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Abstract—The purpose of this research work is to investigate
some information matrix into PGO (pose graph optimization).
Considering the fundamental challenges associated with this
problem, such as the null-space nature of SLAM system and the
ambiguity of the scale drift during monocular visual odometry.
NFR(Nonlinear Factor Recovery) was introduced to extract an
information matrix from a rank deficient marginalized hessian
matrix such that a set of non-linear factors was reconstructed
that make an optimal approximation of the information on the
pose graph. Then, we proposed a photometric based Sim(3)
relative pose estimation. In experiments on a public benchmark,
we demonstrate a competitive performance of our method over
the LDSO original approach.

Index Terms—SLAM, Pose-graph Optimization

I. INTRODUCTION

The objective of pose-graph optimization is to estimate a
set of camera poses (poses and orientatnions) from relative
pose measurements. The problem can be formulated as a
least squares minimization. However, due to the unknown
variance of each poses, this problem usually initialize each
state with the same weight. In a visual SLAM context, pose-
graph optimization begins after the visual odometry, which
could help us to extract information matrix of each pose.

In this paper, we extract non-linear factors from the
marginalized keyframe at the font-end and use them as the
initial guess of pose for global pose-graph optimization.
The key idea, under the assumption of gaussian noise, the
maximum likelihood estimation can be obtained by minizing
the weigthed sum of residuals. the non-linear factor recovery
can approximates a dense distribution stored in the original
SLAM factor graph. Then we could transfer the information
accumulated for our global pose graph optimization.

A. Contributions

(i) We demostrate that weighted global pose graph optimiza-
tion can improve mapp accuracy significantly over pose-graph
optimization. (ii) we propose a photometric based relative pose
estimation and evaluate as well as accuracy. (iii) we improve
the LDSO loop closure detection strategy which can improve
the robustness of this system.

II. RELATED WORK

A. Graph-based SLAM

Graph-based SLAM maintains a global graph whose nodes
represent camera’s poses or landmarks and an edge represents
a sensor measurement that constrains the connected pose.

Once such a graph is constructed, SLAM uses graph opti-
mization method (i.e. nonlinear least-squares error minimiza-
tion via the Gauss-Newton or Levenberg-Marquardt algorithm)
to find a configuration of the nodes that is maximally consis-
tent with all the constraints. The graph optimization procedure,
with the presence of both camera pose and landmarks in
the graph, is called Bundle-Adjustment (BA). [1] Monocular
SLAM systems that apply graph optimization include PTAM
[2], LSD-SLAM [3], DSO [4], etc

In monocular SLAM, loop closure is solved through a pose
graph optimization with 7DoF similarity constraints (Sim(3))
to correct the scale drift. A pose graph is built on selected
key-frame connected by the pose-pose constraints. Pose-pose
constraints are defined by covisiblity and estimated by a
geometry base VO front end. Two poses are connected to each
other if they share enough common features. The graph built
on covisiblity is called Covisiblity Graph. In order to achieve
scalable, real-time performance, Ral et al. [5] proposed to
perform loop closing on a much lighter Essential Graph which
retains all the nodes (key-frames) from Covisibility Graph and
a subset of edges with high covisibility. As shown in [5],
the optimization of a properly constructed Essential Graph is
already very accurate that full Bundle Adjustment only makes
marginal improvement. We take the idea of loop closing with
graph optimization and apply it to an unsupervised learning
based visual odometry.

Loop closure is triggered by the place recognition technique.
Appearance or image-image matching based methods, such as
the bag of word approaches FAB-MAP [6] and DBoW2 [7],
are dominating this area for their high efficiency. Ral Mur-
Artal et al. [7] [5] proposed a bag of words place recognizer
built on DBoW2 with ORB feature and successful achieved
real-time loop closing. Then, Xiang et al. [8] use DBoW3
to give the DSO [4] a loop closure ability. In this work, for
efficiency and simplicity, we use LDSO [8] as an initialization
for our further optimization.



B. Non-linear Factor Recovery

Non-linear factor recovery is a general framework to
marginalize the node in a graph-based SLAM system. edge
pruning for a graph-based SLAM was first proposed in 2011
by kretzhschmar et al. [9], where depicts an example factor
graph input, together with one of node removed. They further
employed the Chow-Liu tree approximation [10],

III. PRELIMINARIES

In this paper, we write matrices as bold capital letters
(e.g. T) and vectors as bold lowercase letters (e.g. ξ). Rigid-
body poses are represented as (R, p) ∈SO(3)×R3 or as
transformation matrices T ∈ SE(3) and S ∈ Sim(3) when
needed. Incrementing a rotation R by an increment is defined
as R ⊕ ξ = Exp(ξ)R. The difference between two rotations
R and R is calculated as R1 	 R2 = Log(R1R

−1
1 ) such that

(R ⊕ ξ) 	 R = ξ . Here we use Exp: R3 → SO(3), which is
a composition of the hat operator (R3 → so(3)and the matrix
exponential (so(3)→ SO(3)) and maps rotation vectors to their
corresponding rotation matrices, and its inverse Log:SO(3) →
R3. For all other variables, such as translation , scale, we
define ⊕ and ominus as regular addition and subtraction.

