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Abstract

Recently, bundle adjustment has been the key component in structure from mo-
tion problem. Bundle adjustment jointly optimizes the camera parameters and
feature points parameters according to an objective function of reprojection errors.
However, some widely used methods in bundle adjustment, such as, Levenberg-
Marquardt step solved by Cholesky decomposition, truncated Newton’s method,
still face some challenges in robustness, accuracy, and efficiency. In this thesis, we
provide a novel damped inexact Newton’s method (DINM), which combines the ad-
vantages from both inexact Newton’s method and truncated Newton’s method. Fur-
thermore, we introduce the adaptiveness, local parameterization, and reweighted po-
tential function in our DINM algorithm. After testing on different types of datasets,
the results show that in comparison with the baseline implementations, our algo-
rithms not only obtain a faster and deeper reduction in objective function curves
and gradient norm curves, a result more closed to the ground truth, but also own a
higher robustness.
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Chapter 1

Introduction

With the development of camera technique, a sequence of high resolution photos
can be easily collected in more and more scenes. The camera captures a 2D image
frame through the vision field of the lens or lens group, which is actually a projec-
tion process. In this process, the instantaneous real 3D object or 3D scene in the
vision field is projected onto a 2D plane proportionally [wikf]. The location and the
boundary of this 2D plane are defined by the camera parameters.

Furthermore, if there exists relative motion between the camera and the real 3D
objects, the 3D objects are projected onto the 2D image frames from different view
directions. With such a 2D image sequence, we want to estimate the 3D structure
of the original objects, which is called Structure from Motion (SfM) [The]. SfM is a
photogrammetric range imaging technique for reconstructing 3D structures from 2D
projected images collections based on the moving camera or moving objects. SfM is a
important technique in many applications of computer vision, such as, 3D geometry
reconstruction, simultaneous localization and mapping (SLAM), etc. [wikh] In the
last decades, researchers have developed lots of methods to solve SfM problems,
such as, maximum likelihood estimation (MLE) [GGS+07], Kalman filter [HD07],
particle filter [SEG+05], hidden markov model (HMM) [HB14], etc. SfM presents a
problem, whose input is 2D image frames sequence with the recognized (observed)
feature points of the 3D objects, and the output is the reconstructed 3D positions
of these feature points.

Bundle adjustment is a key component in the most recent SfM problem. Based on
the projected images collections from different viewpoints, bundle adjustment jointly
refine the 3D coordinates of the scene geometry (feature points), the transformation
parameters from the relative motion between the camera and the scene, and the
optical characteristics of the camera, according to an optimal criterion related to
the reprojection errors of feature points. Bundle adjustment is almost always used
as the last step of every feature-based 3D reconstruction algorithm [wika].

Bundle adjustment has a high flexibility. It gracefully handles a very wide vari-
ety of different 3D feature and camera types (points, lines, curves, surfaces, exotic
cameras), scene types (including dynamic and articulated models, scene constraints),
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information sources (2D features, intensities, 3D information, priors) and error mod-
els [TMHF99].
The process of bundle adjustment is considered that there exist bundles of light rays
from each feature points to each camera center, and all parameters of these feature
points and cameras are adjusted together simultaneously and iteratively to obtain
the optimal bundles [TMHF99]. This process is plotted in Figure 1.1.

Figure 1.1: Example of bundle adjustment [The].

Due to the highly developed computer technology, bundle adjustment is solved by
numerical optimization methods. Optimization algorithm resolve the problem of
finding variable values which optimize the defined objective function (cost function)
of the system with or without constraints. The process of identifying objective,
variables, and constraints for a given problem is known as modeling [NW06]. After
constructing of an appropriate model, the optimal value is approached iteratively
by numerical step with the help of computer. There is no universal optimization
algorithm but rather a collection of algorithms, each of which is tailored to a par-
ticular type of optimization problem [NW06]. In general, the objective function in
bundle adjustment consists of the reprojection errors in square form.
Reprojection errors in bundle adjustment come from all deviations between the
observed feature points coordinates in the projected images and the reprojected
feature points coordinates for each feature point in each image (if exists). Since
the relative motion continues along the images collection, each image frame is of
different camera parameters and not all feature points can appear in each image
frame.
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1.1 Related Work

Bundle adjustment was originally conceived in the field of photogrammetry during
the 1950s and has increasingly been used by computer vision researchers until recent
years [wika]. In the long time, some common misconceptions have limited the devel-
opment of bundle adjustment. For example, many researchers do not deliberate the
special structure of bundle adjustment, and solve the bundle adjustment in a general
optimization routine of linear algebra, which leads to a extremely slow optimization
than expected; some researchers have misunderstood the accuracy of the recon-
structed feature points since they treat the uncertainty of camera parameters and
feature points separately. [TMHF99] In 1999, B. Triggs et al have clarified these mis-
conceptions, and provided a systematical summarization about bundle adjustment,
including the particular model, the parameterization, and some new optimization
strategies in bundle adjustment. They also analyze the accuracy and the efficiency of
several implementations [TMHF99]. Their great efforts promotes the development
of bundle adjustment in brand-new perspectives.

K. Konolige and M. Agrawal propose a framework for visual imagery in [KA08].
They match visual frames with large numbers of point features, but only keep relative
frame pose information. This skeleton is a reduced nonlinear system that is a faithful
approximation of the larger system and can be used to solve large loop closures
quickly. [KA08]

S. Agarwal1 et al have proposed a new bundle adjustment implementation for the
large-scale datasets in 2010. They design a new truncated Newton’s method for
solving large-scale bundle adjustment problems with tens of thousands of images.
They introduce conjugate gradients for calculating the Newton step with some pre-
conditioners instead of decomposition. They evaluate the performance of six differ-
ent bundle adjustment algorithms, and show that their truncated Newton method
with relatively simple preconditioners yields an advanced performance for large-scale
bundle adjustment [ASSS10].

C. Wu et al exploit hardware parallelism for efficiently solving large-scale 3D recon-
struction problems. They use multicore CPUs as well as multicore GPUs. Their
results indicate that overcoming the memory and bandwidth limitations not only
leads to more space efficient algorithms, but also to surprising savings in run-
time [WACS11].

Recently, researchers also introduce some new models in bundle adjustment. The
most previous methods for Bundle Adjustment are either centralized or operate
incrementally. K. N. Ramamurthy et al address bundle adjustment with a new
distributed algorithm using alternating direction method of multipliers (ADMM).
They analyze convergence, numerical performance, accuracy, and scalability of the
distributed implementation. The runtime of their implementation scales linearly
with the number of observed points [RLA+17].

Besides, J. Engel et al also develop a Direct Sparse Odometry (DSO) based on a
novel, highly accurate sparse and direct structure and motion formulation. It com-
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bines a fully direct probabilistic model (minimizing a photometric error) with con-
sistent, joint optimization of all model parameters, including geometry-represented
as inverse depth in a reference frame-and camera motion. The proposed model inte-
grates a full photometric calibration, accounting for exposure time, lens vignetting,
and non-linear response functions. The experiments show that their approach sig-
nificantly outperforms state-of-the-art methods both in terms of tracking accuracy
and robustness [EKC18].

1.2 Problem Statement

Bundle adjustment problem requires a dataset with the observed feature points
in each frame, and initial values for all arguments (3D feature points positions
and cameras’ parameters) as inputs; and bundle adjustment outputs the optimal
arguments minimizing a chosen objective function, which is generally related to
reprojection errors. Bundle adjustment actually finds a proper optimization method
of this above process.
The two state-of-the-art strategies in bundle adjustment is listed below, which are
presented in [TMHF99] and in [ASSS10] respectively. These both implementations
are also treated as the baseline implementations in this thesis.

• LMA-CD: in [TMHF99], they propose a bundle adjustment implementation
with exact Levenberg-Marquardt Algorithm (LMA) step in each iter-
ation solved by dense Cholesky decomposition. This implementation in-
tegrates the special structure of Jacobian matrix and Hessian matrix. The
details are discussed in Section 3.2.2. One of its typical variants presenting
a good performance is selected as the baseline implementation: couple with
Schur complement of C. C is a sub-matrix of Hessian matrix, seeing Sec-
tion 3.2.1.

• BAL: in [ASSS10], they test six different implementations for bundle ad-
justment in the large. Among those implementations, their proposed new
truncated Newton’s method coupled with Schur complement of C performs a
better result than others. This implementation solves an inexact LMA step by
conjugate gradients with preconditioner of B. B is a sub-matrix of Hessian
matrix, seeing Section 3.2.1. Besides, they use the diagonal matrix of Hessian
matrix as the damping matrix in LMA, seeing Section 2.2.6.

Even if lots of researchers have proposed many strategies of bundle adjustment for
different scenes, bundle adjustment is still far from a solved problem. In general,
bundle adjustment is a highly non-linear, non-convex optimization problem with
curse of dimensionality. Besides, it also faces bad condition, near singular problem
in matrix operation during optimization. All above problems lead to that even some
popular implementations still have shortages.
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”LMA-CD” is hard to beat in small-scale and/or sparse dataset [ASSS10], i.e. an ex-
act LMA step solved by Cholesky decomposition demonstrates a great performance
in both accuracy and efficiency. Here, the dataset is sparse means there are only
a small part of feature points appearing in each image frame. However, Cholesky
decomposition is only suitable for small matrix. When facing a dense or large-scale
dataset, ”LMA-CD” always consumes extremely large computation time. Besides,
”LMA-CD” is not robust enough. The matrix in bundle adjustment is always bad
conditioned or near singular, so that even for small-scale dataset, the decomposition
costs significant time or gets a very inexact solution in some optimization step, and
sometimes it even yields a solution with NaN or Inf. The reason of this situation
come from the following sides, some parameters degenerate after several optimiza-
tion steps; some parameters, such as rotation angles, are much more sensitive than
others; after several steps, the Hessian matrix is near singular and bad conditioned.

”BAL” is much more efficient in both memory and time consumption than ”LMA-
CD” when facing a large-scale and/or dense dataset. In addition, the decomposition
solver is replace by preconditioned conjugate gradients, which can still compute an
acceptable solution even if the matrix of equation system is bad conditioned or near
singular. However, the selection of preconditioner in ”BAL” is confused. Besides, in
testing, we find that its accuracy can not maintain the same level for different sorts
of datasets. Especially, when tested on some synthetic datasets, its performance is
extremely bad, seeing Section 5.3.

Thus, in this thesis, we are desired to design a new implementation of bundle adjust-
ment with higher performance. The higher performance is defined in the following
sides, which are also the general criteria of judging the performance of numerical
optimization methods.

Accuracy: the criterion of accuracy comes from two parts, the order of magnitude of
the objective function and the order of magnitude of gradient norm (of the objective
function). How small the gradient norm reduces to after the optimization indicates
how close this solution and the objective function are away from the local optimal.
The order of the objective function indicates how close this solution is away from a
global optimal. In this thesis, we only focus on seeking a local optimal with a given
initial value. Thus, the order of the gradient norm is more important to us. Besides,
how closed the optimization trajectory approaches the ground truth is also a metric
to determine the accuracy.

Efficiency: the efficiency of algorithm also comes from two parts, memory demand-
ing and time demanding, which are dependent on how much memory and how much
runtime are spent during the optimization respectively.

Robustness: the robustness of implementations measure the effectiveness of the
algorithm facing different types of datasets. Besides, it also shows the effectiveness
when there exist some errors in the system.

In this thesis, we introduce a novel damped inexact Newton’s method (DINM),
which combines the advantages of truncated Newton’s method and inexact New-
ton’s method. Then, based on this DINM algorithm, we further implement some
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improvements, e.g. adaptiveness, local parameterization, reweighted objective func-
tion, and propose three advanced algorithms. After testing the implementations on
real datasets provided by [ASSS] and our synthetic datasets, the results show that
our algorithms have a huge improvement in accuracy, efficiency, and robustness, in
comparing with two baseline implementations.

1.3 Outline

Here, we have an outline of the following thesis. In Chapter 2, some basic knowl-
edge about bundle adjustment and some general numerical optimization methods
are introduced; in Chapter 3, firstly, the baseline implementations of bundle adjust-
ment is presented; then, we demonstrate two popular Newton’s methods with our
improvements; finally, we combine the advantages from both methods and propose
a damped inexact Newton’s method in bundle adjustment; in Chapter 4, we in-
troduce the adaptiveness, the local parameterization, and the reweighted potential
function in damped inexact Newton’s method to further improve the performance;
the comparing results between our implementations and baseline implementations
are presented in Chapter 5 on real datasets and our synthetic datasets; in Chapter 6,
we analyze and discuss the evaluations presented in Chapter 5; at last, we make a
summary of the whole thesis in Chapter 7.
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Chapter 2

Relevant Foundation

In this chapter, we discuss some basic knowledge in bundle adjustment, e.g. geomet-
ric transformation, objective function. Besides, we also briefly present some widely
used numerical optimization algorithms.

2.1 Bundle Adjustment

2.1.1 Geometric Transformation

In bundle adjustment implementations, the first step is to study the geometric rela-
tions between a 3D scene and the observed 2D projections, i.e. the transformation
from the 3D point coordinates in the real space to its 2D projection on the camera
image. This geometric transformation consists of three steps, rigid-body motion of
camera system, perspective projection, and radial distortion.

Robot Kinematics

Robot kinematics study the relationship between the dimensions and connectivity
of kinematic chains and the position, velocity and acceleration of each of the links in
the robotic system. The non-linear kinematics equations map the joint parameters
to the configuration of the robot system. These non-linear kinematics equations are
used in the first step of the geometric transformation, i.e. rigid-body motion. In
this step, the point coordinates in the original fixed inertial system are transformed
into its coordinates in the moved camera system. The coordinate transformation
between both systems is composed of two types of rigid-body motion, rotation and
translation.
The original fixed inertial system is named by O, and the camera system is named
by C. The original points in both coordinate system are also expressed as O and C
respectively. The vector expression consists of the start point, the end point, and
the coordinate system in which its form is expressed, e.g. CrCP presents the vector
from origin C to point P demonstrated in the coordinate system C. The coordinate
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transformation between system O and system C can be presented as,CrCP
1

 =

ACO CrCO
0 1

×OrOP
1

 . (2.1)

In (2.1), ACO presents the transformation of the rotation motion. The rotation
matrix, ACO, has several features,

det(ACO) = 1 , (2.2)

AOC = A−1CO = AT
OC , (2.3)

ACO =

CnOx CnOy CnOz

 . (2.4)

nOx, nOy, and nOz present three unit basis vectors in O system. The 3D coordinates
transformation between system O and system C is demonstrated in Figure 2.1.

Figure 2.1: 3D coordinates (point P ) transformation between coordinate system O
and coordinate system C.

There are lots of rotation parameter forms describing the rigid-body rotation trans-
formation, e.g. Euler angles, Tait-Bryan angles [Rix17]. In general, each form needs
three independent parameters. In computer vision, Rodrigues’ Formula is widely
used to demonstrate the rotation matrix. Rodrigues’ Formula is founded based on
Theorem of Euler on finite rotations [Rix17],

Theorem 2.1.1 (Theorem of Euler) if a rigid body undergoes a motion leaving
fixed one of its points, then a set of points of the body, lying on a line that passes
through that point, remains fixed as well.
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Through Theorem 2.1.1, it is clear that an arbitrary pure rigid-body rotation (one
point fixed) can be defined by one rotation through a specific angle around an
instant rotation axis, a line of fixed points. Therefore, Rodrigues’ Formula uses a
3D rotation vector φ to define a rotation transformation. Its magnitude, ‖φ‖, defines
the rotation angle; and its unit orientation vector, φ/‖φ‖, defines the rotation axis.
Obviously, this unit orientation vector has the same form in both system.

nφ =
φ

‖φ‖
= Cnφ = Onφ =

nφ,xnφ,y
nφ,z

 . (2.5)

Camera system C can be rotated to original fixed system O around axis nφ with
the angle of ‖φ‖; reversely, system O can be rotated to system C around axis −nφ
with the angle of ‖φ‖. The rotation satisfies the right-hand rule [wikg]. Since there
are only two systems (O and C) in our bundle adjustment, we use R as rotation
matrix to replace the previous rotation matrix ACO. Rodrigues’ Formula is written
as,

R = (I− nφnTφ)cos(‖φ‖) + n̂φsin(‖φ‖) + nφn
T
φ , (2.6)

with the cross product matrix,

n̂φ = nφ× =

 0 −nφ,z nφ,y
nφ,z 0 −nφ,x
−nφ,y nφ,x 0

 . (2.7)

The vector, CrCO, presents the transformation of the translation motion. In the
thesis, we use t as translation vector instead of CrCO, and use xi to present the 3D
coordinates of the i-th feature point, Pi.

Cxi = CrCPi
, (2.8)

Oxi = OrOPi
, (2.9)Cxi

1

 =

R t
0 1

×Oxi
1

 . (2.10)

More specific, (2.10) is written as,

Cxi =

Cxi,x

Cxi,y

Cxi,z

 = R

Oxi,x

Oxi,y

Oxi,z

+

txty
tz

 . (2.11)

Therefore, with (2.10), the coordinates of point P in system O are transformed to its
coordinates in system C. Besides, there is also an inverse transformation of (2.10),Oxi

1

 =

RT −RT t
0 1

×Cxi
1

 . (2.12)
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Perspective Projection

In the second step of geometric transformation, the 3D coordinates in camera system
C are projected onto a 2D image frame. In the thesis, the direction of nCz is defined
as the optical axis of the lens, which is perpendicular to the lens plane and is directed
to the inside of the camera [per].
In the thesis, we only consider the pinhole camera model, i.e. only one convex lens
is used. The convex lens forms a inverted real image on the film. The actual image
from convex lens is located on the plane (0, 0, f). Here, f is the focal length of the
convex lens. However, with other optics and elements in the camera, the captured
image is converted to an upright projection just like located on the plane (0, 0,−f).
In perspective projection, the x and y coordinates of Cxi are scaled based on the
ratio of z coordinate and focal length. In this case, x-axis and y-axis of the image
coincide with x-axis and y-axis of the camera system C. The 2D coordinates of
perspective projection of the i-th feature point is written as,

ci =

ci,x
ci,y

 =

−f × Cxi,x

Cxi,z

−f × Cxi,y

Cxi,z

 . (2.13)

An example of real 3D scene and its 2D projection of a camera system is drawn in
Figure 2.2.

Figure 2.2: Perspective projection in a camera system. The red plane presents the
projection plane located at (0, 0,−f). The real 3D object (tree) is proportional
projected onto this plane.

Radial Distortion

In geometric optics, distortion is a deviation from rectilinear projection, a projection
in which straight lines in a scene remain straight in an image. It is a form of op-
tical aberration. Due to the symmetry of a photographic lens, the most commonly
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encountered distortions are radially symmetric, or approximately [wikc]. In order
to make the image more similar to its real shape, the radial distortion adjustment
is added into camera imaging system. Therefore, the third step of geometric trans-
formation is distortion calibration. In this case, the coordinates from perspective
projection is calibrated with a simple 2-parameter model.

c
′

i =

c′i,x
c
′
i,y

 = (1 + k1 × ‖ci‖2 + k2 × ‖ci‖4)×
ci,x
ci,y

 . (2.14)

c
′
i is final 2D reprojected coordinates of the i-th feature point.

2.1.2 Overview of Bundle Adjustment

Like we have talked in Chpater 1, bundle adjustment defines an optimal recon-
struction problem on 3D feature points coordinates and the camera parameters,
e.g. camera pose, focal length, and radial distortion under certain assumptions:
if the observed error of image feature is zero-mean Gaussian distribution, bundle
adjustment is the Maximum Likelihood Estimator (MLE) [wika].
Considering consistent presentation in the whole thesis, firstly, the basic notations
in bundle adjustment are defined as below. Some notations have already been used
in the previous sections, which still keep the same.

• {xi}mi=1 ⊂ R3: 3D coordinates of feature points.

• m: the total number of feature points.

• {(φj, tj)}nj=1 ⊂ SE(3): camera pose parameters, rotation angle vector and
translation vector.

• {yj}nj=1: camera characteristic parameters.

• n: the total number of image frames.

• s = 9n + 3m: the total number of parameters

• (i, j) ∈ S ⊂ {1, ...,m} × {1, ..., n} if and only if the i-th feature point Pi is
observed in the j-th frame. S is defined as the observation field of the dataset.

• l = ‖S‖: the total number of observations.

• {bij}(i,j)∈S ⊂ R2: 2D coordinates of the observations.

