
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Photometric Odometry for Dynamic
Objects

Anton Troynikov



DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Photometric Odometry for Dynamic
Objects

Photometrische Odometrie für Dynamische
Objekte

Author: Anton Troynikov
Supervisor: Prof. Daniel Cremers
Advisor: Nikolaus Demmel, M.Sc., Dr. Joerg Stueckler
Submission Date: 15. Apr. 2019



I confirm that this master’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, 15. Apr. 2019 Anton Troynikov



Acknowledgments

I would like to thank my advisors, Nikolaus Demmel and Dr. Jörg Stückler for their
support, in particular through their detailed advice and in-depth technical discussions
on all aspects of this work. I would also like to thank Prof. Dr. Daniel Cremers for the
original inspiration for many of the ideas presented herein, as well as for the possibility
of pursuing this thesis at the Chair for Computer Vision & Artificial Intelligence. Special
thanks to Lucia Seitz for her intelligent discussion throughout this work’s development,
as well as her valuable comments in proof reading.



Abstract

In this master’s thesis in Informatics, we present a direct photometric approach for
using data from a visible light camera to estimate the motion of dynamic objects, as well
as the motion of the camera itself. The presented algorithm differs from previous work
in several key areas. First, through the use of dense direct photometric alignment, all
available image data is used in a unified pipeline. Additionally, the presented algorithm
differs from prior work in the use of keyframes, considerably reducing the preprocessing
required for each image frame in the sequence. Finally, the presented approach does not
attempt to track every object in the scene, but instead uses a conditional random field
approach to perform binary segmentation using photometric information to identify,
and subsequently track only moving objects. Through experiments with both real-
world and synthetic data, we demonstrate the possibility of using direct photometric
alignment to estimate the motion of dynamic objects, as well as camera egomotion,
from sequences of image frames. In our evaluation we identify key limitations, and
potential directions for future work.
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1 Introduction

In order to interact safely and effectively with the real world, robotic systems such as
autonomous drones, self-driving cars, and delivery robots must be able to accurately
perceive the world in three dimensions, and in real-time. Recent advances in robotic
perception have led to the increasing prevalence of these systems in the skies and on
the streets around the world.

Figure 1.1: Moving objects identified in a street scene. Highlighted are cars, cyclists,
and pedestrians, as well as other objects and regions of interest. [Cor+16]

Of particular importance to robotic perception is the ability to accurately detect
moving objects, identify their type, and compute their path and velocity over time. For
example, a self-driving car navigating a crowded intersection as in Figure 1.1 must
be able to not only detect other road users, but also differentiate between parked and
moving cars, cyclists, and pedestrians, and determine how they are moving.
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1 Introduction

Figure 1.2: Typical example of a sensor array used in autonomous driving. Visible are
long and short focal length cameras, LIDAR and laser scanners, as well as
near and far-range radars. Author’s photo.

Though the current state of the art in robotic perception for dynamic environments is
reasonably effective in these tasks, it requires the use of a large array of many different
sensors, including Light Detection and Ranging (LIDAR), Radar, Ultrasound, infrared
’structured light’, and visible light cameras. A typical example of such a sensor array
is shown in Figure 1.2. Such arrays are very expensive, heavy, and have high power
consumption. Processing data from a wide variety of heterogeneous sensors is also
computationally intensive and error prone. The size and weight of these arrays often
makes them unsuitable for many applications including small drones and service robots.

Recently, significant advances have been made in perception algorithms that rely
only on data from visible light cameras, particularly in the task of localizing the robot
within the environment through which it travels - so called visual odometry. These
algorithms have real-time performance and high accuracy. However, a key limitation
is that these algorithms typically cannot deal with moving objects; these are either
removed from the environment map, or else produce artifacts and errors.

1.1 Problem Statement

The objective of this thesis is to demonstrate the possibility of using only data from
visible light cameras rigidly attached to a mobile robot to track the motions of dynamic
objects as well as the motion of the robot itself.

Our approach is to extend a popular class of visual odometry algorithms, the so-called
direct photometric algorithms, to the case of dynamic scenes, i.e. scenes containing
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1 Introduction

several moving objects other than the camera itself. The highly accurate estimates of
the camera odometry that these algorithms have shown in static scenes make them a
promising approach to estimating the odometry of dynamic objects.

Particular challenges include accurately identifying dynamic objects so they can be
tracked, as well as operation in the presence of a wide variety of camera and object
motions. We therefore also aim to experimentally identify the limits of photometric
odometry when applied to the problem of tracking dynamic objects.

1.2 Outline

Chapter 2 provides an overview of existing approaches to visual odometry, as well as
the tracking, detection and segmentation of dynamic objects. In particular, we highlight
the challenges and limitations faced by these systems in the task of tracking dynamic
objects from a moving camera. We outline the approach presented in this thesis, and
contrast it with selected recent work in dynamic visual odometry.

Chapter 3 details the mathematical foundations of the approach developed in this
thesis, covering rigid body transforms, direct photometric alignment, the use of Markov
random fields for segmentation, and disambiguation through instance segmentation.
The complete algorithm is then presented.

Chapter 4 details the evaluation of the algorithm developed in this thesis over
representative data featuring dynamic objects. We demonstrate the effectiveness of the
system in tracking dynamic objects, from both static and moving cameras. We also
identify and discuss the experimentally observed limitations of the system.

Finally, in Chapter 5 we summarize the findings of the thesis, and present possible
extensions and directions for future work.
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2 Overview

In this chapter we review the existing literature in visual odometry and dynamic
object tracking in computer vision, before giving a high-level overview of the approach
proposed in this thesis. We subsequently highlight recent work in visual odometry and
dynamic object tracking, and contrast it with the approach presented in this thesis.

2.1 Literature Review

The problem of estimating the motion of objects in the world, that is their odometry,
can be cast as estimating some unknown state, comprising the object’s position and
orientation (pose) within it, given observations on the world. In the case of visual
odometry, observations on the world arrive as a series of images, and the state to be
estimated comprises the pose of the camera expressed as a rigid body transform T ,
and the world geometry, typically as a set of points.

2.1.1 Visual Odometry

Most visual odometry algorithms are designed to estimate the motion of the camera
through the scene. Many visual odometry algorithms form part of the pipeline for
systems for simultaneous localization and mapping (SLAM), in which the 3D structure
of the world is estimated alongside the motion of the camera within it, from a sequence
of images.

While all visual odometry algorithms operate with image data, they differ in the
way this data is processed. The two broad categories are keypoint-based, and direct
approaches. Keypoint-based approaches appeared as the earliest implementations of
visual odometry.

These approaches first process each image in the sequence to extract distinctive point
features corresponding to landmarks in the world that can be reliably matched between
images. These keypoints are designed to be robust to rotation and scale changes, as
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2 Overview

well as illumination changes both due to scene lighting and camera auto-exposure.
An early example of this approach is PTAM (paralell tracking and mapping) [KM09],
while the state of the art monocular keypoint-based approach at time of writing is
ORB-SLAM 2 [MT17].

An advantage of keypoint-based algorithms is the relatively simple representation,
with each image resulting in a limited number of suitable keypoints to match. This
ultimately reduces the required computation, resulting in improved throughput. Key-
points are also typically robust to orientation and lighting changes, as well as motion
blur, making them robust in many real-world situations.

However, the relative sparsity of keypoints also means that much of the data available
in the image is discarded. Additionally, the sparsity of keypoints mean that any given
object in the scene may only have a few keypoints to match. This results in less accurate
estimates of the object (or camera) motion, as well as the possibility to lose tracking as
these few keypoints become occluded.

In order to overcome these and other limitations, in recent years so-called direct ap-
proaches have become increasingly popular. In contrast to keypoints, direct approaches
do not use an intermediate representation for images, but rather use the color and
intensity of pixels directly to perform tracking. This has the advantage that much more
of the image data is used, resulting in robust tracking and accurate mapping. These
are represented by dense approaches as in [KSC13] which take into account all visible
pixels, as well as sparse approaches such as LSD-SLAM [ESC14] where only a selected
subset of the pixels are used.

Due to the need to process a large number of data elements, real-time performance for
direct approaches was often difficult to obtain, resulting in the need for asynchronous
optimization of the estimated odometry, or trading increased speed for degraded
accuracy. Additionally, direct approaches have been shown to be more vulnerable to
illumination changes and other image artifacts due to e.g. lens and rolling shutter
distortions than keypoint based approaches.

More recently, direct formulations capable of real-time performance, and robust to
illumination changes and image artifacts, have proven successful. In particular, DSO
[EKC18] demonstrated real-time performance coupled with a high degree of robustness
through a principled choice of sparse image points, which are processed in a direct
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2 Overview

fashion.

2.1.2 Dynamic Objects in Computer Vision

Dealing with dynamic objects, i.e. those objects moving relative to the camera, is a
classic problem in computer vision with a vast associated literature. Of particular
interest are the problems of detection, tracking, and reconstruction of dynamic objects.
Algorithms that solve these problems are often interrelated, for example tracking
through detection, or tracking for reconstruction.

Dynamic objects may be either rigid bodies, such as cars or trucks, or else undergo
non-rigid deformations, for example pedestrians or cyclists. In practice, deformable
objects are often approximated as rigid for the purposes of tracking.

Detection and Segmentation

The detection problem amounts to identifying an object of interest in an image. It is
closely related to the problem of segmentation, which deals with determining which
pixels in an image belong to the object of interest. Classically, this problem has been
solved through keypoint or feature matching, using a similar approach to feature
extraction as in the keypoint formulation of visual odometry [V+01][Ozu+10][NP14].
Known keypoints or features on the object of interest are associated with keypoints in
an image, resulting in an approximate bounding box detection.

Other approaches have sought to exploit additional cues, such as the overall colour
distribution in the object of interest, to assign a probability to each image pixel based
on the likelihood of belonging to the object, using e.g. expectation maximization in a
Gaussian mixture model [Li+04][SS05]. Thresholding the pixels based on probability
results in a segmentation of pixels belonging to the object, which can be further refined
through the use of energy minimization approaches such as Markov random fields
[ZBS01].

More recently, Machine Learning approaches have overtaken classical approaches to
detection and segmentation, in terms of both precision and accuracy. These approaches
rely on a large database of labeled object images to train artificial neural networks in
the detection task. A popular approach is to slide a bounding box over the image,
and apply a learned classifier at each step. The bounding boxes giving the highest
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likelihood for the desired class are then assigned as the predicted bounding box of a
detected object [Red+16][Liu+16].

A key advantage of machine learning approaches to tracking and segmentation is
their ability to generalize over a class of objects; for example, to detect all cats in an
image, even if the specific animals were not present in the training data. However,
machine learning approaches typically struggle with the problem of detecting a specific
object over many images.

In addition to requiring a large amount of training data, machine learning approaches
are also typically rather computationally intensive, both during training and during
detection / segmentation. Additionally, the trade-offs are not yet sufficiently well
understood; recent research has shown that it is possible to create adversarial images
that fool learned detectors, mis-classifying as stop sign as a speed sign, with small
changes to the input not visible to humans [Goo+14][KGB16].

Tracking

The tracking problem can be expressed as determining the motion of an object of
interest relative to the camera, from a sequence images. Estimating the motion of
objects typically requires additional information about the 3D structure of the object
being tracked, whether from a depth sensor or a previously constructed 3D template,
in order to correctly estimate the motion of the object through space.

The simplest approaches to object tracking rely on the idea of tracking-by-detection,
that is simply identifying the object of interest by searching for it in each image indi-
vidually, and then associating these detections between subsequent images in order to
reconstruct the motion of the object [Bre+09][ARS10].

More sophisticated approaches employ motion models and filtering in order to
predict the position of the object in a subsequent frame and to initialize the detection
process in a particular region, rather than searching over the entire image. The differ-
ence between the predicted and detected positions are the subsequently fused for the
next prediction, and to update the motion model.

Tracking can also be accomplished through object templates; representations of the
3D structure, color and texture of objects of interest. These templates can then be
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2 Overview

matched across image sequences in a similar way to keypoint matching, but taking into
account much more information about the object of interest [ZJD00][ZLY12]. Template
tracking can also incorporate a motion model, in the same way as keypoint matching.
Such approaches, as in as in Tan et. al. [TI14] often make use of data from a depth
sensor, in order to improve precision and accuracy.

2.2 Proposed Approach

The direct photometric alignment approach to the visual odometry problem estimates
rigid body motions from images by estimating the rigid body transform that best
photometrically aligns the pixel intensities in an image frame, with those in a keyframe
that includes both intensity and depth information.

In traditional examples of this approach such as [ESC14][EKC18][Sco+18], the es-
timated transform is interpreted as being due to the motion of a camera through an
assumed static world. Where points in the world produce photometric inconsistencies,
they are typically down-weighted or removed from consideration for estimating the
transform.

This means that in these approaches, objects which are also moving relative to the
world are not modeled and actively excluded. They cannot be tracked, and may degrade
the quality of the estimated camera motion.

2.2.1 Key Ideas

The algorithm detailed in this thesis seeks to overcome this limitation through extending
the direct photometric alignment approach to also deal with dynamic objects. Rather
than discarding or down-weighting points that violate the static-world assumption,
we instead seek to segment sets of points corresponding to moving rigid bodies, and
subsequently estimate rigid body transforms for each of them.

In order to do so we note two important observations. First, if an estimated transform
does not correspond to the motion of a given object, points on the object will result
in photometric inconsistencies. Thus we may use photometric inconsistencies which
remain after the estimation of a transform through direct alignment as cues to detect
and segment independently moving objects.

Second, direct alignment may be used to estimate not only the motion of a camera
relative to a static world, but also the motion of a camera relative to any rigid object.
Thus, if it is possible to segment independently moving objects, we may perform direct
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2 Overview

alignment in order to estimate a rigid body transform between the object and the
camera.

