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From 3D to 2D: why and how?

Tasks in robotics are in general harder in 3D than 2D:
➢ localization
➢ object recognition
➢ path planning

Reason: a body in 3D-space has 6 degrees of freedom vs. 3 degrees of freedom in 2D.
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From 3D to 2D: why and how?

Useful fact: some problems in 3D can be reduced to an equivalent problem in 2D.

Specifically: problems for objects that have 3 DOF in the 3D-space instead of 6.
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Problem setting: generalized planar robotic 
manipulator
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Relevant information: frontal distances to objects
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Relevant information in 2D-representation
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Real-life robot: TORU 5 by Magazino GmbH
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TORU 5: manipulator
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TORU 5: relevant information for object detection
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TORU 5: 3D surface representation
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From 3D to 2D: why and how?

Goal: reconstruct the surface in 3D in order to create an 2D representation.

Advantage: the reduced problem can be solved much more efficiently.
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Disadvantage: limited sensor view
The sensor cannot “see” the whole shape due to reflections
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Goal: find a suitable reconstruction algorithm

A suitable for the given setting 3D surface reconstruction algorithm must:
➢ produce good 2D representations
➢ be robust against the incompleteness of the sensor data
➢ be computationally efficient

These requirements are the criteria against which the performance of the examined algorithms 
should be evaluated.
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Assisted approach vs. KinectFusion approach

Assisted approach uses external sensor pose estimations to update the reconstructed 
surface with new depth data:
+ easy computations
- strongly affected by errors in external localization data

KinectFusion approach uses the KinectFusion algorithm to calculate the movement of the 
sensor between two frames:
+ self-sufficient: only needs the input from the sensor
- might be affected by incomplete sensor data: point cloud matching errors

The algorithms are evaluated in regard to the quality of the produced 2D representations.
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KinectFusion approach

KinectFusion algorithm is an algorithm 
for 3D surface reconstruction using 
depth cameras.

“KinectFusion enables a user holding 
and moving a standard Kinect camera 
to rapidly create detailed 3D 
reconstructions of an indoor scene. Only 
the depth data from Kinect is used to 
track the 3D pose of the sensor and 
reconstruct, geometrically precise, 3D 
models of the physical scene in real-
time.”

Source: original paper “Kinectfusion: real-time 3D reconstruction 
and interaction using a moving depth camera” by S. Izadi , D. 
Kim , O. Hilliges , D. Molyneaux , R. Newcombe , P. Kohli , J. 
Shotton , S. Hodges , D. Freeman , A. Davison , A. Fitzgibbon.
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KinectFusion approach

Source: original paper “Kinectfusion: real-time 3D reconstruction and interaction using a moving depth camera” by S. Izadi , D. Kim , O. Hilliges , D. 
Molyneaux , R. Newcombe , P. Kohli , J. Shotton , S. Hodges , D. Freeman , A. Davison , A. Fitzgibbon.
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Reconstruction pipeline
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Point cloud reconstruction
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Point cloud reconstruction: pinhole camera model

Source: OpenCV documentation, https://docs.opencv.org
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Point cloud reconstruction: pinhole camera model

Intrinsic calibration matrix K:

K=[
f x 0 c x
0 f y c y
0 0 1 ]

Depth image d:

+

d (x , y)

Point cloud P:

P x , y=[
d (x , y)
f x

(x−cx)

d (x , y)
f y

( y−c y )

d (x , y)
]
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Reconstruction pipeline: black box
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Black box: OpenCV 4.0.1 implementation
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Measure of quality: absolute trajectory error (ATE) 
relative to ground truth trajectories
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Measure of quality: pixel-wise matching with 
ground truth images

Ground truth Reconstructed image

Mismatched pixelsMatched images
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Main result: better performance of the Assisted 
approach
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Main result: better performance of the Assisted 
approach
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Some of the best KinectFusion results (by pixel 
mismatch ratio)

Ground truth

Ground truth

Pixel mismatch ratio 4.56%,
ATE 5.35 cm

Pixel mismatch ratio 4.94%,
ATE 5.28 cm
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Some of the worst KinectFusion results (by pixel 
mismatch ratio)

Ground truth Pixel mismatch ratio 42.8%,
ATE 92.7 cm

Ground truth Pixel mismatch ratio 34%,
ATE 70.5 cm
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Some of the worst Assisted approach results
(by ATE)

ATE 5.97 cm

ATE 6.75 cm
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KinectFusion’s immunity to external localization 
error

Assisted approach KinectFusion approach

The reconstruction error in the Assisted approach can be made arbitrarily large by introducing 
localization error artificially (example below: constant drift in z-direction). In the KinectFusion 
approach, it remains unaffected.
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Errors in KinectFusion reconstructions
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Shortening
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Bending and skewing
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Box shape distortion
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Simulated data: same errors
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Simulated data: box shape distortion
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Simulated data: bending
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Simulated data: shortening
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Multiple errors
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In general: quality grows with resolution



Kanstantsin Tkachuk | 3D Scene Reconstruction for 2D Object Recognition 44 

In general: quality grows with resolution

Voxel size: 5mm

4mm

3mm

2mm
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Quality grows with downsampling rate

Using every message:

Using 1 in every 4 
messages:

Using 1 in every 8 
messages:
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Conclusion

The KinectFusion algorithm is not suitable for the examined scene geometry. The research of 
the KinectFusion approach will be abandoned by Magazino GmbH.

The Assisted approach shows decent performance provided that the localization error does not 
exceed certain levels and will be further used in production of TORU 5.

Possible further research direction: combining the depth data with the RGB data from RGB-D 
sensors and using corresponding simultaneous localization and mapping (SLAM) algorithms:
● BAD SLAM
● Voxblox
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https://github.com/ETH3D/badslam

https://github.com/ethz-asl/voxblox

https://github.com/ETH3D/badslam
https://github.com/ethz-asl/voxblox
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