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Abstract

In this master’s thesis, we propose Direct Sparse Mapping with Loop Closure (LDSM),
a direct SLAM system with global mapping, loop closure detection, and global pose
graph optimization as an extension of Direct Sparse Mapping (DSM) [1] by introducing
loop closure detection and pose graph optimization.

The point selection procedure is modified to introduce repeatable feature points. Loop
closures are detected with a feature-based bag of words (BoW) technique. We verify
detected loop closures and estimate relative pose constraints by minimizing geometric
errors. A global pose graph with relative pose constraints from loop closures and
covisibility graph is optimized. The global map is then updated based on optimization
results, enabling local tracking and mapping in the active window to utilize global
corrections. An appearance-based verification step is added to the covisible window
selection criteria to ensure reliability of covisibility graph in non-convex environments.
We limit the search range of covisible window selection strategy to partly remedy the
inefficiency of unbounded nature of the global map in long trajectories.

In our evaluations on public datasets, we demonstrate that the modified point selection
strategy preserves the accuracy and pose graph optimization improves the performance
significantly by reducing accumulated drifts in trajectories with large loops. LDSM
achieves accurate results comparable to the state-of-the-art direct and indirect monocular
methods.
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1 Introduction

Localization of an agent given sensor inputs has been an important problem for computer
vision and robotics applications such as autonomous driving and augmented reality
with proposed solutions for visual odometry (VO) and simultaneous localization and
mapping (SLAM) [2]. We are particularly interested in the monocular visual problem
where only a single gray-scale camera data is available. While visual odometry systems
estimate the trajectory, SLAM systems do this localization simultaneously with the
construction of a map for the environment. Methods can be categorized as direct and
indirect based on whether they use raw sensor measurements or not. Indirect methods
create an intermediate representation for images to optimize a geometric error where
usually correspondences of distinctive feature points are utilized. Direct methods, on
the other hand, use raw pixel values and optimize a photometric error. While indirect
methods have been more popular in the past owing to their speed and robustness to
distortions, they suffer in scenes without rich texture and enough distinctive points.
Direct methods do not depend on characteristic features and they are more robust in
such scenes. Direct methods have gained popularity recently partly because of increased
computational power and better visual sensors which provide well calibrated data with
less geometric distortion. Direct methods model the sensor and the distortions that
keypoints are robust against can be useful and provide more information if they can be
modeled. Not losing information due to a feature extraction step also provides room for
direct methods to utilize underlying information better.

Direct Sparse Odometry (DSO) [3] is a direct visual odometry system that jointly
optimizes motion and structure using photometric bundle adjustment (PBA). DSO
combines advantages of direct approaches with sparse data. By preferring to use sparse
data, DSO eliminates the computational infeasibility that would be introduced by a
geometry prior in a dense approach. It also benefits from a more precise sensor model
with photometric calibration. DSO was one of the early direct applications that showed
direct methods can be used in real-time. As a visual odometry method, DSO only
predicts the trajectory incrementally in a sliding window. By marginalizing frames
and points that leave the local window, it forgets previously visited areas and cannot
use the rich information from revisited scenes. This results in accumulated drift in
global translation, rotation, and scale which prevents successful applications to long
trajectories.

Detecting revisited scenes and updating the trajectory to better reflect correspondences
between frames help reduce accumulated drift in visual odometry systems. Direct
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1 Introduction

Sparse Odometry with Loop Closure (LDSO) [4] extends DSO to a visual SLAM system
with loop closure detection and pose graph optimization as a correction technique.
While preserving robustness of DSO, LDSO achieves better performance by significantly
reducing accumulated drift. This is partly achieved by increasing repeatability of map
points and computing distinctive descriptors for a small subset of map points. Loop
closure detection and verification, relative pose computation, as well as pose graph
optimization steps in LDSO are similar to a typical indirect SLAM system such as
ORB-SLAM [5].

Although LDSO detects and corrects loop closures, existing map points are not reused
to reflect reobservations and thus reobservations are ignored in the sliding window
optimization. Instead of using a temporary map and marginalizing old keyframes,
retaining keyframes and maintaining a global map allows to detect reobservations and
also to reuse existing map points, and thus prevents duplication of points. Direct Sparse
Mapping (DSM) [1] is a visual SLAM system with a persistent map based on photometric
bundle adjustment. DSM proposes a local map covisibility window (LMCW) criteria to
select active keyframes from both temporally close frames and frames that are covisible
with the temporal keyframes. While DSM uses the main ideas of indirect visual SLAM
techniques, it lacks loop closure correction. Despite having a global map, DSM still
suffers from drifts due to larger loops and reuse of keyframes and map points is limited
to local mapping and smaller loops.