Our algorithm combines these observations in a framework that jointly detects, seg-
ments, and estimates the rigid body motion of independently moving objects, as well
the motion of the camera relative to the world, on the basis of image data alone.

In applying the direct photometric approach to the problem of tracking dynamic
objects, we preserve the advantages of using all available image information, leading to
improved accuracy and robustness. A unified approach allows for a simpler tracking
pipeline, since only image data is used in every step, rather than being transformed
between domains. Additionally, placing the object tracking problem on the same
mathematical foundation as other direct photometric odometry algorithms allows for
future extension using approaches developed in those domains.

2.2.2 Algorithm Outline

Though several variant approaches to the problem of dynamic visual odometry have
been proposed, that which is explored in this thesis is as follows.

Given a keyframe, consisting of an image with pixel intensities, and associated
depths, the algorithm takes as input observations in the form of images with pixel
intensities. The algorithm seeks to explain the observed input in terms of rigid body
transforms applied to sets of points corresponding to objects in the world, including
independently moving objects as well as the static background.

We perform direct alignment to arrive at an initial rigid body transform estimate. We
then determine which points produce photometric inconsistencies, given the estimated
transform. We segment these to an outlier set, and re-estimate the transform without
these points until the outlier set no longer grows or the estimated transform no longer
changes.

Subsequently, we associate points in the outlier set to independently moving objects,
using instance segmentation. For each object instance found in this way, we repeat the
direct alignment process and the outlier segmentation to arrive at an estimate for rigid
body transforms which best explain each part of the segmented input, arriving at a set

9



2 Overview

of consistent motions and object segments.
We discuss each step in detail in the subsequent chapters.

2.3 Related Work

The problem of estimating the camera motion as well as the motion of dynamic objects
relative to the world has recently seen increased interest, as robots are increasingly
tasked with operating in highly dynamic environments such as public roads, ware-
houses, hospitals, and many others. Much of the research into this problem is relatively
recent, due to the overall complexity of the problem, higher computational requirements
for real-time performance, and the lack of suitable datasets that include ground-truth
information for the structure and motion of objects, the world, and the camera.

Recent work as in [Bar+17] has shown that the performance of visual camera odome-
try algorithms significantly degrades in highly dynamic environments. The presence
of many moving objects often results in significantly decreased camera localization
accuracy.

In order to overcomes this limitation, some approaches exclude dynamic objects in
the scene, by segmenting it into foreground and background. This is accomplished
through either explicit object detection as in [Bes+18] which leverages semantic and
geometry segmentation, implicitly through geometric clustering over depth images as
in [Sco+18], or clustering from optical flow as in [Che+18]. While these approaches
show an improvement in estimating the camera egomotion estimate in dynamic scenes,
they do not track the dynamic objects themselves.

In contrast, the approach proposed in this thesis estimates the motion of dynamic
objects, while refining the camera egomotion estimate.

Several approaches for the simultaneous estimation of both dynamic object motions,
and camera egomotion, have been proposed.

In [Xu+18], dense semantic segmentation is performed for each frame using a neural
network to detect visible objects. Motion residuals in image and geometry are then
computed for each object to determine whether it is moving, and subsequently moving
objects are tracked. The motion estimate for the camera is first computed from all
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colour and depth information in each frame, and subsequently refined by excluding
moving objects.

In [Ose+17], a large number region proposals are used to segment input images
into class-agnostic regions. These are then associated with 3D geometry information,
computed from stereo matching. Proposals are then aggregated into objects, and their
motions estimated, through the selection of temporally consistent motion and region
hypotheses. Tracking is performed only relative to the camera, camera egomotion is
not estimated.

Our proposed approach differs from these in several important ways. Rather than
detecting every visible object, or object segment, and then computing motion estimates
for each, we instead first determine which regions of each frame are inconsistent with
the hypothesis of a static scene, and subsequently determine which of these inconsisten-
cies can be associated with objects. This significantly reduces the amount of required
computation. We subsequently track both object and camera egomotion.

Tracking dynamic objects and camera ego motion without the use of segmentation
is demonstrated in [JGN18]. This work leverages keypoint matching between pairs of
stereo images, as well as temporally over the sequence of frames. A tracklet for each
keypoint is then computed in the camera coordinate frame. Tracklets are then grouped
to object labels through the use of rigid body motion, and geometric neighborhood
assumptions. The camera egomotion is then estimated as the motion relative to the
label containing the greatest number of keypoints.

The main distinction between [JGN18] and our approach is our use of direct photo-
metric alignment to leverage all image information associated with an object, rather
than only sparse keypoints. This gives the same advantages as direct photometric
odometry over keypoint based odometry, in the object tracking domain.

One final distinction between our approach and those discussed in this section is our
use of keyframes. In each of the works discussed herein, every frame must be fully
processed before use, whether via semantic segmentation, geometric clustering, region
segmentation, or stereo matching. In contrast, our approach only requires additional
processing for those frames promoted to keyframes. This again reduces the total
amount of computation required, as well as opening the door for future improvements,
for example via sliding window bundle adjustment as in [EKC18].

We now proceed to detail the mathematical foundations of the proposed approach.
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3 The Dynamic Photometric Odometry
Algorithm

In this chapter we detail the mathematical foundations of the dynamic photometric
odometry algorithm. We detail rigid body motions, including relative motions and
parametrizations. We then derive the direct photometric alignment algorithm for
transform estimation. Next we detail binary image segmentation through the use of
conditional random fields, and the use of instance segmentation to associate photometric
outliers with objects. Finally, we present the complete algorithm.

3.1 Rigid Body Motion

An object moving through space relative to some coordinate frame, while preserving
its size and shape, is said to undergo a rigid body transform. Formally, a rigid body
transform T in 3-dimensional Euclidean space is a map;

T : R3 7→ R3 (3.1)

such that for any points p ∈ R3, q ∈ R3 belonging to the set of points X on an object
undergoing a rigid body transform;

‖p− q‖ = ‖T (p)− T (q)‖ ∀p, q ∈ X (3.2)

T (p)× T (q) = T (p× q) ∀p, q ∈ X (3.3)

Such rigid body transforms consist of a rotational component and a translational
component. Various representations of the rotational component exist, including
quaternions and axis-angle representations. We employ a 3× 3 orthogonal rotation
matrix R, which is a matrix in the so-called special orthogonal group SO (3). The
translation component may be expressed as a vector t ∈ R3. A rigid body transform T
may then be expressed as;
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3 The Dynamic Photometric Odometry Algorithm

T (p) = Rp+ t (3.4)

By expanding the representation of the point p to so-called homogeneous coordinates,
p̄ = (x, y, z, 1)> =

[
p>, 1

]>, we may express the transform T as a 4 × 4 matrix T
consisting of the rotation matrix R ∈ SO (3) and the translation vector t ∈ R3;

T =

[
R t

0 1

]
(3.5)

The resulting matrix T is in the special Euclidean group, SE (3). We may apply the
transform to the point in homogeneous coordinates as;

T (p) =MTp̄ (3.6)

where M is the 3x4 matrix which converts from homogeneous to euclidian coordi-
nates, given as [I |0] where I is the 3x3 identity matrix.

This matrix expression of T is particularly useful as it allows us to compute the
inverse transform as the matrix inverse;

T−1 =

[
R> −R>t
0 1

]
(3.7)

as well as chaining transforms as matrix products;

T2 (T1 (p)) =MT2T1p̄ (3.8)

Conveniently, the identity transform is represented as the 4× 4 identity matrix, I .

3.1.1 Parametrizing Rigid Body Transforms: Lie Algebra

A key aspect of applying this definition of rigid body transforms in optimization prob-
lems, as we shall do subsequently, is to choose an appropriate parametrization. The
translation component of a rigid body transform in 3 dimensions, t has three elements
and three degrees of freedom. However the rotation component, when represented as
a 3× 3 matrix, has nine elements but only three degrees of freedom; this is due to the
requirement that the matrix is orthogonal, and that the corresponding row and column
vectors are unit vectors.
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3 The Dynamic Photometric Odometry Algorithm

Representing these constraints directly is cumbersome, and limits the applicable opti-
mization strategies. However, it is the case that the group SE (3) is also a differentiable
manifold, and hence is a so-called Lie group. Hence, the group SE (3) has an associated
Lie algebra, associated with the tangent space at the identity transform I. Elements in
the the Lie algebra are expressed as ξ̂ ∈ se (3).

The Lie algebra representation of T , ξ̂ can be expressed as a vector of six parameters,[
ω>,v>

]> ∈ R6. Here ω ∈ R3 determines the rotation, and is analogous to angular
velocity, while v ∈ R3 determines the translation, and is analogous to the linear velocity.

Conversion from ξ̂ to T is accomplished via the exponential map;

exp : se (3) 7→ SE (3) (3.9)

Which has a closed-form expression via matrix exponentiation and the Rodriguez
formula, and from T to ξ̂ via the logarithm map;

log : SE (3) 7→ se (3) (3.10)

Note that ξ̂ = 0 corresponds to the identity transform.

3.1.2 Relative Rigid Body Motion

In the standard formulation of most visual odometry algorithms, all observed changes
are attributed to the rigid body motion of the camera through space, relative to a fixed
background or world frame. In the case of a dynamic scene however, we must also
account for the rigid body motion of other objects relative to the camera, as well as the
motion of those objects relative to the fixed world frame.

Transforms and Poses

The rigid body transform TAB, when applied to a point in coordinate frame B, trans-
forms it to the coordinate frame A. That is, for a point p seen at p̄B in homogeneous
coordinates from frame B, the same point is seen at p̄A = TABp̄B in frame A.

We note that TAB also corresponds to the relative position and orientation of the
coordinate frame B as seen in coordinate frame A; this is called the pose of B in the

14



3 The Dynamic Photometric Odometry Algorithm

coordinates of A. Thus TAB defines both a pose and a coordinate transform between
two frames. These relationships are represented in Figure 3.1.

Figure 3.1: Coordinate reference frames. TAB represents both the relative pose of B as
seen from A, as well as the rigid body transform of p̄B to p̄A

These simple relationships are sufficient to describe static rigid bodies, or the position
of a moving rigid body relative to a fixed frame. However, they are insufficient for the
case where we wish to describe the rigid body motions of multiple moving objects.

Transforms over time

We extend the notation for transforms and poses to include multiple rigid body motions
observed from different coordinate frames.

Let At denote the coordinate frame A at time t. For any given t, the value of the
transform TAtBt does not depend on any external coordinate frame, as illustrated in
Figure 3.2.
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Figure 3.2: The transforms between moving reference frames At and Bt do not depend
on any external or fixed coordinate frame, for a given time t.

Transforms between frames observed at the same time may be inverted and concate-
nated as expected;

T−1
AtBt

= TBt At (3.11)

TAtCt = TAtBt TBtCt (3.12)

Computing the value of the transform TAi Bj between two coordinate frames A, B
observed at different times i, j requires the choice of an observing or fixed frame. We
denote a transform from Bj to Ai as observed from the fixed frame C as TC

Ai Bj
. This

situation is illustrated in Figure 3.3

A fixed frame may be attached to the ’stationary’ part of the scene, i.e. the world or
background, or it may be attached to a moving object; here fixed refers to the fact that
the observing frame does not change over time, i.e;

TC
CiCj

= I, ∀i, j (3.13)

Where I is the identity transform. We subsequently use the following shorthand for
the case that one of the involved frames is the fixed frame;

TCAi := TC
Ci Ai

= TC
Cj Ai

, ∀i, j (3.14)

Through concatenation we may express a fixed-frame dependent transformation in
terms of independent transforms as follows;

16



3 The Dynamic Photometric Odometry Algorithm

Figure 3.3: The transform between reference frames At and Bt+1, depends on the
choice of observing or fixed coordinate frame. The left figure illustrates the
transform as seen from an external ’world’ frame W, while the right shows
the observed transform from a references frame fixed to A.

TC
Ai Bj

= TC
AiCTC

CBj
= TAiCi TCjBj (3.15)

This is particularly useful as when C refers to the fixed world frame, it allows us
to compute the relative transforms of rigid body frames attached to moving objects
between times i, j by establishing the transforms between those objects and the world
frame at the corresponding times.

We may also thus establish inverse transforms at different times;

TC
Ai Bj

−1
=
(

TAiCi TCjBj

)−1
= TBjCj TCi Ai = TC

Bj Ai
(3.16)

As well as concatenation;

TX
Ai Bk

TX
BkCj

= TXkBk TBkXk TXjCj = TAiXi TXjCj = TX
AiCj

(3.17)

With these operations we may now proceed to the concrete example of a moving
camera observing moving objects, relative to a fixed world frame.

3.1.3 Observing rigid body motion from a moving camera

Consider C the coordinate frame attached to a camera moving relative to the static
world frame W. Additionally, consider the frame O attached to an object moving both
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relative to the camera frame and the world frame. We wish to compute the motion of
the object in the world frame between times i and j > i, given the initial relative pose
of the camera in the object frame TCiO , the transform corresponding to the motion of
the camera relative to the world frame TW

CiCj
, and the motion of the camera relative to

the object.

First we wish to express the motion of the camera pose in the world frame. At time i,
the pose of the camera in the world frame is given as TWCi . The transform between the
camera pose from time j > i to time i as seen in the world frame is then TW

CiCj
.