In the following we will use a state s that is defined as
a tuple of several rotation, translation and scale variables,
and a function r(s) that depends on it and can also produce
rotations ,translation and scale as the result. An increment ξ
Rn is a stacked vector with all the increments of the variables
in s. Then, the Jacobian of the function with respect to the
increment is defined as

Jr(s) = lim
ξ→0

r(s⊕ ξ 	 r(s)

ξ
(1)

Here, s ⊕ ξ denotes that each component in s is incremented
with the corresponding segment in ξ using the appropriate
definition of the ⊕ opertor, and simliarly for 	. The limit is
done component-wise, such that the Jacobian is a matrix. For
Euclidean quantities, this definition is just a normal derivative
with an extension for rotations, both as function value and as
function argument. For more details and possible alternative
formulations we refer the reader to [11] [12]

We define the non-linear re-weighted least squares prob-
lems, we minimize functions of the form

E(s) =
1

2
r(s)ᵀWr(s), (2)

which is a squared norm of the sum residuals with a infor-
mation matrix W. In this case, r((s)) is purely vector-valued.
Near the current state s we can use a linear approximation of
the residual, which leads to

E(s⊕ ξ) = E(s) + ξᵀJᵀ
r(s)Wr(s) +

1

2
ξᵀJᵀ

r(s)WJr(s)ξ (3)

The optimum of this approximated energy can be attained
using the Gauss-Newton increment

ξ? = −(Jᵀ
r(s)WJr(s))

−1Jᵀ
r(s)r(s) (4)

With this, we can iteratively update the state si+1 = s⊕ ξ?

until convergence.

IV. LOOP CLOSING CORRECTION WITH
NON-LINEAR FACTOR RECOVERY

A. Loop Closing In DSO

Before delving into details of how our photometric based
relative pose estimation works, we briefly present the general
framework and formulation of LDSO [8]. LDSO is a extension
of DSO [4] , where 8 keyframes are maintained and their
states are jointly optimized in a sliding window. Keyframes
F{T1, ....,Tm} with SE(3) poses and points P{p1, ....,pm}
inverse depth d are optimized through the photometric error
which is defined as [4]:

Cfull :=
∑
i∈F

∑
j∈F

∑
k∈P

Ci,j,k(Ri, ti, ai, bi, dk,Rj , tj , aj , bj),

(5)

whereCi,j,k(·) :=
∑
p∈P

ωp‖(Ij(p
′
)−bj)−

tje
aj

tieai
(Ii(p−bi))‖γ

(6)

ωp :=
c2

c2 + ‖i(p)‖2
, p′ := Π(Ri,jΠ

−1(p, dk) + ti,j) (7)

where, a and b are the affine light transform parameters, t
is the exposure time, I denotes an image and wp is a heuristic
weighting factor with a constant scalar c and the gradient
norm. p′ is the reprojected pixel of p on Ij calculted by
reprojection function, with Π : R3 → Ω the projection and
Π−1 : Ω×R→ R3 the back-projection function, R and t the
realitve rigid body between the two frames calculated from
Ti and Tj , d the inverse depth for each point.

Loop closure detection strategy follows from LDSO [8].
In an loop closure setup, LDSO first compute the descriptors
for each keyframe and point, which are fed into the DBow3
database. Loop candidate is proposed for the current keyframe
by querying the database. In LDSO, the best candidate is
chosen for the loop closure relative pose calculation. Next,
a Sim(3) transformation is optimized with Gauss-Newton
method by minimizing the 3D and 2D geometric constraints.
The cost function is:

Eloop =
∑

qi∈Q1

∥∥ScrΠ−1(pi, dpi
)−Π−1(qi, dqi

)
∥∥
2

+∑
qj∈Q2

∥∥Π(ScrΠ
−1(pj , dpj

)− qj
∥∥
2
,

(8)

where P = pi is the reconstructed features in the loop
candidate and dpi

is their inverse depth.Q = qi is the matched
features in the current keyframe, and dqi

the sparse inverse
depth of the current keyframes. Let Q1 ⊆ Q be those without
depth and Q2 = Q−Q1 be those with depth and Π and Π−1

are the projection and back projection functions.



