
TECHNICAL UNIVERSITY OF
MUNICH

DEPARTMENT OF INFORMATICS

Bachelor’s Thesis in Informatics

3D Scene Reconstruction for 2D
Object Recognition

Kanstantsin Tkachuk

TECHNICAL UNIVERSITY OF
MUNICH

DEPARTMENT OF INFORMATICS

Bachelor’s Thesis in Informatics

3D Scene Reconstruction for 2D
Object Recognition

Rekonstruktion von 3D-Szenen
für 2D-Objekterkennung

Author: Kanstantsin Tkachuk
Supervisor: Prof. Dr. Daniel Cremers
Advisors: Nikolaus Demmel

Dr. Ulrich Klank
Submission Date: 16. September 2019

I confirm that this bachelor’s thesis is my own work and I have documented
all sources and material used.

Munich, 16. September 2019 Kanstantsin Tkachuk

Abstract

In this thesis, I consider a part of the operational cycle of the logistics
robot TORU 5 by Magazino GmbH, during which the robot’s manipulator
moves within a vertical plane in front of a shelf with multiple layers containing
rectangular boxes which must be detected and recognized by the robot. The
motion constraints allow to reduce the object recognition problem to a two-
dimensional object recognition task performed on a 2D-map of the front side
of the shelf containing distances from the front side to the objects in the
scene.

I focus specifically on the problem of reconstructing a three-dimensional
surface model of the shelf using data from a depth sensor for its subsequent
reduction to a two-dimensional representation which can be used for ob-
ject recognition. I implement two solution approaches to this problem and
compare their performances with regard to the quality of the resulting two-
dimensional representations.

The first approach called the Assisted approach uses external estimations
of the sensor’s position to update the surface model. The second approach
called the KinectFusion approach uses the OpenCV 4.0.1 implementation of
the KinectFusion algorithm [1].

To measure the quality of the reconstruction, I use pointwise matching of
the sensor’s trajectories reconstructed by the algorithms with ground truth
trajectories as well as pixelwise matching of the resulting 2D images with
ground truth images. I execute the implementations for real-world data
recorded on the robots as well as for error-free synthetic data to eliminate
the influence of the noise in the input data.

The results show that the Assisted approach performs better in the given
setting than the KinectFusion approach which demonstrates particularly
poor performance with only about 7% of the reconstructions having high
enough quality to be used for object recognition. This holds both the real-
world data and for the error-free synthetic data, which allows to rule out
the sensor’s calibration and noise in depth images as the causes for its poor
performance and indicates the unsuitability of the scene’s surface geometry
for the reconstruction by the KinectFusion algorithm.

Contents

1 Introduction 2
1.1 General model of the robot’s motion 3
1.2 Real-world setting: robot TORU 5 5
1.3 Problem statement . 8

2 Experimental setup 11
2.1 Software infrastructure of TORU 5 11
2.2 Surface reconstruction pipeline 12

2.2.1 Point cloud reconstruction 14
2.2.2 Transformation estimation 16
2.2.3 Update of the surface model 17

2.3 Generation of two-dimensional projection 19
2.3.1 Formal definition . 20
2.3.2 Implementations . 21

3 Evaluation methodology 23
3.1 Test scenarios . 23
3.2 Recording of data . 24
3.3 Execution of tests . 25
3.4 Evaluation of results . 26

4 Results 29

5 Discussion and conclusion 38

1

Chapter 1

Introduction

One of the core features of any non-trivial mobile robot is the ability to
reconstruct a model of its physical environment. Such a model helps the
robot to localize itself and plan its movement within the environment as well
as detect and classify objects available for physical interaction.

The choice of a solution approach for the problem of environment recon-
struction depends greatly on the constraints imposed on the robot’s move-
ment. Those constraints may limit the robot’s ability to obtain information
about the environment (e.g. sensors’ view limited to only one side of an ob-
ject), but they may also reduce the complexity of the resulting model and, as
a consequence, the computational load needed to perform its analysis (e.g.
navigation of a wheeled robot in a three-dimensional environment is reduced
to a two-dimensional problem).

In this thesis, I consider a particular real-world setting in which a mobile
robot has to perform spatial segmentation and object recognition in a three-
dimensional environment, but the constraints of the robot’s motion allow
to reduce this problem to an equivalent two-dimensional object recognition
task. This setting is a part of the operational cycle of the robot TORU 5 by
Magazino GmbH.

I focus specifically on the problem of three-dimensional environment re-
construction performed exclusively for its subsequent reduction to a two-
dimensional representation. I examine two different solution approaches for
this problem, implement the corresponding software systems and compare
their performances with regard to the quality of the resulting two-dimensional
representations and to the robustness of the implementations against the neg-
ative effects of the motion constraints such as limited sensors’ view.

2

1.1 General model of the robot’s motion
The robot’s main motion dimensions during the examined operational phase
can be generally described by a model in which a robotic manipulator with
a mounted depth sensor moves in two dimensions within a vertical plane in
front of a bounded three-dimensional scene containing objects to be detected
by the robot (Fig. 1.1). The objects are then to be removed from the scene by
the manipulator (Fig. 1.2) which extends perpendicularly to the movement
plane, grasps the object with help of a suction cup and then contracts, pulling
the grasped object onto the robot’s storage tray (Fig. 1.3).

Figure 1.1: An instance of the general setting: a robotic manipulator moving
within a plane defined by the support framework.

Figure 1.2: The exemplary robot has a storage tray, a depth sensor on top
and a telescopic manipulator with a suction cup.

3

Figure 1.3: The exemplary robot transporting a box.

The positive effect of the motion constraints with regard to the problem’s
complexity is the possibility to reduce the three-dimensional environment
to its two-dimensional projection on the plane of the robot’s movement con-
taining the perpendicular distances from the manipulator plane to the closest
points of the objects within the scene (Fig. 1.4). The negative effect is how-
ever the restriction of the depth sensor’s view of the scene to a single-sided
view with a fixed camera angle. Most real depth sensors would only detect
the frontal surfaces of the objects due to strong reflections on the side surfaces
which would mean loss of information about the true shape of the objects.

4

(a) The surface of the objects is col-
ored according to the distance from the
robot’s movement plane to the corre-
sponding points on the surface.

(b) A 2D map of distances is built which
contains all relevant information for ma-
nipulation planning and can be used for
2D object recognition.

Figure 1.4: Reduction of a 3D scene to its 2D representation

1.2 Real-world setting: robot TORU 5
The real-world setting examined in this thesis, which is a part of the operation
cycle of the logistics robot TORU 5 by Magazino GmbH (Fig. 1.5), can be
considered as an instance of the described above general setting.

TORU 5 is a wheeled mobile robot designed to locate and transport
medium-sized objects, primarily shoe boxes, between different shelves in a
warehouse. The process of transportation is divided into two stages: the
navigation stage, during which the robot plans and executes its movement
between different shelves within the warehouse, and the manipulation stage,
during which the robot locates and manipulates the boxes on the shelves.