We now consider the motion of the camera relative to the object. The observed
relative motion is due to a combination of the motion of the camera relative to the
world, as well as the motion object relative to the world. When observed in a fixed
coordinate frame attached to the object, the transform of the camera from time j > i to
time i can be expressed as TO

CiCj
. The overall situation is shown in Figure 3.4

We wish to compute TWOj . Using the previously established operations, we may
compute this as;

TWOj = TWjOj

= TWjCj TCjOj

= TWjCj T
O
CjOj

= TWCi T
W
CiCj

TO
CjCi

TO
CiOj

(3.18)

We note that, because O is fixed to the object, TO
CiOj

= TO
CiOi

= TCiO which is given.
The relative pose of the camera corresponding to the motion of the camera observed in
the object frame, TO

CiCj
, is also given. Thus;

TWOj = TWjCj T
O
CjCi

TCiO (3.19)

Thus given estimates of the relative motion of the camera in the world frame, and the
camera in the object frame, we may compute the pose of the object in the world frame at
time j. The transform due to the motion of the object in the world frame is then given as;
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Figure 3.4: A moving object observed from a moving camera in three coordinate frames.
Top left: The fixed world frame W. Top right: The frame fixed to the object,
O. Bottom: The frame fixed to the camera, C. The given transforms are
shown.

TW
OiOj

= TOiWTWOj

= TWOi
−1TWOj

(3.20)

By computing the sequence of transforms TWOt , t ∈ {0, 1, . . . , T}, we may compute
the full trajectory of the object so long as it is visible in the camera. In order to do
so, we apply the direct photometric alignment algorithm to estimate camera motion
relative to the object, and relative to the world frame.

3.2 Direct Photometric Alignment

We now turn to the discussion of the direct photometric alignment algorithm used
to estimate motion transforms. We first discuss the so-called warping function, a
fundamental component of this algorithm. Subsequently we derive the direct alignment
algorithm itself.
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3.2.1 Warping Function

The warping function, sometimes also referred to as the reprojection function, allows
the computation of the corresponding location of a point in one image, to the location
of the same point in another image, given a rigid body transform.

The warping function τ : R2 ×R× SE (3)→ R2 takes as arguments a point x1 ∈ R2

in an image I1, its corresponding depth d ∈ R+ with respect to the camera coordinates
of the image, and a rigid body transform T ∈ SE (3).

The transform T corresponds to the transform from camera frame C1 to camera frame
C2, relative to some fixed reference frame. This may be a static world frame, or a frame
attached to a moving object, as discussed in 3.1.2. Thus T may correspond to either
the motion relative to the world, or the relative motion of the camera to a moving object.

The output of the warping function is a point x2 in the coordinates of a new image I2,
corresponding to the camera coordinate frame C2. The warping function is computed
as;

x2 = τ (x1, d,T ) = π
(
T · π−1 (x1, d)

)
(3.21)

Where π is the familiar perspective projection, and π−1 is the so-called unprojection
function, which transforms a point from image coordinates to camera coordinates,
given depth.

It is important to note, that in this formulation of the warping function, there is
no restriction that points in I1 are uniquely mapped to points I2 as the warp is com-
puted independently for each point. Though this is not a problem in the case that
the coordinates of points in an image may take continuous values, in practice images
from real cameras are made up of a relatively small number of discrete pixels, and
correspondingly relatively few image points with discrete coordinates.

The warping of a set of points in I1 to the same point in I2 represents the case where
an occlusion has occurred between two images; the change of viewing angle has caused
elements of the scene to obscure each other, or else object motion has caused objects to
move in front of one another from the camera’s point of view.
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It is possible to resolve these occlusions explicitly through computing which point in
I1 is warped to the point with the smallest depth in I2, thus establishing which point is
in ’front’. In this thesis we do not consider such occlusions, under the assumption that
the relative motions between frames are sufficiently small that only a small number of
points may be occluded.

Having established a function for transforming image points between images for
a given relative transform, we proceed to give details on estimating a rigid body
transform from an image sequence via direct alignment.

3.2.2 Photometric Consistency

The foundation of the direct alignment algorithm is the photometric consistency as-
sumption. Photometric consistency states that, for a given point in the world viewed in
two different images, we should expect the corresponding points in each image to have
the same intensity. Stated more formally;

I1 (x1) = I2 (τ (x1, d1,T )) = I2 (x2) , ∀x1 ∈ I1 (3.22)

Where T ∈ SE(3) is the rigid body transform from the coordinate frame of the
camera corresponding to the image I1, to the coordinate frame corresponding to the
image I2, and τ is the so-called ’warping’ or reprojection function discussed in Section
3.2.1.

Note that this formulation of photometric consistency requires that the depth d1

corresponding to each x1 ∈ I1 is either estimated, or otherwise known in advance.
We subsequently refer to an image frame that has corresponding depth information
as a keyframe, and a frame that contains only intensity information as an image frame,
throughout this thesis.

In later sections, we will also assign segmentation information to the keyframes.

We note is that because real image frames are of finite size, it is possible for pixels in
I1 to be warped to positions outside the bounds of I2, and thus no determination of
the photometric consistency can be made in such cases. Various approaches have been
proposed to deal with this problem, however in this thesis we weight the contribution of
pixels which at any time are warped out of bounds (including during the optimization
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procedure formulated in later sections) to 0, by setting the corresponding photometric
residual to 0.

This has the undesirable property that the photometric residual can be globally
minimized by warping all pixels out of bounds. However, we did not observe that
optimization converged to this global minimum in any of our experiments.

3.2.3 Probabilistic formulation

In reality, photometric consistency does not always hold, due to a variety of factors. In
particular, noise at the image sensor may result in a photometric residual, expressed as
the difference in intensities for the same point between the two images;

r (x1, d1,T ) := I2 (τ (x1, d1,T ))− I1 (x1) (3.23)

Let ri be the random valued residual corresponding to a point xi ∈ I1, and r the
random-valued vector with elements corresponding to the residuals of each point in I1,
r = (r1, . . . , rn)>.

Assuming that the elements of r are independent and identically distributed, and
taking d as given;

p (r|T ) = ∏
i

p (ri|T ) (3.24)

The aim of the direct alignment algorithm is to find a transform such that the
posterior probability p (T |r) is maximal;

TMAP = arg max
T

p (T |r) (3.25)

By Bayes’ rule;

p (T |r) = p (r|T ) p (T )
p (r)

(3.26)

By (3.24) and (3.26), and noting that p (r) is constant in T , the maximum posterior
probability becomes;

TMAP = arg max
T

∏
i

p (ri|T ) p (T ) (3.27)
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Taking the negative log-likelihood and minimizing gives;

TMAP = arg min
T
−∑

i
log p (ri|T )− log p (T ) (3.28)

The term log p (T ) may be regarded as a prior on the transform. The prior might be
set from a motion model, or similar additional information about the typical charac-
teristics of the observed motions that may give rise to T . If we assume all transforms
are equally likely, then this term becomes a constant and does not contribute to the
minimizer. Hence, it can be discarded.

Taking derivatives with respect to T and setting to zero gives a minimum at;

∑
i

∂ log p (ri|T )
∂T

= ∑
i

∂ log p (ri|T )
∂ri

∂ri

∂T
= 0 (3.29)

We define w(ri) = ∂ log p (ri|T ) /∂ri · 1/ri, giving;

∑
i

∂ri

∂T
w(ri)ri = 0 (3.30)

Equation 3.30 is a statement of a first order stationary point, and hence the minima
of a quadratic system. Hence, the direct alignment algorithm reduces to minimizing a
weighted least-squares system;

TMAP = arg min
T

∑
i

w (ri) (ri (T ))
2 (3.31)

The choice of distribution for r determines the so-called weighting function w (ri).
For example, a Gaussian distribution results in a constant weighting. We examine this
aspect of the algorithm in more depth in subsequent sections.

Next we discuss the approach to minimizing the least-squares system.

3.2.4 Non-Linear Weighted Least Squares Energy Minimization

The least squares system in equation 3.31 is non-linear, as the warping function τ is
non-linear and therefore does not admit a closed-form solution as in linear least-squares
systems. However, a solution may be obtained iteratively through application of the
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Gauss-Newton method.

The Gauss-Newton method finds a solution to the non-linear least-squares problem by
iteratively computing the solution of linear least-squares problems through linearizion
of the non-linear system. The solution of each linear least-squares sub-problem is then
applied as an increment to the estimate of T , until convergence. Since the value of the
residual ri is recomputed at each iteration, the weight w (ri) must also be recomputed
at each iteration. Thus we consider the Gauss-Newton algorithm for iteratively re-
weighted least squares.

Gauss-Newton Algorithm for Iteratively re-weighted least squares.

As discussed in Section 3.1.1, performing optimization directly on T is problematic,
and we are better served by using the corresponding Lie algebra, represented as a
vector ξ̂ ∈ R6 = log(T ), as a model parametrization. Notably, the use of a Lie algebra
for performing iterative optimization is justified since we perform a local linearization
about the parameters at the current iteration.

To make this parametrization explicit, we restate equation 3.31 as;

ξ̂MAP = arg min
ξ̂

∑
i

w (ri)
(
ri
(
ξ̂
))2

(3.32)

Let ξ̂k be the estimate of ξ̂ at the current iteration, and ξ̂k+1 be the estimate at the next
iteration. Let ξ̂k+1 = ∆ξk � ξ̂k, where ∆ξk is the computed increment to the estimate
at the kth iteration. Here the operator � : se (3)× se (3) 7→ se (3) is an extension of
the composition of rigid body transforms to their lie algebra representations, and is
computed as;

∆ξk � ξ̂k = log
(
exp (∆ξk) · exp

(
ξ̂k
))

(3.33)

This is referred to as the left-compositional formulation [ESC14][KSC13].

At each iteration of the Gauss-Newton algorithm, the residual at each pixel becomes;

ri
(
∆ξk � ξ̂k

)
= I2

(
τ
(
∆ξk � ξ̂k

))
− I1 (xi) (3.34)

Linearization of the residual about ∆ξk = 0 via first-order Taylor expansion gives;
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ri,lin
(
∆ξk � ξ̂k

)∣∣
∆ξk=0

= r
(
ξ̂k,xi

)
+

∂r
(
τ
(
∆ξk � ξ̂k

))
∂∆ξ

∣∣∣∣∣
∆ξk=0

∆ξk (3.35)

= r
(
ξ̂k,xi

)
+ Ji∆ξk (3.36)

Where Ji ∈ R6 is the row of the Jacobian matrix J ∈ Rn×6 corresponding to the ith

point.

Inserting into the optimality condition given by 3.30 gives;

J>WJ∆ξk = −J>Wr
(
ξ̂k
)

(3.37)

We note that the term J>WJ approximates the matrix of second derivatives (the
Hessian) of the nonlinear least-squares system.

Here W is the diagonal weight matrix, where each diagonal entry corresponds to
w (ri), the weight at the corresponding residual given by the weight function. The
choice of weight function is important for the performance of the algorithm, as it
determines the influence of outliers on the found minimum, and consequently, the
residual value at the outliers which is important for our approach to moving object
detection. We discuss the choice of weight function and other robustness considerations
in Section 3.2.4.

We obtain an increment ∆ξk by;

∆ξk =
(
J>WJ

)−1 (
−J>Wr

(
ξ̂k
))

(3.38)

Which is the solution of a linear system of equations. We note that though finding
∆ξ appears to require a computationally expensive matrix inversion and several large
matrix multiplications, in practice the linear system has only dimension 6, and can
therefore be solved both quickly and accurately using modern linear algebra solvers.
In addition, we can exploit the fact that we can compute each element of

(
J>WJ

)
and

−J>Wr
(
ξ̂k
)

in parallel using an accumulator approach.

The Gauss-Newton algorithm is iterated until convergence. Convergence is typically
determined as either changes in the magnitude of the residual vector r, or the magni-
tude of the vector representation of the computed increment ∆ξ becoming sufficiently
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small. The Gauss-Newton method converges only to the closest local minimum, and
may diverge. Therefore it is important that the initial estimate for the transform, ξ̂I , is
close to the true global minimum.

In this thesis, we initialize with the most recently computed estimate for the trans-
form, under the assumption that all relative motions are sufficiently small that this
represents a good initialization.

The direct photometric alignment algorithm is illustrated in figure 3.5.

Figure 3.5: Overview of the direct photometric alignment algorithm. The residual is
recomputed in each iteration.

Several extensions to the basic Gauss-Newton method have been developed, including
the Levenberg-Marquardt algorithm which produces a more robust optimization at the
expense of speed of convergence. We use only the presented form of the Gauss-Newton
algorithm throughout this thesis, in order to highlight the results and effectiveness of
the base form of the presented algorithm, rather than the influence of any particular
mathematical approach.

Robustness Considerations

Several authors [KSC13][ESC14][EKC18] have shown that significant improvements to
the accuracy of the transform estimates from Gauss-Newton iteratively re-weighted
least squares can be achieved through relatively simple extensions. These include
improving robustness to outlying residuals through the use of an appropriate weight
function, and improved initialization through the use of a coarse-to-fine scheme.
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Robust Weights

The choice of weight w(ri) function in equation 3.31 reflects the distribution of the
photometric residuals. Assuming Normally distributed photometric residuals results in
a constant weight function, i.e. w(ri) = k. However, it has been shown empirically that
photometric residuals for most sequences have a large proportion of outliers [KSC13].

To mitigate the influence of these outlying residuals, we employ the so-called Huber
weight function [Hub11][NLD11]. It is defined as;

whuber(ri) =

{
1 |ri| ≤ k

k
|ri | else

(3.39)

Applying the Huber weight function results in quadratic contributions from small
residuals, and only linear contributions from outliers. Assuming normally distributed
photometric residuals with outliers, the parameter k is set to 1.345 [Wer+09]. We use
the Huber weight function for performing direct photometric alignment throughout
this thesis.

Coarse to fine optimization

Coarse to fine optimization refers to performing direct photometric alignment on a
downsampled, lower resolution image, in order to initialize the transform estimate
for the full-resolution image. This can be accomplished recursively, in a so-called
pyramid of downsampled images. Such coarse to fine optimization has been shown to
be effective in increasing the convergence radius of the Gauss-Newton optimization
[ESC14].