If (i, j) ∈ S, a single reprojection error for one feature point Pi in j-th image frame is
presented as the difference between its observed position and its reprojected position,

Fij = c
′

ij − bij =

c′ij,x
c
′
ij,y

−bij,x
bij,y

 . (2.15)
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c
′

ij = Π(xi,φj, tj,yj) . (2.16)

Rj = (I− nφj
nTφj

)cos(‖φj‖) + n̂φj
sin(‖φj‖) + nφj

nTφj
. (2.17)

Cj
xi =


Cj
xi,x

Cj
xi,y

Cj
xi,z

 = Rj

Oxi,x

Oxi,y

Oxi,z

+

tj,xtj,y
tj,z

 . (2.18)

cij =

cij,x
cij,y

 =

−fj ×
Cj
xi,x

Cj
xi,z

−fj ×
Cj
xi,y

Cj
xi,z

 . (2.19)

c
′

ij =

c′ij,x
c
′
ij,y

 = (1 + k1,j × ‖cij‖2 + k2,j × ‖cij‖4)×
cij,x
cij,y

 . (2.20)

yj =

 fj
k1,j
k2,j

 . (2.21)

c
′
ij is the reprojected 2D coordinates, seeing (2.14). The reprojection function Π

merges (2.17), (2.18), (2.19), and (2.20) together. xi is the i-th feature point coor-
dinates (3D) in original inertial system; φj, tj, and yj are the camera parameters of
the j-th image frame. Each image has different camera pose, φj and tj. In this case,
even if all images are captured with the same camera in collection, i.e. yj should
maintain the same for each image, these camera characteristic parameters are also
optimized separately for each image.

Then, the optimization process in bundle adjustment is expressed as finding the
minimum of an objective function (cost function), which sums the squares of a large
number of nonlinear functions up. Thus, the minimization of the objective function
is achieved using nonlinear least-squares algorithms [wika].

A simple objective function that quantifies the model fitting error is written as,

ψf =
∑

(i,j)∈S

Ψ(‖Fij‖) =
∑

(i,j)∈S

1

2
‖Fij(xi,φj, tj,yj)‖2 . (2.22)

Furthermore, to simplify the following matrix manipulations, all camera parameters
and feature coordinates parameters are jointed together to form a new parameter
vector u with the dimension of s× 1.

u = {{φj}nj=1, {tj}nj=1, {yj}nj=1, {xi}mi=1} , (2.23)
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more specifically,

u =



φ1

t1
y1
...
φj
tj
yj
...
φn

tn
yn
x1
...
xi
...
xm



. (2.24)

All single reprojection error vectors (dimension of 2×1), {Fij}(i,j)∈S , also form a new
reprojection error vector F with dimension of 2l× 1, since each single reprojection
error vector contains the errors in x and y.

F =
F11 F12 . . . F1n F21 . . . Fij . . . Fmn

T

(i,j)∈S
. (2.25)

Then, this optimization problem is expressed as,

min
u
ψf (u) =

1

2
‖F (u)‖2 . (2.26)

2.2 Numerical Optimization Algorithm

The last fifty years have seen the development of a powerful collection of algorithms
for unconstrained optimization of smooth functions, e.g. bundle adjustment.
In this section, we discuss these algorithms with the formulas in bundle adjustment.
All algorithms for unconstrained minimization start from a point, u0, which is cho-
sen according to some prior knowledge about the system and the dataset, or by
algorithm. A proper starting point is a crucial factor to find optimal in the iterative
process. Beginning at u0, optimization algorithms generate a sequence of iterates
that is terminated when either no more progress can be made or when a solution
point has been approximated with sufficient accuracy [NW06].
The algorithms use information about the function ψf at uk and its derivatives,
and possibly also information from earlier iterates, to determine how to move to the
next iteration uk+1 = uk + δuk. This increment step, δuk, is decided through a
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model according to Taylor’ Theorem. The criterion is the objective function, ψf , is
decreased after some prescribed number of iterations, e.g. ψf (u

k+5) < ψf (u
k).

Most numerical optimization algorithms are built based on Taylor’ Theorem.

Theorem 2.2.1 (Taylor’s Theorem) suppose that ψf (u): is continuously differ-
entiable. Then,

ψf (u+ δu) = ψf (u) +∇ψTf (u+ aδu)δu , (2.27)

for some a ∈ (0, 1). Moreover, if ψf (u) is twice continuously differentiable,

∇ψf (u+ δu) = ∇ψf (u) +

∫ 1

0

∇2ψf (u+ aδu)δuda (2.28)

and then,

ψf (u+ δu) = ψf (u) +∇ψTf (u)δu+
1

2
δuT∇2ψf (u+ aδu)δu , (2.29)

for some a ∈ (0, 1).

2.2.1 Line Search and Trust Region

To determine the increment step δu, there are two fundamental strategies, line
search and trust region. In the line search strategy, the algorithm firstly picks an
initial value u0. Then, in the following iteration step before convergence, it finds a
search direction pk from uk in each step. pk must be ensured a descent direction, i.e.

∇ψkf
T
pk < 0, so that for a small enough step along the direction pk, the objective

function decreases [Hau07a]. Along this direction, it finds a suitable step length αk,
so that

ψf (u
k + αkpk) < ψkf = ψf (u

k) , (2.30)

uk+1 = uk + αkpk . (2.31)

In the trust region strategy, the objective function is also optimized iteratively after
initialization. However, the objective function is approximated in each step with a
quadratic model function which is trusted in a simple region, a ball or a ellipsoid
of specified radius in a specified norm around the current point uk. The widely
used model function is quadratic form, and the subproblem in each iteration step is
expressed as,

min
p∈Rs

mk
f (p) = ψkf + gk

T
p+

1

2
pTHkp s.t. ‖p‖ ≤ ∆k . (2.32)

Here, gk is the gradient vector at the current point, i.e. ∇ψTf (uk); Hk is in general

the Hessian matrix at the current point, or its approximation. ∆k represents the
radius of the trust region, which is updated according to how similar the model
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function is as the real objective function. The details of this part is demonstrated
in Section 3.3.3. The minimizer is either reached at,

pk = −(Hk)−1gk , if ‖pk‖ ≤ ∆k and Hk positive definite, (2.33)

or at the boundary of the trust region.

The minimizer of the model function in the trust region is chosen as the increment
step pk related to current point uk. pk has a similar structure as uk,

pk = {{δφkj}nj=1, {δtkj}nj=1, {δykj }nj=1, {δxki }mi=1} . (2.34)

If the real objective function is reduced with this step, the increment step and the
trust region radius are accepted, i.e. uk+1 = uk +pk. If the candidate solution does
not produce a sufficient decrease, which means the trust region is too large, it is
shrunken and resolved [Hau07b].

2.2.2 Gradient Descent Algorithm

The gradient descent algorithm is one of the standard optimization algorithm of non-
constraint problem. It is realized with the strategy of line search. In gradient descent
algorithm, the picked search direction is against the current gradient direction, i.e.

along−∇ψkf
T

. The step length, αk, is set to a small constant or searched with various
methods, e.g. steepest descent algorithm, Wolfe condition. The more details please
see [NW06].

2.2.3 Newton’s Method

In Newton’s Method, the search direction pk is obtained through,

pk = −(∇2ψkf )−1∇ψkf . (2.35)

Since Hessian matrix ∇2ψkf may not be positive definite, pk may not be a descent
direction. To solve this problem, either we can adjust the Hessian matrix to ensure
it is positive definite, and use line search; or we can use the trust region to restrict
the boundary. If the Hessian matrix is positive definite, the results of Newton’s
Method is converged quadratically [NW06].

For Newton’s Method with trust region, if ∇2ψkf is not positive semidefinite, ∇2ψkf
should be adjusted to be semidefinite, often added with a factorized diagonal matrix.
This strategy is also used in the following Levenberg-Marquardt Algorithm, seeing
Section 2.2.6. If ∇2ψkf is positive semidefinite, we solve (2.35). If pk is located

in the trust region boundary, i.e. ‖pk‖ ≤ ∆k, the increment step is chosen as pk;
otherwise, the optimal increment step is searched on the surface of the ball (trust
region boundary), e.g. with dogleg-method.
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2.2.4 Quasi-Newton’s Method

Since the precise calculation of Hessian matrix often consumes lots of time, and
is also unnecessary sometimes, in Quasi-Newton’s Method, the Hessian matrix is
replaced with its approximation which can be easily calculated. The search direction
of Quasi-Newton’s Method is expressed as,

pk = −(H ′k)−1∇ψkf . (2.36)

The symmetric and positive definite matrix H ′k is updated at every iteration by a
quasi-Newton updating formula, such as, BFGS formula, SR1 Method [NW06]. The
convergence rate of Quasi-Newton’s Method is super-linear.

2.2.5 Gauss Newton Algorithm

For unconstrained least square optimization problem, such as bundle adjustment,
Newton’s Method is described in a much simpler form. Instead of solving the stan-
dard Newton equations (2.35), the Hessian matrix and the gradient vector are ob-
tained in a rapid process through Jacobian matrix [Ryc14]. From (2.25) and (2.24),
the reprojection error vector F can be considered as residual vector with a mapping:
Rs → R2l. Jacobian matrix is formed,

F =
F1 F2 . . . Fi . . . F2l

T

, (2.37)

u =
u1 u2 . . . uj . . . us

T

, (2.38)

ψf (u) =
2l∑
i=1

Ψf (‖Fi(u)‖) =
2l∑
i=1

1

2
‖Fi(u)‖2 . (2.39)

J = ∇F =
∂Fi

∂uj


i=1...2l, j=1...s

. (2.40)

The gradient g and the Hessian matrix H is expressed as,

g = ∇ψf = JTF , (2.41)

H = ∇2ψf = JTJ +
2l∑
i=1

Fi∇2Fi . (2.42)

In bundle adjustment, the first derivatives, J , is relatively easily calculated with
analytic formula. This availability of the first part in (2.42) of ”for free” is the
distinctive feature of least-squares problems. Moreover, this term JTJ is often
quite larger than the second term in (2.42), either because the residuals Fi are close
to affine near the solution (that is, the ∇2Fi are relatively small) or because of small
residuals (that is, the Fi are relatively small). In most practical situation, the second
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term is neglected in comparison with the first term. [NW06] In the following chapter,
we only use the first term in (2.42) as Hessian matrix in bundle adjustment.
Therefore, the search direction in (2.35) is replaced with solving equation in each
iteration step,

Jk
T
Jkpk = −JkTF k . (2.43)

In Gauss-Newton Algorithm JTJ is a close approximation to Hessian matrix, and
its convergence rate is similar to Newton’s Method. Besides, if J has full rank and
the gradient g is nonzero, the direction p is a descent direction for the objective
function [NW06].

pTg = pTJTF = −pTJTJp = −‖Jp‖2 ≤ 0 . (2.44)

Moreover, the minimization process of the objective function is also an iteratively
updated process of the error vector F . At each iteration, (2.43) is solved to adjust
u with a increment vector p. If using linearization, the error vector is approximated
with F (u+ p) = F (u) + J(u)p. The objective function is updated with,

ψf (u+ p) =
1

2
‖F (u) + J(u)p‖2 . (2.45)

Therefore, in each iteration step, the increment step of parameter vector pk is ob-
tained by solving,

min
p∈Rs

1

2
‖F k + Jkp‖2 . (2.46)

This solved pk is actually equivalent with the search direction pk obtained from (2.43).
In Gauss Newton Algorithm (GNA), either we can use line search based on the
search direction, or use trust region strategies to set a boundary for (2.46).
For Gauss Newton Algorithm with trust region strategy, the optimization step is
described as (2.46) with the constraint ‖p‖ ≤ ∆k. The corresponding model function

is in quadratic form as (2.32), with gk = Jk
T
F k, and Hk = Jk

T
Jk.

2.2.6 Levenberg-Marquardt Algorithm

Lots of researchers implement Levenberg-Marquardt Algorithm in unconstrained
non-linear least square optimization [Lou05] [Mor78] [Sha98]. Similar with the above
algorithms, Levenberg-Marquardt Algorithm (LMA) also only provide a solution
of the local minimum, which is not necessary a global minimum [wike]. Instead
of explicit trust region boundary, LMA interpolates between the Gauss Newton
Algorithm and Gradient Descent Algorithm, which yields a implicit boundary for
increment step. In each iteration step, LMA solves,

Hk
µp

k = −gk , (2.47)

gk = Jk
T
F k , (2.48)
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Hk
µ = Jk

T
Jk + µD , (2.49)

µ is a nonnegative damping factor which controls the switching between Gauss
Newton Algorithm and Gradient Descent Algorithm.
D is damping matrix. In the original LMA, D = I. If µ → 0, LMA changes to
Gauss Newton Algorithm without trust region boundary, i.e. the radius of trust
region is infinite large; if µ → +∞, LMA changes to pure Gradient Descent Al-
gorithm with a infinite small step length, i.e. the radius of trust region is infinite
small. Obviously, in LMA, the trust region radius is coupled with interpolated di-
rection. Besides, in [ASSS10], they also introduce a new damping matrix formed by
the diagonal elements of Hessian matrix, seeing (2.50). About the comparison of
different damping matrix, please see Section 3.3.4.

D = diag(H) . (2.50)

In fact, LMA presents a minimization problem in k-th step of,

min
p∈Rs

1

2
‖Jkp+ F k‖2 +

1

2
µ‖D′p‖2 , (2.51)

with
D′

T
D′ = D. (2.52)

The above equation actually presents a varied quadratic model function around
the current point without boundary restriction in each iteration step. Thus, the
optimization in the k-th step is rewritten as (with D = I),

min
p∈Rs

mk
f (p) = ψkf + (Jk

T
F k)Tp+

1

2
pT (Jk

T
Jk + µI)p . (2.53)

The damping factor is updated in each iteration according to how well the model
function approximates the real objective function. The details of damping factor
updating please see Section 3.3.4. In general, LMA is more robust than GNA,
which means it can find a solution even if its initialization is far off the final mini-
mum [NW06].

2.3 Dataset

In the whole thesis, there are altogether two types of datasets used.
The first type dataset is real dataset provided by GRAIL Lab, University of Wash-
ington [ASSS]. They provide many datasets with different sizes collected by different
devices. We use the first dataset in Ladybug dataset in Chapter 3 to test some ba-
sic features and performance of the algorithms. This dataset is a medium-scale
dataset, containing 49 image frames, 7776 feature points, and 31843 observations.
This dataset also provide an initial point for optimization. Bundle adjustment is
highly non-convex, non-linear optimization problem, thus, there exist plenty of local
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optimal points. Only when the initial point and the optimization process are care-
fully selected, the solution can approximate to the global optimal point. This thesis
only focuses on finding a local optimal point with a given initial point (to ensure
the found local optimal point is not far from global optimal point).
In order to find the general characteristics of the algorithms and compare the rela-
tive performance among algorithms, it is unnecessary to test them on a large-scale
dataset. Thus, in the first step, we use this Ladybug dataset considering the con-
venience. Besides, in some sections, only part of this dataset is enough for us to
clarify the problem. We randomly choose ten frames in the dataset, extract the
corresponding feature points which appear at least in two frames, and confirm the
related observations to form a sub-dataset.
The biggest disadvantage of these real datasets is that they do not contain the ground
truth. Besides, the size and the sparsity of these real datasets are not controllable
such that sometimes we can not select a dataset meeting our requirements arbitrarily.
Therefore, in Section 5.1, we provide a method which can generate a synthetic
bundle adjustment dataset with defined size and defined sparsity, i.e. a dataset
with arbitrary number of frames, points and observations. Besides, the noise of
observations, the outliers of observations and the initial point are also controllable.
About the details of the synthetic dataset please see Chapter 5.
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Chapter 3

Damped Inexact Newton’s
Method in Bundle Adjustment

In this chapter, we discuss some baseline implementations in bundle adjustment,
some problems faced in the baseline implementation. Then, we introduce a novel
damped inexact Newton’s method combining the advantages from inexact Newton’s
method and truncated Newton’s method, which yields a better performance related
to baseline implementations.

3.1 Matrix Form in Bundle Adjustment

Firstly, the matrix form in bundle adjustment is described. Due to the specific
feature, the matrix used in bundle adjustment can be calculated in a more efficient
way.

3.1.1 Reprojection Error Vector

For l observations, there are l single reprojection error vectors with dimension of
2×1, which is computed with (2.15) based on its corresponding 3D feature positions
and camera parameters. In bundle adjustment, there are lots of observations in one
dataset, which can be calculated in parallel. Then, all single reprojection error
vectors construct a whole reprojection error vector (2.25).

3.1.2 Partial Derivative

In order to get the Jacobian matrix, we should calculate the analytical partial deriva-
tives of the single reprojection error (2.15).

Fij = c
′

ij − bij = Π(xi,φj, tj,yj)− bij . (3.1)

The single reprojection error Fij is a function of corresponding feature point coordi-
nates with the dimension of 3×1, i.e. xi, and corresponding camera parameters with
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dimension of 9× 1, built with φj, tj, and yj respectively (seeing Section 2.1). Since
there are several intermediate variables in (3.1), the partial derivatives are analyti-
cally calculated using chain rule. The computational process of single reprojection
error, (2.6), (2.11), (2.13), and (2.14), is reformed as below,

Rj = (I− nφj
nφj

T )cos(‖φj‖) + n̂φj
sin(‖φj‖) + nφj

nφj

T , (3.2)

nφj
=

φj
‖φj‖

, (3.3)

n̂φj
= nφj

× =

 0 −nφj ,z nφj ,y

nφj ,z 0 −nφj ,x

−nφj ,y nφj ,x 0

 , (3.4)

Xij =

Xij,x

Xij,y

Xij,z

 = Rjxi + tj , (3.5)

cij =

cij,x
cij,y

 =

−Xij,x

Xij,z

−Xij,y

Xij,z

 , (3.6)

c
′

ij =

c′ij,x
c
′
ij,y

 = yj,1(1 + yj,2 × ‖cij‖2 + yj,3 × ‖cij‖4)×
cij,x
cij,y

 , (3.7)

yj =

yj,1yj,2
yj,3

 =

 fj
k1,j
k2,j

 . (3.8)

The partial derivatives are expressed using chain rule as,

dFij
dc

′
ij

= I2×2 . (3.9)

∂c
′
ij

∂yj
=

dis× cij,x fj × ‖cij‖2 × cij,x fj × ‖cij‖4 × cij,x
dis× cij,y fj × ‖cij‖2 × cij,y fj × ‖cij‖4 × cij,y

 , (3.10)

dis = 1 + k1,j × ‖cij‖2 + k2,j × ‖cij‖4 . (3.11)

∂c
′
ij

∂cij
=


∂c

′
ij,x

∂cij,x

∂c
′
ij,x

∂cij,y
∂c

′
ij,y

∂cij,x

∂c
′
ij,y

∂cij,y

 . (3.12)

∂c
′
ij,x

∂cij,x
= fj(1 + k1,j(3cij,x

2 + cij,y
2) + k2,j(5cij,x

4 + cij,y
4 + 6cij,x

2cij,y
2)) , (3.13)

∂c
′
ij,x

∂cij,y
=
∂c

′
ij,y

∂cij,x
= 2fjcij,xcij,y(k1,j + 2k2,j(cij,x

2 + cij,y
2)) , (3.14)



3.1. MATRIX FORM IN BUNDLE ADJUSTMENT 27

∂c
′
ij,y

∂cij,y
= fj(1 + k1,j(3cij,y

2 + cij,x
2) + k2,j(5cij,y

4 + cij,x
4 + 6cij,x

2cij,y
2)) . (3.15)

dcij
dXij

=

− 1
Xij,z

0
Xij,x

X2
ij,z

0 − 1
Xij,z

Xij,y

X2
ij,z

 . (3.16)

∂Xij

∂xi
= Rj . (3.17)

∂Xij

∂tj
= I3×3 . (3.18)

Considering there exists a small increment step of j-th camera parameters, rotation
angle vector and translation vector, δφj and δtj, around current points in se(3),
{φj, tj}. The new rotation matrix and translation vector are updated as,

Rg(φj + δφj) = Exp(φj + δφj) , (3.19)

tg(tj + δtj) = tj + δtj . (3.20)

This process actually presents a global parameterization form, which is also the gen-
eral parameterization form used in robotic kinematics. In the following Section 4.2,
we also propose a local parameterization form in robotic kinematics.
In order to calculate the derivatives of

∂Xij

∂φj
, we need to formulate the right Jacobian

matrix for SO(3). The Jacobian matrix for SO(3) uses � to define derivatives on
the manifold [FCDS17] [Sol17] [Chi11].