The movement pattern of the robot during the manipulation stage corre-
sponds exactly to the described above general setting. The robot can move
the whole body horizontally parallel to the shelf and can also move the ma-
nipulator vertically, resulting in a two-dimensional planar movement pattern
(Fig. 1.5). To transport a box, the manipulator is extended to grasp it with
help of an array of suction cups and is then contracted to pull the box onto
a storage tray. The sensor used to scan the shelf is a depth sensor mounted
at a fixed angle directly above the manipulator (Fig. 1.6).

The robot maintains a separate three-dimensional environment model for
each shelf compartment involved in the transportation process (Fig: 1.7).
These models represent the surfaces of the objects contained within their
corresponding compartments.

5

Figure 1.5: Robot TORU 5 taking a box from the upper layer of the shelf,
operating together with human workers at a Zalando warehouse. The ma-
nipulator (on top) can move vertically inside the black tower while the robot
moves parallel to the shelf.

(a) Front view, gripper retracted. (b) Side view, gripper extended.

Figure 1.6: The manipulator of TORU 5, much like the exemplary robot, has
a storage tray, a depth sensor (black on top) and an extending box gripper
with an array of six suction cups (white in the middle).

6

Figure 1.7: A 3D representation of a shelf’s layer maintained by TORU 5.

The three-dimensional models are used to create two-dimensional projec-
tions of the contents of the compartments onto the front side of the shelf
similarly to the general setting (Fig. 1.8). The resulting two-dimensional
images are propagated to the object detection and manipulation planning
systems which then analyze the images using fast two-dimensional object
recognition algorithms.

Figure 1.8: A 2D representation of a shelf’s layer generated from the 3D
model.

7

1.3 Problem statement
The problem in the focus of this thesis is finding a suitable three-dimensional
surface reconstruction algorithm for the described setting.

I examine two different approaches to the reconstruction of a three-
dimensional scene for its subsequent reduction to a two-dimensional rep-
resentation, one of which is implemented in the current version of scene
reconstruction software for TORU 5 and the other one is a new experimental
approach. I evaluate and compare their performances with regard to the
quality of the resulting two-dimensional projections.

Both approaches discretize the volume of the scene into a three-dimen-
sional voxel grid to accumulate information about the surfaces of the con-
tained objects. As input, they use point clouds generated from depth images
recorded by the manipulator’s depth sensor. To integrate the surface in-
formation, they require estimations of the sensor’s position and orientation
relative to the center of the reconstructed compartment at the moment of
registration of each depth image.

The differences between the approaches lie in the way those estimations
are obtained and also in the way the surface data is represented using a
discrete voxel grid.

The implementation of the first naive algorithm (further refered to as
the Assisted approach) receives estimations of the sensor’s pose from the
robot’s localization system which uses wheel odometry and lazer distance
sensors to keep track of its movement. I designed and implemented this
approach in the first versions of the scene reconstruction software for TORU
5, which I have been developing as a working student for Magazino GmbH.

The advantage of this approach is the simplicity of the calculations needed
to update the reconstructed surface model with new depth data. When the
position of the sensor is known from an external source, the update algorithm
degenerates to a series of simple linear transformations of vectors representing
the input point cloud. These transformations can also be calculated inde-
pendently in parallel, so the algorithm works fast and adds little additional
overhead to the overall computational load of the robot.

The disadvantage of this approach is obviously its complete dependence
on the external sensor position estimations. The localization systems of real
robots always produce noisy data, and the noise in the position estimation
may actually exceed the resolution of the depth sensor resulting in the total
error of the reconstruction being much greater then the error caused by the

8

noise in the depth data. This creates a bottleneck meaning that increasing the
quality of the sensor has no effect on the quality of the surface reconstruction.

The localization system of TORU 5 uses wheel odometry which is prone
to cumulative errors. The error of localization gradually grows over time
until the pose estimation is refined by the data from the laser sensors and
depth cameras and is replaced with a new estimation. Such sudden jumps
of the robot’s position, the cumulative error of the odometry and the gaus-
sian noise in the estimation refinements all contribute to the overall error of
reconstruction, since the point clouds are being inserted in wrong locations.

Another source of error is the movement of the robot which is not captured
by the localization systems such as oscillation of the sensor. The sensor is
mounted on a framework which moves vertically inside a hollow cylindrical
tower. Due to the inertia of this framework, the tower has a tendency to
oscillate when the robot’s acceleration changes, with the amplitude growing
larger the closer the manipulator moves to its top. Such oscillation is not
registered by the robots localization systems but it leads to motion blur in
the reconstructed surface and distorts the shapes of the objects.

I have observed all these effects on the robots where I have implemented
this approach. This has motivated me to search for an algorithm which
performs the estimation of the sensor’s trajectory based only on the received
depth data.

The implementation of the second approach uses the KinectFusion algo-
rithm [1] (hence further refered to as the KinectFusion approach) imple-
mented in the OpenCV Computer Vision Library of version 4.0.1 released
in November 2018 to reconstruct the trajectory of the sensor using only the
depth data from the sensor and from its own model. This allows to eliminate
the need for an external trajectory estimation and potentially make full use
of the quality and resolution of the depth sensor.

However, the performance of KinectFusion in comparison to that of the
Assisted approach depends entirely on the suitability of the implementation
for the particular scene scanning patterns and noise in the depth images.
Scanning a scene like a rectangular shelf containing rectangular boxes only
from one side with from a fixed camera angle yields depth images containing
a set of disconnected mutually parallel planar shapes. It is not clear, whether
the point clouds generated from such depth images can be matched to one
another with a sufficient accuracy and how significant is the impact of the
noise in the depth images on the reconstruction quality.

In order to evaluate and compare the performance of the examined surface

9

reconstruction approaches, I create working implementations of both algo-
rithms and integrate them into the scene reconstruction software of TORU
5. I use the adapted implementation from the current version of the software
as the Assisted approach implementation and also implement its extended
version where the assisted surface reconstruction pipeline is replaced with
the OpenCV implementation of the KinectFusion algorithm. In addition, I
implement a testing framework which allows to automatically execute the
algorithms on recorded datasets for multiple combinations of customizable
parameters and quantitatively evaluate the results of the execution.

10

Chapter 2

Experimental setup

2.1 Software infrastructure of TORU 5
The robot TORU 5 is operated by the Robot Operating System (ROS). ROS
regulates the interaction between separate software processes called nodes.
The data exchange between the nodes is performed through channels called
topics. Each node can communicate data to other nodes by publishing
messages on a number of topics and can receive data from other nodes by
subscribing to topics they are publishing on. Nodes can also communicate
data on demand by offering a service that other nodes can call. By calling
a service, a node sends a request to another node to perform some actions or
to send some data back to the calling node. A service call can also be used
to communicate input data to the node being called.

On TORU 5, the surface reconstruction and aggregation of surface data
for multiple shelf compartments is performed by the node called scene_ag-
gregator (Fig. 2.1). This node receives the calibrated depth data from the
sensor by subscribing to the topics /camera_info and /image_rect pub-
lished by the sensor’s driver node.