Each level of the pyramid is down-sampled by halving the resolution in each di-
mension for each level. For example, an image with resoltuion 640x480 would be
down-sampled to 320x240 in the first level, 160x120 in the second, and so on. Four
levels have been shown to be effective for 640x480 images. Downsampling is accom-
plished through bilinear interpolation in both image and intensity images, for both the
keyframe and the target image frame.

The use of such a coarse-to-fine approach introduces a tradeoff when tracking
dynamic objects. Any given object represents only a fraction of the pixels in a given
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image of the scene as a whole. It may therefore not be visible at all at higher pyramid
levels, and hence cannot be tracked there. We therefore use a number of pyramid levels
that reflect the fraction of pixels corresponding to the object of interest.

Let n be the number of pyramid levels used for the full scene of P pixels. Then if
po pixels in the keyframe image correspond to object o, we use no = dn p

Pe levels when
performing direct alignment to estimate the transform corresponding to the motion of
object o.

Having defined the direct photometric alignment approach to estimating rigid body
transforms between two images, we next turn to finding points belonging to moving
objects through segmenting the keyframe to inlier and outlier points.

3.3 Binary Image Segmentation with Conditional Random
Fields

Key to the function of the algorithm is the determination of which subsets of points
in the keyframe belong to independently moving objects. We approach finding these
subsets through computing a segmentation of the discrete pixels in the keyframe using
photometric outliers.

3.3.1 Motion and photometric residuals

Consider independently moving objects O1, O2 with attached coordinate frames, ob-
served by a camera C. Let T 1

C correspond to the relative motion of the camera in the
frame of O1, and T 2

C correspond to the relative motion of the camera in the frame of O2,
between two time steps t1, t2.

Let the images observed by the camera at t1 and t2 be the intensity image component
of the keyframe K and the new image I respectively. We We assume that, given suffi-
ciently textured objects and a sufficiently textured background, photometric consistency
as stated in 3.22 will be violated if the transform corresponding to the motion of O2

is applied to observations of points on O1. That is for some points x1 in image I1

corresponding to points on O1;

∃x1 |K (x1) 6= I
(
τ
(
x1, d1,T 2

C

))
(3.40)
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This situation is illustrated in figure 3.6. A similar argument holds for points on O2.

Figure 3.6: Independently moving objects A and B are observed in the image space
of the keyframe K. Left: The initial positions of A and B relative to the
camera, and their subsequent motions. Middle: A new image frame I
reflecting the true positions of A and B after undergoing independent
motion. Right: A warping function is applied to points on B, taking
the transform corresponding to the motion of A as an argument. Points
belonging to B are warped such that the relative position of B to A remains
the same. This gives rise to a high photometric residual (visualized by wavy
lines), both at the now erroneous projection of the points belonging to B, as
well as at the projection of the true position of B.

It follows that the photometric residual as stated in 3.23 will be large for pixels in the
keyframe where the supplied transform does not match the motion of points lying on
an independently moving object. We subsequently refer to rigid body transforms that
give rise to large photometric residuals as inconsistent transforms, and their motions as
inconsistent motions.

We may therefore use the photometric residual as a cue that an estimated transform
does not match with the relative motion of some part of the scene, and hence that
outlying photometric residuals indicate an inconsistently moving object.
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To do so we construct the residual image R ∈ Rn×m. The value of each element ri ∈ R
for a given transform T and new intensity image I is computed as;

ri := I (τ (xi, d,T ))−K (xi) (3.41)

Using the photometric residual to detect inconsistently moving objects for a given
transform and new image amounts to segmenting the resulting residual image into
pixels with inlying (likely) residuals, or outlying (unlikely) residuals.

A simple approach to segmenting outliers is to choose a threshold, above which the
residual is considered too high to be due to random noise at the sensor, and below
which the estimated transform explains the observation sufficiently well.

However, this simple formulation does not capture dependencies between neighbor-
ing pixels, which are likely to belong to the same object, and does not regularize for
outliers that are caused by random noise.

Instead, we formulate the outlier segmentation problem in terms of a binary labeling
problem on a conditional random field, which models the probability of each pixel in
the image being an outlier as depending on the observed residual at that pixel, as well
as the labels of neighboring pixels. Subsequently, the segmentation is performed via
graph cuts.

3.3.2 Conditional Random Fields for Segmentation

Let Y ∈ {0, 1}n×m ∈ Y be a binary labeling of each of the n×m pixels in the residual
image, where a label yi for pixel xi of 0 corresponds to an inlier, and a label of 1
corresponds to an outlier.

We wish to infer a labeling, given observations on the residual image and encoding
pair-wise dependencies on neighboring pixels. This requires that we are able to express
the conditional distribution p(Y |R). A natural representation of such a distribution is
a Conditional Random Field [KFB09].

A conditional random field is an undirected graph encoding conditional dependen-
cies. It is commonly used in computer vision as a useful representation for probabilistic
inference on images, since it naturally encodes both dependencies on observations as
well as on neighbors.
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The conditional random field consists of a set of edges and nodes. Each node cor-
responds to either a target variable, in our case the binary inlier/outlier label yi, or
an observed variable, in our case the observed residual ri. Each edge represents a
conditional dependency between variables. A simple example is illustrated in figure 3.7.

Figure 3.7: A simple conditional random field represented as a graph. Each node yi has
an edge representing the conditional dependence on the residual ri, as well
as neighboring pixels.

The edges define a set of factors with associated potentials φ(yi, ri) over labels and
observations, and φ(yi, yj) over pairs of labels. The distribution encoded by the graph
is then;

p(Y |R) =
1

Z(R)
p̃(Y |R)

p̃(Y |R) =
n×m

∏
i

φ(yi, ri) ∏
j∈N(xi)

φ(yi, yj)

Z(R) = ∑
Y ∈Y

p̃(Y |R)

(3.42)

Where N(xi) refers to the index of neighbors of pixel xi. In our model, these are
the south and east neighbors, resulting in factors for each pixel in the 4-neighborhood
of any given pixel. Other neighborhoods, for example the 8-neighborhood which also
includes a pairwise dependence on the diagonally neighboring pixels, are also possible.

A key feature of the conditional random field representation is that it allows us to
avoid encoding a joint distribution P(Y ,R) which may be unknown or which may not
have a simple parametric form.

This is advantageous in the case of the segmentation problem since it is difficult to
precisely express the joint distribution between segmentation and residual image. Thus
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we may construct the potentials according to domain knowledge and the particular
features of the specific problem.

We wish to find the most likely labeling, given the observed residual image; i.e.
we wish to find the labeling which gives the maximum posterior likelihood over all
labellings;

YMAP = arg max
Y

p(Y |R) = arg max
Y

1
Z(R)

p̃(Y |R) = arg max
Y

p̃(Y |R) (3.43)

In general evaluating each possible labeling to find the maximum is not computation-
ally tractable for even small residual images, since for an image of n×m pixels there
are 2(n×m) possible labellings. By taking the negative log, we may re-cast the problem
in terms of an energy minimization over a sum;

arg max
Y

p̃(Y |R) = arg min
Y
− log ( p̃(Y |R)) (3.44)

arg min
Y
− log ( p̃(Y |R)) = arg min

Y

n×m

∑
i
− log (φ(yi, ri)) + ∑

j∈N(xi)

− log
(
φ(yi, yj)

)
(3.45)

Let Ei(yi|ri) = − log (φ(yi, ri)), referred to as the unary energy terms, and let
Ei,j(yi, yj) = − log

(
φ(yi, yj)

)
, referred to as the pairwise terms. We then have;

YMAP = arg max
Y

p(Y |R) = arg min
Y

n×m

∑
i

Ei(yi|ri) + ∑
j∈N(xi)

Ei,j(yi, yj) (3.46)

It has been shown that so long as each pairwise term is regular, then it is possible to
find the global minimum of this energy in polynomial time for binary variables yi, by
solving the min-cut max-flow problem for an appropriately constructed graph [GPS89]
[BK04].

3.3.3 Segmentation Energies

Let B2 denote the set of 2-dimensional binary vectors. The terms Ei,j : B2 7→ R are
regular iff;
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Ei,j (0, 0) + Ei,j (1, 1) ≤ Ei,j (1, 0) + Ei,j (0, 1) (3.47)

It remains to choose potential functions, and hence energies, such that the condition
is met, while modeling the outlier likelihood and pairwise conditional dependence.

The unary terms of the energy correspond to the influence of observations at each
pixel. As per Section 3.3.1, we wish to use the photometric residual as a cue to deter-
mine the inlying and outlying pixels. Hence, we wish to choose potential functions and
energies such that they are dependent on the pixel-wise photometric residuals ri.

Assuming that the photometric residuals at inlying pixels are approximately Gaussian
distributed with mean 0; ri ∼ N (0, σ), a natural choice of unary potential function for
inliners, φi(0, ri), is the Gaussian probability mass function, normalized such that it
assumes values in (0, 1];

φi(0, ri) = σ
√

2π × p(ri) = e−r2
i /2σ2

(3.48)

We choose φi(1, ri) = 1− φi(0, ri). The unary energies are then;

Ei(0, ri) = − log (φi(0, ri)) = r2
i /2σ2 (3.49)

Ei(1, ri) = − log (1− φi(0, ri)) (3.50)

We note that the unary energies are also parametrized by σ, corresponding to the
unknown standard deviation of the distribution of inlying photometric residuals. This
value may be determined empirically, or by characterizing sensor noise in the image
formation process. We investigate the influence of the choice of sigma in chapter4.

The pairwise energy corresponds to the dependence between neighboring pixel
labels. We choose the pairwise energies according to the Pott’s model;

Ei,j(yi, yj) = wJyi 6= yjK (3.51)

Where w ≥ 0 is a freely chosen weighting factor that controls the degree of depen-
dence of neighbors, and;

Jyi 6= yjK =

{
0 yi = yj

1 else
(3.52)
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It is clear that the resulting energy is modular, since Ei,j(0, 0) = Ei,j(1, 1) = 0 ≤
Ei,j(1, 0) = Ei,j(0, 1) = w.

For modular energies it is possible to find a binary segmentation corresponding to
the global minimum of the energy in polynomial time, using graph cuts.

3.3.4 Graph Cuts for Segmentation

For a given graph G consisting of a set of nodes V and a set of (not necessarily directed)
edges between nodes E , a graph cut between a source node S ∈ V and a sink node
T ∈ V partitions the graph into disjoint sets of edges E1, E2 and nodes, such that S is
not reachable from T, and vise-versa. This is accomplished by "cutting" edges, that is
removing them from the set E .

Given a weighted graph such that each edge ei ∈ E has an assigned weight wi ∈ R+,
a minimum cut is then the graph cut for which the sum of the weights of the removed
edges is minimum.

Several efficient algorithms for finding the minimum cut have been discovered, partic-
ularly through the solution of the dual maximum-flow problem [GPS89]. It is possible
to construct a graph such that the cost of a graph cut corresponds to the resulting
energy of a given binary segmentation. Thus the minimum cut corresponds to the
minimum segmentation energy .

The construction of the corresponding graph for regular energies is somewhat in-
volved and out of scope for this thesis. Here we give a high-level outline. The interested
reader may find details of the graph construction algorithm used in this thesis in pp.591
of [KFB09].

We construct the graph as follows; Instantiate a source node S corresponding to
the inlier segment, and a sink node T corresponding to the outlier segment. We will
compute the minimum cut between these two nodes.

For each pixel pi we wish to label, we create a node vi. We construct a directed edge
from S to each node vi, having weight computed from the unary energy terms taking
yi as argument. We also construct a direct edge from the node vi to the sink T, with a
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weight also computed from the unary energy terms.

To account for the pair-wise terms, we add a directed edge between vi and all nodes
corresponding to neighboring pixels vj ∈ N (vi), with weight computed from the unary
and pairwise terms taking yi and yj as arguments. Note that this means that each node
will have one directed edge from itself to each neighbor, and one from each neighbor
to the node. An example graph is illustrated in figure 3.8

Figure 3.8: An example graph construction and resulting cut. Left: Directed weighted
edges are constructed from the source node S to each node, and from each
node to the sink node T. Edges are also constructed from each node to
each of its neighbors. Right: The result of a graph cut. Nodes 1 and 3 are
associated with the sink T, while nodes 2 and 4 are associated with S. These
associations correspond to the resulting binary segmentation.

We employ the Boykov-Kolmogorov MaxFlow algorithm [BK04] to compute the
minimum cut between S and T in polynomial time. After applying the computed cut,
nodes reachable from S are labeled inlier and assigned to the set I , while those from
which T is reachable are labeled outlying, and assigned to the set O.

We may now segment the residual image, and hence the keyframe, into inlying
and outlying pixels, given an image and a rigid body transform, in polynomial time.
The outlying pixels provide cues to regions of the keyframe for which the supplied
transform may not be consistent with the true relative motion.
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However, photometric outliers may be caused by effects other than relative motion,
and the outlier pixels may not correspond to all points with an inconsistent relative
motion. At most we may say that the observations on outlying points are not suf-
ficiently explained by the supplied transform. This gives rise to ambiguities in the
segmentation that we must resolve before we may correctly estimate the relative motion
of all observed points.

In order to resolve these ambiguities, we turn to instance segmentation using a
machine learning approach.

3.4 Disambiguation through Semantic Instance Segmentation

In the previous section we have established an approach for finding an outlying set of
pixels in the keyframe which have photometrically inconsistent observations in a new
image frame, for a given motion transform. These outliers may occur due to several
phenomena, including;

• Points belonging to an object undergoing a motion is inconsistent with the
supplied transform.

• Points that have become occluded in the new image.

• Points that do not conform to model assumptions such as constant brightness,
due to illumination changes.