R1 �R2 , Log(R−12 R1) ∈ R3 if R1,R2 ∈ SO(3) , (3.21)

∂R(φ)

∂φ
, lim
δφ→0

R(φ+ δφ)� R(φ)

δφ
if R : R3 → SO(3) , (3.22)

here, the function R maps the rotation angle vector φ to the rotation matrix R ∈
SO(3), i.e. R = R(φ) = Exp(φ).
Similar as (3.4), the formula,

φ ∈ R3 → φ̂ ∈ so(3) , (3.23)

lifts from a twist to a Lie algebra, with,

φ̂ =

 0 −φz φy

φz 0 −φx

−φy φx 0

 . (3.24)

This matrix φ̂ also presents the cross product of φ seeing (3.4).
The matrix exponential operation maps φ ∈ so(3) to SO(3),

Exp(φ) = exp (φ̂) ∈ SO(3) . (3.25)
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The right Jacobian matrix for SO(3) is presented as [Sol17],

Jr(φ) ,
∂R

∂φ

=
∂Exp(φ)

∂φ

= lim
δφ→0

Exp(φ+ δφ)� Exp(φ)

δφ

= lim
δφ→0

Log(Exp(φ)−1Exp(φ+ δφ))

δφ

= I3×3 −
1− cos(‖φ‖)
‖φ‖2

φ̂+
‖φ‖ − sin(‖φ‖)

‖φ‖3
φ̂2.

(3.26)

The formula of
∂Xij

∂φj
is then presented as,

∂Xij

∂φj
=
∂Exp(φj + δφj)xi

∂δφj

∣∣∣∣
δφj=0

= −Rjx̂iJr(φj),

(3.27)

Since the concrete formula of
∂Xij

∂φj
is too complex, this partial derivative matrix is

obtained through Matlab. Then this formula is simplified in the following form,

∂Xij

∂φj
=


∂Xij,x

∂φj,x

∂Xij,x

∂φj,y

∂Xij,x

∂φj,z
∂Xij,y

∂φj,x

∂Xij,y

∂φj,y

∂Xij,y

∂φj,z
∂Xij,z

∂φj,x

∂Xij,z

∂φj,y

∂Xij,z

∂φj,z

 , (3.28)

∂Xij

∂φj
is a function of φj and xi. In order to have a shorter formula in presentation,

the subscripts of feature point index i and camera index j are omitted here. sφ and
cφ are used to replace sin(‖φ‖) and cos(‖φ‖). Besides, φx•• is used to present the
product between φ• and x• to , e.g. φxxy := φxxy, φφxzxy := φzφxxy.

∂Xij,x

∂φj,x
=− (φxxxsφ)/‖φ‖+

((2φxxx + φxyy + φxzz)(1− cφ) + (φφxxyz − φφxxzy)cφ)/‖φ‖2+
((−φφxxyz + φφxxzy + φφxx(φxyy + φxzz + φxxx))sφ)/‖φ‖3+
(2φφxx(φxxx + φxyy + φxzz)(cφ− 1))/‖φ‖4 ,

(3.29)

∂Xij,x

∂φj,y
=(xzsφ− φxyxsφ)/‖φ‖+

(φxxy(1− cφ) + (φφxyyz − φφxyzy)cφ)/‖φ‖2+
((φφxxxx + φφxxyy + φφxxzz + φxzy − φxyz)φysφ)/‖φ‖3+
(2φφxy(φxxx + φxyy + φxzz)(cφ− 1))/‖φ‖4 ,

(3.30)
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∂Xij,x

∂φj,z
=(−xysφ− φxzxsφ)/‖φ‖+

(φxxz(1− cφ) + (φφxzyz − φφxzzy)cφ)/‖φ‖2+
((φφxxxx + φφxxyy + φφxxzz + φxzy − φxyz)φzsφ)/‖φ‖3+
(2φφxz(φxxx + φxzz + φxyy)(cφ− 1))/‖φ‖4 .

(3.31)

Due to the symmetry of the form, the other two rows of
∂Xij

∂φj
can be obtained through

the subscript replacement rule: x → y, y → z, and z → x. For example,
∂Xij,y

∂φj,x
can

be obtained from
∂Xij,x

∂φj,z
with this rule, and

∂Xij,z

∂φj,y
can be obtained from

∂Xij,y

∂φj,x
with

this rule.

∂Xij,y

∂φj,x
=(−xzsφ− φxxysφ)/‖φ‖+

(φxyx(1− cφ) + (φφxxzx − φφxxxz)cφ)/‖φ‖2+
((φφxyyy + φφxyzz + φφxyxx + φxxz − φxzx)φxsφ)/‖φ‖3+
(2φφyx(φxyy + φxzz + φxxx)(cφ− 1))/‖φ‖4 ,

(3.32)

∂Xij,z

∂φj,y
=(−xxsφ− φxyzsφ)/‖φ‖+

(φxzy(1− cφ) + (φφxyxy − φφxyyx)cφ)/‖φ‖2+
((φφxzzz + φφxzxx + φφxzyy + φxyx − φxxy)φysφ)/‖φ‖3+
(2φφzy(φxzz + φxxx + φxyy)(cφ− 1))/‖φ‖4 .

(3.33)

Therefore, with (3.9), (3.10), (3.11), (3.12), (3.13), (3.14), (3.15), (3.16), (3.17), (3.18),
(3.28) the partial derivatives of single reprojection error are expressed as,

∂Fij
∂φj

=
dFij
dc

′
ij

∂c
′
ij

∂cij

dcij
dXij

∂Xij

∂φj
=
∂c

′
ij

∂cij

dcij
dXij

∂Xij

∂φj
. (3.34)

∂Fij
∂tj

=
dFij
dc

′
ij

∂c
′
ij

∂cij

dcij
dXij

∂Xij

∂tj
=
∂c

′
ij

∂cij

dcij
dXij

. (3.35)

∂Fij
∂yj

=
∂Fij
∂c

′
ij

∂c
′
ij

∂yj
=
∂c

′
ij

∂yj
. (3.36)

∂Fij
∂xi

=
dFij
dc

′
ij

∂c
′
ij

∂cij

dcij
dXij

∂Xij

∂xi
=
∂c

′
ij

∂cij

dcij
dXij

Rj . (3.37)
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3.1.3 Jacobian Matrix

Jacobian matrix in this bundle adjustment problem (seeing (2.37), (2.38), (2.40)),
J = ∇F = dF

du
, is constructed with the partial derivatives of each single reprojection

error. The first 9n elements in u present the camera parameters of n image frames;
and the left 3m elements present the feature position parameters of m feature points.
The dimension of Jacobian matrix is 2l× s.

Since the single reprojection error has x and y two dimensions, each single reprojec-
tion error occupies two rows in Jacobian matrix, and the values in these two rows
present the partial derivatives of this single reprojection error. The columns of Jaco-
bian matrix present the partial derivatives on which arguments in parameter vector
u. It is clear that one single reprojection error is only dependent on one feature
point and one set of camera parameters. Thus, there are only 12 non-zero deriva-
tives in each row of Jacobian matrix, of which 9 derivatives correspond to camera
parameters and the others correspond to feature point coordinates. The Jacobian
matrix in bundle adjustment is highly sparse.

In order to save the memory space and the calculation time, the explicit Jacobian
matrix is not necessary to build. Instead, only 2 × 12 derivatives of each single
reprojection error vector obtained from (3.34), (3.35), (3.36), and (3.37), are stored.
Later when used, the Jacobian matrix can be quickly rebuilt with these derivatives,
their image frame indexes and their feature point indexes.

3.1.4 Verification of Jacobian Matrix

To verify the correctness of our analytical Jacobian matrix, we propose two methods.

In the first method, the Jacobian matrix is calculated with numerical method. Then,
the results from numerical method is compared with the results from analytical
method. In numerical partial derivatives calculation, we need to set an increment
step to each argument. In single reprojection error formula, there are altogether
12 arguments (9 camera parameters and 3 feature point positions). In each partial
derivative calculation, only one argument varies with a specific increment step, and
the other 11 arguments maintain the same. The partial derivative on this argument is
the ratio between the increment of the reprojection error and the specific increment
step. This procedure is repeated for all single reprojection errors, i.e. l times.
All single reprojection errors use the same set of increment steps. In numerical
calculation, a proper increment step is the most crucial factor. We use a loop to
search 12 optimal increment steps for 12 arguments based on the provided dataset.
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The final chosen increment step set is,

∆φx

∆φy

∆φz

∆tx
∆ty
∆tz
∆f
∆k1
∆k2
∆xx
∆xy
∆xz



=



10−8

10−8

10−8

10−5

10−5

10−8

100

10−3

10−3

10−7

10−7

10−8



. (3.38)

This optimal numerical step is also suitable for other bundle adjustment datasets,
since this increment step reflects the essential characteristics in the geometric trans-
formation of bundle adjustment, not the characteristics just for one specific dataset
or one specific point in the argument space. Besides, this optimal step also indicates
the relative sensitivity among the arguments. Therefore, this set of increment steps
is not only used in numerical Jacobian matrix calculation, but also used in later
scaling factor in solvers to reduce the numerical error.
In verification, we randomly choose a point in the argument space (Rs), and calculate
the Jacobian matrix with the sub-dataset mentioned in Section 2.3 at this point with
numerical method and analytical method. With this increment step set, the second
norm of the difference matrix between numerical Jacobian matrix and analytical
Jacobian matrix is 0.28. The dimension of the Jacobian matrix of this sub-dataset
is 14670× 6720. The average norm per element is very small, 10−8.
In the second method, Taylor’s Theorem (seeing Theorem 2.2.1) is used to verify
the correctness. According to Taylor’s Theorem,

F (u+ τδu) = F (u) + τJ(u)Tδu+O(τ 2) . (3.39)

O(τ 2) presents the higher order remainder term of the approximation with the
Jacobian matrix, which is in the second order of the magnitude of τ .
Firstly, an increment step, δu, and an initial point, u, are randomly chosen and
maintain invariant in the following process. Secondly, a series of τ is selected, such
as,

τ = {2−1, 2−2, 2−3, 2−4, ...} . (3.40)

If the analytical Jacobian matrix is correct, the norm of the reminder term will follow
a geometric progression with a ratio of 1

4
, when using the above series in (3.39), i.e.

{‖O(τ 2)‖} = {‖F (u+ τδu)− F (u)− τJ(u)Tδu‖} ∝ { 1

4n
} . (3.41)

The result of {‖O(τ 2)‖} is plotted in Figure 3.1.
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Figure 3.1: The reminder, {‖O(τ 2)‖}, varies with τ in (3.40). The slope factor is 2,
thus, the analytical derivatives are correct.

3.1.5 Gradient Vector

Since bundle adjustment is a non-linear least square optimization, its gradient vector
is expressed following (2.41) as,

g = JTF . (3.42)

Due to the sparsity of Jacobian matrix J , using fully explicit Jacobian matrix to
multiply with the reprojection error vector F is inefficiency. In this thesis, we
provide a method which rebuilds Jacobian matrix only through several sub-matrices
with all non-zero elements. These sub-matrices record the non-zero elements in the
original Jacobian matrix, according to each observation. Then, the multiplication
between these sub-matrices and F , i.e. the gradient vector, is computed. About the
details of algorithm please see Appendix A.1.

3.1.6 Hessian Matrix

As talked about in Section 2.2.5, Hessian matrix in bundle adjustment is expressed
as,
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H = JTJ . (3.43)

Still because of the sparsity of Jacobian matrix, we do not need to explicitly form
the Jacobian matrix and compute the Hessian matrix with (3.43). The Jacobian
matrix is divided into two sub-matrices. One is camera parameter part Jc with the
dimension of 2l × 9n; the other is feature position part Jp with the dimension of
2l×3m. The Jacobian matrix and the Hessian matrix are presented with sub-matrix
form as,

J =
Jc Jp

 , (3.44)

H =

B E
ET C

 , (3.45)

B = JTc Jc , (3.46)

C = JTp Jp , (3.47)

E = JTc Jp . (3.48)

Jc is divided into n sub-matrices with the same dimension of 2l× 9; similarly, Jp is
divided into m sub-matrices with the same dimension of 2l× 3.

Jc =
Jc,1 Jc,2 · · · Jc,n

 , (3.49)

Jp =
Jp,1 Jp,2 · · · Jp,m

 . (3.50)

Since there are only 9 non-zero elements in each row of Jc and 3 non-zero elements
in each row of Jp, we have,

Jc,i
TJc,j 6= 09×9, if and only if i = j ; (3.51)

Jp,i
TJp,j 6= 03×3, if and only if i = j . (3.52)

Therefore, B is a block diagonal matrix with the block size of 9 × 9, and C is a
block diagonal matrix with the block size of 3× 3.
E is a sparse matrix with the dimension of 9n× 3m. Here, we divide ET into m×n
sub-matrices with the same dimension of 3× 9.

ET
ij = JTp,iJc,j, (3.53)

with i ∈ {1, ...,m} and j ∈ {1, ..., n}. Only when Jp,i and Jc,j have the non-zero
elements in at least one same row, ET

ij 6= 03×9, i.e.

ET
ij 6= 03×9, if and only if (i, j) ∈ S. (3.54)

The details of the relationship between Jacobian matrix and Hessian matrix are
plotted in Figure 3.2 and Figure 3.3. To simplify the plot, we only demonstrate a
very small bundle adjustment problem with 4 image frames and 6 feature points.
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Figure 3.2: Jacobian matrix demonstration of a small bundle adjustment problem.
There are 4 image frames and 6 feature points. The observation field is (ij) ∈
{(11), (12), (14), (21), (23), (31), (32), (33), (34), (42), (43), (44), (52), (53), (64)}.
The yellow block in camera corresponding Jacobian part is of size of 2 × 9; the
green block in feature point corresponding Jacobian part is of size of • × 3.

With the above statement, the Hessian matrix is computed in a more efficient way
by avoiding lots of unnecessary computing with ”0”. About the details of this
algorithm, please see Appendix A.1.

In order to demonstrate the efficiency of our algorithm, we also implement the orig-
inal computation process of Hessian matrix without optimization. The memory
consumption and the time consumption are compared among different implementa-
tions. All implementations are tested in Matlab based on the sub-dataset of Ladybug
dataset provided in Section 2.3. The memory consumption consists of the Jacobian
matrix and the Hessian matrix; the computing time counts up from the original
sub-dataset to the final Hessian matrix. The implementations used in comparison
are original explicit structure without any optimization (ES), explicit structure with
the sparse command in Matlab (ES-sparse), implicit structure with sparse command
(IS-sparse), and implicit structure with cell form in Matlab (IS-cell). The testing
computer is Surface Book with i7-6600U CPU @ 2.60GHz, 8.00GB RAM.

The average processing time and memory consumption of four implementations is
demonstrated in Table 3.1.

Obviously, IS-cell implementation consumes less memory and less processing time.
Even if IS-cell implementation needs to reconstruct the matrix from the cell form
when necessary in the following process, such as B, C, E, Jc, Jp, etc. But the
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Figure 3.3: Hessian matrix demonstration of a small bundle adjustment problem
(same as in Figure 3.2). The yellow block in B is of size of 9× 9; the green block in
C is of size of 3 × 3; the blue block in ET is of size of 3 × 9. If the blue blocks in
ET is labeled with index (i, j), (i, j)-block is a non-zero matrix, if and only if when
(i, j) ∈ S.

reconstructing of all needed matrices in each iteration step costs only around 0.02s,
which is negligible in comparison with other processing step.

3.2 Baseline Implementations of Bundle Adjust-

ment

In this section, some baseline implementations of bundle adjustment are presented.
For large-scale least square optimization problem, researchers have developed lots
of algorithms, such as, Gauss Newton Algorithm (GNA), Levenberg-Marquardt Al-
gorithm (LMA), Quasi Newton Algorithm, Truncated Newton’s Method (TNM),
Inexact Newton’s Method (TNM), etc. [NW06] Some of these algorithms have al-
ready briefly discussed in Section 2.2. Among them, Gauss Newton Algorithm with
(scaled) trust region and Levenberg-Marquardt Algorithm build the basic framework
in the most bundle adjustment in recent years.
In this section, we select Levenberg-Marquardt Algorithm solved by Cholesky de-
composition and Truncated Newton’s Method proposed in [ASSS10] as the baseline
implementations, which are used to compare the performance of our algorithms.
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Table 3.1: Processing time and memory comparison between different matrix form
implementations. IS-cell matrix form is used in this thesis.

Implementation ES ES-sparse IS-sparse IS-cell
Time/s 201 194 1.32 0.37

Memory/MB 7.31 3.02 2.84 2.82

Both LMA and GNA use the square model function to approximate the objective
function around the current point, (2.32) and (2.53) respectively. The difference of
both algorithms happens mainly in the explicit and implicit trust region formulation.
In LMA, like we have talked about in Section 2.2.6, by adding damping factor in the
Hessian matrix, LMA owns an implicit trust region. On the other hand, in GNA,
the optimal increment step in each iteration is always restricted by an explicit trust
region boundary in (2.32), seeing Section 2.2.5.

In LMA, damping factor µ is iteratively updated in each step. In each step, pk is
obtained by solving,

(Jk
T
Jk + µD)pk = −gk = −JkTF k . (3.55)

In GNA, ∆k is iteratively updated in each step. In each step, pk is obtained by
solving,

min
p∈Rs

mk
f (p) = ψkf + gk

T
p+

1

2
pTHkp s.t. ‖p‖ ≤ ∆k . (3.56)

The minimizer is either reached with,

(Jk
T
Jk)pk = −JkTF k , if ‖pk‖ ≤ ∆k and Jk

T
Jk positive definite, (3.57)

or on the boundary of the trust region.

In LMA, a damping factor µ is added in the diagonal of the original Hessian matrix.
Therefore, a new redefined Hessian matrix with damping factor, Hµ, is used,

Hµ = JTJ + µD . (3.58)

Still, Hµ can also be presented in the sub-matrix form similar as (3.45),

Hµ =

B E
ET C

 . (3.59)

In GNA, the Hessian matrixH has the same value and structure as damped Hessian
matrix Hµ in LMA, except for diagonal elements, seeing (3.45). Thus, some GNA
versions can be directly obtained by replacing Hµ with H . Only B and C are
adjusted from the original form with damping factor.
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3.2.1 Schur Complement

In bundle adjustment, the equation system is always exceed 10000-dimension. Direct
solving (3.55) is a pretty computation demanding task. In [Hay68], they propose a
trick in solving large linear system of equations (LSE), i.e. Schur complement (SC).
About more details of Schur complement, please see [Zha06]. Here, we only discuss
the implementation of Schur complement trick in bundle adjustment.
Like we have talked before, both LMA and GNA have a same sub-matrix form
of (damped) Hessian matrix according to the camera parameter and the feature
position parameters,

Hµ or H =

B E
ET C

 . (3.60)

The gradient vector g and the increment step vector (solution) p in (3.55) and
in (3.57) can also split up to the camera related part and the feature point related
part as, B E

ET C

pc
pp

 = −
gc
gp

 , (3.61)

p =

pc
pp

 , (3.62)

g =

gc
gp

 , (3.63)

where pc and gc are of the dimension of 9n× 1; pp and gp are of the dimension of
3m× 1.
If C is full rank, instead of solving (3.55), the equation system is rewritten as,

(B −EC−1ET )pc = −gc +EC−1gp , (3.64)

SC = B −EC−1ET , (3.65)

v = −(−gc +EC−1gp) , (3.66)

which is the Schur Complement of C, also known as the reduced camera ma-
trix [ASSS10]. SC is a block structured symmetric positive definite matrix, with
block size of 9 × 9. The block SC,ij corresponding to the pair of images frame
i and j, is non-zero if and only if the two images observe at least one common
point [ASSS10].
After solving (3.64), pp is obtained through,

pp = C−1(−gp −ETpc) . (3.67)

The original solving s× s linear equation system problem is converted into inversion
of block diagonal matrix C, some matrix-vector multiplications, and solving 9n×9n
linear equation system (3.64).



38 CHAPTER 3. DAMPED INEXACT NEWTON’S METHOD IN BUNDLE ADJUSTMENT

C is a block diagonal matrix with block size of 3× 3,

C =


C1

C2

. . .

Cm

 . (3.68)

The inversion of C is relatively a cheap process, O(m) algorithm, with

C−1 =


C−11

C−12
. . .

C−1m

 . (3.69)

On the other hand, if B is full rank, instead of solving (3.55) or (3.57), the equation
system can be also rewritten as,

(C −ETB−1E)pp = −gp +ETB−1gc , (3.70)

SB = C −ETB−1E , (3.71)

w = −(−gp +ETB−1gc) , (3.72)

which is the Schur complement of B, i.e. the reduced feature points matrix, similar
as Schur complement of C.

