black camera frustums) – active points and
keyframes are shown in red and blue respectively. The inlay shows
the newly added keyframe, overlaid with all forward-warped ac-
tive points, which will be used for initial alignment of subsequent
frames.

more data points quickly flattens off. Note that in contrast to
indirect methods, our direct framework still allows to sam-

ple from across all available data, including weakly tex-
tured or repetitive regions and edges, which does provide a
real benefit (see Section 4).

We aim at always keeping a fixed number Np of ac-
tive points (we use Np = 2000), equally distributed across
space and active frames, in the optimization. In a first step,
we identify Np candidate points in each new keyframe (Step
1). Candidate points are not immediately added into the
optimization, but instead are tracked individually in subse-
quent frames, generating a coarse depth value which will
serve as initialization (Step 2). When new points need to be
added to the optimization, we choose a number of candidate
points (from across all frames in the optimization window)
to be activated, i.e., added into the optimization (Step 3).
Note that we choose Np candidates in each frame, however
only keep Np active points across all active frames com-

bined. This assures that we always have sufficient candi-
dates to activate, even though some may become invalid as
they leave the field of view or are identified as outliers.

Figure 9. Candidate selection. The top row shows the original im-
ages, the bottom row shows the points chosen as candidates to be
added to the map (2000 in each frame). Points selected on the first
pass are shown in green, those selected on the second and third
pass in blue and red respectively. Green candidates are evenly
spread across gradient-rich areas, while points added on the sec-
ond and third pass also cover regions with very weak intensity
variations, but are much sparser.

Step 1: Candidate Point Selection. Our point selection
strategy aims at selecting points that are (1) well-distributed
in the image and (2) have sufficiently high image gradi-
ent magnitude with respect to their immediate surroundings.
We obtain a region-adaptive gradient threshold by splitting
the image into 32 ⇥ 32 blocks. For each block, we then
compute the threshold as ḡ+ gth, where ḡ is the median ab-
solute gradient over all pixels in that block, and gth a global
constant (we use gth = 7).

To obtain an equal distribution of points throughout the
image, we split it into d⇥d blocks, and from each block se-
lect the pixel with largest gradient if it surpasses the region-
adaptive threshold. Otherwise, we do not select a pixel
from that block. We found that it is often beneficial to
also include some points with weaker gradient from regions
where no high-gradient points are present, capturing infor-
mation from weak intensity variations originating for ex-
ample from smoothly changing illumination across white
walls. To achieve this, we repeat this procedure twice more,
with decreased gradient threshold and block-size 2d and 4d,
respectively. The block-size d is continuously adapted such
that this procedure generates the desired amount of points
(if too many points were created it is increased for the next
frame, otherwise it is decreased). Figure 9 shows the se-
lected point candidates for some example scenes. Note that
for for candidate point selection, we use the raw images
prior to photometric correction.

Step 2: Candidate Point Tracking. Point candidates are
tracked in subsequent frames using a discrete search along
the epipolar line, minimizing the photometric error (4).
From the best match we compute a depth and associated
variance, which is used to constrain the search interval for
the subsequent frame. This tracking strategy is inspired by
LSD-SLAM. Note that the computed depth only serves as
initialization once the point is activated.

Direct Sparse Odometry, Engel et al.



When doing marginalization of keyframes / points in VO,

reusing map points 

(when revisiting already mapped areas)

is not possible.
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Past, Present, and Future of Simultaneous Localization And Mapping: Towards
the Robust-Perception Age, Cadena et al.

Odometry SLAM
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Original idea from: Direct Sparse Mapping, Zubizarreta et al.
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Approach
(Inverse Distance Formulation)
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5. Front-End

u

w(I� ⇠,u)
w(T,u)

Ih It

Figure 5.2.: Schematic representation of the IC approach, where Ih and It represent the host and target
frames, respectively.

ri(⇠) = Ih(w(I� ⇠,u))� It(w(T,u)), (5.26)

where I is the identity transform. Figure 5.2 provides a schematic view of the IC approach.

Performing a first order Taylor expansion on the above residual term gives

rlin,i(⇠) = Ih(w(I� 0,u))| {z }
Ih(u)

+Ji

��
(⇠=0,u)

⇠ � It(w(T,u)), (5.27)

where we have assumed without loss of generality that w(I� 0,u) is the identity. The solution to
the least squares problem built upon the linearized residual in (5.27) is

⇠ = �
X

u2⌦h

H
�1

J
>
i [Ih(u)� It(w(T,u))] (5.28)

=

X

u2⌦h

H
�1

J
>
i [It(w(T,u))� Ih(u)] , (5.29)

where H is the Hessian matrix, i.e.:

H =

X

u2⌦h

J
>
i WJi. (5.30)

Note that Ji does not depend on the current parameter estimate T. On the contrary, it is constant
across iterations and can be precomputed once per pyramid level. Again, particularizing J⇡ for
the case of a pinhole camera model, the resulting Jacobians in the IC approach are
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Photometric Bundle Adjustment
Approach

• Ceres
(w/o coarse-to-fine)

• Manual Solver
(w/ and w/o coarse-to-fine) 
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Results
Photometric Bundle Adjustment

7 Evaluation

Figure 7.3: Sample map before Photometric Bundle Adjustment. Out of the total 12 cameras (green
pyramids), 6 correspond to the first pass of the sensor across the region, while the other half
belong to a second pass of the sensor. The purple pyramids represent groundtruth poses,
while the purple line interpolates the groundtruth trajectory of the sensor. Note there are two
purple lines, each corresponding to a different pass of the camera over the region.

Solver Type

Metric

ATE (m) Runtime (s)

Iterations

Total
Level

3 2 1 0

Manual w/o pyrs 0.00131 0.43 10 - - - 10
Ceres w/o pyrs 0.03761 2.05 10 - - - 10

Manual w/ pyrs 0.00054 2.42 29 7 3 10 9
Ceres w/ pyrs - - - - - - -

Table 7.3

Solver Type

Metric

ATE (m) Runtime (s)

Iterations

Total
Level

3 2 1 0

Manual w/o pyrs 0.00059 1.21 23 - - - 23
Ceres w/o pyrs 0.00071 8.23 50 - - - 50

Manual w/ pyrs 0.00054 2.66 31 7 3 12 9
Ceres w/ pyrs - - - - - - -

Table 7.4

62

Max Number of Iterations per Level: 10
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Results
Full System

RMSE ATE: 0.00589 m





Results
Full System

RMSE ATE: 1.05 m



Conclusion
Direct SLAM

+
Modular & flexible framework for future development
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6. Back-End

Ckf Ccur
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Figure 6.3.: Inverse distance computation from the best match.
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dp
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divide the former by the latter:

b
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dp

+ tx
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dp
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(6.13)
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0
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dp
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0
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0
y
r0 · b
dp

+ b
0
ytx (6.14)

and multiply (6.14) by dp:

b
0
xr1 · b+ dpb

0
xty = b

0
yr0 · b+ dpb

0
ytx. (6.15)

We can finally solve for dp (i.e., the inverse distance of the candidate point with respect to the
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Future Work

• Refine system and find good balance for user-defined parameters

• Pose-graph optimization to close larger loops:

Double-window optimization (accurate pose-point & soft pose-pose)

• Test the system on real datasets (e.g., EuRoC)
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