Additionally, not all points belonging to an object undergoing an inconsistent motion
may be segmented as outliers. For example, a point in the interior of a low-texture
region of an object may retain the same intensity between frames, despite points on the
edge of object resulting in outliers. Some of these situations are illustrated in figure 3.9

Thus an ambiguity arises; though we can identify outlying pixels for which observa-
tions are definitively not explained by the supplied transform, we cannot conclusively
determine the set of outliers which are due to inconsistent motions, or those outliers
which are due to other phenomena such as occlusion.

This ambiguity is not generally resolvable via photometric cues alone. While it is
possible to add additional information to the segmentation energy, such as geometry
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Figure 3.9: Illustration of ambiguous photometric residuals. (a): Image of a moving
object as it appears in the keyframe. (b): Images of the same object in a
new image frame. It has moved right to left relative to the camera. (c): The
resulting residual image. Brighter pixels indicate a greater magnitude of the
residual at that pixel. Pixels at the rear of the object have a high photometric
residual because the motion of the object has decluded background foliage -
these will be correctly segmented by the conditional random field. Pixels
to the left of the object have a high photometric residual because they have
become occluded, and will be incorrectly segmented. Pixels at the interior
of the van do not have sufficient texture, and will not be segmented as
outliers by the CRF model. (d): An instance segmentation captures all pixels
belonging to the object.

cues as in [SB15], or second-order intensity information such as the image gradient as
suggested in [EKC18], this additional information is either not available to us for each
frame, or else does not sufficiently resolve the ambiguity.

3.4.1 Machine Learning for Semantic Instance Segmentation

In recent years, machine learning approaches using convolutional neural networks, as
in Mask-RCNN [He+17], have shown promising results in the so-called dense instance
segmentation task.

In this task, given an image consisting of a set of discrete pixels P , each pixel p ∈ P
is assigned an instance label l corresponding to a single object in the scene, or else the
null label (here denoted as ∅) in the case that the pixels are not associated with any
particular object.

The subset of pixels which are all assigned a common label l may be referred to as
an instance of label l.
Each instance label is also often associated with a semantic class, such as person, car, bus
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or similar labels. Thus it is possible to associate subsets of pixels with particular objects
in the scene. Where pixels are assigned ∅, it is assumed they do not correspond to
any objects of a known semantic class. An example segmmentation result is shown in
figure 3.10.

Figure 3.10: Segmentation example on an image from the KITTI dataset, using the
network in [He+17]. Only the "car" class is shown. Colours correspond to
instance labels.

We use instance segmentation to resolve the ambiguities described in the previous
section, and hence to identify pixels in the keyframe corresponding to points on inde-
pendently moving objects. Though there are several possible approaches which may be
investigated in future work, we favor simplicity. The key assumption is that the motion
of the object corresponding to each instance can be explained by a single rigid body
motion.

We first segment the keyframe using a neural network approach, such that each pixel
is assigned a label l ∈ {l0, l1, · · · ln, ∅}. Note that the dense instance segmentation need
only be performed once per keyframe. This assigns an instance label for each pixel in
the outlier set O.

Outlier points that are assigned the null label ∅ cannot be associated with any object,
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and hence are not associated with a particular motion. Often, these pixels correspond to
points that have become occluded due to relative motion, or due to one object moving
in front of another.

Let |Ol | be the number of outlying pixels assigned the non-null label l. Let |l| be
the total number of pixels in the keyframe that are assigned the label l. If the fraction
|Ol |/|l| is greater than some chosen threshold t, i.e. if a given instance contains a
sufficiently large fraction of outlying points, we take this as a cue that an independently
moving object is present, for which we will need to estimate a separate rigid body
transform. Labels for which the threshold is exceeded make up the active label set L.
The overall procedure is illustrated in figure 3.11.

Figure 3.11: Illustration of the algorithm for activating instance segments. We perform
outlier segmentation over the entire keyframe, and subsequently activate
instance segments based on the number of outlying pixels.
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We now have a method for identifying independently moving objects in the scene,
and associating sets of points in the keyframe with each object. Next we wish to
estimate the rigid body motion of each object independently, using direct photometric
alignment.

3.5 Estimating Transforms for Multiple Objects

Having identified each independently moving object, we wish to estimate a rigid body
transform corresponding to that object’s relative motion, as well as the motion of the
camera itself. We may do so via a slight modification of the approach detailed in
Section 3.2.

The pixels belonging to each active label from the segmentation l ∈ L correspond to
disjoint subsets over all pixels in the keyframe, Xl ⊆K.

We may then estimate a relative motion for each object by performing direct alignment
on each subset independently, that is by restricting the computation of the residuals
ri to only those pixels in the subset, xi ∈ Xl . The corresponding estimated transform,
parametrized via Lie algebra is denoted ξ̂l

The relative motion of the camera with respect to the world frame is found by per-
forming direct alignment on the background set B ⊆K, computed as the intersection
of the inlier set I computed in Section 3.3, with the subset corresponding to the null
label, X∅, i.e B = I ∩ X∅. This corresponds to inlying pixels that do not belong to any
moving object. The estimated transform is denoted ξ̂B, and corresponds to the motion
of the camera relative to the world.

Our approach has several key advantages. By identifying only moving objects, it
is not necessary to compute a separate rigid body transform for every instance, as in
[Bâr+18]. This reduces the model complexity and computational cost, and eliminates
the need to rely on the semantic class to identify "movable" objects.

Additionally, by confining the relative motion estimate only to moving objects, more
points are available to accurately estimate the ego-motion of the camera relative to the
world.

We now have a method for computing points belonging to objects undergoing
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independent rigid body motion, as well as a means of estimating their relative mo-
tion. However, the dense instance segmentation is often imperfect, typically including
additional points that do not belong to the object corresponding to the instance (under-
segmentation).

Points visible in the keyframe may also become occluded over a sequence of images,
as objects move in front of one another, or behind elements of the world, thus changing
the corresponding segmentations over time.

Additionally, points that do not belong to a given object but are associated to it
through imperfect segmentation contribute to degrading the motion estimate from
direct alignment, both by introducing points not belonging to the object into the motion
estimate for that object, and by removing points from other objects.

We may repeat the process of outlier segmentation and motion estimation in order to
jointly refine both the segmentation and the motion estimate. This is detailed in the
next section.

3.6 Joint Segmentation-Transform Estimation

We have previously noted that the segmented set for a given label Xl is likely to be im-
perfect, and thus we wish to refine it by finding outlying points among this set, Ol ⊆ Xl .

For a given estimated transform ξ̂l , we may compute an inlying set Il = Xl \Ol using
graph cuts as in Section 3.3.2 by restricting the segmentation only to points xl ∈ Xl .
This refines the segmentation such that only points consistent with the estimated
motion are marked as inliers.

However, we also noted previously that the presence of outliers among points used
to perform the motion estimate will degrade the quality of the estimate. Thus we wish
to jointly refine both the segmentation and the motion estimate to arrive at the best
estimate of both. We therefore need a principled way of arriving at a jointly maximally
likely transform and segmentation.

In order to include the influence of the binary inlier/outlier segmentation labeling
Yl ∈ Yl over Xl , we construct the joint conditional distribution p(ξ̂l ,Yl |Rl). We may
then restate the maximum posterior likelihood estimate of the transform as;
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ξ̂l MAP = arg max
ξ̂l

p
(
ξ̂l |Rl

)
= arg max

ξ̂l

Yl

∑
Yl

p
(
ξ̂l ,Yl |Rl

)
(3.53)

Finding ξ̂l MAP by exhaustively evaluating the sum over all possible labellings is
generally computationally intractable even for a small set of points. For the same
reason, we may not apply the standard Expectation-Maximization algorithm [Bis06]
as computing an expectation over the labellings will not admit a closed-form solution,
and requires exhaustive evaluation of all 2|Xl | possible labelings.

One possible approach is to use a mean-field approximation to the conditional ran-
dom field, which allows the computation of an approximate expectation over labellings
in closed-form. This is the approach taken in [SB15]. However, mean-field approxima-
tions require initialization close to the true posterior labeling in order to converge well,
can be computationally intensive, and we lose the property of globally optimal MAP
segmentations for a given residual image / transform.

Instead, we follow the so-called ’hard’ expectation maximization approach [PD11][SCR12],
as frequently applied to K-means clustering . Hard expectation-maximization is useful
in the case where it is reasonably easy to compute a maximum likelihood estimate of
the posterior values of latent variables, but difficult to compute their expected value.

The key idea is that rather than updating a joint distribution of model parameters
and latent variables as in the standard expectation-maximization algorithm, we directly
assign the maximum posterior likelihood estimate of the latent variables.

Let F be the new image frame. We perform joint segmentation-transform estimation
according to the following algorithm;

Where the function R computes the residual image given an image frame, a set of
points in the keyframe, and a transform, and the function assign constructs the inlier
set given the labeling Yl . This algorithm is illustrated in figure 3.12.

We note that segmentation updates are computed over the full set Xl , and not just the
inliers at each step, while the transform is estimated only from the inliers. Additionally,
we initialize each subsequent direct alignment step with the previous estimate of ξ̂l .

Convergence occurs when either the change in the inlier set is sufficiently small, or
when the magnitude of the residual vector r after direct alignment no longer decreases
sufficiently between steps.
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Algorithm 1 Joint Segmentation-Transform Estimation

Il ← Xl
Rl ← R(F ,Xl , ξ̂I)

while not converged do
ξ̂l ← arg max

ξ̂l

p
(
ξ̂l |Rl ; Il

)
Rl ← R(F ,Xl , ξ̂l)

Yl ← arg max
Yl

p (Yl |Rl)

Il ← assign (Yl)
end while

It can be shown that hard E-M is equivalent to coordinate descent optimization, and
suffers from similar limitations; notably that it may become stuck at a non-stationary
point in the case that the energy is not smooth, or else oscillate rather than converging.
We will discuss this possible limitation in the discussion of experimental results.

Having an approach for jointly estimating rigid body transforms and a consistent
segmentation, we now proceed to track multiple independently moving objects using
photometric alignment, along with the camera motion. In the next section we discuss
the complete algorithm to do so.

3.7 Complete Algorithm

We have now derived all the necessary parts for the full photometric odometry algo-
rithm for dynamic objects. First, we describe the algorithm for estimating the relative
transforms of multiple moving objects between a keyframe and a single new image. We
then extend this to the case of a single keyframe and multiple images, before discussing
the case of multiple updated keyframes.

3.7.1 Tracking objects in a single new image against a keyframe

Let the keyframe K consist of a set of pixels with corresponding intensities, and depths.
Let F be a new image frame consisting only of pixels with corresponding intensities.
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Figure 3.12: Illustration of the joint segmentation-transform optimization. Direct align-
ment is performed, resulting in a new residual image, which is then used
to compute a new inlier/outlier segmentation. Note that initially, ξ̂l = ξ̂I ,
i.e. is initially set to the identity transform. The Yl is set from the instance
segmentation as in Section 3.4.

We first perform direct alignment as in Section 3.2 for all pixels in the keyframe. This
gives an estimated transform ξ̂MAP, which may be thought of as an estimate of the
relative motion of the camera to the world under the assumption of a static scene.

We next compute the resulting residual image R over K. We then use the residual
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image to compute the disjoint inlying and outlying pixels via graph cuts, as in Section
3.3, producing the inlier set I ⊆K, and outlier set O ⊆K.

The keyframe pixels are segmented into disjoint, labeled sets using a neural network.
We then determine which labels correspond to dynamic objects using the outlier set as in
Section 3.4, giving rise to the active label set l1, l2, · · · , ln ∈ L, each label corresponding
to a set of pixels Xl ⊆K.

In addition, we compute the set of pixels corresponding to the background B as
those pixels in I which are not assigned an instance label by the neural network.

For each label l ∈ L, we perform joint segmentation-transform estimation over the
corresponding subset Xl against the new image frame, as detailed in Section 3.6. This
produces estimates of the the transform ξ̂l corresponding to the relative motion of the
camera to each dynamic object, as well as a refined outlier labeling for each object Yl .

We also perform joint segmentation-transform over the background set B, which
produces an estimate of the transform ξ̂CAM corresponding to the relative motion of
the camera to the world frame.

We may now recover the transform corresponding to the motion of each object
relative to the world frame, as in Section 3.1.2. Let CK be the coordinate frame of
the camera observing the keyframe, and let CF be the coordinate frame of the camera
observing the new image frame.

We define the origin of the world frame as coincident with the origin of the camera
observing the keyframe, i.e. TWCK = I . Let Ol be the coordinate frame attached to the
object with label l.

Following equation 3.18, we have TWCF = exp(ξ̂CAM) and TOl

CFCK
= exp(ξ̂l). We

may attach the coordinate frame Ol as desired; we choose this as the center of the
object, initially aligned with the world coordinate frame, and construct TCKOl = TWOl

K
appropriately.

In the absence of a given center for each object, we estimate a centroid using the
average over the depths of the inlying points after segmentation refinement. Thus we
have;
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TWOl
F
= TWCFT

Ol

CFCK
TCKOl

= exp(ξ̂CAM) exp(ξ̂l)TCKOl

(3.54)

Which is the transform corresponding to the motion of each object in the world
frame. We now extend the algorithm to the case of a single keyframe and a sequence of
new image frames.

3.7.2 Tracking objects over multiple new image frames against a keyframe

Extending the algorithm to handle tracking multiple objects over a sequence of new
image frames F1,F2, · · ·Fk is straightforward. Intuitively, we use the results of the
estimates from frame Fk−1 to initialize the algorithm for the next frame Fk.

We apply the following modifications to the algorithm as presented in the previous
section.

We initialize the first "static scene" direct alignment step for frame k as ξIk = ξCAMk−1 .
This encodes the assumption that the motion of the camera with respect to the world is
relatively small between consecutive new image frames, and thus such an initialization
will be close to the true estimate.

We perform the full-frame outlier segmentation and label activation steps as before,
noting that objects which were not yet moving sufficiently in the first frame may begin
moving in subsequent frames. This gives the active set for each image frame, Lk as well
as the background set Bk.