After solving (3.70), pp is obtained through,

pc = B−1(−gc −Epp) . (3.73)

The original solving s× s linear equation system problem is converted into inversion
of block diagonal matrixB, some matrix-vector multiplications, and solving 3m×3m
linear equation system (3.70).

In general bundle adjustment problem, the number of image frames (cameras) is
much smaller than the number of feature points, so that 9n≪ 3m. Therefore, the
complexity of solving (3.64) is far cheaper than solving (3.70).

Even if in SC of B, the matrix to invert has a smaller dimension than in SC of C,
the inversion of matrix is cubic complexity computation, i.e. in Schur complement
of B it is 93n and in Schur complement of C 33m. Anyway, generally, the inversion
of B is cheaper than the inversion of C. However, the complexity in the part of
solving linear equation system occupies the major computation in comparison with
inversion part, no matter which solvers are used. The most widely used solvers in
bundle adjustment are decomposition and conjugates gradient, which are discussed
in the following sections.
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3.2.2 Cholesky Decomposition

Decomposition, such as LU decomposition, singular value decomposition, Cholesky
decomposition, is the basic idea for solving linear system of equations. For good
conditioned, positive definite and relatively small matrix, decomposition is still the
most effective method to get an exact solution [NW06]. Since the system matrix
of LMA in bundle adjustment, i.e. Hµ, SB, SC , are Hermitian, positive-definite
matrix, Cholesky decomposition is most widely used to solve the equation system
of LMA in small-scaled bundle adjustment.

Theorem 3.2.1 (Cholesky Decomposition) A = LL∗, where L is a lower tri-
angular matrix with real and positive diagonal entries, and L∗ denotes the conju-
gate transpose of L. Every Hermitian positive-definite matrix (and thus also every
real-valued symmetric positive-definite matrix) has a unique Cholesky decomposi-
tion [wikb].

In GNA, due to without damping factor, the Hessian matrix H can not be guaran-
teed strictly positive definite (may close to singular), so that using Cholesky decom-
position in GNA not only costs extremely large computation time, but also leads to
extremely inaccurate solution. For example, we implement Cholesky decomposition
in GNA coupled with Schur complement of C in Matlab, and test the algorithm
on Ladybug dataset proposed in Section 2.3. After around 20 iteration steps, the
condition number of SC is over 1016.
Therefore, we only test Cholesky decomposition in LMA. We implement three vari-
ants in LMA, with SC of C, with SC of B, and without SC. All linear equation
system solvers is realized with Cholesky decomposition (CD) in Matlab. The testing
computer is Surface Book with i7-6600U CPU @ 2.60GHz, 8.00GB RAM. The test
dataset is the full Ladybug dataset provided in Section 2.3. For each implementa-
tion, we run 50 iteration steps. The computation time in each CD, and the time
costing in each iteration step are recorded, since in each iteration step there may
exist more than one CD to get a successful reduction in the objective function (more
details in Section 3.3.3). The time spent in each CD is counted from forming the
corresponding equation system to obtaining pk. Besides, the objective function and
the gradient norm after each iteration step are also collected.
The objective function and the gradient norm vary along the time are demonstrated
in Figure 3.4 and Figure 3.5.
The processing time of three CD implementations is presented in Table 3.2.

Table 3.2: Processing time comparison of CD with different SC implementations.
SC of C has the highest efficiency.

Implementation no SC (Hµ) SC of B SC of C
Time per CD/s 5.88 34.25 4.73

Time in 50 iteration/s 709 > 5000 365
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Figure 3.4: Comparison of the objective function curve between different Schur
complement in LMA solved by Cholesky decomposition.

Figure 3.5: Comparison of the gradient norm curve between different Schur comple-
ment in LMA solved by Cholesky decomposition. The implementation with SC of
C has the best performance, and stands for ”LMA-CD” in the following.
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With SC of C, a promotion in processing time is obtained in solving LSE in bundle
adjustment. However, the processing time with SC of B is even much larger than
without SC. The reason is that the feature points arguments are far more (almost 50
times) than the camera arguments in our dataset, so that SB has a similar dimension
with Hµ, besides, explicit constructing SB also costs lots of time.

In optimization, the curve of the objective function demonstrates how fast and how
deep the objective function reduces along the optimization process; the curve of the
gradient norm reveal how fast and how close the solution approaches a local optimal
point. Since bundle adjustment is a highly non-convex, non-linear optimization
problem, even if the objective function maintains almost stable after several iteration
steps, it is still not enough to prove it is a local optimal. In bundle adjustment, lots
of points may have the similar value of the objective function, although these points
locate far apart from each other. Only when the gradient norm is small enough, this
resolved point is considered as a local optimal.

From Figure 3.4, it is summarized that both SC of C and without SC have a
similar and fast reduction curve of the objective function related to SC of B. From
Figure 3.5, it is obvious that SC of C gains a significant decreasing of the gradient
norm after several iteration steps. Therefore, LMA coupled with SC of C solved by
CD is more efficiency than other two CD implementations.

LMA coupled with SC of C solved by CD is still the most efficient algorithm in
small-scale bundle adjustment [ASSS10]. However, CD solver also faces challenges
even if in small-scale bundle adjustment. CD solver is not robust when the matrix
of equation system is bad conditioned or near singular, which leads to an extreme
large computation time and huge error. Thus, even if using CD in LMA, the damp-
ing factor (damping matrix) needs to be carefully selected to ensure the matrix
is good conditioned and far from singular. For example, if the damping matrix
strategy (3.74) proposed in [ASSS10] is implemented in LMA coupled with SC, CD
solver generates NaN and/or Inf element after several iterations. Same situation
also happens sometimes when the updating process of damping factor is changed.

Hµ = Jk
T
Jk + µdiag(Jk

T
Jk) . (3.74)

For solving large-scale dense bundle adjustment, CD is not efficient anymore. De-
composition of large matrix often costs much more time than using other strategy to
solving the equation system, e.g. preconditioned conjugate gradient, seeing more de-
tails in Section 5.3. Moreover, in the later implementation with conjugate gradient,
the explicit expression of SC and SB can be avoided through matrix-vector multipli-
cation, which also save much processing time in solving equation system [ASSS10].
Besides, the avoiding of explicit expression of SC and SB also saves lots of memory
in comparison with the solver without Schur complement.
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3.2.3 Baseline Implementations

Like we have talked in Section 1.2, we select LMA coupled with SC of C solved
by CD and the algorithm proposed in [ASSS10] as the baseline implementations
in the thesis. Moreover, in the following thesis, these both baselines are called as
”LMA-CD” and ”BAL” for short.
A comparison of the objective function and the gradient norm between both baseline
implementations is plotted in Figure 3.6 and Figure 3.7.

Figure 3.6: Comparison of the objective function curves between both baseline im-
plementations. ”LMA-CD” performs better in the objective function reduction on
the Ladybug dataset.

3.3 Damped Inexact Newton’s Method

The common method of solving linear equation system Ax = b is Cholesky de-
composition, if A is a Hermitian, positive-definite matrix. In bundle adjustment,
since SC , SB, and Hµ have a sparse structure. Except for direct using Cholesky
decomposition [TMHF99], Chen et al use row and column re-ordering algorithms to
maximize the sparsity of the Cholesky decomposition, and focus compute effort on
the non-zero part of the factorization [CDHR08], [ASSS10].
However, SC and SB have a large dimension in the large-scale dataset, or SC and
SB are not sparse enough, such as, community photo collections, so that explicit
construction of both matrices is already pretty computation and storage demanding.
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Figure 3.7: Comparison of the gradient norm curves between both baseline imple-
mentations. ”LMA-CD” performs better in the gradient reduction on the Ladybug
dataset.

Besides, Cholesky decomposition is not robust when facing bad conditioned or near
singular matrix.

We propose to use conjugate gradient (CG) to solve the linear equation system.
There are two widely used fundamental optimization algorithm with CG. Using CG
to solve the equation system in Gauss Newton Algorithm with trust region, is called
inexact Newton’s method; using CG to solve the equation system in Levenberg-
Marquadt Algorithm, is called truncated Newton’s method [ASSS10].

In this section, we firstly introduce these two methods, and present our important
improvements in both methods. Some of these developed strategies are also sup-
posed to be used in the following algorithm as well, such as, trust region radius
updating, PCG solver with scaled trust region, damping factor updating, etc. Due
to the unsatisfied performance in both methods, then, we presented an inexact New-
ton’s method with damping factor in Hessian matrix, where Levenberg-Marquadt
Algorithm is bounded by a explicit scaled trust region in bundle adjustment. This
algorithm combines the advantages from both truncated Newton’s method and in-
exact Newton’s method, which yields a significant advancement.
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3.3.1 Conjugate Gradient

Conjugate gradient is a useful technique for solving large linear system of equa-
tions [NW06], e.g.

Ax = b . (3.75)

In creating a new vector aj in the conjugate gradient set, it only needs the previous
vector aj−1. The new vector is automatically conjugate to all vectors in the set.
This strategy requires little storage and computation, which is particularly suitable
for solving large equation system. Every conjugate direction aj is chosen to be a
linear combination of the current negative residual −rj and previous direction aj−1.

r = Ax− b , (3.76)

which is the steepest descent direction of the objective function,

ψA =
1

2
xTAx− bTx . (3.77)

The conjugate gradient process actually iteratively minimize the objective func-
tion (3.77), until finding a satisfied solution xj.

aj = −rj + βjaj−1 . (3.78)

β is to ensure that aj and aj−1 are conjugate with respect to A, i.e.

aTj−1Aaj = 0 , (3.79)

so that,

βj =
rTj Aaj−1

aTj−1Aaj−1
. (3.80)

x is updated with the direction of conjugate vector in each iteration as,

xj+1 = xj + αjaj , (3.81)

where the step length αj is obtained with,

αj =
rTj aj

aTj Aaj
. (3.82)

The original conjugate gradient algorithm please see [NW06]. The convergence
rate of conjugate gradient (CG) is so slower than solving the equation system with
Newton’s Method, since in general we need to update x with each CG vector in the
set. The number of CG vectors equals to the dimension of A.
However, using CG to solve a precise solution of step is inefficient and also unneces-
sary in bundle adjustment. A termination condition is set for the iteration loop of
CG, i.e. if the norm of residual vector rj is smaller than a threshold, the CG loop
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stops and x is set as current value in j-th iteration. In this thesis, the terminate
condition of CG loop is chosen as ‖rj‖ < 0.1‖b‖.
Firstly, we implement the CG algorithm for Schur complement of C, and comparing
the processing time of CG with Cholesky decomposition and LU decomposition for
SC ofC. All three implementations solve (3.64) based on sub-dataset, and then form
the complete argument space p with pc and pp from (3.67). The testing computer
is Surface Book with i7-6600U CPU @ 2.60GHz, 8.00GB RAM.
These three implementations are respectively used to solve 50 LSEs of Schur com-
plement. The average processing time for solving these LSEs is demonstrated in
Table 3.3.

Table 3.3: Processing time comparison between solving LSEs (SC of C) with CG
and decompositions. CG solver is the fastest.

Implementation CG Cholesky Decomposition LU Decomposition
Time per LSE/s 0.322 0.338 0.348

In general, Cholesky decomposition is much faster than LU decomposition for Her-
mitian, positive-definite matrix. However, in our implementations, their processing
time in Table 3.3 is almost the same. Because of round-off error problem in numer-
ical calculation, SC is not a strict Hermitian, positive-definite matrix. Before using
Cholesky decomposition, SC is set as (SC + STC)/2 to compensate the error.
The norm of the difference between the solution of CG and the solution from de-
compositions is computed to demonstrate the accuracy of CG, e.g. for Cholesky
decomposition (CD),

‖pCG − pCD‖2

s
. (3.83)

The results about the accuracy of PCG show below in Table 3.4.

Table 3.4: Accuracy comparison between different solvers (with SC of C)
Comparison pair CG and CD CG and LUD CD and LUD

Difference Norm/1 0.010 0.010 0.000

From the results in Table 3.3 and Table 3.4, we summarize that for a small-scale
LSE, CG does not reduce the processing time significantly, on the contrary, CG does
not solve LSE exactly as Cholesky decomposition and LU decomposition.
However, a significant advantage of CG in comparison with decomposition is that CG
is much more robust in solving LSE even if the system matrixA is bad conditioned or
near singular. The strategy of CG is approximating the solution iteratively through
the conjugate gradient vector of A, which is not affected so much by the intrinsic
property of A as decomposition. When A is bad conditioned, it only takes more
CG steps in approximating; when A is near singular, CG solver does not crash as
decomposition.
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3.3.2 Preconditioned Conjugate Gradient

Since the system matrix in bundle adjustment, H , SC , or SB, is often bad condi-
tioned, the CG loop can be further accelerated through improving the eigenvalue
distribution of system matrix. When the condition number is reduced, the termina-
tion condition is reached with less CG steps, i.e. the CG loop terminates faster.
Preconditioned Conjugate Gradient (PCG) reforms the equation system with a pre-
conditioner matrix P . P can be stable or varied in each iteration steps. With
preconditioner, the condition number of the system matrix is reduced. The selec-
tion of preconditioner is discussed later in Section 3.3.5.
With P , instead of solving x in Ax = b, we solve new vector x̆,

x̆ = Px , (3.84)

in the equation system,
(P−TAP−1)x̆ = P−Tb . (3.85)

After obtaining x̆, the original vector x is acquired with x = P−1x̆.
Similar with previous CG, PCG finds a point x̆ which minimizes the objective
function,

ψ̆A =
1

2
x̆T Ăx̆− b̆T x̆ , (3.86)

with
Ă = P−TAP−1 , (3.87)

b̆ = P−Tb . (3.88)

After simplifying (3.86), obviously, ψ̆A equals to ψA in (3.77), which means the
objective function does not change with preconditioner.
In PCG, the preconditioner matrix M is usually used, which is defined as M =
P TP . In the following thesis, when we mention preconditioner matrix, it represents
M . M is chosen to be a highly sparse, diagonal or block diagonal square matrix
with the same size as A. Here, the general PCG form used for solving Ax = b with
the preconditioner M is briefly described in Algorithm 1.
Using CG to solving an inexact increment step in LMA (3.55) or in GNA 3.57,
indicates a optimization of the objective function based on a quadratic model func-
tion around the current point. The preconditioner in CG and the coupled Schur
complement trick only having a acceleration impact on solving LSE.

3.3.3 Inexact Newton’s Method

Here, we introduce our improved inexact Newton’s method (INM) systematically.
In inexact Newton’s method, a (scaled) trust region is combined with CG solver to
restrict that the step size of each increment, such that the quadratic model function
in GNA better approximates the behavior of the objective function in a proper
area. according to how well this approximation is, the trust region radius for the
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Algorithm 1 PCG

Require: Equation system Ax = b; Preconditioner M ; Maximum iterative steps
in PCG loop, #PCG; Initial x0;

Ensure: Final result xj;
1: Initialize residual r0 ← b;
2: Set termination condition ε← min(0.1, ‖b‖) ∗ ‖b‖;
3: Solve Mq0 = r0 for q0;
4: Initialize conjugate gradient a0 ← −q0;
5: j ← 0;
6: while j < #PCG and ‖rj‖ > ε do

7: αj ←
rTj qj

aT
j Aaj

;

8: xj+1 ← xj + αjaj;
9: rj+1 ← rj + αjAaj;
10: Solve Mqj+1 = rj+1 for qj+1;

11: βj+1 ←
rTj+1qj+1

rTj qj
;

12: aj+1 ← −qj+1 + βj+1aj;
13: j ← j + 1;
14: end while
15: return xj;

next iteration is updated. This explicit region boundary strategy robustly define a
restriction area in each iteration related to the implicit step size in LMA such that
the increment step is large enough, on the other hand, the approximation is precise
enough.
In inexact Newton’s method, an optimal increment step in each iteration step is
obtained by solving (3.89),

pk = min
p∈Rs

mk
f (p) = ψkf + gk

T
p+

1

2
pTHkp s.t. ‖p‖ ≤ ∆k . (3.89)

Trust Region Radius Updating

Firstly, the updating rule of the trust region radius, ∆k, must be confirmed. The
most commonly used updating rule is built according to a ratio,

ρk =
ψf (u

k)− ψf (uk + pk)

mk
f (0)−mk

f (p
k)

. (3.90)

For the definition of ψf and mk
f please see (2.26) and (3.89). This ratio presents

how well the model function mk
f approximates the real objective function ψf around

current point uk. If it is near 1, which means the approximation is well, the trust
region radius can be increased; if it is near 0, which means the approximation is bad,
the trust region radius should be decreased. If it is smaller than 0, which means the
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real function is increased with this increment step, this step is rejected. In bundle
adjustment, H = JTJ , i.e. Hessian matrix is always assumed to be semi-positive
definite such that the denominator of ρk is greater equal 0 in analytical. Then we can
choose a smaller trust region, seeing Section 2.2.1. However, due to some numerical
error in bad conditioned situation, the denominator of ρk may also be smaller than
zero, which causes catastrophic problem if the algorithm is not robust enough.

In this thesis, we develop a novel trust region radius updating process calibrated
from [NW06], seeing Algorithm 2.

Algorithm 2 Trust Region Radius Updating

Require: Increment step pk; Ratio ρk; Current radius ∆k;
Ensure: Next radius ∆k+1;
1: if ρk < 0.25 then
2: ∆k+1 ← 0.25∆k;
3: else
4: if ρk > 0.75 and ‖pk‖ = ∆k then
5: ∆k+1 ← 2∆k;
6: else
7: ∆k+1 ← ∆k;
8: end if
9: end if
10: return ∆k+1;

Trust Region Newton-PCG Method

The arguments vector uk moves a small step pk which is the minimum point of
the model function (3.89). This quadratic model function is considered as a new
local objective function, which models the behavior of the system (the real objective
function) around the current point uk, and the optimal step pk minimize this local
objective function in the neighbor area. With this procedure, the real objective
function (2.26) is iteratively reduced to a minimum. Obviously, the generated step
pk must be small, since (3.89) only simulates the system in a small neighbor region.
But if it is too small, the reduction of the objective funtion is also too small, so
that the optimization needs too many steps. The optimal increment step pk is
constrained within a trust region ∆k, which is actually a hyper ball in argument
space. pk can be approximated by Trust Region Newton-PCG Method, which is
also called PCG-Steihaug [NW06].

Here, we present a novel Trust Region Newton-PCG Method in Algorithm 3, which
further improves the original Trust Region Newton-PCG Method. Firstly, the ter-
mination condition for PCG loop is changed to a more robust condition. Secondly,
a more efficient and more precise strategy in searching an approximation solution
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on the trust region boundary is proposed, when the solution exceeds the boundary
in loop.

Trust Region Newton-PCG Method aims to solve an optimal x in (3.91).

min
x
ψAb(x) =

1

2
xTAx− bTx s.t. ‖x‖ ≤ ∆ , (3.91)

which is actually the same presentation of (3.89). Thus, this solver builds a quadratic
model function around current point. When needed, the algorithm can also return
the reduction of the model function with the resolved point x,

ψAb(0)− ψAb(x) = −1

2
xTAx+ bTx . (3.92)

Algorithm 3 Trust Region Newton-PCG Method

Require: Matrix A, vector b; Preconditioner M ; Trust region radius ∆; Maximum
iterative steps in PCG loop, #PCG; Termination factor tε ← 0.1

Ensure: Final result x;
1: Initialize x0 ← 0;
2: Initialize residual r0 ← b;
3: Set termination condition ε← min(tε, ‖b‖) ∗ ‖b‖;
4: Solve Mq0 = r0 for q0;
5: Initialize conjugate gradient a0 ← −q0;
6: for j = 0 to #PCG do

7: αj ←
rTj qj

aT
j Aaj

;

8: xj+1 ← xj + αjaj;
9: if ‖xj+1‖ ≥ ∆ then
10: Find τ ≥ 0, such that x← xj + τaj with ‖x‖ = ∆;
11: return x;
12: end if
13: rj+1 ← rj + αjAaj;
14: if ‖rj+1‖ ≤ ε then
15: x← xj+1;
16: return x;
17: end if
18: Solve Mqj+1 = rj+1 for qj+1;

19: βj+1 ←
rTj+1qj+1

rTj qj
;

20: aj+1 ← −qj+1 + βj+1aj;
21: j ← j + 1;
22: end for
23: x← xj+1;
24: return x;
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The calculation process mentioned in Algorithm 3 line 10 is realized with The Law
of Cosines as,

‖xj‖2 + τ 2‖aj‖2 + 2τxj · aj = ∆2 . (3.93)

Then, τ is computed from a quadratic equation.