1.1 Contribution

DSO provides a good foundation for direct, sparse systems. LDSO extends DSO with
loop closure detection and pose graph optimization but still lacks a global map. DSM
proposes a direct visual SLAM system with a global map but it is prone to accumulated
drifts in long trajectories without loop closure correction. Combining the main ideas
of these previous methods, we propose a direct SLAM system called Direct Sparse
Mapping with Loop Closure (LDSM) with global mapping, loop closure detection, and
global pose graph optimization, which is an extension of DSM.

We introduce repeatable keypoints to the existing point selection mechanism and use a
feature based bag of words (BoW) approach for visual place recognition. For detected
loop closure pairs, we estimate a relative pose in Sim(3) using 3D geometry information.
This step also acts as a loop closure verification step. We apply pose graph optimization
with constraints from verified loop closures and covisibility graph connections. We
update the global map based on PGO results, so that local mapping also uses the
optimized global state.

Our contributions are as follows:

• We propose LDSM, a direct SLAM system with global mapping, loop closure
detection, and pose graph optimization by extending DSM with
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1.2 Outline

– loop closure detection based on a feature-based BoW approach

– relative pose estimation in Sim(3) using 3D geometry information

– pose graph optimization with relative pose constraints from loop closures
and covisibility graph

– merging optimized global poses to covisibility graph

• We modify

– point selection strategy of DSM to include repeatable feature points

– geometry based covisible window selection strategy of DSM with addition of
an appearance based verification step to prevent false covisibility connections
especially for non-convex environments

– the search range of covisible window selection strategy of DSM to reduce
candidate keyframes from all inactive keyframes to the inactive neighborhood
of active temporal keyframes

• We build visual debugging tools for

– detected loop closures with aligned point clouds based on estimated relative
poses or relative poses from local mapping (see Fig. 5.2)

– pose graph optimization problem, with options to show graph before and/or
after the optimization with frame connections from and/or ideal positions of
the graph constraints (see Fig. 5.4)

• On commonly used datasets, we show that modified point selection strategy does
not deteriorate the performance and loop closure correction significantly decreases
scale drift for long trajectories with large loops.

1.2 Outline

We first provide preliminary concepts which will be relevant for the remainder in
Chapter 2. These include 3D transformations and Lie groups, feature points, visual
place recognition, and pose graph optimization. We also define our notations. Next,
we introduce state-of-the-art for direct and indirect monocular VO/SLAM systems in
Chapter 3. Chapter 4 details Direct Sparse Mapping method, including its local window
selection strategy, as our work is directly related to it. Then, we explain our proposed
method LDSM in Chapter 5. We detail modified point selection strategy, loop closure
detection and correction steps, changes to LMCW, and pose graph optimization. We
share results in Chapter 6. We conclude the thesis in Chapter 7 and discuss possible
future work.
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2 Preliminaries

2.1 Notation

Light lower-case letters s represent scalars. Light upper-case letters I represent functions.
Bold lower-case letters v represent vectors and bold upper-case letters J represent
matrices.

Camera poses are represented as transformation matrices Ti ∈ SE(3) from the camera
coordinate system to the world coordinate system. We denote poses with letter T ∈ SE(3)
or letter S ∈ Sim(3). The transformation from camera i to camera j is denoted by
Tji = T−1

j Ti or Sji = S−1
j Si.

Π(p) : R3 → R2 denotes projection function of a 3D point p to image plane and
Π−1(p, dp) : R2 ×R → R3 denotes unprojection function of a 2D point p given its
inverse depth dp.

The set of all keyframes is denoted by K. The set of active keyframes is denoted by Ka,
the set of keyframes in the temporal window is denoted by Kt while the set of keyframes
in the covisible window is denoted by Kc.

Points in a frame i are denoted by ipk in general where index k is optionally used to
denote multiple points in frame i. Optimized candidates points are denoted by ip̂k and
active points are denoted by ip̃k when we need to differentiate between different types
of points. Points with estimated depth are denoted with ip∗k . Pi is used to denote all
active points of a keyframe Ii.