The implementation of the Assisted approach also requires information
about the transformations between different coordinate systems correspond-
ing to various joints of the robot and objects in the environment such as
shelves and compartments. The transformation data is published by the
localization nodes on the topics /tf and /tf_static, which the scene_-
aggregator node reads to obtain the transformation matrices necessary for
the sensor’s position estimation.

11

Figure 2.1: Graph of the ROS-infrastructure of the scene reconstruction
pipeline.

The scene_aggregator node offers a service called req_agg_scene_data,
which upon request generates the two-dimensional projection of the surface
and sends it back to the calling node. This service is called by the box de-
tection nodes when manipulation planning has to be performed. The box
detection nodes receive the image from scene_aggregator as a response
to the request, perform scene segmentation and object detection and then
propagate the results to further nodes responsible for manipulation planning.

2.2 Surface reconstruction pipeline
The surface reconstruction process is performed in cycles with each new
iteration triggered by the incoming depth images. An iteration is divided
into three steps: reconstruction of the point cloud from the depth image in its
own coordinate system, calculation of the transformation from the coordinate
system of the point cloud to the coordinate system of the reconstructed
compartment and the integration of the point cloud into the surface model of
the compartment (Fig. 2.2). These steps are common for both reconstruction
approaches, but the implementations of the last two steps are different and

12

require different data.

(a) Assisted approach.

(b) KinectFusion approach.

Figure 2.2: Surface reconstruction pipeline.

In case of the KinectFusion approach, the whole reconstruction pipeline is
implemented internally in the module "rgbd" of the OpenCV library (more
specifically, in the opencv_contrib repository for OpenCV’s extra modules).
This module contains the class KinFu which offers a single method to perform
all the reconstruction steps above at once.

13

The scene_aggregator node maintains a single object of the class KinFu
for each active compartment and only needs to call the method "update" of
this object with a depth image as argument in order to update its internal sur-
face model according to the described pipeline. The resulting reconstructed
surface can be extracted from the KinFu object in form of a point cloud with
normals which then can be used for the three-dimensional visualization of
the surface or for the generation of its two-dimensional projection.

The KinFu object is intentionally considered as a black box implementa-
tion of the KinectFusion algorithm for compatibility reasons. In order to be
able to use future binary releases of the OpenCV library for surface recon-
struction on the robots, the code of the OpenCV implementation must not
be altered in any way and should only be viewed in terms of input-output
relations. For this reason, the particular implementation of the KinectFusion
algorithm in the chosen version of the OpenCV library is not examined in this
thesis, and the relevant parts of the algorithm are described in a general way
as in the original paper [1]. For the same reason, the KinectFusion approach
uses the point cloud representation of the reconstructed scene, which can be
obtained by calling a method of the KinFu object, for the two-dimensional
projection generation, although this process could be implemented more effi-
ciently if the direct access to the internal surface representation of the KinFu
object was possible.

2.2.1 Point cloud reconstruction

The surface reconstruction pipeline begins with the two depth data topics.
The topic /image_rect is used to communicate the actual depth images and
the topic /camera_info communicates information about the used depth
sensor such as intrinsic calibration matrix and distortion parameters. The
data is communicated in form of standard ROS messages which are generated
and published in real time by the sensor’s driver node.

Both message types begin with a standard ROS header which contains
a sequence number, a timestamp and the name of the coordinate system
the data is to be interpreted in. The timestamps are used by the scene_-
aggregator node to synchronize the messages on both topics and, along with
the coordinate system names, to match each depth image to the sensor’s
position in space at the time the depth image was recorded.

The depth images are stored in the messages from the /image_rect topic
as raw binary data which, using some auxiliary information also stored in the

14

message, can be converted to two-dimensional images representing pinhole-
camera-model projections of the scene within the field of view of the sensor
(Fig. 2.3). These projections can in turn be converted to three-dimensional
point clouds approximating the source scene surface as follows.

Figure 2.3: Projection of a point in the scene onto the image plane in the
pinhole camera model (source: OpenCV documentation, docs.opencv.org).

The coordinates of the points relative to the focal point can be calculated
using the focal lengths and the principal point of the model. This information
is stored within the intrinsic calibration matrix K in the messages from the
/camera_info topic which has the following form:

K =

fx 0 cx
0 fy cy
0 0 1

 (2.1)

where fx and fy are the focal lengths and (cx, cy)
T is the principal point.

The coordinates of the point p(u, v) = (px, py, pz)
T represented by the pixel

15

in the row u and column v of the depth image D with value d(u, v) can then
be calculated as follows:

p(u, v) = d(u, v) ·K−1 ·

u
v
1

 =

d(u,v)
fx

(u− cx)
d(u,v)
fy

(v − cy)

d(u, v)

 (2.2)

The resulting set of vectors:

P = {p(u, v) | (u, v) ∈ D} (2.3)

represents the reconstructed point cloud with coordinates of the points given
in the sensor’s coordinate system or frame which is identified by the name
or frame ID stored in the headers of the messages. The sensor’s focal
point is located at the origin of this system and the direction of the z-axis
is the direction of view of the sensor. The x and y axes match with the
corresponding axes of the image (Fig. 2.3).

2.2.2 Transformation estimation

In the second step of the reconstruction pipeline, the coordinates of the
points must be transformed from the sensor’s frame to the frame of each
active compartment to make the integration of the surface information into
the models possible.

The frames of the compartments are defined to have origin at the centers
of the compartments with axis z pointing upwards and axes y and x pointing
respectively towards the front and the right side of the compartment relative
to the robot standing in front of the shelf.

The borders of the compartment can be defined in its coordinate system
as planes x = ±xend, y = ±yend and z = ±zend where xend, yend and zend are
half the width, depth and height of the compartment. The front side of the
compartment is then described by the plane y = +yend.

At this point, the two approaches diverge and follow different paths.
In the Assisted approach, the scene_aggregator node reads the infor-

mation about the transformations from the topics /tf and /tf_static using
a specialized buffer object which stores the received messages and provides a
method to calculate the transformation between any two existing frames for
a given point in time in present or recent past. The point in time for which

16

a given transformation is valid is specified by the timestamp in the header
of a transformation message.

The scene_aggregator node reads the timestamps and the sensor’s frame
ID from the headers of the depth image messages and calls the transformation
lookup method provided by the buffer, passing the timestamp, the sensor’s
frame ID and the frame ID of each compartment as arguments. The data
structures returned by the transformation buffer desribe the transformations
from the sensor’s frame to each compartment’s frame at the moment of depth
image registration. Each structure is then multiplied with the vectors of the
point cloud to obtain one new point cloud for each compartment with the
coordinates of the points specified in the compartment’s coordinate system.