Scaling

However, each argument has a different definition about ”small” step due to the
different sensitivity and different original magnitude order. This phenomenon is
essentially coincident with the crucial numerical step chosen in the numerical Ja-
cobian matrix calculation, seeing Section 3.1.4. It leads to that the change in the
argument space is much more sensitive in some certain directions than others. An
optimization process is poorly scaled if the changes to the arguments x in a certain
direction generate much larger variations in the value of the objective function than
another directions [NW06].
Bundle adjustment is always poorly scaled, seeing (3.38), e.g. the rotation angles
are highly sensitive related to other arguments, and the magnitude of focus length
is much larger than others. If the original argument space is used, the obtained
increment step vector can not update the current point robustly. Some directions
may not even change in several steps. To make the solver more balanced in each
direction, we define and solve the optimization problem in a scaled arguments space.
A new scaled arguments vector x̃ is used to replace the original vector x. The widely
used scaling strategy is diagonal scaling with positive diagonal matrix D.

x̃ = Dx . (3.94)

Since the shape of trust region should be such that our confidence in the model is
more or less the same at all points in the region, the scaled trust region is consider
to be an ellipsoid in which the axes are short in the sensitive directions and longer
in the less sensitive directions [NW06]. Another advantage of scaling is that when
current increment step in PCG loop exceeds the scaled trust region, the loop is also
terminated. Then, a proper increment step on the boundary is selected, and the
further iterations in PCG are avoided.
In bundle adjustment, this procedure is represented as,

min
p∈Rs

mk
f (p) = ψkf + (gk)Tp+

1

2
pTHkp s.t. ‖Dp‖ ≤ ∆k . (3.95)

The model function can be also written in scaling form,

min
p̃∈Rs

m̃k
f (p̃) = ψkf + (g̃k)T p̃+

1

2
p̃TH̃kp̃ s.t. ‖p̃‖ ≤ ∆k , (3.96)

with
g̃k = D−1gk , (3.97)
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H̃k = D−1HkD−1 , (3.98)

p̃ = Dp . (3.99)

When simplifying (3.96) with (3.97), (3.98), (3.99), (3.96) is proved to be the
same as (3.95). Therefore, in the bundle adjustment, we can simple replace (3.95)

with (3.96), replace p̃ with p, and also for g̃k and H̃k, which yields the coherent op-
timization process as previous arguments space. Only when it needs the arguments
demonstration in the original space sometimes, such as, uk+1 = uk +pk, p̃ needs to
be transformed to p.

Coupled with Schur Complement

In this section, Scaled Trust Region Newton-PCG Method is coupled with Schur
complement of C. The scaling matrix and the trust region radius are constructed
according to the camera corresponding increment step pc. When coupled with Schur
complement, the optimal increment step directly solved by PCG is not the complete
arguments space. When using SC of C, the direct resolved increment step is pkc in
k-th iteration,

SkCp
k
c = −vk . (3.100)

The other variant form, Schur complement of B, has the similar representation.
Then, pc is converted to full argument space pk. More details please see Sec-
tion 3.2.1.
If we consider this real solving process in camera arguments sub-space (Schur com-
plement of C), it also contains a implicit quadratic model function in each iteration,

min
pc∈R9n

mk
c,f (pc) = (vk)Tpc +

1

2
pTcS

k
Cpc s.t. ‖Dcpc‖ ≤ ∆k

c , (3.101)

where Dc is the diagonal scaling matrix for camera arguments; ∆k
c is the trust region

radius used for camera arguments sub-space; vk and SkC are presented in (3.65)
and (3.66).
Due to the computation process in PCG solver, the value of (3.101) can be di-
rectly acquired without further computation. If the decrement of the model func-
tion (3.101) can take the place of the decrement of the original model function (3.95),
the computational cost in (3.90) reduces further. After our careful computation and
verification,

mk
f (0)−mk

f (p
k) = −mk

f (p
k) = −mk

c,f (p
k
c) +

1

2
gkp

T
Ck−1gkp , (3.102)

with
−mk

c,f (p
k
c) = mk

c,f (0)−mk
c,f (p

k
c) . (3.103)

Ck is a sub-matrix in Hessian matrix Hk, seeing (3.45). gkp is the sub-gradient
vector corresponding to feature points parameters. Obviously, the second term on
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the right side of (3.102) is not dependent on the resolved increment step pkc, i.e.
it is a constant in one iteration. Thus, when pkc is the optimal point in Schur
complement, its converted full increment step vector, pk, is still the optimal in
original full equation system, which also makes sense that the Schur complement
trick can be used instead of solving the full equation system.
Since the inversion of Ck already exists in SC process, (3.102) only needs some
extra matrix-vector multiplications, whose computation complexity is far simpler
than computing the reduction in the complete arguments space. Therefore,

ρk =
ψf (u

k)− ψf (uk + pk)

−mk
c,f (p

k
c) + 1

2
gkp

TCk−1gkp
. (3.104)

The Scaled Trust Region Newton-PCG Method coupled with SC of C is presented
in Algorithm 4.

Algorithm 4 Scaled Trust Region Newton-PCG with Schur Complement of C

Require: Hessian matrix H in form (3.45); Gradient vector g in form (3.63); Scal-
ing matrix Dc;

Ensure: Increment step p; Reduction of model function −mf (p);
1: Compute LSE SC and v with (3.65) and (3.66);

2: Scaling S̃C ← D−1c SCD−1c , ṽ ← D−1c v;

3: Construct scaled Schur complement’s LSE: S̃Cp̃c = −ṽ
4: Compute preconditioner M with the strategy from Section 3.3.2;
5: Solve S̃Cp̃c = −ṽ for p̃c with Algorithm 3;
6: Reverse to unscaled solution, pc ← D−1c p̃c
7: Compute the full increment step vector p with (3.67);
8: Compute −mf (p) with (3.102);
9: return p and −mf (p);

In order to terminate the iterations when the solution approximates the optimal
solution well enough, two termination conditions are added into the process. One is
for the norm of the current gradient; the other is for the objective function. Either
of both value is reduced down to a specific threshold (ξ1 and ξ2), which means the
optimal arguments are found.
The complete algorithm of Inexact Newton’s Method is described in Algorithm 5.
When needed, the INM algorithms for Schur complement of B or without Schur
complement can be obtained easily from Algorithm 5 with slight revision.
The matrix SC in LSE of each iteration step does not need to be explicitly computed,
since all matrix-matrix multiplication appeared in Algorithm 4 line 5 can be replaced
with cascaded matrix-vector multiplication. This strategy not only saves memory
space but also saves calculation time, about more details seeing [ASSS10].
Here, We implement altogether three variants of scaling matrix in INM, each with
three version of Schur complement (as in CD test). The selected scaling matrices



3.3. DAMPED INEXACT NEWTON’S METHOD 53

are identity matrix (no scaling), diagonal matrix formed by the optimal increment
step in numerical calculation (3.38), and the diagonal matrix of Hessian matrix
(damping matrix proposed in [ASSS10]). Each scaling matrix is regulated according
to different versions of SC. The preconditioner is selected as identity matrix (no
preconditioner). The maximum iterative steps in PCG loop is chosen to be 1000.
The testing computer is Surface Book with i7-6600U CPU @ 2.60GHz, 8.00GB
RAM. The test dataset is the full Ladybug dataset provided in Section 2.3. For each
implementation, we run 50 iteration steps. The computation time in each Newton-
PCG, and the time costing in each iteration step are recorded, since in each iteration
step there may exist more than one Newton-PCG to get a successful reduction in the
objective function. One iteration step is terminated until the ”update” flag is set to
True, which indicates it finds a reduction step in this iteration, seeing Algorithm 5
line 13; otherwise, it continue to update the trust region radius, and run another
Newton-PCG loop to find a new increment step.

A comparison of the objective function and the gradient norm among different im-
plementations is plotted in Figure 3.8 and Figure 3.9.

Figure 3.8: Comparison of the objective function curves between different INM im-
plementations. ”H” represents without Schur complement; ”C” represents Schur
complement of C; ”B” represents Schur complement of B. ”inc” represents scaling
matrix formed from (3.38); ”diag” represents scaling matrix formed from the diago-
nal of Hessian matrix; ”I” represents without scaling, i.e. scaling matrix is identity
matrix. ”C-inc” has the smallest value of the objective function.
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Figure 3.9: Comparison of the gradient norm curve between different INM imple-
mentations. ”B-diag” performs the best decline curve of the gradient norm.

From the objective function curve figure, almost every implementations obtain a sat-
isfied and similar reduction except for C-diag and H-diag; in gradient norm curves,
B-diag implementation has the fastest decreasing. We choose three implementa-
tions which yield both good objective function curves and good gradient curves,
and present their processing time in Table 3.5. It is no surprise that SC of C has a
significant improvement in processing time than others.

Table 3.5: Processing time comparison between INM implementations. ”C-inc” is
the fastest.

Implementation H-I C-inc B-diag
Time per Newton-PCG/s 11.48 4.37 10.91

Time in 50 iteration/s 692 388 659

3.3.4 Truncated Newton’s Method

We also introduce the truncated Newton’s method (TNM) briefly. In truncated
Newton’s method, Levenberg-Marquadt Algorithm is combined with PCG solver.
The damping factor in LMA has a similar effectiveness as trust region boundary in
INM to restrict the step size of each increment, but in an implicit way. Besides, the
damping matrix in LMA also has a similar role as scaling matrix in INM to avoid
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poor scaled argument space, but also in an implicit way. According to how well the
reduction in quadratic model function (2.53) approximates the reduction of the real
objective function, the damping factor (or damping matrix) for the next iteration is
updated.
The damping factor updating procedure also varies in different situation. In our
algorithm, we use the basic idea provided by [Lou05], and make some small revisions.
The damping factor is also updated based on the ratio ρk in (3.104) with an auxiliary
coefficient ν, seeing Algorithm 6.
Another variant in damping factor part is damping matrix, the original damping
matrix is Is×s, so that when µ → +∞, LMA becomes a pure Gradient Descent
Algorithm with small step length. In [ASSS10], Agarwal et al. provide a new choice
of damping matrix, i.e. diagonal matrix of H .
LMA coupled with Schur complement of C solved by PCG is introduced in Algo-
rithm 7. The whole truncated Newton’s method is introduced in Algorithm 8.
Here, We implement altogether three variants of damping matrix (similar as scaling
matrix in INM) in TNM, each with three version of Schur complement (as in INM
test). The preconditioner is selected as identity matrix (no preconditioner). The se-
lected damping matrices are identity matrix, diagonal matrix formed by the optimal
increment step in numerical calculation (3.38), and the diagonal matrix of Hessian
matrix (as in [ASSS10]). The maximum iterative steps in PCG loop is chosen to
be 1000. The testing computer is Surface Book with i7-6600U CPU @ 2.60GHz,
8.00GB RAM. The test dataset is the full Ladybug dataset provided in Section 2.3.
For each implementation, we run 50 iteration steps. The computation time in each
LMA-PCG, and the time costing in each iteration step are recorded. Still in each it-
eration step there may exist more than one LMA-PCG to get a successful reduction
in the objective function.
A comparison of the objective function and the gradient norm among different im-
plementations is plotted in Figure 3.10 and Figure 3.11.
From the objective function curve figure, almost every implementation obtains a
satisfied and similar reduction; in gradient norm curves, almost every implementa-
tion has a huge oscillation. We choose three typical implementations, and present
their processing time in Table 3.6. It is no surprise that SC of C has a significant
improvement in processing time than others.

Table 3.6: Processing time comparison between TNM implementations. ”C-inc” is
the fastest.

Implementation H-I C-inc B-inc
Time per LMA-PCG/s 10.78 6.23 10.44
Time in 50 iteration/s 653 678 734

Here, we also compare the performance between INM and TNM. We choose three
typical implementations in both methods, H-I, C-inc, B-diag, and plot their ob-
jective function curves and gradient norm curves in Figure 3.12 and Figure 3.13.
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Figure 3.10: Comparison of the objective function curves between different TNM
implementations. ”H” represents without Schur complement; ”C” represents Schur
complement of C; ”B” represents Schur complement of B. ”inc” represents damp-
ing matrix formed from (3.38); ”diag” represents damping matrix formed from the
diagonal of Hessian matrix; ”I” represents with identity damping matrix. ”C-diag”
has the smallest value of the objective function.
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Figure 3.11: Comparison of the gradient norm curves between different TNM im-
plementations. ”H-I” has the smallest fluctuation in the gradient reduction.

On the whole, INM implementations have a better gradient norm curve than TNM;
however, TNM yields a little faster reduction of the objective function. The rea-
sons come from, that the explicit (scaled) trust region boundary ensure a more
robust increment step, so that the optimization process is towards a minimal in
near quadratic form; on the other hand, the diagonal element calibration by the
damping factor in LMA improves the condition number of Hessian matrix and also
avoid the singularity problem, so that PCG solver works better.

In addition, in some implementations of INM (GNA), the Hessian matrix is not strict
positive definite anymore and with a large condition number after several iteration
steps due to the lack of damping factor, so that the process cannot be executed
further, e.g. C-diag in INM.

3.3.5 Inexact Newton’s Method with Damping

Due to the remarkable advantages in both Newton’s methods, we are desired to
take the best of them. We combine them together and propose a damped inexact
Newton’s method (DINM), which adds the damping calibration in Hessian matrix
in INM to improve the Hessian matrix. In other words, an explicit (scaled) trust
region is implemented in TNM to increase the robustness of step size.



58 CHAPTER 3. DAMPED INEXACT NEWTON’S METHOD IN BUNDLE ADJUSTMENT

Figure 3.12: Comparison of the objective function curves between INM implemen-
tations and TNM implementations. All INM implementations are plotted in dash
lines; and their corresponding TNM implementations are plotted in solid lines with
the same colors. In general, TNM implementations have a faster and deeper reduc-
tion of the objective function related to INMs.
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Figure 3.13: Comparison of the gradient norm curves between INM implementations
and TNM implementations. In general, INM implementations have a deeper and
more stable reduction of the gradient norm related to TNMs.

The optimization process in k-th iteration step in DINM is,

min
p∈Rs

mk
f (p) = ψkf + (gk)Tp+

1

2
pTHµp s.t. ‖p‖ ≤ ∆k . (3.105)

Since in the previous implementations, Schur complement of C has a significant
improvement in processing time and also yields a similar reduction curve related to
without SC and SC of B. Thus, we only implement our damped inexact Newton’s
method couple with SC of C in this section. The whole damped inexact Newton’s
method is presented in Algorithm 9.
Here, We implement altogether four variants of DINM with different scaling matrices
and damping matrices (similar as before). The preconditioner is still selected as
identity matrix (no preconditioner). The maximum iterative steps in PCG loop is
chosen to be 1000. The testing computer is Surface Book with i7-6600U CPU @
2.60GHz, 8.00GB RAM. The test dataset is the full Ladybug dataset provided in
Section 2.3. For each implementation, we run 50 iteration steps. The computation
time in each Newton-PCG, and the time costing in each iteration step are recorded.
A comparison of the objective function and the gradient norm among different im-
plementations is plotted in Figure 3.14 and Figure 3.15.
From the objective function curve figure, ”inc-I” obtains a more satisfied reduction
than others; ”inc-I” and ”inc-diag” have a extremely better gradient norm curve
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Figure 3.14: Comparison of the objective function curves between different DINM
implementations (with different scaling matrix and different damping matrix). For
example, ”inc-diag” represents, scaling matrix is formed from (3.38), and damping
matrix is formed from the diagonal of Hessian matrix. ”inc-I” has the fastest and
deepest decreasing of the objective function.
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Figure 3.15: Comparison of the gradient norm curves between different DINM im-
plementations. ”inc-I” and ”inc-diag” perform better in the gradient decline than
others.

than others. These four typical implementations’ processing time is presented in
Table 3.7.

Table 3.7: Processing time comparison between DINM implementations. ”inc-I” is
the fastest implementation.

Implementation inc-I inc-diag diag-I diag-inc
Time per Newton-PCG/s 5.37 5.60 7.13 5.69

Time in 50 iteration/s 402 446 524 622

Then, we make a comparison of DINM with INM, TNM and baseline implementa-
tions in Figure 3.16, Figure 3.17, and Table 3.8. Both baseline implementations are
in SC of C mode.
From gradient norm figure, our DINM algorithms have already gained a huge im-
provement in the gradient norm reduction over all other implementations. The
number of all arguments, s = 23769, which means the dimension of the gradient is
also 23769. After 50 steps, the gradient norm of DINM has been down to less than
10, i.e. the average value of each single gradient is below 10−3. Even if considering
the maximum value in the gradient vector, it has reduced to around 0.5. The results
indicate that DINM finds a local optimal argument after 50 steps for this Ladybug
dataset. CD implementation also yields a significant reduction in the gradient norm
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curve. However, after several steps, the gradient norm of CD implementation main-
tains around 100, and does not decrease anymore. Besides, like we have discussed in
Section 3.2.2, CD solver is not as robust as PCG solver, when facing a near singular
or bad conditioned equation system.
From objective function figure, both DINM algorithms also generate a fast and large
drop along the optimization. Furthermore, ”DINM:inc-I” gets the lowest objective
function after 50 steps among all implementations.
From processing time table, our DINM algorithms accelerates almost 1.5 times than
INM and TNM. Even if they are still a little slower than two baseline implementa-
tions, their processing time is in an acceptable range considering their promotion in
accuracy. Besides, since the explicit construction of

Figure 3.16: Comparison of the objective function curves between DINM implemen-
tations and INM, TNM and baseline implementations. The preconditioner in all
implementations is selected as identity matrix (no preconditioner). ”DINM:inc-I”
presents DINM with ”inc” scaling matrix and identity damping matrix; ”DINM:inc-
diag” presents DINM with ”inc” scaling matrix and ”diag” damping matrix, more
details in caption of Figure 3.14. ”INM:B-diag” presents INM with SC of B and
”diag” scaling matrix, more details in caption of Figure 3.8. ”TNM:C-inc” presents
TNM with SC of C and ”inc” damping matrix, more details in caption of Fig-
ure 3.10.”BAL” presents the baseline implementation provided by [ASSS10]. ”LMA-
CD” presents the baseline implementation of Cholesky decomposition coupled with
SC of C, more details in Section 3.2.2. ”inc-I” has the fastest and deepest decreasing
of the objective function.
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Figure 3.17: Comparison of the gradient norm curves between DINM implementa-
tions and INM, TNM and baseline implementations. ”inc-I” and ”inc-diag” perform
better in the gradient decline than others.

Table 3.8: Processing time comparison between DINM implementations and INM,
TNM and baseline implementations. ”LMA-CD” is the fastest.

Implementation DINM:inc-I DINM:inc-diag INM:B-diag TNM:C-inc BAL LMA-CD
Time per PCG/s 5.37 5.60 10.91 6.32 4.62 4.73
Time in 50 steps/s 402 446 659 678 374 365
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Selection of Preconditioner

In this section, the selection of preconditioner M in PCG solver is discussed. About
more details ofM please see Section 3.3.2. Since the purpose of the preconditioner is
to reduce the condition number of system matrix of LSE, A, the best preconditioner
should has an inverse of A−1. In general, A−1 is impossible to compute, thus,
a preconditioner should be easily to compute and closer to A−1 [NW06]. Since
the preconditioner is also used as a system matrix of LSE in PCG loop, seeing
Algorithm 1, another important requirement of preconditioner is sparse enough, at
best, diagonal or block diagonal to ensure the inverse of M is cheap to compute.
However, it is hard to select a good preconditioner selection. The preconditioner in
bundle adjustment is really sensitive, such that there is not a clear mechanism to
determine a proper preconditioner in bundle adjustment [ASSS10]. Here, we select
five different preconditioners M for DINM algorithm with scaling matrix formed
from (3.38) and identity damping matrix (in SC of C mode). Since the LSE to
solve is (3.100) in PCG of DINM, a good preconditioner M should be closed to SC
and diagonal. The proposed preconditioner is listed below.

• I9n×9n: identity matrix, i.e. without preconditioner.

• Diagonal blocks of SC : the diagonal blocks of SC with size of 9× 9 [ASSS10].

• B: sub-matrix B in damped Hessian matrix Hµ [ASSS10].

• Diagonal elements of SC : diagonal matrix formed by the diagonal elements of
SC .

• Diagonal elements of B: diagonal matrix formed by the diagonal elements of
B.