2.2 3D Geometry

2.2.1 SE(3): Rigid Body Transformations

A rigid body motion preserves the distance and orientation between any two points
on a rigid body and it can be described with a rotation and then a translation on any
point of the rigid body. Translation can be represented with a vector t ∈ R3. We define
rotation R as an element of special orthogonal group SO(3):

SO(3) = {R ∈ R3×3|RRT = I, det(R) = 1} (2.1)

5



2 Preliminaries

A rigid body motion T can be represented as an element of special Euclidean group
SE(3):

SE(3) = {T =

[
R t
0T 1

]
∈ R4×4|R ∈ SO(3), t ∈ R3} (2.2)

T ∈ SE(3) has 6 degrees of freedom, 3 for rotation and 3 for translation.

The inverse of T ∈ SE(3) has the form

T−1 =

[
RT −RTt
0T 1

]
(2.3)

We can formulate the rigid body transformation for a point p ∈ R3 as

p′ = Rp + t (2.4)

Alternatively, we can use homogeneous coordinates to represent this transformation
linearly as

[
p′

1

]
= T

[
p
1

]
(2.5)

2.2.2 Sim(3): Similarity Transformations

Similarity transformations S ∈ Sim(3) are the combination of rigid body transformations
SE(3) with a scaling factor s:

Sim(3) = {S =

[
sR t
0T 1

]
∈ R4×4|R ∈ SO(3), t ∈ R3, s ∈ R>0} (2.6)

The inverse of S ∈ Sim(3) has the form

S−1 =

[
s−1RT −s−1RTt

0T 1

]
(2.7)

2.2.3 Lie Algebra

SO(3), SE(3), and Sim(3) are Lie groups which form differentiable manifolds. These
manifolds have corresponding tangent spaces, called Lie algebras, derived by differenti-
ating manifolds at the identity. This relation between Lie groups G and corresponding
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2.3 Feature Points

Lie algebras g is useful to perform some operations in tangent space. Especially, Lie
algebra is used to define derivatives in Lie groups which requires a plus operator.

There are mappings expG : g → G and logG : G → g. There are closed forms of
all expSO(3), expSE(3), and expSim(3). Refer to [6] for more detail with mathematical
definitions.

2.3 Feature Points

Features, keypoints, or interest points, are "interesting" points in images such as corners.
A corner can be defined with the property of having a neighborhood with multiple
dominant directions in image gradient. Indirect methods usually use feature points as
an intermediate representation for images. Feature points should be local, invariant to
geometric and photometric changes, distinctive, and robust to noise. We want repeatable
feature points, that is we want to detect mostly the same set of points for a scene in
different images.

There are many feature detectors with various mechanisms, such as FAST [7] or Shi-
Tomasi [8].

FAST is a computationally efficient corner detection algorithm which only checks pixels
on a circle of radius r around a candidate point. If there are n contiguous pixels that
are all brighter or all darker than the candidate point by at least t, it is selected as a
corner. Unlike other detectors, FAST features do not have orientation information. FAST
features are also not scale invariant. Shi-Tomasi is also a simple and fast extraction
method.

Feature descriptors distinctively describe the region around a feature point. Descriptors
are needed to compare extracted features. Ideally, descriptors should be invariant to
scale, rotation, viewpoint, and illumination changes.

BRIEF [9] is a binary descriptor with simple intensity difference tests. It initially smooths
the image using a Gaussian kernel. For a number of randomly selected pairs of pixels
from the neighborhood of the feature point, pixel intensities are compared to create the
binary descriptor. It is very easy to compare binary descriptors with hamming distance,
i.e. the number of different bits, rather than using Euclidean distance. BRIEF has a
big advantage in terms of speed both for descriptor computation and for matching
compared to other descriptors such as SIFT [10] and SURF [11]. It also gives similar or
better recognition performance compared to other methods unless invariance to large
rotations is required. BRIEF is not designed to be rotation invariant. It only tolerates
small amounts of rotation.

Oriented FAST and rotated BRIEF (ORB) [12] is a rotation invariant binary descriptor
based on FAST detector and BRIEF descriptor. ORB computes FAST features using
image pyramids to have scale invariance. ORB computes feature orientations using
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2 Preliminaries

intensity centroids. ORB introduces a rotation-aware version of BRIEF. ORB provides
a really fast alternative to popular descriptors SIFT and SURF. The feature detector in
ORB can be replaced with another fast detector such as Shi-Tomasi if wanted.

2.4 Visual Place Recognition

Recognizing a previously visited place is important to correct trajectories and reduce
accumulated drift. Using appearance-based approaches is one way of place recognition
[13]. For this, local feature descriptors can be used. Bag of words (BoW) based techniques
such as [14] provide an efficient way to compare images using their feature descriptors.
This is done by discretizing descriptor space and using data structures such as a
hierarchical vocabulary tree for more efficient searches. BoW based techniques are
commonly used for loop detection ([15] [5] [4]).