The KinectFusion approach also uses the transformation data published
on /tf and /tf_static to calculate the starting position of the sensor which
will be used as the reference point for the sensor’s trajectory estimation by
the KinectFusion algorithm. Since the direction of the z-axis in the sensor’s
frame coincides with the sensor’s direction of view, the tranformation from
the sensor’s frame to the compartment’s frame, which can be described by
the translation vector and the rotation quaternion, can also be interpreted
as the pose of the sensor in the compartment’s frame. The translation vector
is then equivalent to the sensor’s position and the rotation quaternion is
equivalent to the sensor’s orientation in the compartment’s frame.

Upon receiving the first input point cloud, the KinectFusion algorithm
calculates the corresponding transformation using the data from the trans-
formation topics, stores it as the current pose of the sensor and updates its
surface model with the received point cloud. The following sensor poses for
each incoming point cloud will be calculated by matching the point clouds
with the reconstructed surface and calculating the estimation of the sensor’s
movement in the time between the two last depth image registrations. This
will reqiure no further information from the transformation topics. To inte-
grate the point clouds into the surface model, the sensor poses can simply
be interpreted as the coordinate system transformations and multiplied with
the vectors of the point clouds.

2.2.3 Update of the surface model

The last step of the reconstruction process is to update the surface models
using the obtained point clouds.

For both approaches, the volume inside the compartment is discretized

17

into cubes of fixed size forming a uniform voxel grid V , where each voxel is
assigned a single numerical value describing the way it intersects with the
reconstructed surface:

V := (vi,j,k) ∈ R[imin...imax]×[jmin...jmax]×[kmin...kmax], (2.4)

imin = b−xend

v
c, imax = bxend

v
c, (2.5)

jmin = b−yend
v
c, jmax = byend

v
c, (2.6)

kmin = b−zend
v
c, kmax = bzend

v
c, (2.7)

where v is the size of voxel, xend, yend and zend are half the width, depth
and height of the compartment. The voxels are identified by three integer
indices i, j and k corresponding to each dimension starting at the origin of
the compartment’s frame which lies at the center of the compartment (so
negative indices are also used).

In case of the Assisted approach, the voxel’s value is the probability that
the surface intersects with this specific voxel, i.e. that the voxel contains some
points which lie on the surface of some object. The algorithm to update
such voxel grid with a point cloud is straightforward (Algorithm 1): the
coordinates of each point are divided by the size of a voxel and are rounded
downwards to obtain the integer indices of the corresponding voxel in three
dimensions. The value of this voxel is then modified using a certain update
function f(vi,j,k,θ) depending on the current value of the voxel and on a
vector of parameters θ.

Data: voxel grid V (eq. 2.4), voxel size v, point cloud P (eq. 2.3)
Result: voxel grid V is updated with new data from P
foreach p = (px, py, pz) ∈ P do

(i, j, k)←
(
bpx

v
c, bpy

v
c, bpz

v
c
)
;

vi,j,k ← f(vi,j,k,θ);
end

Algorithm 1: Update algorithm for the Assisted approach.
The update function f(vi,j,k,θ) and the parameter vector θ can be chosen

depending on the properties of the input data and the scene being recon-
structed. For instance, assuming a certain probability distribution for the

18

coordinates of the points, the neighboring voxels can be updated along with
the target voxel accoring to the probability density function of the given dis-
tribution. In the current implementation, the update function for the voxel
values is trivial: if any point is found to lie within the given voxel, its in-
tersection probability is set to one right away, and the voxel is considered
"occupied" (f(vi,j,k,θ) = const = 1).

The surface of all the occupied voxels approximates the surface of the
objects inside the compartment for the purposes of three-dimensional visual-
ization as well as generation of the two-dimensional projection of the scene.

In the KinectFusion algorithm, the values of the voxels are calculated us-
ing the Truncated Signed Distance Functions (TSDF) approach as described
in the KinectFusion paper [1]. Such representation can potentially allow a
more accurate approximation of the reconstructed surface while using a voxel
grid of the same resolution as in the Assisted approach.

The reconstructed surface can be visualized using the point cloud gener-
ated by the KinectFusion algorithm from the voxel values using raycasting. It
can be obtained from the KinFu object by calling the corresponding method.
This point cloud is also used to generate the two-dimensional projection of
the scene.

2.3 Generation of two-dimensional projection
The generation of two-dimensional projections is done by the scene_aggre-
gator node on demand when the manipulation planning has to be performed.

To plan the next manipulation action, the manipulation nodes require the
information about the detected objects in the scene, which is provided by the
box detection node, which in turn requires a two-dimensional representation
of the inspected scene to perform object recognition. To obtain this repre-
sentation, the box detection node calls the service req_agg_scene_data pro-
vided by scene_aggregator. Upon receiving a request, the scene_aggrega-
tor node temporarily suspends the reconstruction process to avoid concur-
rent modifications of the reconstructed surface and generates the requested
representation to then send it back to the calling node.

19

2.3.1 Formal definition

The two-dimensional representation of the compartment is constructed tak-
ing into account the robot’s movement constraints. Since the manipulator
can only move within a vertical plane in front of the compartment and extend
and contract perpendicularly to this plane, the only information about the
objects inside the compartment that is relevant for manipulation planning is
the sideways shift and the elevation of the object relative to the center of the
compartment (to know where to position the manipulator inside the move-
ment plane) and the distance from the manipulator’s default unextended
position to the frontal surface of the object to be grasped (to calculate how
far the manipulator must be extended to perform grasping).

The latter distance can be calculated using the distance between the
object and the front side of the compartment by just adding a constant,
since the robot always stays at the same distance from the shelf. For this
reason, the two-dimensional representation of the compartment has to be a
projection of the contents of the compartment onto its front side. Since only
the frontal surfaces of the objects are relevant, the projection has to contain
information about the distances from the compartment’s front side to the
surfaces of the objects inside the compartment.

In our setting, this projection can be formally defined by using an ideal
continuous representation of the three-dimensional volume inside the com-
partment. The continuous volume itself is represented by the following set:

V C := [−xend, xend]× [−yend, yend]× [−zend, zend] ⊂ R3 (2.8)

which is a subset of R3 containing its zero vector and bounded by the
planes x = ±xend, y = ±yend and z = ±zend. The front side is defined by the
plane y = +yend.

Each object within the compartment can now be defined as a distinct set
of points O ∈ V . The contents of the compartment can then be represented
by the following binary function:

occ : V C → {0, 1} (2.9)

occ : (x, y, z) 7→

{
1, if ∃O | (x, y, z) ∈ O;

0, otherwise.
(2.10)

20

Using this representation, the projection d(x′, y′) of the scene onto the
front side of the compartment can be described by the following function:

d : [−xend, xend]× [−zend, zend]→ R (2.11)

d : (x′, y′) 7→ min
∀y∈[−yend,yend]:occ(x′,y,y′)=1

(yend − y) (2.12)

This projection represents the distances from each point on the front side
of the compartment to the closest point in the y-direction which lies on the
surface of some object.