We implement the above five preconditioners in DINM. Since the termination condi-
tion of PCG is unchanged, the accuracy between different selection of preconditioner
is the same. The testing computer is Surface Book with i7-6600U CPU @ 2.60GHz,
8.00GB RAM. The test dataset is the full Ladybug dataset provided in Section 2.3.
For each implementation, we run 50 iteration DINM steps. We compare the average
iteration steps in PCG loop until the PCG loop is terminated, the average process-
ing time in each PCG loop, and the time costing in each DINM steps. Still in each
DINM iteration step there may exist more than one PCG loop to get a successful
reduction in the objective function. The maximum iterative steps in PCG loop is
chosen to be 1000.
The comparison results of different preconditioners are demonstrated in Figure 3.18,
Figure 3.19, and Table 3.9.
Obviously, for this Ludybug dataset, without preconditioner is the best implementa-
tion. In other words, the system matrix of equation system (3.100), which is directly
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Figure 3.18: Comparison of the objective function curves between different precon-
ditioners in DINM implementations. All implementations are based on the algo-
rithm ”DINM:inc-I” (seeing the previous section). ”I” presents DINM with identity
preconditioner (no preconditioner). ”diag block of S” presents DINM with the pre-
conditioner formed by the diagonal blocks of SC . ”B” presents DINM with the
preconditioner of B. ”diag of S” presents DINM with the preconditioner of diago-
nal elements of SC . ”diag of B” presents DINM with the preconditioner of diagonal
elements of B. All implementations have a similar reduction of the objective func-
tion.

Table 3.9: Processing time comparison between different preconditioners in DINM
implementations. Without preconditioner computes even faster.

Preconditioner I diag block of SC B diag of SC diag of B
Time per PCG/s 5.37 6.79 6.55 6.85 6.84
Steps per PCG/s 256 835 920 913 920

Time in 50 steps/s 402 487 453 472 471
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Figure 3.19: Comparison of the gradient norm curves between different precondi-
tioners in DINM implementations. Implementation without preconditioner (”I”)
yields a faster and deeper decline curve of the gradient norm than others.

built from DINM, is already good conditioned without preconditioner. But this sit-
uation does not always happen in DINM. If with preconditioner, PCG also needs
several extra calculation for preconditioner matrix, e.g. construction, inversion.

To be more intuitive about the influence from iteration steps in PCG loop, we also
implement DINM with different maximum iteration steps in PCG loop. Here, the
maximum iterative steps in PCG loop is chosen to be 100, 300, 500, 700, 1000,
2000, respectively, while still using ”DINM:inc-I” without preconditioner. But the
termination condition of PCG loop is the same. Because PCG solver only computed
the equation system in an approximated solution, the more iteration steps there exist
in one loop, the more exact the solution is.

The comparison results of different iteration steps in PCG solver is demonstrated in
Figure 3.20, Figure 3.21, and Table 3.10.

From the objective function curve and the gradient norm curve, the implementations
with more iteration steps in PCG loop gain a faster and a steeper descent in both
curves, which means a more precise solution in each PCG loop contributes to a
better optimization process. In addition, from Table 3.10, a larger threshold in
iteration steps even gets fewer average iteration steps (till termination) in PCG
loop, and less computation time. The reason is that a more precise solution leads to
less computation in the following DINM steps, even if it may cost more PCG steps
in this DINM steps. Thus, an enough large maximum iteration steps in PCG loop
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Figure 3.20: Comparison of the objective function curves between different iteration
steps in PCG loop in DINM implementations. All implementations are based on
the algorithm ”DINM:inc-I” (seeing the previous section). The number presents the
maximum iteration steps in PCG loop. All implementations have a similar objective
curve.

Table 3.10: Processing time comparison between different iteration steps in PCG
loop in DINM implementations. A larger number of maximum iterative steps in
PCG loop even costs less time averagely.

Iteration Steps 100 300 500 700 1000 2000
Time per PCG/s 4.14 4.10 4.62 4.58 4.50 4.41
Steps per PCG/s 54 123 269 274 256 240

Time in 50 steps/s 393 390 363 368 365 360
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Figure 3.21: Comparison of the gradient norm curves between different iteration
steps in PCG loop in DINM implementations. The gradient norm has a faster
decreasing with a larger number of maximum iterative steps in PCG loop, and this
threshold should be set to a value greater than 700 for this dataset.
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must be confirmed in DINM to ensure an enough precise solution in PCG solver.
In addition, we still want to test the influence of termination condition in Algo-
rithm 3. The termination factor tε controls the stop of PCG solver, and also controls
the accuracy and the efficiency of PCG solver. Until here, the termination factor
tε is set to the default value 0.1, which is also a popular value suggested by many
bundle adjustment implementations. Here, the termination factor is chosen to be
0.5, 0.2, 0.1, 0.05, 0.01, respectively, while still using ”DINM:inc-I” without precon-
ditioner. But there is no constraint of the maximum iteration steps in PCG loop,
i.e. PCG loop can only be stopped when the termination condition of tε is reached.
In general, the smaller the termination factor is, the more exact the solution is, and
also with more computation time.
The comparison results of different termination factors in PCG solver is demon-
strated in Figure 3.22, Figure 3.23, and Table 3.11.

Figure 3.22: Comparison of the objective function curves between different termina-
tion factors in PCG loop in DINM implementations. All implementations are based
on the algorithm ”DINM:inc-I” (seeing the previous section). The number presents
the termination factor in PCG loop. All implementations have a similar objective
curve.
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Figure 3.23: Comparison of the gradient norm curves between different termination
factors in PCG loop in DINM implementations. The gradient norm has a more
stable reduction with a smaller number of the termination factor, but a too small
number also causes a long computation time. A proper termination factor can be
set to a value around 0.05 ∼ 0.1.

Table 3.11: Processing time comparison between different termination factors in
PCG loop in DINM implementations. A smaller number costs more processing
time. A proper termination factor can be set to a value around 0.1.

Iteration Steps 0.5 0.2 0.1 0.05 0.01
Time per PCG/s 4.14 3.96 4.05 4.63 5.30

Time in 50 steps/s 335 322 327 371 397
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Algorithm 5 Inexact Newton’s Method

Require: Initial arguments vector u0 with (2.38), which contains {x0
i }mi=1,

{(φ0
j , t

0
j)}nj=1, {y0

j}nj=1; Observation field (i, j) ∈ S; Observation dataset
{bij}(i,j)∈S ; Scaling matrix Dc; Maximum iterative steps in PCG loop, #PCG;
Maximum iterative steps in INM, #INM ; Termination condition of INM, ξ1, ξ2;
Initial trust region radius ∆0

c ;
Ensure: Optimal arguments vector uk; Optimal objective function ψkf ;
1: Initialize the objective function ψ0

f ← ψf (u
0);

2: Initialize step number k ← 0
3: while k < #INM do
4: Compute current reprojection error vector F k with (2.37);
5: Compute current objective function ψkf ← ψf (u

k) with (2.26);

6: Compute current Jacobian matrix Jk (2.40);
7: Compute current gradient vector gk with (3.42);
8: if ‖gk‖ < ξ1 or ψkf < ξ2 then

9: return uk and ψkf ;
10: end if
11: Compute current Hessian matrix Hk with (3.43);
12: Set flag update← ”False”;
13: while update = ”False” do
14: Compute the increment step pk, and reduction of model function
−mk

f (p
k) with Algorithm 4;

15: Compute new objective function ψk+1
f ← ψf (u

k+1) with (2.26);

16: Compute ratio ρk with (3.104);
17: Update trust region radius ∆k

c with Algorithm 2;
18: if ρk > 0 then
19: Update arguments vector uk+1 ← uk + pk;
20: ∆k+1

c ← ∆k
c ;

21: k ← k + 1;
22: Set flag update← ”True”;
23: end if
24: end while
25: end while
26: return uk and ψkf ;
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Algorithm 6 Damping Factor Updating

Require: Current damping factor µk; Current auxiliary coefficient νk; Ratio ρk;
Ensure: Next damping factor µk+1; Next auxiliary coefficient νk+1;
1: if ρk > 0 then
2: µk+1 ← µ ∗max(1

3
, 1− (2ρk − 1)3);

3: νk+1 ← 2;
4: else
5: µk+1 ← µ ∗ ν;
6: νk+1 ← 2νk;
7: end if
8: return µk+1, νk+1;

Algorithm 7 LMA-PCG with Schur Complement of C

Require: Hessian matrixH in form (3.45); Gradient vector g in form (3.63); Damp-
ing matrix D; Damping factor µ

Ensure: Increment step p; Reduction of model function −mf (p);
1: Compute the damped Hessian matrix Hµ in form (3.59)
2: Compute LSE SC and v with (3.65) and (3.66);

3: Scaling S̃C ←D−1SCD
−1, ṽ ←D−1v;

4: Construct scaled Schur complement’s LSE: S̃Cp̃c = −ṽ
5: Compute preconditioner M with the strategy from Section 3.3.2;
6: Solve S̃Cp̃c = −ṽ for p̃c with Algorithm 1;
7: Reverse to unscaled solution, pc ←D−1p̃c
8: Compute the full increment step vector p with (3.67);
9: Compute −mf (p) with (3.102);
10: return p and −mf (p);
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Algorithm 8 Truncated Newton’s Method

Require: Initial arguments vector u0 with (2.38), which contains {x0
i }mi=1,

{(φ0
j , t

0
j)}nj=1, {y0

j}nj=1; Observation field (i, j) ∈ S; Observation dataset
{bij}(i,j)∈S ; Damping matrix D; Maximum iterative steps in PCG loop, #PCG;
Maximum iterative steps in TNM, #TNM ; Termination condition of TNM, ξ1,
ξ2; Initial damping factor µ0;

Ensure: Optimal arguments vector uk; Optimal objective function ψkf ;
1: Initialize the objective function ψ0

f ← ψf (u
0);

2: Initialize step number k ← 0
3: while k < #TNM do
4: Compute current reprojection error vector F k with (2.37);
5: Compute current objective function ψkf ← ψf (u

k) with (2.26);

6: Compute current Jacobian matrix Jk (2.40);
7: Compute current gradient vector gk with (3.42);
8: if ‖gk‖ < ξ1 or ψkf < ξ2 then

9: return uk and ψkf ;
10: end if
11: Compute current Hessian matrix Hk with (3.43);
12: Set flag update← ”False”;
13: while update = ”False” do
14: Compute the increment step pk, and reduction of model function
−mk

f (p
k) with Algorithm 7;

15: Compute new objective function ψk+1
f ← ψf (u

k+1) with (2.26);

16: Compute ratio ρk with (3.104);
17: Update damping factor µk with Algorithm 6;
18: if ρk > 0 then
19: Update arguments vector uk+1 ← uk + pk;
20: µk+1 ← µk;
21: k ← k + 1;
22: Set flag update← ”True”;
23: end if
24: end while
25: end while
26: return uk and ψkf ;
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Algorithm 9 Damped Inexact Newton’s Method

Require: Initial arguments vector u0 with (2.38), which contains {x0
i }mi=1,

{(φ0
j , t

0
j)}nj=1, {y0

j}nj=1; Observation field (i, j) ∈ S; Observation dataset
{bij}(i,j)∈S ; Scaling matrix Dc; Damping matrix D; Maximum iterative steps
in PCG loop, #PCG; Maximum iterative steps in DINM loop, #DINM ; Termi-
nation condition of DINM, ξ1, ξ2; Initial trust region radius ∆0

c ; Initial damping
factor µ0;

Ensure: Optimal arguments vector uk; Optimal objective function ψkf ;
1: Initialize the objective function ψ0

f ← ψf (u
0);

2: Initialize step number k ← 0;
3: while k < #DINM do
4: Compute current reprojection error vector F k with (2.37);
5: Compute current objective function ψkf ← ψf (u

k) with (2.26);

6: Compute current Jacobian matrix Jk (2.40);
7: Compute current gradient vector gk with (3.42);
8: if ‖gk‖ < ξ1 or ψkf < ξ2 then

9: return uk and ψkf ;
10: end if
11: Compute current Hessian matrix Hk with (3.43);
12: Set flag update← ”False”;
13: while update = ”False” do
14: Hk

µ ←Hk + µkD
15: Compute the increment step pk, and reduction of model function
−mk

f (p
k) with Algorithm 4;

16: Compute new objective function ψk+1
f ← ψf (u

k+1) with (2.26);

17: Compute ratio ρk with (3.104);
18: Update trust region radius ∆k

c with Algorithm 2;
19: Update damping factor µk with Algorithm 6;
20: if ρk > 0 then
21: Update arguments vector uk+1 ← uk + pk;
22: µk+1 ← µk;
23: ∆k+1

c ← ∆k
c ;

24: k ← k + 1;
25: Set flag update← ”True”;
26: end if
27: end while
28: end while
29: return uk and ψkf ;
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Chapter 4

Further Improvements

In this chapter, we further improve our DINM algorithm with three strategies.
Firstly, we introduce an adaptively switched Schur complement mode in DINM
(Adaptive DINM); secondly, we replace the global parameterization with local pa-
rameterization, and provide a local parameterized DINM (local DINM); finally, to
solve the outliers problem, we use reweighted potential function in DINM, and pro-
pose an iteratively reweighted least squares (IRLS) algorithm.

4.1 Adaptive DINM

In some of the previous DINMs, the gradient norm has a stark oscillation and only a
slight reduction after several steps, seeing Figure 3.15, Figure 3.19 and Figure 3.21.
Even if each increment step can be still approximated with PCG solver, however,
this approximation is already far from the real solution. This deterioration is caused
by the bad conditioned matrix C, and the inverse of C is hard to be accurately
computed. At this time, the matrix C has a large condition number over 107.
Even if with a larger number of iterative steps in PCG loop, i.e. larger #PCG, the
solution does not improve distinctly. The PCG loop is not terminated until the
maximum iteration step reaches. Nevertheless, the condition number of matrix B
is still relatively small, around 104.

Therefore, we develop an adaptive DINM algorithm, which switches between the
mode of Schur complement of C and the mode of Schur complement of B in each
iteration step according to the condition numbers of both matrices. The adaptive
DINM algorithm ensures a more robust and more precise solution from PCG in each
iteration.

The Adaptive DINM (ADINM) algorithm is presented in Algorithm 10.

The scaling matrices for pc and pp come from the same increment step (3.38), so that
the norms of every argument after scaling are at the same order of magnitude. Thus,
when the mode is switched to SC of B, the radius of trust region for p̃p is scaled
according to the ratio between the dimensions of both vectors, as in Algorithm 10
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line 18. In the whole algorithm, only ∆c is needed to be explicitly constructed and
updated.
We choose three typical DINM implementations in Section 3.3.5, and implement
their corresponding adaptive DINM version to compare the improvement. The test-
ing computer is Surface Book with i7-6600U CPU @ 2.60GHz, 8.00GB RAM. The
test dataset is the full Ladybug dataset provided in Section 2.3. The maximum
iterative steps in PCG loop is chosen to be 3000.

• ”inc-I” : ”inc” scaling matrix, identity damping matrix, without precondi-
tioner.

• ”inc-diag” : ”inc” scaling matrix, damping matrix formed from diagonal ele-
ments of Hessian matrix, without preconditioner.

• ”inc-I-diag” : ”inc” scaling matrix, identity damping matrix, with precondi-
tioner formed from diagonal elements of B in SC of C (diagonal elements of
C in SC of B).

The curves of the objective function along 50 successive (Adapt) DINM iteration
steps are plotted in Figure 4.1, and the curves of the gradient norm are plotted in
Figure 4.2.
Although for solving good conditioned LSE, the mode of Schur complement of B
costs more time than the mode of Schur complement of C, solving the LSE built
with relatively good conditioned B even saves much computational effort than with
bad conditioned C. In comparison of time efficiency, the whole processing time is
collected, shown in Table 4.1.

Table 4.1: Processing time comparison between DINMs and ADINMs. Adaptive
DINMs cost more time than original DINMs, but with less iteration steps in PCG
loop.

Implementation DINM:inc-I ADINM:inc-I DINM:inc-I-diag ADINM:inc-I-diag
Time per Newton-PCG/s 4.16 5.20 5.61 6.44

Steps per PCG/s 240 224 1132 969
Time in 50 iteration/s 340 394 398 441

From the objective function curve figure, DINM and ADINM almost generate the
same curve. From the gradient norm curve figure, ADINM and DINM are the same
in the first several iterations. The reason is because the condition number of C is
smaller than B, so that ADINM uses the mode of SC of C, i.e. the same as DINM.
In the last several iterations, ADINM gains a significant reduction of gradient norm
related to DINM, because the condition number of B is smaller at this moment, and
ADINM switches to the mode of SC of B. In Table 4.1, the average iteration steps
in PCG loop of ADINM is fewer than DINM, since the adaptive switching avoids
an inverse operation of bad conditioned matrix, and guarantees a relative precise
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Figure 4.1: Comparison of the objective function curve between DINM implemen-
tations and corresponding ADINM implementations. Every DINM implementation
and its corresponding ADINM implementation are grouped together with the same
color of curves. DINMs are plotted in dash lines; ADINMs are plotted in solid lines.
Both ADINM and DINM have a similar reduction curve of the objective function.
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Figure 4.2: Comparison of the gradient norm curve between DINM implementations
and corresponding ADINM implementations. ADINM yields a deeper decline curve
of the gradient norm than DINM.

solution from PCG. However, the computation time spent in SC of B is larger than
SC of C, seeing Section 3.2.1. Therefore, even if with a fewer iteration steps in PCG
loop, ADINM still costs more time than DINM.

In addition, when comparing the results from ”DINM:inc-I-diag” with 3000 iteration
steps (green dash line in Figure 4.2) with the results from ”DINM:inc-I-diag” with
1000 iteration steps (olive green solid line in Figure 3.19), we conclude that increasing
the maximum iteration steps in PCG loop promotes the optimization process hugely,
and even with less computation time.

4.2 Local Parameterization

The above robotic kinematics used in the previous sections is based on the global
parameterization, seeing Section 3.1.2. The camera pose parameters for a specific
frame j contain two parts, rotation angle vector φj, and translation vector tj.

Now, we propose a new parameterization process, local parameterization, where the
rotation matrix and the translation vector are updated locally according to the cur-
rent camera pose, i.e. a retraction to SE(3) at {Rj, tj}. With local parameterization,
the linearization around current points fits better than global parameterization, i.e.
the mapping from se(3) to SE(3) is more accurate.
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Rl(φj + δφj) = R(φj)Exp(δφj) , (4.1)

tl(tj + δtj) = tj +R(φj)δtj , (4.2)

Rj = R(φj) . (4.3)

The 3D transformation of xi in j-th camera system, (3.5), related to local increments
δφj and δtj, are redefined as,

δRj = Exp(δφj) , (4.4)

Xij + δXij = Rj(δRjxi + δtj) + tj . (4.5)

In local parameterization, a new set of arguments containing all rotation matrices,
all translation vector, all camera characteristic parameters, and all 3D feature points
coordinates is used,

w = {{Rj}nj=1, {tj}nj=1, {yj}nj=1, {xi}mi=1} . (4.6)

The reprojection error vector is then presented as a function of the new arguments
w, but its structure maintains the same as before,

F (w) . (4.7)

In each iteration step, we still obtain the increment step p corresponding to the
previous parameter vector u in (2.24) as in the previous section, seeing (2.33),

p = {{δφj}nj=1, {δtj}nj=1, {δyj}nj=1, {δxi}mi=1} . (4.8)

However, the updating of the arguments are not the simple ”add” operation any-
more. The arguments set w is updated according to (4.1) and (4.2), as,

w�p = {{RjExp(δφj)}nj=1, {tj +Rjδtj}nj=1, {yj +δyj}nj=1, {xi +δxi}mi=1} . (4.9)

In local parameterization, the value of the Jacobian matrix is also changed. The
Jacobian matrix still presents the partial derivatives from the reprojection error
vector to the arguments vector u. Thus, the structure of Jacobian matrix is the same
as before, i.e. 2l× s. The Jacobian matrix in local parameterization is computed as,

J =
∂F (w � p)

∂p

∣∣∣∣
p=0

. (4.10)

The partial derivatives of single reprojection error Fij to its corresponding camera
parameters and feature position parameters are presented as,

∂Fij(wij � δφj)
∂δφj

∣∣∣∣
δφj=0

, (4.11)
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∂Fij(wij � δtj)
∂δtj

∣∣∣∣
δtj=0

, (4.12)

∂Fij(wij � δyj)
∂δyj

∣∣∣∣
δyj=0

, (4.13)

∂Fij(wij � δxi)
∂δxi

∣∣∣∣
δxi=0

, (4.14)

with wij, which contains all parameters in w corresponding to i-th feature points
and j-th image frame.
The Jacobian matrix is still calculated through chain rules as in Section 3.1.2. For
local parameterization, if we consider f is a function of a, the partial derivative from
f to a in local parameterization is then expressed as,

∂f(a+ δa)

∂δa

∣∣∣∣
δa=0

=
∂(f + δf)

∂(a+ δa)

∂(a+ δa)

∂δa

∣∣∣∣
δa=0

=
∂f(a+ δa)

∂(a+ δa)

∣∣∣∣
δa=0

=
∂f(a)

∂a
. (4.15)

Since the local increments of δxi and δyj are basic addition operation as (4.15),
∂Fij

∂yj
and

∂Fij

∂xi
are the same as in (3.36) and (3.37). Besides, every formula in chain

rule demonstrated in Section 3.1.2 maintains the same, except
∂Xij

∂tj
and

∂Xij

∂φj
.