For each label l ∈ Lk, we perform joint segmentation-transform estimation as before.
If we have performed joint segementation-transform estimation for the label l in the
previous frame, we initialize with the previous estimate of the transform ξ̂lk−1 , and
the previous estimate of the inliers Ilk−1 . This gives the estimate of the transform
corresponding to the relative motion of the object from K to Fk as ξ̂lk

Note that in each iteration of the joint segmentation-transform estimation, we per-
form segmentation over the full set of labeled pixels Xl . This allows us to account
for objects being partially occluded and decluded as they move, with respect to their
visibility in the keyframe.
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We perform joint segmentation-transform estimation to arrive at an estimate of the
transform corresponding to the camera motion, using the set Bk, giving ξ̂CAMk .

We may then estimate the transform corresponding to the motion of each object.
Attaching the coordinate frame Ol as in the previous section, we compute the transform
from object to world coordinate frame for new image frame Fk analogously to equation
3.54;

TWOl
k
= exp(ξ̂CAMk) exp(ξ̂lk)TCKOl (3.55)

We may now compute a sequence of transforms TWOl
1
,TWOl

2
, · · ·TWOl

k
for each object,

which correspond to the trajectory of a given object over time. Additionally, we have
a sequence of transforms TWC1 ,TWC2 , · · ·TWCk corresponding to the trajectory of the
camera. Thus we may track both the motion of the camera, and the motion of objects
over a sequence of frames.

It is not feasible to track against a single keyframe indefinitely. The motion of the
camera may result in fewer points from the keyframe being visible in subsequent image
frames. Additionally, dynamic objects may enter and leave the camera’s field of view,
requiring a new instance segmentation to be generated.

We therefore turn to the problem of tracking with multiple keyframes in the next
section.

3.7.3 Tracking with multiple keyframes

Tracking with multiple keyframes requires further modifications to the algorithm. The
coordinate frame of subsequent keyframes is no longer necessarily coincident with
the origin of the world frame. Thus we must also account for the relative pose of
subsequent keyframes.

Additionally, because the instance segmentation for each keyframe is generated
independently, instance labels in one keyframe may not correspond to the same label
in another. We must therefore associate labels from one keyframe to another so that we
may continue to track the same object across frames.

We assume that a keyframe is constructed from an image frame by adding depth and
segmentation information. Let the coordinate frame associated with the initial keyframe
K0 be coincident with the world frame. Then if a new keyframe is constructed from
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some new image frame Fk, the relative pose of the new keyframe K1 is given by the
estimate of the camera pose with respect to the initial frame, i.e. TK0K1 = exp(ξ̂CAMF).

We treat the coordinate frame attached to the new keyframe as the origin for sub-
sequent tracking, i.e. the transform corresponding to the camera motion exp(ξ̂ j

CAM)

and to the motion of each object with labell, exp(ξ̂ j
l ), are expressed with respect to the

coordinate frame corresponding to the most recent keyframe Kj.
A pose with corresponding transform T J in the coordinate frame of keyframe Kj

can be expressed in the world frame as TW = TK0K1TK0K1 · · ·TKj−1KJT
j. Thus we may

recover the trajectory of the camera and of each dynamic object in the world frame.

We associate an instance label l ∈ Li in the active set of keyframe Ki with an instance
label m ∈ M in the instance segmentation of Kj as follows.

Assume we have an estimated transform corresponding to the object motion observed
in Ki to the image frame of Kj, expressed as T i

lk
. We apply the warping function from

equation 3.21 to each pixel in xi
l ∈ X i

l which are labeled inliers, to determine the

corresponding pixel in the image frame of Kj, x
j
l , i.e. xj

l = τ
(
xi

l , d,T i
lk

)
. We refer to

the set of corresponding points as X j
l .

We compute the intersection-over-union of X j
l with each set of pixels Xm corre-

sponding to each label m ∈ M. The label l is then associated with the label m if the
intersection-over-union score is higher than a chosen threshold, and is also the highest
among all labels in Li. Note that this means at most one label in Li can be associated
with each label inM, and some labels in Li may not be associated at all. We assume
that tracking of unassociated labels is lost.

We now have a mapping between sets of labels in keyframes. Thus we can track the
same object over multiple keyframes, and recover its trajectory in the world frame. We
are also able to recover the camera trajectory from multiple keyframes. Thus we have
completed the description of the dynamic photometric odometry algorithm.

In the next section, we discuss implementation details of the algorithm into account,
and evaluate its effectiveness in the task of tracking dynamic objects.
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In this chapter we detail the evaluation of various aspects of the complete dynamic
photometric odometry system, in order to determine its performance and limitations.
We evaluate the complete system against datasets providing ground-truth for dynamic
object motion, as well as camera motion through the scene.

We focus in particular on the system’s effectiveness in tracking dynamic objects, as
well as in refining an initial noisy instance segmentation.

4.1 Implementation Details

The full system is implemented in the MATLAB mathematical programming envi-
ronment, primarily for ease of debugging and prototyping. Evaluations are run on a
commodity laptop with an Intel Core i7-4720HQ CPU running at 2.60 GHz, with 16GB
of RAM.

We utilize a MATLAB implemetation of the Boykov-Kolmogorov Maxflow algorithm
[Ant14], which includes a simple interface for the construction and optimization of
graph-cut problems.

4.2 Oxford Multi-Motion Dataset

The Oxford Multimotion Dataset (OMMD) [JG19] is a recent, comprehensive dataset
from the Oxford Estimation, Search, and Planning Research Group.

It includes stereo video sequences of scenes involving multiple independently moving
rigid bodies with combinations of rotational and translational motions, as well as
ground truth motions for these objects as measured by a high-speed Vicon motion
capture system.
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Figure 4.1: Example image frame from the Oxford Multimotion Dataset. This example
is drawn from the left camera of the stereo rig, in the swinging-static sequence.
Note that boxes are labeled according to their number and visible face, i.e.
face 1.4 is the face labeled 4 of box 1.

4.2.1 Data

The dataset is made up of several synchronized, rectified stereo video sequences
recorded with a Point Grey Bumblebee XB3 stereo camera at 16 Hz and 1280x960
resolution. Additionally, the dataset contains corresponding RGB-D sequences recorded
via an Intel Realsense D435 system at 30 Hz and 640x480 resolution, attached to the
same apparatus. An example frame from the left camera of the stereo rig is shown in
figure 4.1.

The recording apparatus also includes a rigidly attached Microstrain 3DM-GX4-45
IMU, recording orientation and acceleration data at 500 Hz, as well as a marker allowing
for tracking by the Vicon motion capture system at 200 Hz. Each moving object is
assigned a coordinate frame in order to record the ground-truth motions, also at 200 Hz.

Intrinsic camera calibrations, as well as extrinsic calibrations between each sensor
frame are supplied as part of the dataset.
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The three swinging sequences from the dataset are of particular interest for our evalu-
ation. These contain scenes involving four coloured and numbered boxes undergoing
distinct, constrained motions - swinging side to side, back and forth, as well as rotating
about an axis and precessing. We are therefore able to evaluate the effectiveness of the
system in tracking each type of motion in isolation.

The scenes are recorded from a stationary apparatus in the swinging-static sequences,
from an apparatus undergoing only translational motion in the swinging-translational
sequence, and with the apparatus moving in an unconstrained way in the swinging-
unconstrained sequence.

An important property of the motions of the boxes is their periodicity. The periodic
motions of the objects permit the observation of the same motion over many repetitions.
Using the ground truth trajectories provided in the dataset, the translational period
of boxes 1 and 3 was observed to be approximately 40 frames, whereas the rotational
period of boxes 2 and 3 is approximately 125 frames.

These periods do not vary significantly over the first several hundred frames of the
dataset.

4.2.2 Preprocessing

Our system depends on reasonably good depth estimates. We found that the depth
recorded from the Intel Realsense sensor was too noisy, with many artifacts producing
warped estimates for the 3D structure of the moving boxes. Additionally, it was of
low resolution in comparison to the images from the stereo cameras. We therefore
computed a new depth estimate through stereo matching.

Because the scene and objects of interest consist mainly of planar surfaces in various
orientations, we chose to use Slanted Plane Smoothing Stereo (SPS-Stereo) [YMU14].
SPS-Stereo was used to compute a pixel-wise disparity estimate from the left stereo
frame to the right.

We then compute the depth d from disparity D for each pixel as d = f B
D , where B

is the stereo baseline computed from the extrinsic calibration parameters provided by
the dataset, and f is the focal length from the provided intrinsic calibration for the left
camera. The resulting depth estimate contained fewer artifacts and was found to be
suitable for our evaluation. Example outputs of this process compared to the raw Intel
Realsense output are show in figure 4.2.
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Depth image from Intel Realsense. Disparity image from SPS-Stereo.

Figure 4.2: Comparison of Intel Realsesne (left) and SPS-stereo output (right) on the
same example frame. Note the presence of many artifacts where depth is
not known (black), as well as the overall lack of definition in the raw Intel
Realsense data. In contrast the SPS-stereo disparity image has far fewer
artifacts and significantly improved definition, particularly at the objects of
interest.

An additional preprocessing step is required to find an initial segmentation for
the objects of interest in the OMMD. Most off-the-shelf instance segmentation neural
networks are unsuitable for segmenting the moving boxes, as they do not belong to
any class that such networks are trained for.

Training a network architecture to segment these objects would be time consuming,
and require labeled training data which is not available. We therefore took the simple
approach of color segmentation in HSV colourspace [AA05].

We note that the sides of the boxes are brightly coloured and distinct from the
background. We therefore partition the HSV colourspace into object and background
by manually finding appropriate thresholds. Pixels falling into the object partition are
assigned to connected regions.

Regions that have fewer than 1% of all pixels in the image are eliminated. The
remaining regions are dilated, and finally assigned an instance number. The output of
this process is illustrated in figure 4.3.
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Instance Segmenation.
Instance Mask.

Figure 4.3: Instance segmentation, colored by instance label (left), with the correspond-
ing masked regions in the image (right).

We note that this approach results in an under-segmentation, i.e. instance segments
include all pixels belonging to the object of interest, but also some pixels from the back-
ground. It is often the case that neural networks also provide imperfect segmentations,
and we will evaluate whether the joint segmentation-transform estimation in section
3.6 can improve upon the initial segmentation.

Having arrived at improved depth estimates and initial segmentations, we can begin
our evaluations.

4.2.3 Static Camera

The swinging-static sequence involving a static camera apparatus allows us to evaluate
the effectiveness of our system for the tracking of moving objects independently of the
motion of the camera.

Segment Activation

In order to determine an appropriate threshold for activating instance labels for tracking
via motion segmentation as in 3.4, we observe the fraction of points belonging to a
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given instance that are segmented to outlier.
An illustration of how the outlier segmentation changes over the course of several

frames is shown in figure 4.4.

Frame 1 Frame 50 Frame 120

Figure 4.4: Outlier segmentation over time. Black pixels correspond to those segmented
to outlier. Note that as well as outliers due to the motion of boxes in the
scene, there are additional outliers due to shadows caused by box 1 swinging
in front of one of the light sources. This varies the illumination for sections
of the background, resulting in high photometric residuals even though
the camera is static. Note also additional outliers caused by poor depth
estimates (e.g. top left corner).
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We take the first frame in the sequence (frame 0) as the keyframe, and compute
the residual segmentation over 150 frames, without estimating any transforms. The
proportions are plotted in figure 4.5. We initially choose σ = 0.1 and w = 1.0 as the
unary and pairwise parameters for the segmentation energy in section 3.3.3.

Figure 4.5: Fraction of pixels belonging to each instance segmented to outlier for each
frame, without transform estimation.

We note the strong periodicity apparent in the plots, which conforms to the observed
periodicity of the motion of the objects. Residuals are small when the pose of the object
is close to where it is observed in the keyframe, and increase as the pose diverges.

In the case of box 1, which is swinging toward and away from the camera, there are
two times when the residual is small in a given period. This is because the initial pose
does not lie at the end of the arc, but at approximately 1/3 from the top of the nearest
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point in the arc.

We note that as the object pose diverges over time, the pixels corresponding to each
instance segment that are segmented to outlier increases rapidly, and remains stably
high until the object returns close to the initial pose. This suggests that a relatively high
activation threshold can be used; we chose 0.3 for subsequent experiments, i.e. 30%
of the pixels belonging to a given instance must be segmented to outlier, in order to
activate that segment for tracking.

We also observed the fraction of pixels that do not belong to any object instance that
are segmented to outlier, plotted in figure 4.6.

Figure 4.6: Fraction of outlier pixels not belonging to any instance.

The outliers that are not assigned to any instance (unlabeled) are due to moving
objects occluding the background, as well as illumination changes caused by moving
objects occluding light sources.

We note also that periodicity is present for the background, supporting that outliers
are largely caused directly or indirectly by moving elements of the scene.

These results suggest that significant information about dynamic scenes can be
extracted by computing and evaluating the photometric residual.

We now turn to the use of direct photometric alignment for the tracking of dynamic
objects.
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Object Tracking With a Static Camera

We proceed to evaluate the effectiveness of direct photometric alignment as an approach
to tracking dynamic objects. We observe tracking effectiveness with both the naive
direct alignment aglorithm as presented in section 3.2, including robustification via
Huber weights and coarse to fine optimization. For comparison we then evaluate the
effectiveness of the joint segmentation-motion estimation as in the full system presented
in section 3.7.

In order to compare the estimated trajectories with the ground truth provided by the
vicon system, we apply the extrinsic calibrations provided with the dataset to transform
the estimates to the vicon frame.

Additionally, we note that the coordinate frame attached to the centroid estimate
(section 3.7.1) does not correspond to the coordinate frame attached to the object in
the vicon frame. In order to compensate for this, we compute TW

cent gt the transform
from the ground truth pose of the object in the first frame in the image sequence, to the
centroid pose in the first frame in the sequence, in the world coordinate frame.