2.3.2 Implementations

In the real-world setting, a rectangular compartment is discretized into a
uniform rectangular voxel grid V (2.4). In this case of a discrete space, the
front side of the volume is also a discrete two-dimensional structure, namely
a layer of voxels V ′ = (vi,jmax,k) = (v′i,k), so the projection will have form
of a two-dimensional array D = (di′,j′) with each element representing the
distances from each individual voxel on the front side (e.g. from a single fixed
point or a surface within the voxel) to the part of the reconstructed surface
within the same voxel row in y-direction:

D = (di′,j′) ∈ R[i′min...i
′
max]×[j′min...j

′
max], (2.13)

i′min = 0, i′max = imax − imin (from 2.5),

j′min = 0, j′max = kmax − kmin (from 2.7).

Since the voxel grid representations of the surface are different in both
approaches, those distances are also calculated in a different way.

In the Assited approach, the calculation algorithm iterates over all voxels
of the front side of the compartment (Algorithm 2). Starting at each voxel,
the algorithm then iterates over the voxels within the same y-row until it
reaches a voxel marked as occupied. The resulting distance is then defined
as the distance between the front sides of the front voxel and the occupied
voxel or, equivalently, the length of a voxel multiplied by the number of

21

inspected unoccupied voxels in the current y-row. The distances are written
into the corresponding pixels of a two-dimensional image representing the
resulting projection.

Input: voxel grid V (2.4), voxel size v
Output: projection D (2.13)
for i← imin to imax do

for k ← kmin to kmax do
j ← jmax;
while vi,j,k = 0 and j ≥ jmin do

j ← j − 1;
end
(i′, j′)← (i− imin, k − kmin);
di′,j′ ← v · (jmax − j);

end
end

Algorithm 2: Generation of a 2D projection in the Assisted approach.
In the KinectFusion approach, the algorithm iterates over the points of

the point cloud P returned by the corresponding method of the KinFu object
(Algorithm 3). It starts with an image filled with the distances to the back
side of the compartment, representing an empty scene with no objects. Then,
for each point (px, py, pz), it calculates the coordinates of the pixel this point
corresponds to using integer division and stores the difference jmax · v − py
as the value of this pixel if this value is less than the current value of the
pixel. When the calculation is done, each pixel will contain the smallest of
the distances to all surface points registered within the corresponding voxel
row.

Input: voxel grid V (2.4), voxel size v, point cloud P
Output: projection D (2.13)
di′,j′ ← v · (jmax − jmin) ∀(i′, j′);
forall p = (px, py, pz) ∈ P do

(i, j, k)← (bpx
v
c, bpy

v
c, bpz

v
c);

(i′, j′)← (i− imin, k − kmin);
if (jmax · v − py) < di′,j′ then di′,j′ ← (jmax · v − py);

end
Algorithm 3: Generation of 2D projection in the KinectFusion ap-
proach.

22

Chapter 3

Evaluation methodology

To ensure accurate results and create a fully controlable testing environment,
the software implementing the examined algorithms is not being run directly
on the robots, but is instead executed in offline mode with the specifically
recorded input data and on the hardware similar to that installed on the real
robots. The data used for testing is recorded on the actual robots operating
in simplified but close-to-reality test scenarios. Along with the real-world
data, the algorithms are also executed on a set of data generated by the
simulation of TORU 5 in the Gazebo robot simulator. The synthetic data
is free of noise and thus is used to examine the effects of the noise on the
surface reconstruction quality.

3.1 Test scenarios
In the test setting, I simulate the process of scanning an entire compartment
with TORU 5 moving sideways parallel to the shelf from one edge of the
compartment to another with a constant velocity. Such movement pattern
often occurs in real-world scenarios and is well suitable for the surface re-
construction testing since it delivers the largest amount of depth data for
a given compartment and also introduces the largest possible error to the
reconstructed model.

This error is caused by the error of the sensor’s trajectory estimation. In
case of the Assisted approach, this includes the cumulative error of odometry,
which is either accumulated over the whole length of the path or combined
with interruptions and leaps in the trajectory caused by sudden changes

23

of the position estimation after refinement. In case of the KinectFusion
approach, it is due to the fact that the estimation for each new depth image
is calculated relatively to the previous pose estimations, so the point cloud
matching error is accumulated over time increasing the total estimation error
after each iteration.

The starting position of the robot is in front of one of the support pillars
of the shelf adjacent to the target compartment. The tower of the robot is
open and the manipulator is directed towards the shelf and positioned at the
necessary height to fit the whole height of the compartment into the field of
view of the sensor. The robot starts to move parallel to the shelf towards
the opposite side of the compartment. Shortly after it reaches the target
velocity, the recording of the data starts. The velocity stays constant during
the whole scanning process. As soon as the robot reaches the opposite side
of the compartment and the second support pillar passes through the center
of the sensor’s field of view, the recording of the data ends, and the robot
stops.

For the described robot movement pattern, I consider 7 types of box
arrangements within the test compartment:

• emtpy compartment,
• one box in the middle,
• stack of two boxes in the middle,
• two boxes placed uniformly,
• two stacks of two boxes placed uniformly,
• four boxes placed uniformly,
• four stacks of two boxes placed uniformly.

These types range by filling density, which is necessary to investigate the
influence of the distances between the objects in the scene on the quality of
the reconstruction. Larger distances may lead to more similar depth images
in a row which, in case of the KinectFusion approach, may have negative
effects on the accuracy of sensor’s movement estimation between the frames.

3.2 Recording of data
The data being recorded during the scanning are all the messages published
on the topics /camera_info, /image_rect, /tf and /tf_static. The

24

sequences of messages published on these four topics together with their
exact timelines are sufficient to completely replicate the scanning process in
terms of the input received by the surface reconstruction node.

The recording is performed using the ROS’s "rosbag" utility for record-
ing from and playing back to ROS topics. Using this utility to play back
the recorded messages, the reconstruction process can be simulated on any
system that has the necessary hardware and supports ROS. The scene_-ag-
gregator node can be started in isolation and perform the reconstruction
while reading the data from the simulated topics and providing the two-
dimensional projections on demand.

The process of data recording performed in the real-world setting with
the decribed robot movement pattern is also performed in exactly the same
way in the simulated environment. The simulated warehouse including the
scanned compartment exactly replicates the actual robot testing area used
by Magazino GmbH and both the real TORU 5 and the simulated one are
controlled by the same software. The depth sensor used in the real robot
is simulated using the depth camera plugin for Gazebo and is set up to
deliver depth images of the same resolution as the real sensor but without
any distortion. The transformation information published on the topics /tf
and /tf_static is taken directly from Gazebo and is therefore also error-
free and represents the true geometric relationships between different parts
of the robot.

3.3 Execution of tests
With the test scenarios and box arrangement types defined as described
above, the complete dataset used to test the surface reconstruction algorithms
consists of a single "rosbag" recording of the specified ROS topics for each
combination of the following parameters:

• real/simulated robot,

• movement direction left/right,

• box arrangement type 1 to 7

with the total of 28 recordings. Each recording has to be processed by
the implementations of the both algorithms coming in multiple variations.