∂Xij

∂tj
=
∂Xij(tj � δtj)

∂δtj

∣∣∣∣
δtj=0

= Rj , (4.16)

∂Xij

∂φj
=
∂Xij(Rj � δφj)

∂δφj

∣∣∣∣
δφj=0

= Rj
∂δRjxi
∂δφj

∣∣∣∣
δφj=0

. (4.17)

∂δRjxi
∂δφj

∣∣∣∣
δφj=0

=
∂Exp(δφj)xi

∂δφj

∣∣∣∣
δφj=0

= −Exp(0)x̂iJr(0) = −x̂i . (4.18)

Here
∂δRjxi

∂δφj

∣∣∣∣
δφj=0

can also be obtained from (3.28) by substituting φj = 0.

∂Xij

∂φj
= −Rj

 0 −xi,z xi,y
xi,z 0 −xi,x
−xi,y xi,x 0

 . (4.19)

The partial derivatives of the local parameterization are much simpler than the
global parameterization. In local parameterization, derivatives needs fewer mul-
tiplications, and does not need trigonometric functions. In each iteration step,
trigonometric functions only appear in rotation matrix updating process (4.4). Be-
sides, since the increment step is always small, these trigonometric functions can
also be avoided with the approximation of small angles, which also saves the cal-
culation time. The disadvantage of the local parameterization is that it costs little
more memory, since it needs to store all rotation matrices (3 × 3) of each image
frame rather than rotation angle vector (3× 3) in optimization.
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Here, We implement the local parameterization in ”DINM:inc-I” instead of the
global parameterization. The maximum iterative steps in PCG loop is chosen to
be 1000. The testing computer is Surface Book with i7-6600U CPU @ 2.60GHz,
8.00GB RAM. The test dataset is the full Ladybug dataset provided in Section 2.3.
We still run 50 iteration steps.
A comparison of the objective function and the gradient norm between local and
global parameterization in ”DINM:inc-I” is plotted in Figure 4.3 and Figure 4.4.

Figure 4.3: Comparison of the objective function curve between local and global
parameterization. Local parameterization has a similar objective function curve as
global parameterization.

From the objective function curve figure, both parameterizations obtain a similar
reduction; in gradient norm curves, local parameterization has a faster decline.
Their processing time is presented in Table 4.2. Because the local parameterization
needs less computation in Jacobian matrix, even if it spends more iterations in PCG
loop, it still yields a faster optimization of 50 iterations.

Table 4.2: Processing time comparison between local and global parameterization.
Local parameterization computes faster than global parameterization.

Implementation local global
Time per PCG/s 4.72 4.94
Steps per PCG/s 292 256

Time in 50 iteration/s 329 374
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Figure 4.4: Comparison of the gradient norm curve between local and global param-
eterization. Local parameterization has a little faster reduction curve of the gradient
norm.

4.3 Iteratively Reweighted Least Squares (IRLS)

In this section, we use a reweighted potential function of reprojection errors instead
of the square formed objective function, which resolves the outliers problem. Besides,
we also introduce an iteratively reweighted least squares algorithm (IRLS) with local
parameterization.

4.3.1 Reweighted Potential Function

Even if the gradient norm continues to reduce to a smaller value with ADINM or
DINM, the declined value of the objective function is still not satisfied. In other
words, the found local optimal value of the objective function is in a larger order
than expected.

Besides, from the results plots of reprojection errors in Chapter 5 (Figure 5.5), there
are only a little observations on the boundary of images which are different with the
their reprojected points. Other observations fit the reprojected points pretty well.
Thus, the most effort of the optimization is used to balance the difference of these
outliers. However, the fitness with the outliers generates an unexpected optimization
solution in general, whose arguments values are far from the real optimal arguments
values.
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The distributions of the value of gradient vector and the value of reprojection er-
ror vector after 50 iteration with Adaptive DINM are plotted in Figure 4.6 and
Figure 4.5.

Figure 4.5: The frequency histogram of reprojection errors after 50 iteration steps of
ADINM. The orange curve presents the Gaussian probability distribution function
with the same mean and variance. The example red rectangle locates the outliers,
where the frequency of reprojection errors is higher than corresponding Gaussian
distribution.

From the figures, obviously, only a small part of elements in the gradient vector and
reprojection vector still has a large value in comparison with others after 50 iteration
steps. The percentages whose absolute values are greater than 2 in reprojection
error vector is 1.60%, and the corresponding probability is 0.2% in the Gaussian
distribution with the same mean and variance. The percentages whose absolute
values are greater than 0.01 in gradients vector is 0.45%, and the corresponding
probability is 0.05% in the Gaussian distribution with the same mean and variance.
In order to recede the influence from outliers, a new potential function, ψf,•(γ)(u),
is selected as the objective function. ψf,•(γ)(u) is a objective function related to
a parameter γ, which controls the slope of the potential function Ψ•(γ)(‖Fi‖) in
different values. In this thesis, Huber loss function and truncated quadratic function
are used as potential function [HW77].

ψf,•(γ)(u) =
2l∑
i=1

Ψ•(γ)(‖Fi‖) . (4.20)
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Figure 4.6: The frequency histogram of gradients after 50 iteration steps of ADINM.
The orange curve presents the Gaussian probability distribution function with the
same mean and variance. The example red rectangle locates the outliers, where the
frequency of reprojection errors is higher than corresponding Gaussian distribution.

ΨHuber(γ)(‖Fi‖) =

{
‖Fi‖2/2, if ‖Fi‖ ≤ γ,

γ(‖Fi‖ − γ/2), if ‖Fi‖ > γ.
. (4.21)

ΨTQ(γ)(‖Fi‖) = min(‖Fi‖2, ‖γ‖2)/2 . (4.22)

The new potential function has a smaller cost value in objective function for large
errors in comparison with (2.39), so that the outliers contribute less in objective
function. The new optimization process of the objective function can be obtained
with a new introduced weight matrix W. W is a diagonal matrix with positive
elements, as

wi =
Ψ′•(γ)(‖Fi‖)
‖Fi‖

, (4.23)

W = diag(wi) . (4.24)

In k-th iteration step, the increment step of parameter vector pk is obtained by,

pk = arg min
p∈Rs

1

2|S|
(F k + Jkp)TWk(F k + Jkp) . (4.25)

The objective function, ψf,•(γ)(u), can be considered as the second norm of the
reweighted reprojection error vector,
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The corresponding reweighted Hessian matrix and reweighted gradient vector can
be considered as,

HW = JTWJ , (4.26)

gW = JTWF . (4.27)

The LSE (3.55) in each iteration step of DINM is then replaced with,

(Jk
T
W kJk + µD)pk = −JkTW kF k . (4.28)

4.3.2 Iteratively Reweighted Least Squares with Local Pa-
rameterization

In this section, we combine the local parameterization and reweighted potential
function together, and propose an iteratively reweighted least square algorithm with
local parameterization (local IRLS) based on the previous algorithm ”DINM:inc-I”.
The method of iteratively reweighted least squares (IRLS) is used to solve certain
optimization problems with a least square objective function, by an iterative method
in which each step involves solving a weighted least squares problem [wikd]. IRLS
can be simply combine with LMA and GNA [wikd]. In our situation, the weighted
least square problem in each iteration step is to solve (4.28) with in a bounded trust
region. About more detail about IRLS, please see [HW77].
When the mode of the reweighted potential function is set to without reweighting,
the algorithm is switched to DINM with local parameterization in Section 4.2. In
local parameterization, the partial derivatives (4.16) and (4.17) are different related
to their forms in global parameterization. Besides, a new arguments set w is used
instead of arguments vector u in global parameterization. The forms of Jacobian
matrix and reprojection error vector are also changed.
There are also many different variants in local IRLS as in the previous sections, such
as different damping matrix, different scaling matrix, different preconditioner, etc.
A complete example algorithm of local IRLS is presented in Algorithm 11.
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Algorithm 10 Adaptive DINM

Require: Initial arguments vector u0 with (2.38), which contains {x0
i }mi=1,

{(φ0
j , t

0
j)}nj=1, {y0

j}nj=1; Observation field (i, j) ∈ S; Observation dataset
{bij}(i,j)∈S ; Scaling matrix Dc for pc; Scaling matrix Dp for pp; Damping ma-
trix D; Maximum iterative steps in PCG loop, #PCG; Maximum iterative steps
in ADINM loop, #ADINM ; Termination condition of ADINM, ξ1, ξ2; Initial trust
region radius ∆0

c for p̃c; Initial damping factor µ0;
Ensure: Optimal arguments vector uk; Optimal objective function ψkf ;
1: Initialize the objective function ψ0

f ← ψf (u
0);

2: Initialize step number k ← 0
3: while k < #ADINM do
4: Compute current reprojection error vector F k with (2.37);
5: Compute current objective function ψkf ← ψf (u

k) with (2.26);

6: Compute current Jacobian matrix Jk (2.40);
7: Compute current gradient vector gk with (3.42);
8: if ‖gk‖ < ξ1 or ψkf < ξ2 then

9: return uk and ψkf ;
10: end if
11: Compute current Hessian matrix Hk with (3.43);
12: Set flag update← ”False”;
13: while update = ”False” do
14: Hk

µ ←Hk + µkD
15: if cond(C) < cond(B) then
16: Compute the increment step pk, and reduction of model function
−mk

f (p
k) with Algorithm 4;

17: else
18: ∆k

p ←
∆k

c×3m
9n

; ;
19: Compute the increment step pk, and reduction of model function
−mk

f (p
k) with Algorithm 4 in version of Schur complement of B;

20: end if
21: Compute new objective function ψk+1

f ← ψf (u
k+1) with (2.26);

22: Compute ratio ρk with (3.104);
23: Update trust region radius ∆k

c with Algorithm 2;
24: Update damping factor µk with Algorithm 6;
25: if ρk > 0 then
26: Update arguments vector uk+1 ← uk + pk;
27: µk+1 ← µk;
28: ∆k+1

c ← ∆k
c

29: k ← k + 1
30: Set flag update← ”True”;
31: end if
32: end while
33: end while
34: return uk and ψkf ;
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Algorithm 11 Iteratively Reweighted Least Squares with Local Parameterization

Require: Initial local arguments set w0 with (4.6), which contains {x0
i }mi=1,

{(R0
j , t

0
j)}nj=1, {y0

j}nj=1; Observation field (i, j) ∈ S; Observation dataset
{bij}(i,j)∈S ; Scaling matrix Dc; Damping matrix D; Weight factor γ; Maxi-
mum iterative steps in PCG loop, #PCG; Maximum iterative steps in IRLS
loop, #IRLS; Termination condition of IRLS, ξ1, ξ2; Initial trust region radius
∆0
c ; Initial damping factor µ0;

Ensure: Optimal local arguments set wk; Optimal reweighted objective function
ψkf,•(γ);

1: Initialize the objective function ψ0
f ← ψf,•(γ)(w

0);
2: Initialize step number k ← 0
3: while k < #IRLS do
4: Compute current reprojection error vector F k with (2.37);
5: Compute current weight matrix W with (4.23) and (4.24);
6: Compute current reweighted objective function ψkf,•(γ) ← ψf,•(γ)(w

k)

with (4.20);
7: Compute current Jacobian matrix Jkl (4.10);
8: Compute current reweighted gradient vector gkW with (4.27);
9: if ‖gkW‖ < ξ1 or ψkf,•(γ) < ξ2 then

10: return wk and ψkf,•(γ);
11: end if
12: Compute current reweighted Hessian matrix Hk

W with (4.26);
13: Set flag update← ”False”;
14: while update = ”False” do
15: Compute reweighted damped Hessian matrix Hk

W,µ ←Hk
W + µkD

16: Compute the local increment step pkl in (4.8), and reduction of model
function −mk

f (p
k
l ) with Algorithm 4;

17: Compute new objective function ψk+1
f,•(γ) ← ψf,•(γ)(w

k+1) with (4.20);

18: Compute ratio ρk with (3.104);
19: Update trust region radius ∆k

c with Algorithm 2;
20: Update damping factor µk with Algorithm 6;
21: if ρk > 0 then
22: Update local arguments set wk+1 ← wk � pk with (4.9);
23: µk+1 ← µk;
24: ∆k+1

c ← ∆k
c

25: k ← k + 1
26: Set flag update← ”True”;
27: end if
28: end while
29: end while
30: return wk and ψkf,•(γ);
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Chapter 5

Experiments and Evaluation

In this chapter, firstly, we provide a novel method to construct a controllable syn-
thetic dataset for bundle adjustment. Then, we implement four typical algorithms
presented in this thesis and two baseline algorithms in Matlab. At last, we evaluate
the performance between these algorithms on different datasets.

5.1 Synthetic Bundle Adjustment Dataset

In this section, we provide a method which generates a synthetic bundle adjustment
dataset with defined size and defined sparsity. The noise of observations, the outliers
of observations and the initial point are also controllable. Besides, this synthetic
dataset contains the ground truth which overcomes the shortage of the datasets
provided by [ASSS].

5.1.1 Feature Points

Considering the convenience of the later verification, we select a ball with radius
r as the real 3D object, whose center is located on the origin point of system O.
All feature points are randomly distributed on the surface of the ball. However, if
one feature point does not appear in at least two image frames, this feature point is
deleted. The number of feature points can be arbitrarily determined to control the
sparsity and the scale of the bundle adjustment.

5.1.2 Camera and Image Frames

Still, the pinhole camera with circle convex lens is chosen. The focus length of the
convex length f is recommended to be set to a smaller value than r. The radial
distortion factors, k1 and k2, are set to a smaller value, around 10−2, and 10−4

respectively.
The camera location is presented as C, which is also the origin point of camera
system C. C must be located outside of the ball, and not far away from the ball,
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so that the observed feature points are not distributed only in a small area in the
image frame. In other words, the image frame should be covered by the observed
feature points as much as possible. Each image frame is also bounded by a certain
rectangle as usual, e.g. a rectangle with the size of 800× 600. The image is framed

on the plane (0, 0,−f) in camera system C with the center point of

 0
0
−f

.

To ensure enough feature points can be captured by the camera, the intersection

angle between
−→
OC and nCz (the unit vector of z-axis in system C) is limited smaller

than 30◦. Only the feature points located on the surface of a certain spherical cap are
visible to the camera. These feature points are perspective projected on the plane
of (0, 0,−f) in camera system C, seeing Section 2.1.1. The projected feature points,
which are located in the image frame (rectangle defined before), can be captured
by this image frame, i.e. become observed feature points. To help understand this
process, an example is given in Figure 5.1 to demonstrate the structure of the camera
and the 3D ball (object).

Figure 5.1: The structure of constructing a synthetic dataset. The orange parallel-
ogram presents the image frames. The red circle defines a spherical cap, in which
the feature points are visible for the current camera.

The locations and the orientations of the camera are also randomly chosen, but
meet the above requirements. Besides, if one image frame does not capture enough
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feature points, or its area covered by the observed feature points is not large enough,
this image frame is discarded. The range of the camera’s locations, the number of
the image frames can be also arbitrarily determined to control the sparsity and the
scale of the dataset.

The image frames should also be arranged, such that the sub-matrix E in Hessian
matrix is block diagonal dominant distributed, which makes some matrix operations
in optimization algorithm more efficient [TMHF99]. E is block diagonal dominant
distributed means the successive image frames have a large overlap in commonly
observed feature points. In other words, the image frames with a similar viewpoint
should be arranged together. The distances between every two camera locations are
computed, and the indexes of image frames are sorted according to these distances.
The order of observations is also updated such that its corresponding camera indexes
and its corresponding feature point indexes have a similar structure as the dataset
provided by [ASSS].

A example of generated synthetic dataset with 100 image frames and 5000 feature
points is plotted in Figure 5.2.

Figure 5.2: Synthetic dataset with 100 image frames and 5000 feature points in
system O. The feature points are presented by blue ”*”; and the camera locations
are presented as red ”M”. All camera locations are connected together with red line
according to its arranged order.
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5.1.3 Noises and Outliers

Based on the valid feature points and the valid camera positions acquired above,
the reprojected feature point positions in image frames can be easily calculated
according to the formulas in Section 2.1.1 as the observations. The original feature
point coordinates in system O, and the camera parameters (camera pose parameters
and camera characteristic parameters) are collected as the ground truth.
To test the robustness of the optimization algorithms, we also add some noises and
outliers in the observations, such that even if with ground truth, the reprojection
error is still not equal to zero.

5.1.4 Initial Value

The initial arguments of the optimization are obtained through adding a small Gauss
distributed variation onto the ground truth. The arguments which is closed to zero,
e.g. k1 and k2, are set to zero in initialization.

5.2 Experiment implementations in Matlab

In this section, the experiment’s implementation details in Matlab programming are
presented.

Pseudo Inverse

Since the matrices in bundle adjustment are often near singular and bad conditioned,
using the general command inv to compute the inverse of matrix in Matlab gets an
inexact solution sometimes, or even generates a matrix with NaN or Inf. Therefore,
the pseudo inverse is used to compute the inverse of matrix in all implementations
of the thesis.
In linear algebra, a pseudo inverse of a matrix is a generalization of the inverse
matrix. The term pseudo inverse is often used to indicate the Moore-Penrose in-
verse [wikf]. Pseudo inverse finds a ”best fit” (least squares) solution to an inverse
of a matrix, especially if the matrix is singular. The pseudo inverse is defined and
unique for all matrices whose entries are real or complex numbers [wikf]. It can be
computed using the singular value decomposition. For more details about pseudo
inverse, please see [GK65].
The command pinv in Matlab is used to compute Moore-Penrose pseudoinverse of
a matrix.

Virtual Memory

Since some general commands costing real memory in Matlab, e.g. for -loop, if-else,
repmat are inefficiency in computation, the Matlab commands, such as, bsxfun,
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arrayfun, cellfun, etc. are used to replace these general commands in all implemen-
tations during the whole thesis.
bsxfun applies an element-by-element binary operation to two arrays with singleton
expansion enabled. [matb]
arrayfun applies the function to the elements of input arrays, one element at a
time, then it concatenates the outputs from function into the output array. The
output from function can have any data type, so long as objects of that type can be
concatenated. [mata]
cellfun applies the function to the contents of each cell of input cell arrays, one cell
at a time, then it concatenates the outputs from function into the output array. The
output from function can have any data type, so long as objects of that type can be
concatenated. [matc]
These above commands save much more time and memory than for -loop, if-else,
repmat, etc. When the input data array is in large-scale, since these commands only
apply for a virtual memory for computation, and computation is done by kernel of
Matlab, it is much faster than other commands.
A comparing of execution time between bsxfun and repmat is demonstrated in Fig-
ure 5.3.

Figure 5.3: Execution time comparing between repmat and bsxfun in Matlab along
the increasing of the scale of the input data. [Jon] bsxfun is used in this thesis.

5.3 Evaluation

We implement four typical algorithms proposed in this thesis and two baseline im-
plementations proposed in [TMHF99] and [ASSS10], listed below respectively.
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• ”DINM”: DINM algorithm couple with SC of C, ”inc” scaling matrix, identity
damping matrix, without preconditioner.

• ”ADINM”: Adaptive DINM algorithm with ”inc” scaling matrix, identity
damping matrix, without preconditioner.

• ”local DINM”: DINM algorithm coupled with SC of C, local parameterization
with ”inc” scaling matrix, identity damping matrix, without preconditioner.

• ”IRLS”: Iteratively Reweighted Least Squares (Huber loss function) couple
with SC of C, local parameterization, based on ”DINM:inc-I”.

• ”LMA-CD”: LMA couple with SC of C solved by CD [TMHF99], seeing more
details in Section 3.2.2.

• ”BAL”: TNM proposed in [ASSS10], seeing more details in Section 1.1.

The above algorithms are tested in the Ladybug dataset provided by [ASSS] and
synthetic datasets generated by the process in Section 5.1. In order to better com-
paring the performance of different algorithms, we generate the bundle adjustment
datasets with different scales and sparsities.