This allows us to transform the estimated trajectory such that it applies to the co-
ordinate frame attached to the object in the vicon system. We evaluate the estimated
trajectories accordingly.

We first evaluate the tracking of the objects undergoing only translational motion,
boxes 1 and 3. Since the camera is stationary, and the same faces of the boxes are visible
throughout the sequence, we use only the first image frame, and the associated depth
estimate and instance segmentation, as the keyframe.

The estimated tracks are plotted in figure 4.7. The trajectory plots reflect the poses of
the objects in the Vicon frame, TVicon obj in our convention. Qualitatively, we observe
that the shape of the estimated trajectory is broadly consistent with that of the ground
truth. Several features stand out.
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Box 1, 3D Plot Box 3, 3D Plot

Box 1, Projection to XY plane. Box 3, Projection to XY plane.

Figure 4.7: Ground truth (blue), naive estimates (green), and joint segmentation-motion
estimated tracks (orange) for box 1 and 3. Tracking is performed against a
single keyframe, from the start of the image sequence. All plots show the
pose of the object in the the vicon coordinate frame. The plotted coordinate
axes show the final pose of each trajectory, to illustrate the total drift. Note
the over and undershoot in the y axis for Box 1, and the x axis for Box 2.

The trajectory estimates appear to overshoot the ground truth in one direction, and
undershoot in the other. In the case of Box 1 (left side of figure 4.7), the overshoot is in
the direction of the camera (−y), and the undershoot is away from it. In contrast, the
estimate for Box 3 (right side of figure 4.7) tends to overshoot toward the right (+x)
and undershoot toward the left.

58



4 Evaluation

The overshoot in both cases is in the direction of the initial motion. A possible
explanation is that an initial overshoot may shift the trajectory in that direction, resulting
in the estimate of the periodic trajectory being biased that way.

An alternative explanation may be that the initial coordinate frame is coincident,
but not aligned. Since we track against the first frame, and do not perform additional
alignment between estimated and ground truth trajectories, an initial misalignment
would propagate through the trajectory estimate, and may introduce a constant bias
bias in the poses, as we have observed.

We note also in the case of Box 1 that the estimated trajectory is considerably less
smooth closer to the camera than away from it.

It might be the case that the relative motion in image space is larger closer to the
camera, and hence the initialization of the direct alignment step from the previous
frame’s transform estimate is further from the true minimum, resulting in the algorithm
finding a closer, inferior minimum.

We compute the absolute trajectory error (ATE) between the ground truth and the
estimated trajectories, as in [Stu+12]. Results are tabulated in 4.1.

Estimate Mean ATE (m) Max. ATE (m) RMSE (m)
Box 1, Naive 0.1112 0.2213 0.1276
Box 1, Full System 0.1101 0.2245 0.1267
Box 3, Naive 0.1258 0.2565 0.1501
Box 3, Full System 0.1261 0.2556 0.1500

Table 4.1: Mean ATE, Maximum ATE, and RMSE between the ground truth and esti-
mated trajectories. The best results for each box are bolded.

The absolute trajectory error is an expression of the absolute translational distance
between the ground truth and estimated trajectories, for each frame. We state the mean,
maximum, and root mean square (RMSE) values for the ATE for each estimate.

Note that because we have transformed our estimated trajectories into the Vicon co-
ordinate frame, we do not perform additional alignment between estimate and ground
truth when stating our results.
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Quantitatively, the lack of consistent improvement due to the joint segmentation-
motion step in the full system, over the naive direct alignment algorithm, is somewhat
surprising.

Several factors may contribute. One possibility is that the initial segmentation is
already relatively good, and thus true outliers represent only a small fraction of the
points assigned to an instance. Thus there may be little improvement to be had by
further refining the segmentation through eliminating outliers.

Another possibility is that the Huber weighting of the residual in the direct alignment
step already reduces the influence of outlying residuals sufficiently well, making the
segmentation step unnecessary.

A third possibility is that along with eliminating outliers, the spatial pairwise term in
the outlier segmentation energy results in inlying points being erroneously segmented
to outlier. This causes information to be lost, for a net result of no improvement in the
tracking.

Finally, it is possible that misaligned initial frames may introduce a bias, giving
rise to errors which overshadow any improvements due to joint segmentation-motion
optimization.

We next attempt to estimate the trajectories of the rotating objects, i.e. boxes 2 and 4.
Due to the rotation of the objects, the initially visible faces are no longer visible after

approximately 30 frames. We therefore choose to construct a new keyframe every 15
frames.

We note that the estimate of the centroid varies from keyframe to keyframe. In order
to account for this, we transform each pose according to the relative transform from
the centroid associated with the current keyframe, to that associated with the previous
keyframe. This results in a trajectory estimate that is consistent with the initial centroid
estimate.

The system proved to be incapable of estimating the rotational motion of these objects
accurately. The estimated trajectory diverges quickly and completely from the ground
truth for both rotating objects.

Additionally, in both cases, joint segmentation-motion estimation causes over 90%
of the pixels belonging to the instance segmentation to be marked as outlier over
approximately 4 frames, and subsequently tracking is lost. The estimated trajectories
are plotted in figure 4.8.

The failure to track rotating objects represents a very significant limitation of the
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system. This result is also surprising, given that direct photometric alignment is
known to successfully estimate camera motion under both rotation and translation
[KSC13][ESC14][EKC18].

Box 2, 3D Plot Box 4, 3D Plot

Figure 4.8: Ground truth (blue), naive estimates (green) for box 2 and 4. All plots are in
the world coordinate frame. Note that the ground truth for Box 4 is barely
visible in the plot, as the divergence is very large. Joint segmentation-motion
estimates proved to be impossible, as a very large fraction of the instance
was quickly segmented to outlier.

The trajectory estimate diverges from the ground truth quickly, over only a few
frames. Addtionally, a large fraction of the pixels belonging to the object instance label
are segmented as outliers, as that the photometric residual increases quickly.

This suggests the failure to track rotating objects is due to the underlying direct
photometric alignment algorithm. This is somewhat surprising and merits further
investigation.

As discussed in section 3.1.2, observations of the motion of an object from a static
camera are equivalent to observations from a camera moving relative to a static object.

In the case of a rotating object, the corresponding relative camera motion is an arc
with radius equal to the distance between the object’s center of rotation and the camera
center, lying in the plane defined by the axis of rotation. This is illustrated in figure 4.9.

61



4 Evaluation

Figure 4.9: An object (green) is rotating clockwise in space. The relative motion of
the camera (black) has a rotational and a translational component, in the
opposite direction to the rotation of the object. The translational component
increases as the radius of the arc increases. The rotational component are
equal and opposite for camera and object.

Thus rotational motion in the object frame introduces a potentially large relative
translational motion. This large relative translational motion may place the minimum
found by the underlying Gauss-Newton algorithm too far from the initialization,
and hence may result in poor convergence. This conforms with the observation that
photometric odometry also gives good estimates for rotating cameras; the camera
rotation is about the camera origin, and hence does not give rise to an additional
translational component.

Direct photometric alignment may handle large translations through an increase in
the number of pyramid levels in the coarse to fine optimization, as discussed in section
3.2.4. However, as we noted therein, it becomes quickly impossible to use additional
pyramid levels for object tracking as the object becomes invisible.

An alternative approach may be to re formulate the warping function stated in equa-
tion 3.21. The stated formulation as used in deriving the required energy minimization
takes as argument the relative motion of object and camera.

Instead, we propose to formulate the warping function such that it takes as argument
the transform corresponding to the motion of the object in a frame of reference close
to the object center, thus reducing the induced relative translation due to rotation. We
leave the required derivation and evaluation to future work.
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Another possibility is that these object motions result in a pathological case for the
linearization applied to the non-linear least-squares problem in section 3.2.4.

In order to investigate this possibility, we implemented the Levenberg Marquardt
(LM) algorithm [Mar63] for nonlinear least squares optimization. The LM algorithm
augments the Gauss-Newton algorithm through the use of a damping term coupled to
a gradient descent step.

If the Gauss-Newton step increases the error, the LM algorithm increases the weight
associated with the gradient descent term, thus damping possible divergence.

Despite this, we did not see significant improvement, and the trajectory estimate
diverged in the same manner. The stability of the linearization and gradient terms for
observations on rotating objects should also be a focus of future work.

One final possibility is that insufficient information is contained in the relatively few
points belonging to the instance segment of a rotating object, to accurately estimate
rotations. Initially available information is also quickly lost, as rotation causes self-
occlusion of initially visible regions. This may be compounded through inaccurate
depth estimates.

How much information, whether through number of pixels, their texture, or the
accuracy of depth information, is required to track a dynamic object should also be
examined in future work.

Having examined the possibility of tracking dynamic objects with direct photometric
alignment, we now turn to the effectiveness of refining an initial segmentation using
joint segmentation-motion estimation.

Segmentation refinement

In order to determine the effectiveness of using the photometric residual to refine an
initial instance segmentation, we observe the results of outlier segmentation on the
instance segments for the successfully tracked dynamic objects, boxes 1 and 3.

We perform outlier segmentation after each transform estimate of the naive direct
photometric alignment algorithm, and compare it with the outlier segmentation from
the joint segmentation-motion estimate. Example segmentations over a sample of the
frame sequence is shown in figure 4.10.
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Box 1

Box 3

Figure 4.10: Segmentation evolutions for Box 1 and Box 3, sampled at every 10th frame
in the 50 frame sequence. Black pixels correspond to those segmented
to outlier, or not belonging to the initial instance segmentation. The true
boundary of the object is shown in red. This example is drawn from the
joint segmentation-motion estimate, the naive estimate is similar.

Qualitatively we observe that the segmentation refinement is relatively poor for Box
1, most likely due to the relatively poor motion estimates resulting in high photometric
residuals in many areas of the object.

Background pixels remain segmented to inlier, most likely due to the lack of back-
ground texture in this part of the scene.

In contrast, the segmentation for Box 3 appears to correctly segment parts of the
background to outlier, while generally retaining as inlier pixels belonging to the object.
Additionally, small internal outlier segments emerge as specularity causes the irradi-
ance of certain points of the objects to change.

Next we evaluate the dynamics of the outlier segmentation, comparing the outlier
segmentation of the residual after naive direct photometric alignment, with that from
the joint segmentation-motion estimate.

We observe the fraction of the number of pixels belonging to each instance that is
segmented to outlier over a full period of the motion of each object. These results are
plotted in figure 4.11.
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Box 1, outlier fraction per frame. Box 1, Joint VS Naive outlier fractions.

Box 3, outlier fraction per frame. Box 3, Joint VS Naive outlier fractions.

Figure 4.11: Fraction of pixels belonging to a given instance that are segmented to
outlier from naive direct alignment (blue) and joint segmentation-motion
estimation (orange) in each frame. The 45-degree line in the right-hand
plots indicates equality.

Several features are immediately apparent. The first is the periodicity of the outlier
fraction, which matches the periodicity of the object’s motion. In the case that pixels
not belonging to the objects were correctly segmented to outlier, we would expect a
steady state in the outlier fraction corresponding to the proportion of ’true’ outliers.
However, this is not apparent here.

Additional sources of large photometric residuals leading to pixels being erroneously
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segmented to outlier include illumination changes, such as increased irradiation as the
boxes move closer to and further from a point light source, as well as large photometric
residuals induced by imperfect motion estimates.

Additionaly, pixels not belonging to the object may not be segmented to outlier when
the background texture is insufficient, as illustrated in section 3.4.

The lack of ground truth segmentation for the OMMD makes it infeasible to evaluate
the contribution of these factors, which should be examined in future work. The use of
synthetic scene data may be of particular importance.

We note that the joint estimate is very similar to the segmentation from the naive
transform estimate, but with some large difference evident. We note that the differences
tend to occur near extrema, i.e. the difference between the two segmentations is greatest
at the maximal and minimal fractions.

The reason for this discrepancy is not clear, and open to further investigation.

Having evaluated the effectiveness of joint segmentation-motion estimation in refining
an initial instance segmentation, we next turn to evaluating scenes with dynamic objects
observed from a moving camera.

4.2.4 Dynamic Camera

The swinging-translational and swinging-unconstrained sequences involve moving the
camera apparatus through the scene. In swinging-translational the camera undergoes
only translational motion, while in swinging-unconstrained the camera both translates
and rotates.

These scenes allow us to evaluate the feasibility of tracking dynamic objects from a
dynamic camera. Additionally, we evaluate the accuracy of camera tracking through
dynamic scenes.

Object Tracking with a Dynamic Camera

We apply the activation threshold (t = 0.3) computed experimentally in the previous
section to activate instances for tracking.

We found that we were unable to track any of the four dynamic object, for either of
the sequences involving a dynamic camera. The transform estimates diverge sharply,
until tracking is lost entirely, with similar dynamics as the estimates for rotating objects
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in the previous section.

The tracking divergence of even the translating objects, boxes 1 and 3, could be
attributable to the change in relative bearing between the camera center and the center
of each object. This change in relative bearing may be regarded as a rotational motion
of the object relative to the camera.

Thus the cause of tracking failure is likely to be the same as for the rotating objects
in the previous section, and may reflect some combination of the same causes. An
important direction of future work is to focus on the feasibility of estimating the
motions that include relative rotations through direct photometric alignment.

Camera Tracking in a Dynamic Scene

We evaluate the effectiveness of joint segmentation-motion estimation in estimating
the trajectory of a camera moving through a dynamic scene, using both naive direct
alignment and joint segmentation-motion estimation.

The estimated camera trajectories are plotted in figure 4.12. We also evaluate the
absolute trajectory error (ATE) and the Root Mean Square Error (RMSE) between the
ground truth and the estimated camera trajectories.