In the end, a global pose graph optimization is applied to
close long-terms loops for DSO. Although the pose graph
optimization is light-weighted, and fast to compute the loop
closure, the estimation still inevitably drift, and sometimes the
system is unable to close loop.

It is worthing noting that even feature based loop closure
correction, loop closure edges are still not sufficient for global
pose graph optimization, which leads to inconsistent drift. To
avoid these problem, we turn to the idea of using photometric
based approach to estimate the relative pose and make the
pose graph more accurate , which leaves us several other
challenges: (i) How to use all the points in the selected
keyframes to calculate the relative pose, instead of optimizing
filtered matched feature points. One step further, some loop
closure edges which could offer us reliable information are
filtered during the feature based geometric error calculation,
because of the insufficiency of the feature matching points. (ii)
How to estimate the scale drift with only photometric based
error. According to the LDSO’s formulation , 3D constraints
are involved to give the prior of scale drift. However, feature
correspondences are needed for building the 3D constraints.
How to present all the map points to scale estimation, which
is challenging in this case as insufficient matched points for
3D constraints. (iii) Once the transformation between loop
candidates are proposed, global pose graph optimization are
applied for the whole system. How to set the information
matrix between different loop closure edges.

Take these challenges into account we design our loop
closing module as depicted in FigIV-A. In order to initialize
our global Pose Graph Optimization and select a meaningful
set of keyframes, landmarks and observations, we realize our
implementation as a post-processing step of direct SLAM
LDSO. During the loop-closure detection part, we soften the
candidate keyframe selection strategy, and use photometric
based relative pose estimation to get a Sim(3) transfomation
between loop candidates. Finally, we refine global camera
poses with non-linear factor recovery.

B. RELATIVE POSE CALCULATION WITH PHOTOMETRIC
ERROR

In order to benefit from global pose graph optimization,
we soften the loop closure selection strategy in LDSO. All
the candidates which share enough similarity score in DBow3
become our relative pose estimation inputs. Then, we minimize
the following cost function:

Eloop =
∑

pj∈P1

∑
pi∈P

∥∥I(Π(ScrΠ
−1(pi, dpj

)− I(pi))
∥∥
2

+

∑
pj∈P2

∑
pj∈P

∥∥I(Π(S−1cr Π−1(pj , dpj
))− I(pj)

∥∥
2
,

(9)

where P is the pattern shown in Fig IV-B. Instead of using
the brightness transfer parameters in DSO, we use local
sum of squared difference to minimize the influence of the

illumination changes during the long-term loop. P1 and P2

are the reference frame, which we select from the old frames,
and the current frame. We project both points in reference
frame and current frame to each other two times to minimize
the photometric error of each projected points.

C. Non-linear Factor Recovery

Non-linear factor recovery approximates a dense distribu-
tion stored in the linearized Markov blanket of the original
factor graph with a different set of non-linear factors that yield
a sparse factor graph topology. By linearization of the residual
function of a non-linear least-squares problem. we obtain a
multivariate Gaussian distribution p(s) ∼ N(µo,H

−1
o ) where

µ is the state estimation. we want to construct another distribu-
tion q(s) ∼ N(µa,H

−1
a ) that well approximates the original

distribution with a sparser factor graph topology. We follow
the NFR and minimize the Kullback-Leibler divergence(KLD)
between the recovered distribution and the original distribution
in [13].
When we marginalize out a keyframe from the original factor

graph, we save the current linearization and marginalize out
everything except the keyframe poses. This gives us a factor
that densely connects all keyframe poses in the optimization
window. We use it to recover non-linear factors between the
marginalized keyframe and all other keyframes. We define the
relative pose residual function same as [14]:

rrel(r, zrel) = Log(zrelTiT
−1
j ) (10)

where zrel is our virtual measurement from the estimated
state at the time of linearization. We recover pairwise relative-
pose factors between the keyframe. This gives us a full-rank
invertable Jacobian Jr ,then we can use the KLD to recover
the information matrices of the factors with that the following
closed-form solution exists.

Hi = ({JrΣoJ
T
r }i)−1 (11)

where i denotes the corresponding diagonal block, and
Σo = H−1o .