5.3.1 Reprojection Error Plots

To demonstrate the effectiveness of the algorithms, we plot the reprojection er-
rors before optimization (initialization) and after optimization. Since the objective
function sums up the reprojection errors, and the optimization aims to find a local
minimum of the objective function, the differences between the observations and the
reprojected points in each frame are the important index to indicate the performance
of the algorithms.

Reprojection Error Plots on Ladybug Dataset

Firstly, the implementations are tested based on the Ladybug dataset provided
by [ASSS], which is also the dataset we used in the previous sections. We select
the most typical algorithm in this thesis, ”DINM:inc-I” and run the algorithm for
50 iteration steps. More details about the setting of algorithm, please see Sec-
tion 3.3.5. Since there are altogether 49 image frames in dataset, it is impossible
and unnecessary to plot them all. We randomly chose two image frames, and plot
the reprojection errors in both frames before and after 50 optimization steps, seeing
Figure 5.4.
From the reprojection error plots, it is obvious that after 50 iteration steps of
”DINM:inc-I”, the reprojected points have already fitted to the observations much
better than initialization. This result indicates the optimization process is effect.
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Reprojection Error Plots on Synthetic Datasets

Secondly, we generate a synthetic dataset with 10 image frames, 253 feature points
and 1326 observations. The implementation of ”DINM:inc-I” also runs 100 iteration
steps. The reprojection error in all 10 image frames are plotted, seeing Figure 5.5.
During 100 iterations, the objective function reduces from 2.44 × 105 to 25.2; the
gradient norm reduces from 4.12 × 1012 to 6.53. The average reprojection error of
each observation after optimization is 25.24

1326
= 0.019, and the average gradient norm

of each argument is 6.53
10×9+253×3 = 0.0077. Both orders are in a low level, which can

be considered as yielding a local optimal.

5.3.2 Performance Comparison

In this section, the performance of our implementations and baseline implementa-
tions is compared. Like we have talked in Section 1.2, the performance is evaluated
from three parts.

Accuracy: accuracy is evaluated by the order of magnitude of the objective function
and the gradient norm after optimization, since all implementations run with the
same initial point. Besides, for synthetic datasets, the optimized arguments are also
compared with the ground truth, to present how closed the optimization trajectory
approaches the ground truth.

Efficiency: time efficiency is evaluated by the rate of descent of the objective
function and the gradient norm. The memory efficiency is dependent on the memory
consumption during the optimization.

Robustness: robustness is evaluated if the algorithms can smoothly and effectively
run on different datasets.

Among these six implementations, ”LMA-CD” spends the most memory in compu-
tation, since it needs to explicitly construct the matrix SC for decomposition. Other
implementations with PCG solver use some matrix-vector multiplications instead of
this explicit construction. Furthermore, decomposition itself costs more memory
than PCG in solving LSE [NW06].

Real Dataset (Small-Scale)

Firstly, the implementations run on the real dataset, the Ladybug dataset provided
by [ASSS], which is also the dataset used in the previous sections. Actually, the
results of some implementations have already been demonstrated in Chapter 3 and
Chapter 4.

All implementations run for 500 seconds. The maximum iteration step used in PCG
loop is 3000. However, ”IRLS” algorithms can only run around 20 steps. Then, it
computes an increment step with a NaN and/or Inf value, so that the optimization
process is terminated. The reason of this problem is that after several steps, the
matrices in iteration become near singular or bad conditioned, and ”IRLS” are
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Figure 5.5: The reprojection errors on the small-scale synthetic dataset. The results
are plotted in all 10 image frames. The first column presents the reprojection at the
initialization; the second column presents the reprojection after 100 iteration steps
of ”DINM:inc-I”.



98 CHAPTER 5. EXPERIMENTS AND EVALUATION

too unrobust to get a reasonable solution. The objective function curves and the
gradient norm curves are plotted in Figure 5.6 and Figure 5.7.
The curves of ”DINM” and ”ADINM” are almost the same in the first several
steps, because the condition number of C is smaller than B at the beginning, and
both implementations are identical. For this Ladybug dataset, we can conclude
from the figures, that all implementations except for ”BAL” and ”IRLS” have a
similar and fast reduction in objective function; ”IRLS” yields the lowest objective
function curve, but the potential from Huber loss function is always smaller equal
to the original square function; the gradient norm of ”IRLS” is high and with large
fluctuation; ”LMA-CD” obtains the steepest decline of gradient norm, however,
its gradient norm does not decrease anymore after around 100 seconds; ”ADINM”
generates the smallest value of gradient norm (smaller than 1); ”local DINM” has a
faster reduction in gradient norm than ”DINM”.
All taken into account, ”ADINM” and ”local DINM” have a better performance than
others. Both implementations have a fast and deep decline in objective function and
gradient norm.

Figure 5.6: Comparison of the objective function curves between our implemen-
tations and baseline implementations running on the Ladybug dataset provided
by [ASSS] with 49 image frames, 7776 feature points, and 31843 observations.
”DINM”, ”ADINM”, and ”local DINM” obtain the smallest value of the objective
function.

Synthetic Dataset (Small-Scale)

In this section, we test the implementations on synthetic datasets.
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Figure 5.7: Comparison of the gradient norm curves between our implementations
and baseline implementations running on the Ladybug dataset provided by [ASSS]
with 49 image frames, 7776 feature points, and 31843 observations. ”ADINM” yields
the deepest reduction curve of the gradient norm.

Firstly, a small-scale dataset is generated with 10 image frames, 289 feature points,
and 1834 observations. The schematic diagram of this dataset is plotted in Fig-
ure 5.8. The objective function curves and the gradient norm curves are plotted in
Figure 5.9 and Figure 5.10. Each implementation runs on this dataset for 50 sec-
onds. The maximum iteration step used in PCG loop is 1000. However, ”LMA-CD”
and ”IRLS” algorithms can only run around 10 steps and around 30 steps. Then,
both implementations compute an increment step with a NaN and/or Inf value, so
that the optimization process is terminated. Both implementations are not robust
enough facing such a dataset.

The curves of ”DINM” and ”ADINM” are almost the same. This is because the
condition number of C is always smaller than B in the first several steps on this
dataset. For this small-scale dataset, we can conclude from the figures, that in the
first 1 seconds, baseline implementation ”LMA-CD” yields a faster reduction in gra-
dient norm than our algorithms; after one seconds, our implementation ”DINM”
(”ADINM”) obtains the steepest decline in both gradient norm and objective func-
tion; finally, ”DINM” also owns the smallest value of gradient norm and objective
function. Even if ”local DINM” also has a fast decline of objective function, its
gradient norm has a great oscillation almost all the time. ”ADINM” and ”DINM”
perform better than others on this dataset.

In order to compare the optimized arguments with the ground truth, we introduce
a metric, absolute trajectory error (ATE). The ATE is defined as the root mean
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Figure 5.8: Schematic diagram of the small-scale synthetic dataset with 10 image
frames, 289 feature points, and 1834 observations.

Figure 5.9: Comparison of the objective function curves between our implemen-
tations and baseline implementations running on the small-scale synthetic dataset
with 10 image frames, 289 feature points, and 1834 observations. ”DINM” and
”ADINM” have the fastest and the deepest decline of the objective function.
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Figure 5.10: Comparison of the gradient norm curves between our implementations
and baseline implementations running on the small-scale synthetic dataset with 10
image frames, 289 feature points, and 1834 observations. ”DINM” and ”ADINM”
have the deepest and the most stable decline of the gradient norm.

square error (RMSE) in translational between two point clouds after Sim(3) align-
ment, i.e. alignment with translation, rotation and scaling [EUC16]. We directly use
the Matlab code of RMSE provided by [git] to compute RMSE. Here, we separately
compute two RMSEs for camera positions and feature points positions respectively.
How small the RMSE for feature points is presents how close the estimated feature
points is to the ground truth of feature points, similar for the RMSE for camera
positions. Camera positions are computed with rotation matrices and translation
vectors, thus, RMSE for camera positions implies the correctness of rotation param-
eters and translation parameters of each image frame.
The RMSEs at the initialization and after the optimizations of each implementation
are presented in Table 5.1.

Table 5.1: RMSE among implementations on the small-scale synthetic dataset. The
results from ”local DINM” are most closed to the ground truth.

Implementation initial LMA-CD BAL DINM ADINM local DINM IRLS
RMSE Camera/1 75.57 3.15 1591 3.86 3.86 3.57 28.17
RMSE Feature/1 14.01 13.74 3805 4.22 4.22 3.18 51.06

From the above table, both (adaptive) DINM and DINM with local parameterization
have a better approximation to the ground truth than others after optimization.
IRLS performs even worse than implementations without reweighted potential on
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the small-scale dataset.

Synthetic Dataset (Medium-Scale)

Secondly, a medium-scale dataset is generated with 50 image frames, 1000 feature
points, and 28991 observations. The schematic diagram of this dataset is plotted in
Figure 5.11. The objective function curves and the gradient norm curves are plotted
in Figure 5.12 and Figure 5.13. Each implementation run on this dataset for 300
seconds. The maximum iteration step used in PCG loop is 2000. However, ”LMA-
CD” and ”IRLS” can only run around 30 steps. Then, they compute an increment
step with a NaN and/or Inf value again, similar as before.
For this medium-scale dataset, we can conclude from the figures, that all our algo-
rithms always yield a faster and deeper reduction of objective function than both
baseline implementations after 50 seconds; the curves of ”DINM” and ”ADINM”
are still almost the same in the first 30 seconds; after 50 seconds, ”ADINM” has
the largest decreasing of the gradient norm and the objective function among all
implementations, even if with a little fluctuation; ”local DINM” also gets a satisfied
decline curve, and also more stable than ”ADINM”. ”local DINM” and ”ADINM”
are the best implementations.

Figure 5.11: Schematic diagram of the medium-scale synthetic dataset with 50 image
frames, 1000 feature points, and 28991 observations.

The RMSEs at the initialization and after the optimizations of each implementation
are presented in Table 5.2.
From the above table, both (adaptive) DINM and DINM with local parameterization
have a better approximation to the ground truth than baseline implementations.
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Figure 5.12: Comparison of the objective function curves between our implementa-
tions and baseline implementations running on the medium-scale synthetic dataset
with 50 image frames, 1000 feature points, and 28991 observations. ”ADINM” has
the fastest and the deepest decline of the objective function.

Figure 5.13: Comparison of the gradient norm curves between our implementations
and baseline implementations running on the medium-scale synthetic dataset with
50 image frames, 1000 feature points, and 28991 observations. ”ADINM” has the
fastest and the deepest decline of the gradient norm.
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Table 5.2: RMSE among implementations on the medium-scale synthetic dataset.
The results from ”DINM” are most closed to the ground truth.

Implementation initial LMA-CD BAL DINM ADINM local DINM IRLS
RMSE Camera/1 44.14 5.80 31.48 4.68 1.49 6.85 11.76
RMSE Feature/1 11.78 10.37 58.37 2.10 13.14 6.85 4.43

Synthetic Dataset (Larger Medium-Scale)

Thirdly, a larger medium-scale dataset is generated with 100 image frames, 4000
feature points, and 228658 observations. The schematic diagram of this dataset is
plotted in Figure 5.14. The objective function curves and the gradient norm curves
are plotted in Figure 5.15 and Figure 5.16. Each implementation runs on this dataset
for 1000 seconds. The maximum iteration step used in PCG loop is 3000. However,
”LMA-CD” algorithm still only runs around 10 steps, and gains an increment step
with a NaN and/or Inf value.
The curves of ”DINM” and ”ADINM” are still almost the same. For this larger
medium-scale dataset, we can conclude from the figures, that all our algorithms
obtain a faster and deeper decline in objective function curves and gradient norm
curves than both baseline implementations, except for ”DINM”; ”local DINM” still
yields the lowest objective function and gradient norm among all implementations;
”IRLS” also performs nearly as good as ”local DINM”; ”DINM” (”ADINM”) has
a steeper reduction in objective function than baseline implementations, however,
its gradient norm decreases a little slower than ”LMA-CD”. Still, ”local DINM”
performs the best.
The RMSEs at the initialization and after the optimizations of each implementation
are presented in Table 5.3.

Table 5.3: RMSE among implementations on the larger medium-scale synthetic
dataset. The results from ”local DINM” and ”IRLS” are most closed to the ground
truth.

Implementation initial LMA-CD BAL DINM ADINM local DINM IRLS
RMSE Camera/1 42.07 4.56 26.23 4.56 4.56 0.33 1.08
RMSE Feature/1 6.00 6.13 72.82 1.26 1.26 1.52 1.35

From the above table, both ”IRLS” and ”DINM” with local parameterization have a
far better approximation to the ground truth than other implementations. However,
the reweighted potential function still does not gain a significant improvement.

Synthetic Dataset (Large-Scale)

Finally, a large-scale dataset is generated with 500 image frames, 5000 feature points,
and 1477513 observations. The schematic diagram of this dataset is plotted in
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Figure 5.14: Schematic diagram of the larger medium-scale synthetic dataset with
100 image frames, 4000 feature points, and 228658 observations.

Figure 5.15: Comparison of the objective function curves between our implemen-
tations and baseline implementations running on the larger medium-scale synthetic
dataset with 100 image frames, 4000 feature points, and 228658 observations. ”local
DINM” has the fastest and the deepest decline of the objective function.
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Figure 5.16: Comparison of the gradient norm curves between our implementations
and baseline implementations running on the larger medium-scale synthetic dataset
with 100 image frames, 4000 feature points, and 228658 observations. ”local DINM”
has the fastest and the deepest decline of the gradient norm.

Figure 5.17. The objective function curves and the gradient norm curves are plotted
in Figure 5.18 and Figure 5.19. Each implementation runs on this dataset for 5000
seconds. The maximum iteration step used in PCG loop is 5000. ”LMA-CD”
algorithm can also run for 5000 seconds, but this is because each step costs too
much time than before. It is unknown if ”LMA-CD” faces the unrobust problem
after first 5000 seconds or not.
For this large-scale dataset, we can conclude from the figures, that all our algorithms
yield a faster and deeper decline in objective function curves and gradient norm
curves than both baseline implementations; ”local DINM” wins again among all
implementations.
The RMSEs at the initialization and after the optimizations of each implementation
are presented in Table 5.4.

Table 5.4: RMSE among implementations on the large-scale synthetic dataset. The
results from ”IRLS” are most closed to the ground truth.

Implementation initial LMA-CD BAL DINM ADINM local DINM IRLS
RMSE Camera/1 26.42 4.50 36.17 9.22 9.22 4.38 1.35
RMSE Feature/1 9.08 4.10 64.16 6.14 6.14 9.94 5.92

From the above table, ”IRLS” has a better approximation to the ground truth than
other implementations. Besides, the baseline implementation of ”LMA-CD” also
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Figure 5.17: Schematic diagram of the large-scale synthetic dataset with 500 image
frames, 5000 feature points, and 1477513 observations.

Figure 5.18: Comparison of the objective function curves between our implementa-
tions and baseline implementations running on the large-scale synthetic dataset with
500 image frames, 5000 feature points, and 1477513 observations. ”local DINM” has
the fastest and the deepest decline of the objective function.
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Figure 5.19: Comparison of the gradient norm curves between our implementations
and baseline implementations running on the large-scale synthetic dataset with 500
image frames, 5000 feature points, and 1477513 observations. ”local DINM” has the
fastest and the deepest decline of the gradient norm.

yields a good approximation. Even if ”local DINM” owns the best decline curves,
its results are not as closed to the ground truth as ”IRLS”. However, since for this
large-scale dataset, we only run 5000 seconds for each implementation (less than 10
steps in general), the estimated arguments are actually far from the respected local
optimal. This comparison does not reveal enough information.
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Chapter 6

Discussion

The comparison plots in Section 5.3 tell us the following points.

• As mentioned in [ASSS10], dense Cholesky decomposition is still the most
popular choice to solve small-scale bundle adjustment or sparse bundle ad-
justment due to its precise solution and small calculation burden. However,
when facing the bad conditioned and/or near singular problem, ”LMA-CD” is
always not robust enough. Under this situation, the exact LMA step solved by
Cholesky decomposition is extremely inaccurate, or even appearing NaN/Inf.
This situation also happens in the small-scale situation.

• Inexact increment step solved by PCG is much more robust than CD solver.
Besides, when solving a large equation system, PCG can compute a solution
with satisfied accuracy much faster than CD. An exact solution is unnecessary
and also pretty computation burden in optimization step.

• Local parameterization yields a more quick and more accurate optimization
step related to global parameterization, especially on large-scale dataset. On
small-scale dataset, the global parameterization may have a better perfor-
mance.

• The comparing results with the ground truth indicate all our algorithms esti-
mate the arguments more towards to the ground truth related to baseline im-
plementations generally. Especially for medium-/large-scale datasets, ”IRLS”
can better approach the ground truth by avoiding the outliers problem.

• (Adaptive) DINM algorithm and DINM with local parameterization can al-
most beat ”LMA-CD” and ”BAL” in all sizes of datasets considering accuracy,
efficiency and robustness. ”IRLS” algorithm performs well in many situations,
but it is also not robust enough sometimes, which needs to be further improved.

• The testing results using synthetic datasets show that ”ADINM” and ”DINM”
always have the same reduction curves in the first several iterations. On the
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other hand, it tells us that the judging of adaptive switching mode does not
cost much time related to other operations. Therefore, Adaptive DINM is
more suggested to implement, cause the adaptive switching ensure a more
robust computation.

In addition, there are some details about our algorithms to mention.

• An enough large maximum iteration steps in PCG loop of DINM is a crucial
factor, which helps to gain a iteration step, not only preciser but also faster.

• ”inc” scaling matrix and identity damping matrix are the best group for DINM
in our testing. Nevertheless, since we do not test all possible selection of both
matrices, there may exist better choice for DINM, at least on some datasets.

• The selection of preconditioner is sensitive and confused. Due to the lack of
enough knowledge of preconditioner, we do not use preconditioner in the main
experiments.

• An implicit cell-structure of matrices saves lots of time and memory during
construction in bundle adjustment.

We also have some recommendations for the future research.

• The implementations should be tested on more real datasets with different
sizes and different sparsities.

• In our thesis, we do not find a proper preconditioner for CG solver in DINM
algorithm, which can significantly improve the performance. We suggest the
following researchers should firstly have a deeper comprehension of the pre-
conditioner, and then try to find a robust preconditioner for DINM algorithm.

• Finally, the implementation ”IRLS” is still not robust enough in some situa-
tions, even if it is built based on ”local DINM”. The reason comes from the
reweighted potential function, i.e. the reweighted objective function deterio-
rates the robustness. The following researchers are suggested to find how the
condition number of matrix is influenced by the reweighted potential function.
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Chapter 7

Conclusion

In this thesis, we propose a novel damped inexact Newton’s method, which intro-
duces the damped factor into inexact Newton’s method. Thus, in damped inexact
Newton’s method, an inexact Levenberg-Marquardt step solved by (preconditioned)
conjugate gradient is bounded by a (scaled) trust region. DINM algorithm combines
the advantages from inexact Newton’s method and truncated Newton’s method. In
comparison with both baseline implementations, DINM yields a faster and deeper
decline curve of the objective function and the gradient norm. DINM algorithm
also presents more robustness on different datasets than baseline implementations,
especially ”LMA-CD”.
About DINM algorithm, we compare different matrix forms, different couples of the
scaling matrix and the damping matrix, different preconditioner, and different max-
imum steps in PCG loop. The results imply that the DINM implementation with
implicit cell-structure, ”inc” scaling matrix formed from (3.38), identity damping
matrix, and without preconditioner has the best performance. Besides, selecting an
enough large maximum steps in PCG loop is important to the accuracy and the
efficiency of the optimization process.
In addition, we propose three extended algorithms based on DINM. ADINM al-
gorithm adaptively switches Schur complement modes according to the condition
number, which is more robust than original DINM, and also obtains a deeper reduc-
tion of the gradient norm. ”local DINM” utilizes the local parameterization instead
of the global parameterization, which helps to gain a better linearization and a faster
computation process. IRLS algorithm introduces the reweighted potential function
to avoid the outliers problem. DINM with local parameterization and IRLS also
yield a better optimization trajectory towards to the ground truth.
All our algorithms acquire a great advancement in accuracy, efficiency, and robust-
ness, related to the state-of-the art solutions in bundle adjustment.
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Appendix

A.1 Matlab Code

All Matlab codes are stored in the attached CD-ROM.

A.2 Results Data

All experiment data and corresponding results, including data and plots, are also
stored in the attached CD-ROM.
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