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Problem & Related Work
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Goal

• a direct SLAM system with global mapping and loop closure
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Direct Sparse Odometry (DSO) [1]

• direct VO
• advantages of direct approaches & sparse data

• uses a sliding window 
• marginalizes frames and points

• accumulated drift on long trajectories
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[1] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” PAMI, 2017.



Direct Sparse Odometry with Loop Closure (LDSO) [2]

• extends DSO to a VSLAM system with loop closure detection and pose 
graph optimization
• uses typical indirect SLAM system approaches
• detecting revisited scenes helps reduce drift

• reobservations are not used in sliding window optimization
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[2] X. Gao, R. Wang, N. Demmel, and D. Cremers, “Ldso: Direct sparse odometry with loop closure,” in IROS, 2018.



Direct Sparse Mapping (DSM) [3]

• direct VSLAM

• global map
• Local Map Covisibility Window (LMCW)
• A coarse-to-fine optimization scheme
• A robust influence function & outlier management using t-distribution
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[3] J. Zubizarreta, I. Aguinaga, and J. M. M. Montiel, “Direct sparse mapping,” IEEE Transactions on Robotics, 2020.



Direct Sparse Mapping (DSM) [3]

• only local PBA

• no explicit compensation of the drift for larger loops
• keyframe reuse is limited to local mapping and smaller loops

• lacks loop closure correction
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[3] J. Zubizarreta, I. Aguinaga, and J. M. M. Montiel, “Direct sparse mapping,” IEEE Transactions on Robotics, 2020.



Goal

• So far we have seen
• DSO:   a direct VO
• LDSO: a direct SLAM with loop closure
• DSM:  a direct SLAM with global mapping

• Propose a direct SLAM system with global mapping and loop closure
• extend DSM by introducing loop closure detection and pose graph 

optimization
• Similar to how LDSO extends DSO
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Proposed Method
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Loop Closure Detection

• Visual bag of words methods are commonly used for loop detection

• We will use DBoW3 [4]
• converts images into bag of words vectors
• implements a database enabling queries

• For this we need repeatable feature points

Local and Global Mapping for Direct SLAMErkam Uyanik 10

[4] R. Muñoz-Salinas, DBoW3, https://github.com/rmsalinas/DBoW3
[5] D. Gálvez-López and J. D. Tardos, “Bags of binary words for fast place recognition in image sequences,” IEEE 
Transactions on Robotics, 2012.

Source: [5]

https://github.com/rmsalinas/DBoW3


Feature Point Selection

• DSM uses image gradients to select points
• not usually repeatable, e.g. points from weeekly textured regions or edges

• We need to introduce repeatable feature points such as corners
• Select a small percentage of points in this way
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Feature Point Selection
• DSM uses a grid approach to select points

• points are homogeneously distributed

• Use the same grid approach to select feature points
• selected corners are still usable by DSM

• Do not select non-feature points for cells if they already contain any 
feature points

• Use FAST corner detector [6] and ORB descriptors [7]
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[6] E. Rosten and T. Drummond, “Machine learning for high-speed corner detection,” in ECCV, 2006
[7] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient alternative to sift or surf,” in ECCV, 2011
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Feature Point Selection



Loop Closure Detection

• Compute bag of words representation of currrent keyframe (𝐼!"#)
• query database for similar keyframes

• Filter active keyframes and covisible keyframes of 𝐼!"# from query 
results
• Select the candidate with the best score (𝐼$%&')
• Future work: Take all candidates whose score is above an adaptive threshold 

into consideration
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Relative Pose Estimation

• Find ORB matches using DBoW3
• match features that correspond to the same word of vocabulary tree
• approximate but faster than brute-force

• Estimate relative pose between 𝐼!"# and 𝐼$%&' using PnP RANSAC
• use active points and optimized candidate points as 3D points
• apply PnP RANSAC two way to get relative scale
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Relative Pose Optimization

• Find additional matches
• project points from 𝐼!"#$ to 𝐼%&'
• for each projected point, select best point among the nearby points of 𝐼%&'
• mainly rely on spatial information

• Use these additional matches to optimize relative pose
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Relative Pose Optimization

• 𝐸())* = ∑+!∈-( 𝑝. − 𝑆!$ ∗ 𝑞. / + Π(𝑝.) − Π 𝑆!$ ∗ 𝑞. /)

• 𝑆%!: Sim(3) transformation from 𝐼!"#$ to 𝐼%&'
• 𝑄 = {𝑞(}: matched 3D points from 𝐼!"#$
• 𝑃 = {𝑝(}: matched 3D points from 𝐼%&'
• Π(⋅): projection function, | ⋅ |): Huber norm

• Use Ceres [8] for optimization
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[8] S. Agarwal, K. Mierle, and others, Ceres solver, http://ceres-solver.org

http://ceres-solver.org/


Relative Pose Optimization

• Solve the problem again with only using inliers
• get inliers using fixed thresholds for residuals

• Check mean residual to determine whether we have a good case for 
loop closure
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Pose Graph Optimization (PGO)

• We run PGO with all keyframes

• Each relative pose from verified loop closures and covisibility graph 
adds a constraint

• 𝐸*0) = ∑.,2 log3.4 5 (𝑆.2 ∗ 𝑆6278 ∗ 𝑆6.)
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• 𝑆!": Sim(3) pose of 𝐼"
• 𝑆"#: Sim(3) relative pose from 𝐼# to  𝐼"
• log$"% & : maps to tangent space, ℝ'



Pose Graph Optimization (PGO)

• We run PGO after each new verified loop closure

• After PGO, we update frame poses and rescale depths of their points
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Results
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• We compare
• DSM
• DSM-corner: an extension of DSM with new point selection approach
• DSM-loop: our proposed method

• EuRoC MAV dataset [9]

• 11 sequences in 3 indoor environments
• 220 runs for each method
• 5 x {forwards, backwards} x {left, right}
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[9] M. Burri, et al., “The euroc micro aerial vehicle datasets”, The International Journal of Robotics Research, 2016.



• Modified point selection procedure 
does not deteriorate the 
performance

• DSM-loop performs 3.2% better

• Performance heavily depends on 
number of detected loops
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• We find >1 loops on
• MH_01
• V1_01
• V2_01
• V2_02

• For these sequences, DSM-loop 
achieves 8.86% better ATE than 
DSM
• 0.0545 vs 0.0598
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DSM-loop

DSM
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(3 loops)

M. Grupp, “evo: Python package for the evaluation of odometry and slam” https://github.com/MichaelGrupp/evo, 2017.

https://github.com/MichaelGrupp/evo


Conclusion
• We proposed a direct SLAM system with global mapping and loop closure 

by extending DSM

• Increased point repeatability while retaining robustness

• Slight performance improvement with loop closure correction
• 3.2% improvement overall
• 8.86% improvement for sequences with detected loops
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Future Work
• Fine tune parameters in loop detection and verification part

• Merge map points and keyframes after loop closure corrections

• Sparsify the map by continuously merging and removing redundant 
keyframes and points

• Test method on other datasets
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Thank you for listening!
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