D. Handling Rank Deficient Information

In the section IV-C, we assumed the information matrix Ho

to be invertible. Unfortunately, when dealing with problems
sunch as variable marginalization. this is often not be the
case [15]. From a SLAM perspective, this implies that the
Markov blanket lacks a rigid transforamtion edge to the world
reference frame and also the scale.
In such a senario, Ho has k null eigenvalues, where k is the
nullspace of the SLAM system , e.g. 7 for LDSO. if Ho

has n rows, the distribution of p(s) is actually an (n − k)-
dimensional multivariate normal embedded in a n-dimensional
space. Therefore, we propose to project p(s) and q(s) onto
the (n− k)-dimensional informative subspace to compare the
resulting (n− k)-dimensional distributions.
We compute an (n− k)× n projection matrix P by stacking



Fig. 1: Pipline to construct and initializae the global PGO problem.

Fig. 2: Pattern for the local match.

the transpose of the eigen vectors of Ho corresponding to
the nonzero eigenvalues. Since Ho is a symmetric real-valued
matrix its eigen decomposition Ho = UΛUT is a real-valued
and always exists:

Ho = UΛUT = [U0 PT ]

[
0 0
0 Λ+

][
UT

0

P

]
(12)

the projection matrix P acts as a linear operator to project any
arbitrary information matrix Ha onto the lower-dimensional
space by computing PHaP

T . To account for singular in-
formation matrices, we apply the following substitution into
Kullback-Leibler divergence formula.

A→ APT (13)

Σ→ Λ−1+ (14)

This, however, does not guarantee that q(x) is an (n − k)-
dimensional distribution embedded in an n-dimensional space.
We enforce this property by arifically limiting the rank of the
Jacobian matrix Jr. THe same efficient implementation for
computation for computing the gradient can also be applied
in the low rank case.

Y = P[Λ− (PJTr HoJrP
T )−1]P (15)

where Y represents the gradient. If the Jr is full rank column,
the Ha can be derived by:

Hi = ({JrPTΣoP
−1JTr }i)−1 (16)

V. EVALUATION

A. Setup

In order to evaluate the performance of the our weighted
pose graph optimization. we evaluate our implementation on
all eleven sequences from the EUROC MAV datasets. These
constitute image sequences froma flying drone in an indoor
setting. Accurate ground truth poses are available from motion
capture or fusion of laser tracking and IMU. It worth noting
that, since we use LDSO as initialization and baseline as our
algorithm, we choose the same subset of frames for each
sequences as in their evaluation and run our monocular pipline
on images from the left camera.

B. Results

Accuracy In order to evaluate the accuracy of the keyframe poses
after optimization, we employ the commly used Absolute Tra-
jactory Error (ATE) in meters [16], which measures the root-
mean-squared camera position error, after Sim(3) alignment of
the estimated keyframe trajectory to the ground truth:

ATE = min
(R,(t),s)∈SO(3)×R3×R

∑
i

‖x̂i+sR(Rᵀ
i )ti−t‖2 (17)

where x̂i are ground truth camera postition and −Rᵀ
i ti

are the correspoing estimates from global variables. Ground
truth poses are linearly interpolated at image time stamps.
Table 1 shows ATE for all sequences. Note that for MH04
and V203 the odoemtry has large scale/rotation drift and no
verified loop closures where detected. In this failure case of the
initialization global PGO does not help, however our weighted
PGO can improves a little. Despite this, our weighted pgo can
still improve the results comparing to the original PGO.



Fig. 3: Visualization of non-linear factor recovery. Left: Densely connected factor from marginalization saved from the LDSO
before removing a keyframe pose. Right: Extracted non-linear factors that approximate the distribution stored in the original
factor.

Sequence MH01 MH02 MH03 MH04 MH05 V101 V102 V103 V201 V202 V203
odom 0.059 0.037 0.237 3.111 0.101 0.116 0.256 0.134 0.052 0.088 1.318
pgo 0.034 0.019 0.087 3.122 0.074 0.040 0.058 0.134 0.026 0.053 1.318

wpgo 0.02359 0.02297 0.02406 0.02347 0.02448 0.03045 0.05318

TABLE I: ATE error for all Euroc sequences. The final ATE in meters for odometry (odom), pose-graph optimizaiton (pgo),
our weighted pose-graph optimization shows that our approach significatly imporves over odometry and is competitive to the
performance of pose-graph optimization

VI. CONCLUSION

In this report, we present a novel approach for Sim(3)
PGO that combines relative pose constraints in the slid-
ing window and the information distribution of poses. We
achieve this that successively recovers non-linear factors from
LDSO estimate that summarize the relative pose constraints
between keyframes. Considering the null-space of the monoc-
ular SLAM system, we use NFR to handle a rank deficient
marginalized information matrix and test in Euroc dataset. The
result is competitive comparing with the LDSO approach.
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