25

The implementations can be customized using a number of parameters.
The common parameter for both algorithms is the resolution of the internal
voxel grid representation. The implementation of the KinectFusion algo-
rithm also offers three more cusomizable parameters: the raycasting step,
the number of levels in the multi-resolution-pyramid representation of the
depth image used in ICP algorithm and the number of iterations of the ICP
algorithm at each pyramid level. Apart from that, the depth data can be
downsampled by various factors by discarding a certain fraction of the depth
images to simulate lower frame rates of the sensor or higher velocities of the
robot.

Each combination of these parameters results in different behavior, so I
execute the reconstruction once for each combination of the following values:

• voxel grid resolution: 2mm/3mm/4mm/5mm,

• downsampling factor: 1/2/4/8 (each 1/2/4/8-th depth image processed,
the rest discarded),

• (KinFu) raycasting step factor: 0.25 (single value),

• (KinFu) number of pyramid levels: 3 (single value),

• (KinFu) number of iterations at each pyramid level: 5-3-2, 10-6-4, 15-
9-6, 20-12-8 (level order from fine to coarse),

for each of the 28 data recordings, resulting in 448 executions of the
Assisted approach implementation and 1792 executions of the KinectFusion
approach implementation.

3.4 Evaluation of results
In the test scenarios during the recording of the depth data the robot moves
with a constant velocity in a straight line in front of the compartment. I use
such a trajectory to provide an initial measure of quality of the reconstruction
which is the deviation of the estimated sensor’s trajectory reconstructed by
the algorithms from a straight line path.

In the beginning and in the end of the scanning process the testing frame-
work requests and stores additional estimations of the sensor’s pose from the
localization nodes. These estimations are calculated using wheel odometry
and refined with measurements from laser distance sensors with an accuracy

26

of several centimeters, while the average total length of the robot’s path
is approximately 1.5 meters, which means that a straight line trajectory of
the sensor can be approximated by a line spanned by the endpoints with a
reasonable accuracy.

The ground truth trajectories for each test scenario are then defined as
straight line paths between the initial and the final position of the sensor. The
intermediate positions on the trajectory for any given moment between the
starting time and the stopping time are calculated using linear interpolation
with sensor’s pose coordinates as functions of time.

The ground truth trajectories are compared with the trajectories recon-
structed by the implementations of the surface reconstruction pipeline.

The reconstructed trajectories are represented by series of sensor poses
with timestamps corresponding to each processed depth image. After each
model update cycle, the elements of the position vector and the orientation
quaternion of the newly calculated pose estimate are written to a file along
with the timestamp with the time of the depth image registration.

I consider these entries separately and first calculate the corresponding
ground-truth pose for each resonstructed pose using linear interpolation with
the timestamp as argument. I then compute the differences between the
positions of the sensor and use the absolute trajectory error (ATE) or the
root-mean-square-error (RMSE) of the lengths of the difference vectors as
the quantitative measure for the dissimilarity of the trajectories.

I calculate the ATE for different implementations of the surface recon-
struction pipeline working in the same test scenarios and use the values to
compare the performance of the implementations and the influence of differ-
ent parameters on the quality of the reconstruction.

In case of the KinectFusion approach, the evaluation of the trajectories
is performed both on the real-world data and on the synthetic data. The
latter is not distorted by the noise as the data from real-world sensors and
is therefore used to investigate the performance of the algorithm in a pure
error-free setting.

However, in case of the Assisted approach, the absense of error both
in the depth data and the transormation data means that the trajectory
reconstructed by the implementation of the algorithm will always exactly
correspond to the actual straight line trajectory of the robot in the simu-
lation environment. As a result, the models reconstructed by the Assisted
approach implementation cannot be evaluated using the trajectory estima-
tion in the simulated setting, but can instead be used as a benchmark for

27

the KinectFusion approach.
The projections produced by the Assisted approach implementation from

the error-free data actually represent the ideal approximations of the shapes
of the objects inside the compartment for the given discretization resolution
and can therefore be used as the ground truth data for the evaluation of
the images produced by the KinectFusion implementation. The images are
compared pixelwise with each pair of pixels being marked as ’divergent’ if
their values differ by more than ten centimeters. The quantitative measure
of the reconstruction quality for the KinectFusion image is then defined as
the percentage of divergent pixels between the reconstructed image and the
corresponding ground truth image (obviously, with smaller numbers meaning
better quality).

28

Chapter 4

Results

The tables 4.1 to 4.6 show the results of the trajectory evaluation for the As-
sisted approach (columns "AA") and for the KinectFusion approach ("KinFu")
for different test scenarios ordered by different values of the customizable pa-
rameters of the KinectFusion implementation.

The tables 4.7 to 4.9 show the average pixel mismatch ratios between the
images reconstructed using KinectFusion from the synthetic data and the
ground truth images. Figure 4.1 shows their overall distribution with the
average of 0.2245 and the standard deviation of 0.077. The figures 4.2 and
4.3 show the images with the lowest and highest mismatch ratios respectively.

Figure 4.1: Results of pixelwise matching of KinectFusion images with
ground truth images.

29

2 mm 3 mm 4 mm 5 mm
AA KinFu AA KinFu AA KinFu AA KinFu

Empty 0.002 0.467 0.003 0.150 0.002 0.127 0.010 0.059
1 box 0.002 0.489 0.003 0.117 0.002 0.127 0.010 0.089
1 stack 0.002 0.467 0.003 0.095 0.003 0.097 0.009 0.125
2 boxes 0.002 0.445 0.003 0.160 0.003 0.102 0.003 0.070
2 stacks 0.003 0.075 0.003 0.231 0.003 0.118 0.003 0.072
4 boxes 0.003 0.097 0.002 0.085 0.003 0.130 0.003 0.078
4 stacks 0.003 0.118 0.002 0.080 0.010 0.048 0.003 0.100
Average 0.002 0.308 0.003 0.131 0.004 0.107 0.007 0.085

Table 4.1: Average ATE ordered by the resolution, real-world data.

5-3-2 10-6-4 15-9-6 20-12-8
AA KinFu AA KinFu AA KinFu AA KinFu

Empty 0.001 0.627 0.001 0.554 0.001 0.381 0.012 0.383
1 box 0.001 0.602 0.021 0.374 0.001 0.378 0.012 0.397
1 stack 0.001 0.541 0.021 0.399 0.025 0.425 0.012 0.364
2 boxes 0.001 0.617 0.019 0.407 0.023 0.383 0.022 0.357
2 stacks 0.001 0.506 0.020 0.371 0.024 0.403 0.022 0.348
4 boxes 0.001 0.528 0.001 0.432 0.025 0.360 0.021 0.350
4 stacks 0.001 0.547 0.001 0.394 0.012 0.410 0.022 0.346
Average 0.001 0.567 0.012 0.419 0.016 0.391 0.017 0.364

Table 4.2: Average ATE ordered by the number of iterations, real-world data.