Note that since the ground truth and estimated trajectory are in the same coordinate
frame, we do not perform Horn alignment. These results are tabulated in table 4.2.

Estimate Mean ATE (m) Max. ATE (m) RMSE (m)
Translational, Naive 0.0572 0.1674 0.0661
Translational, Full System 0.0528 0.1406 0.0592
Unconstrained, Naive 0.0494 0.2137 0.0594
Unconstrained, Full System 0.0474 0.2026 0.0568

Table 4.2: Mean ATE, Maximum ATE, and RMSE between the ground truth and esti-
mated trajectories. The best results over each sequence are bolded.
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Translational, 3D Plot Unconstrained 3D Plot

Translational, Projection to XY plane. Unconstrained, Projection to XY plane.

Figure 4.12: Ground truth (blue), naive estimates (green), and joint segmentation-
motion estimated camera motion (orange) for the swinging-translational and
swinging-unconstrained sequences. All plots are in the world coordinate
frame. The plotted coordinate axes show the final pose of each trajectory,
to illustrate the total drift.

In contrast to the dynamic objects, joint segmentation-motion optimization showed
improvement over naive direct alignment in all metrics over both sequences. We
observed a 7.6% improvement in the ATE for the translational sequence, and 5.0%
improvement in the ATE for the unconstrained sequence. We propose two contributing
factors.

The first is the exclusion of pixels with high photometric error through outlier
segmentation resulting in an improved estimate of the transform in each step of the
joint segmentation-motion estimation.

In particular, this implies that for the case of cameras moving through a dynamic
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scene, outlier segmentation in combination with Huber weights may perform better
than Huber weights alone.

A second possible factor is that improvement is due largely to continued iterations of
direct alignment. As in algorithm 1, the direct alignment step of the joint segmentation-
motion optimization takes the initial estimate of the transform, ξ̂, from the previous
direct alignment step.

Since the estimate of the previous step is within the ’basin of attraction’ for the
coarse-to-fine initialization, improvement may be the result of continued iterations at
the last (highest resolution) pyramid level, and hence equivalent to simply continuing
to iterate at this level.

In future work, the effects of each of the proposed factors should be evaluated in
isolation, and compared to the total improvement in the camera trajectory estimate, to
determined the true source of the improvement.

4.3 Virtual Kitti

The Virtual KITTI (VKITTI) dataset [Gai+16] is a realistic synthetic data-set consist-
ing of rendered video sequences that mimic the video sequences of the well-known
KITTI odometry dataset [GLU12], created in the Unity games engine. Scenes are ren-
dered from various camera angles, and under varied lighting and (simulated) weather
conditions.

The VKITTI sequences include scenes of dynamic objects, namely vehicles, observed
from a moving camera in several settings. Ground truth values for most values of
interest to our evaluation are provided.

4.3.1 Data

The dataset is made up of several rendered sequences. For each rendered RGB frame,
depth and instance segmentation data is provided at a resolution of 1242x375. Examples
are shown in figure 4.13.

The rendered frames approximately correspond to the 10 Hz frame-rate of the KITTI
dataset of which VKITTI is a simulacrum. Each sequence is rendered with the same
fixed intrinsic calibration for the virtual camera, which is provided with the dataset.
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Ground truth poses for the camera and for each object in the world are provided in
transformation matrix form, in the coordinate frame of the virtual world.

Rendered RGB image.

Registered depth image.

Ground-truth instance segmenation.

Figure 4.13: Example data from the VKITTI dataset. Each sequence includes rendered
RGB images, registered depth images, and ground-truth instance seg-
mentation of all objects (including background elements such as street
signs).

4.3.2 Preprocessing

The original resolution of the VKITTI sequences is not a power of two, making con-
structing the ’pyramid’ described in section 3.2.4 onerous. We therefore crop the source
images to 1024x256.
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To do so, we remove 109px from the left and right of each frame. We remove 60px
from the top, and 59px from the bottom of each frame. We adjust the intrinsic calibra-
tion matrix to account for the new position of the camera center in the image plane.

The dynamic objects in the VKITTI sequences are vehicles, a class of object that is
familiar to off-the-shelf instance segmentation neural networks. We use the common
Mask-RCNN [He+17] to create instance segmentations of each frame in the sequences
of interest.

We use the pre-trained network provided by the authors, and restrict segments to
the semantic classes {car, truck, van}, as they represent the dynamic objects of interest.
An example of the ground truth instance segmentation, and the segmentation from
Mask-RCNN, is shown in figure 4.14.

The neural network achieves reasonable segmentations. However, we observed a bias
to excluding pixels, particularly at the edges of objects (e.g., car mirrors). To include as
many pixels belonging to each object as possible, we dilate the instance segmentation
produce by the neural network by 3 pixels.
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Input RGB image

Ground truth semantic instance segme-
nation.

Instance mask for classes of interest.

Neural network segmentation.
Instance mask from neural network seg-
mentation.

Figure 4.14: Instance segmentation from an example RGB image. The neural network
achieves a reasonable segmentation, however pixels belonging to objects
are often missing, particularly at the edges.

Having obtained appropriate instance segmentations and cropped the input images
to an appropriate size, we now proceed with our evaluation.
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4.3.3 Sequence 18 - Highway

Sequence 18 is a highway sequence with relatively fast moving traffic, as well as
oncoming traffic. Though the velocities of the camera and objects relative to the
world are large, the relative velocity of the objects to the camera is small, and mainly
translational.

We choose a subsequence of 50 frames in which several dynamic objects are visible
at the same time. An example RGB image frame is shown in figure 4.15.

Figure 4.15: Sequence 18 Example image.

We estimate the trajectory of the camera and the dynamic objects using the full
system, including the joint segmentation-motion optimization.

We construct keyrames at a fixed rate of every 15th frame over the course of the
sequence. We retain the activation threshold of t = 0.3 as computed in the previous
section, as well as the same unary and pairwise segmentation parameters σ = 0.1,
w = 1.0.

Since objects may exit the camera’s field of view, we implement tracking loss de-
tection. If an active instance label has greater than 70% of the corresponding pixels
segmented as outlier, we consider tracking for that instance to have been lost.

The resulting trajectory estimates are plotted in figure 4.16. Additionally, we evaluate
the ATE against the ground-truth for each tracked object. These results are tabulated in
table 4.3.
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Figure 4.16: Tracks for dynamic objects, as well as the moving camera, for the highway
sequence, projected to the X-Y plane. Forward motion of the objects and
camera is in the positive X direction. Object tracks are labeled A-D, the
camera track is labeled CAM. Ground truth tracks are shown as dashed
lines.

Track Mean ATE (m)
Camera 0.544

A 0.218
B 0.417
C 0.423
D 0.934

Table 4.3: Sequence 18 tracks, mean ATE.

Tracking loss occurred for object A (black car nearest the bottom left of the frame)
after 23 frames as it moved out of view.

Additionally, tracking loss occurred for object B (white car) after 31 frames. This was
due to a large illumination change as the vehicle moved into sunlight, causing large
photometric residuals which could not be compensated.

Tracking for object D was poor relative to the other objects. The likely cause is that
this object remained furthest from the camera, and thus had relatively few pixels for
direct alignment.

The system was unable to track oncoming vehicles, which were visible for only a
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few frames. The relative motion for these was large, and therefore the direct alignment
portion of the algorithm did not converge to a good estimate.

The system successfully tracked several dynamic objects in this sequence, demon-
strating that tracking of dynamic objects from a moving camera with direct photometric
alignment is possible, in the case of small relative motions. Each instance was activated
after the first frame, and was tracked until tracking loss occurred.

We next evaluate the system’s effectiveness on a more complex scene, where instances
may activate later than the first frame.

4.3.4 Sequence 20 - Traffic Jam

Sequence 20 is a sequence with slow moving traffic, in a traffic jam. Several objects
enter the field of view of the camera later in the sequence, while others leave before the
end of the sequence. An example RGB image frame is shown in figure 4.17.

Figure 4.17: Sequence 20 Example image.

We evaluate tracking effectiveness over the entire 200 frame sequence. We estimate
the trajectory of the camera and the dynamic objects using the full system, with the
same parametrization as for the previous sequence. The velocity of the camera relative
to the world is smaller than in sequence 18, and hence we use every 25th frame as a
new keyframe.

The resulting trajectory estimates are plotted in figure 4.18. Additionally, we evaluate
the ATE against the ground-truth for each tracked object. These results are tabulated in
table 4.4.
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Figure 4.18: Tracks for dynamic objects, as well as the moving camera, for the highway
sequence, projected to the X-Y plane. Forward motion of the objects and
camera is in the positive X direction. Object tracks are labeled A-D, the
camera track is labeled CAM. Ground truth tracks are shown as dashed
lines.

Track Mean ATE (m)
Camera 1.173

A 0.533
B 0.709
C 0.497
D 0.505
E 1.711

Table 4.4: Sequence 18 tracks, mean ATE.

Tracking performance was broadly similar to that for sequence 18.
Each object with relative motion was successfully activated in the system, including

those which entered the scene at later frames (object E). Tracking loss occurred as objects
left the field of view due to camera motion or occlusion by other objects. Tracking loss
also occurred for objects as they became more distant, as in sequence 18.

We note that the ATE for the camera and for object E, which entered the field of
view later in the sequence, was generally worse than the camera and object tracking in
sequence 18. The poorer camera tracking is likely due to accumulated drift over the
much longer camera trajectory.

Because object E entered later in the sequence, the accumulated camera drift com-
pounds the existing tracking error.
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The system once again successfully tracked several dynamic objects. Additionally,
we demonstrated that it is possible to track only moving objects of a given class in the
dynamic scene, even though many other stationary objects of that class may be present.
Finally, we demonstrate that it is possible to track new objects that were not previously
in the camera’s field of view.
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5 Conclusion

In this thesis we have demonstrated the possibility of using direct photometric align-
ment to estimate the motion of dynamic objects, from both stationary and dynamic
cameras. Additionally, we have demonstrated the use of photometric residuals in
identifying dynamic objects within the scene, and the use of instance segmentation for
disambiguation. Finally, we have investigated the effectiveness of a joint segmentation-
motion estimation strategy, showing that it was of limited advantage over a robust
weighting scheme that reduced the influence of outliers, and did not significantly
improve initial instance segmentations.

A key finding of this thesis is the fundamental limitation of tracking objects through
direct photometric alignment when the relative rotation is large. We have presented
several possible explanations, including the possibility of a large induced transla-
tional component of the relative motion causing poor convergence. Though we have
speculated about the potential causes, the fundamental reason remains unknown. De-
termining the fundamental cause and mitigating it should be the focus of subsequent
research.

We have also identified several other possible directions for future work.

5.1 Future Work

We have identified several potential directions for future research, in the course of the
development and evaluation of the algorithm presented in this thesis. These include;

• The system as presented requires a reasonably good initial depth in order to
perform motion estimation. This is not generally available, particularly in outdoor
scenes. A future direction of work may incorporate depth estimation alongside
the motion estimation for dynamic objects. In practice, this would resemble
the application of a photometric SLAM to dynamic objects. The full-system
optimization approach as in [EKC18] is a useful starting point.
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• Though we mentioned it in section 3.2, we did not fully exploit the parallel
structure of the problem in this thesis to improve computational efficiency. While
implementations of direct photometric alignment have used vectorized instruc-
tions to compute the Hessian with an accumulator approach [ESC14] [EKC18],
these are limited to the width of admissible vectors and are CPU-bound. This
limits the number of points that can be processed in each frame, and hence the
available information that can be consumed. This introduces a trade-off between
accuracy and computational performance. Furthermore, in this thesis the motion
estimate for each active object is computed serially.

Recently GPUs have become very widely available, including in mobile and
low-power applications. A GPU-optimized implenetation could fully exploit the
parallelism inherent in each step of the algorithm, thus increasing throughput.
This would allow for the use of higher resolution imagery at faster framerates,
and a more dense set of points, thus mitigating the accuracy-performance tradeoff.
With careful implementation, it would also be possible to estimate the motion for
each object in parallel, resulting in significant performance gains.

• Improved tracking performance may be achieved through leveraging the semantic
information of each instance. In particular, the use of shape priors and motion
models for pose and trajectory optimization of dynamic objects as in [ESL17]
and [ESL16] as priors for direct photometric estimation is likely to yield accuracy
improvements for certain classes of interest, such as street vehicles.

• Imposing temporal consistency on the segmentation, for example through ex-
tending the CRF formulation to associate points over multiple frames, similar
to [SB15], may improve segmentation performance over time. The ambiguity
problem discussed in section 3.4 may be resolved through accumulating an ob-
ject segmentation over multiple frames, without the need for an initial instance
segmentation.

• The system as presented is a fully dense approach, using all available pixels in the
image. However, a sparse formulation similar to [EKC18] leveraging only points
with sufficient texture may lead to reduced computational requirements, as well
as reduced noise from regions of the image frame that carry little information.

• We use a first-order photometric residual throughout. However, the use of a
second-order residual which computes edge-wise photometric consistency (i.e.
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that pixels at image edges should remain at image edges in subsequent frames)
may also improve tracking, and aid in disambiguation.

A fundamental limitation to further research in the direction of dynamic photometric
odometry is the lack of suitable datasets. Both datasets used for evaluation in this thesis
had key limitations, missing ground truth data as in OMMD, or else limited realism
and variety of motions as in VKITTI. The further elaboration of a real-world dataset,
or an improved synthetic dataset, would allow for improved evaluations and a deeper
understanding of the algorithm’s limitations.

In conclusion, this thesis demonstrates the possibility of estimating the motions of
dynamic objects, as well as the motion of the camera, through photometric odometry.
We have identified identified key limitations that indicate the most important directions
for future work. Finally, we have demonstrated a proof of concept that successfully
identifies and tracks dyanamic objects in representative environments.
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