1 in 1 1 in 2 1 in 4 1 in 8
AA KinFu AA KinFu AA KinFu AA KinFu

Empty 0.001 0.464 0.000 0.829 0.001 0.601 0.011 0.272
1 box 0.001 0.475 0.020 0.167 0.000 0.711 0.004 0.566
1 stack 0.000 0.747 0.019 0.246 0.024 0.125 0.001 0.627
2 boxes 0.000 0.699 0.020 0.371 0.023 0.160 0.024 0.109
2 stacks 0.001 0.380 0.022 0.767 0.023 0.616 0.024 0.265
4 boxes 0.001 0.175 0.001 0.111 0.026 0.671 0.018 0.503
4 stacks 0.001 0.752 0.001 0.162 0.030 0.089 0.021 0.523
Average 0.001 0.527 0.012 0.379 0.018 0.425 0.015 0.409

Table 4.3: Average ATE ordered by the downsampling rate, real-world data.

30

2 mm 3 mm 4 mm 5 mm
AA KinFu AA KinFu AA KinFu AA KinFu

Empty 0.001 0.641 0.001 0.535 0.001 0.397 0.012 0.398
1 box 0.001 0.610 0.021 0.355 0.001 0.378 0.012 0.346
1 stack 0.001 0.608 0.020 0.391 0.024 0.394 0.012 0.418
2 boxes 0.001 0.526 0.020 0.380 0.023 0.393 0.023 0.346
2 stacks 0.001 0.528 0.020 0.425 0.024 0.385 0.019 0.353
4 boxes 0.001 0.529 0.001 0.402 0.026 0.401 0.021 0.348
4 stacks 0.001 0.544 0.001 0.408 0.012 0.391 0.024 0.354
Average 0.001 0.569 0.012 0.414 0.016 0.391 0.018 0.366

Table 4.4: Average ATE ordered by the resolution, synthetic data.

5-3-2 10-6-4 15-9-6 20-12-8
AA KinFu AA KinFu AA KinFu AA KinFu

Empty 0.002 0.467 0.003 0.097 0.002 0.092 0.010 0.082
1 box 0.002 0.472 0.003 0.157 0.002 0.105 0.010 0.082
1 stack 0.002 0.464 0.003 0.142 0.003 0.132 0.010 0.071
2 boxes 0.002 0.465 0.003 0.162 0.003 0.109 0.003 0.103
2 stacks 0.003 0.126 0.003 0.142 0.003 0.105 0.003 0.069
4 boxes 0.003 0.112 0.002 0.120 0.003 0.101 0.003 0.075
4 stacks 0.003 0.104 0.002 0.102 0.010 0.087 0.003 0.073
Average 0.002 0.316 0.003 0.132 0.004 0.104 0.006 0.079

Table 4.5: Average ATE ordered by the number of iterations, synthetic data.

1 in 1 1 in 2 1 in 4 1 in 8
AA KinFu AA KinFu AA KinFu AA KinFu

Empty 0.002 0.415 0.003 0.154 0.002 0.103 0.009 0.076
1 box 0.002 0.407 0.003 0.127 0.002 0.176 0.010 0.078
1 stack 0.002 0.478 0.003 0.086 0.003 0.085 0.010 0.065
2 boxes 0.002 0.567 0.003 0.102 0.003 0.111 0.004 0.082
2 stacks 0.003 0.105 0.002 0.289 0.003 0.110 0.003 0.086
4 boxes 0.003 0.092 0.002 0.071 0.002 0.141 0.003 0.068
4 stacks 0.002 0.088 0.002 0.070 0.010 0.102 0.004 0.083
Average 0.002 0.307 0.003 0.128 0.004 0.118 0.006 0.077

Table 4.6: Average ATE ordered by the downsampling rate, synthetic data.

31

2 mm 3 mm 4 mm 5 mm
Empty 14.5% 19.8% 20.7% 26.8%
1 box 14.5% 21.1% 21.6% 26.5%
1 stack 15.0% 23.2% 23.0% 27.2%
2 boxes 14.9% 24.6% 24.1% 24.5%
2 stacks 17.7% 25.6% 24.9% 29.6%
4 boxes 18.4% 17.7% 26.3% 31.4%
4 stacks 19.2% 19.9% 23.7% 30.8%
Average 16.3% 21.7% 23.5% 28.1%

Table 4.7: Average pixel mismatch ratios ordered by the resolution.

5-3-2 10-6-4 15-9-6 20-12-8
Empty 15.5% 17.9% 19.6% 26.0%
1 box 14.7% 23.6% 19.5% 26.0%
1 stack 14.1% 23.6% 26.3% 25.9%
2 boxes 14.6% 23.6% 24.1% 29.8%
2 stacks 19.7% 23.5% 23.9% 28.7%
4 boxes 18.9% 20.9% 23.9% 29.0%
4 stacks 18.6% 19.9% 26.3% 28.8%
Average 16.6% 21.9% 23.4% 27.7%

Table 4.8: Average pixel mismatch ratios ordered by the number of iterations.

1 in 1 1 in 2 1 in 4 1 in 8
Empty 13.4% 21.6% 22.3% 23.9%
1 box 12.7% 19.5% 23.1% 33.3%
1 stack 16.2% 22.9% 16.7% 30.8%
2 boxes 16.6% 24.0% 17.8% 21.4%
2 stacks 16.6% 28.1% 31.7% 26.0%
4 boxes 15.5% 16.3% 32.1% 35.2%
4 stacks 21.4% 18.3% 16.2% 33.8%
Average 16.1% 21.5% 22.8% 29.2%

Table 4.9: Average pixel mismatch ratios ordered by the downsampling rate.

32

(a) Ground truth image. (b) Mismatch ratio 4.56%.

(c) Ground truth image. (d) Mismatch ratio 4.94%.

(e) Ground truth image. (f) Mismatch ratio 5.76%.

Figure 4.2: Some of the best results of KinectFusion reconstruction in terms
of mismatch ratio.

(a) Ground truth image. (b) Mismatch ratio 42.8%.

(c) Ground truth image. (d) Mismatch ratio 41.4%.

(e) Ground truth image. (f) Mismatch ratio 34%.

Figure 4.3: Some of the worst results of KinectFusion reconstruction in terms
of mismatch ratio.

33

The data shows that, both in real-world and in simulated data, the av-
erage ATE decreases with increasing voxel size and number of iterations. In
case of the simulated data, it also quickly decreases with increasing downsam-
pling rate, while for the real-world data no definitive trend can be observed.

For the pixel mismatch ratios the trends are inverse: the mismatch ratios
grow with increasing voxel size, number of iterations and downsampling rates.

It can be clearly seen that the average ATE in the Assisted approach is
always less than that of the KinectFusion approach by one to two orders of
magnitude. In fact, the results of the trajectory estimation demonstrate an
overall poor performance of the KinectFusion implementation (Fig. 4.4).

Out of 1792 test images produced by the KinectFusion implementation,
only 127 images (7.1%) demonstrate satisfactory quality of reconstruction
with ATE under 5 cm, 469 (26.2%) images with ATE between 5 and 10 cm
contain significant errors which may hinder object recognition and lead to
physical manipulation failure and the remaining 1196 (66.7%) show the ATE

Figure 4.4: Proportion of the images of different quality reconstructed by the
KinectFusion approach.

34

of more than 10 cm and are completely unusable for object recognition due
to severe distortions.

The images produced by the Assisted approach, on the other hand, demon-
strate decent reconstruction quality, since the transformation data used in
the assisted reconstruction does not contain large amounts of noise.

Figure 4.5: Some of the worst cases of the Assisted approach reconstructions
(ATE around 6 cm).

For most images, the trajectory error is less than 1 centimeter and even
in the worst cases (Fig. 4.5) it does not exceed 7 centimeters, whereas more
than half of the KinectFusion reconstructions show trajectory error greater
than 10 centimeters, and in some cases it reaches up to 1.2 meters (Fig. 4.6).

(a) Assisted approach. (b) KinectFusion approach.

Figure 4.6: Histograms of trajectory errors registered for both approaches.

Nevertheless, by artificially introducing the error to the transformation
data, the surface reconstruction error in the Assisted approach can be made
arbitrarily large, while the quality of the reconstructions produced by the
KinectFusion implementation remains unaffected (Fig. 4.7). This shows the
advantage of the KinectFusion algorithm which is the independence of the
reconstruction error from the error in the external sensor pose estimations.

35

(a) Assisted approach. (b) KinectFusion approach.

Figure 4.7: Reconstruction of the scene with artificially introduced transfor-
mation estimation error (constant drift in z-direction).

In general, every image generated by the KinectFusion implementation
demonstrates one or more gross errors of reconstruction such as sudden in-
terruptions, shortening and bending of surfaces, overlapping of objects and
distorted box shapes (Fig. 4.8).

(a) Shortening. (b) Bending.

(c) Box shape distortion. (d) Multiple errors.

Figure 4.8: Observed types of reconstruction errors (real-world data).

The algorithm performs particularly poorly on box arrangements with low
filling density. The lenghts of empty compartments are always compressed to
approximately the width of the sensor’s field of view, which is to be expected
due to the similarity of depth images recorded in the middle regions of the
compartments up to the point of practical identity (Fig. 4.8a). For non-
empty compartments, such shortening is observed less frequently but is still
present (compare 4.8b to 4.8c, 4.8d).

In all depth images, including those that correctly reflect the shapes of the
objects (4.2), the reconstructed surface is skewed or bent towards the sensor
at the side of the robot’s final position (in the illustrations, the colors in the
image gradually become darker from the initial to the final position which
means decreasing distance to the robot). The bending is constant within

36

(a) Shortening. (b) Bending.

(c) Box shape distortion. (d) Multiple errors.

Figure 4.9: Observed types of reconstruction errors (synthetic data).

the given reconstructed scene (but not between different scenes) and always
corresponds to the direction of the robot’s movement. In many images, the
scene is also bent in other directions (4.8b, 4.8d).

All kinds of bending appear both in the images reconstructed from real-
world data (Fig. 4.8b) and from synthetic data (Fig. 4.9b) and, although
the downward and upward bending is normally less significant in the syn-
thetic data, the forward bending is present in all images in approximately
equal amounts, which allows to generally rule out the errors in the sensor
calibration and the noise in the depth images as its cause.

In about half of all images, regardless of the presence of other errors, the
sizes and shapes of the boxes are distorted. Some reconstructed boxes have
width from approximately 0.5 to 1.25 times their actual width and some have
their side contours completely destroyed (Fig. 4.8c). Box shape distortions
occur both in the real and the synthetic data equally often (Fig. 4.9c).

37

Chapter 5

Discussion and conclusion

The results of the testing show the superior performance of the Assisted
approach over the current OpenCV implementation of the KinectFusion ap-
proach in the examined setting. Although the KinectFusion algorithm does
in fact eliminate the influence of the error in the external sensor trajectory
estimation on the reconstruction error, the distortion of the reconstructed
models is shown to be too significant to be able to produce usable two-
dimensional projections of the scene. The Assisted approach on the other
hand is proven to be an acceptable reconstruction algorithm for the examined
setting provided that the error of localization does not exceed certain levels.

This represents a significant, although negative in essence, result for Mag-
azino GmbH who kindly provided the data and the testing environments for
the evaluation of the approaches. Based on the results of this thesis, the
research on the KinectFusion approach will be abandoned and the Assisted
approach will remain the main productional implementation of the scene
reconstruction software for TORU 5 until further research reveals a better
solution for the surface reconstruction tasks in the given setting.

There are some possible research directions to consider while searching
for an improved surface reconstruction algorithm.

One possibility would be to examine the OpenCV implementation of the
KinectFusion algorithm in detail and investigate the practicability of its adap-
tation for the given setting. Since some of the obtained images demonstrate
somewhat decent quality of reconstruction, there is probably a potential for
improvement in the current implementation of the algorithm.

However, the modification of the code of the OpenCV library is still
undesirable due to the compatibility reasons. Magazino GmbH would have

38

to maintain a separate version branch for the implementation of the ’rgbd’
module of the OpenCV library, which would complicate software package
management and integration of the improvements made to the module by its
original author.

Probably the most promising possibility would be to investigate surface
reconstrucion algorithms which use RGB images along with depth images for
sensor trajectory estimation. The sensors used for shelf scanning on TORU 5
are RGB-D cameras capable of producing RGB and depth images simultan-
iously. There exist open-source implementations of various RGB-D simultan-
ious localization and mapping (SLAM) algorithms such as BAD SLAM [3],[4]
or Voxblox [5],[2] with readily available ROS integration. This approach has
a lot of potential, since it allows to make full use of the sensor’s capabilities
and also solves the problem of segmented data in the depth images due to
large amounts of disconnected flat surfaces in the scanned scenes.

39

Bibliography

[1] Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davi-
son, A. J., Kohli, P., Shotton, J., Hodges, S., Fitzgibbon, A. (2011).
KinectFusion: Real-Time Dense Surface Mapping and Tracking. Paper
presented at The 10th IEEE International Symposium on Mixed and
Augmented Reality (ISMAR 2011), Basel, Switzerland. DOI: 10.1109/IS-
MAR.2011.6092378

[2] Oleynikova, H., Taylor, Z., Fehr, M., Nieto, J., Siegwart, R. (2017).
Voxblox: Incremental 3D Euclidean Signed Distance Fields for On-Board
MAV Planning. Paper presented at IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Vancouver, Canada. DOI:
10.1109/IROS.2017.8202315

[3] Schops, T., Sattler, T, Pollefeys, M. (2019). BAD SLAM: Bundle Ad-
justed Direct RGB-D SLAM. Paper presented at The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 134-144, Long
Beach, California, USA.

[4] https://github.com/ETH3D/badslam

[5] https://github.com/ethz-asl/voxblox

40