DBoW3 [16] is an open source library which converts a set of feature descriptors for a
given image into a bag of words vector and implements a database which can be queried
to get similar images for a given image representation. This is performed efficiently
using the inverse index of a given word. Inverse indices keep record of keyframes in
which words are seen. See Fig. 2.1 for a visualization of a vocabulary tree and direct
and inverse indices that compose the database.

Figure 2.1: An example vocabulary tree and direct and inverse indices that compose the
database. (Source [14])

A loop closure validation step usually follows loop closure detection, which applies
geometric verification steps. A relative pose is also computed for the detected loop
closure pair to utilize loop closure information in an optimization step such as pose
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2.5 Nonlinear Least Squares Optimization

graph optimization (see Section 2.6).

2.5 Nonlinear Least Squares Optimization

Least squares method is used to approximate the solution of overdetermined systems where
there are more observations than unknown parameters:

arg min
x∈Rn

n

∑
i=1
‖yi − Fi(x)‖2 (2.8)

where F(x) : Rn → Rk is the underlying model, y ∈ Rk×m is the vector of m observations,
x ∈ Rn is the vector of model parameters, and m ≥ n.

A minimum is reached when the gradient is zero. The problem has a closed form
solution for linear models, but we are interested in more complex, nonlinear models.
Solutions to nonlinear least squares problems use iterative approaches starting from an
initial guess state x0, where parameters are updated in each iteration with an update ∆x
as

xk+1 = xk + ∆x (2.9)

Gradient descent is a first-order method which iterates in the opposite direction of gradient
with

∆x = −γ∇F(xk) (2.10)

Optimization heavily depends on selection of step size γ.

Gauss-Newton is a second-order method where the second-order derivatives of the
optimized cost are approximated using first-order derivatives of the measurement
function F, with the update

∆x = −(JTJ)−1JT∆y (2.11)

where ∆yi = yi − F(xk).

Levenberg-Marquardt combines gradient descent and Gauss-Newton methods with a
damping parameter λ with the update

∆x = −(JTJ + λI)−1JT∆y (2.12)

9



2 Preliminaries

2.6 Pose Graph Optimization

We will use pose graph optimization (PGO) to correct detected loop closures using
computed relative poses from both loop closure pairs and from local odometry.

Pose graph optimization is a problem of optimizing camera poses Si ∈ Sim(3) with
relative pose constraints Sij ∈ Sim(3). Camera poses form nodes while relative poses
form graph edges.

This problem can be formulated with residuals

logSim(3)(Sij ∗ S−1
j ∗ Si) (2.13)

for each relative pose constraint Sij where camera poses Si and Sj are optimized and
logSim(3) maps value from Sim(3) to R7.

This is a nonlinear optimization problem commonly solved using iterative optimization
techniques such as Gauss-Newton or Levenberg-Marquardt. Although we use Ceres
[17] to solve this graph optimization problem, the paper of g2o library [18] is a good
reference about general graph optimization problem with details such as use of graph
sparsity.

The system is under-determined, i.e. the total error is invariant to any Sim(3) transfor-
mation that is applied to all poses. To solve this, one or more nodes should be fixed
during the optimization. In our method, we fix the pose of the first camera during
PGO.

2.6.1 Effect of Scale Changes to Relative Poses

When we run pose graph optimization, camera poses {Si} are optimized and this
includes their scales {si} as well. Since we keep the camera poses in the global map in
SE(3) as {Ti}, after PGO we need to convert the optimized Sim(3) poses back to SE(3)
and reflect scale changes to other data, namely the points {ipk} and also the relative
pose measurements {Sij}.

Ideally, the changes due to scales should not change the PGO problem since we only
move scale information from camera poses to points and relative pose constraints. For
this, we check how we can keep the PGO residual the same after the changes.

We have the original measurements {Sij}, optimized Sim(3) poses {Si}, and final
residuals after PGO in Eq. 2.14. We use hat notation ·̂ for the variables after scale

10



2.6 Pose Graph Optimization

normalization.

Sij ∗ S−1
j ∗ Si =

[
sijRij tij

0T 1

] [
s−1

j RT
j −s−1

j RT
j tj

0T 1

] [
siRi ti
0T 1

]

=

[
sij

si
sj

RijRT
j Ri

sij
sj

RijRT
j (ti − tj) + tij

0T 1

]
!≈
[

ŝij
ŝi
ŝj

R̂ijR̂T
j R̂i

ŝij
ŝj

R̂ijR̂T
j (t̂i − t̂j) + t̂ij

0T 1

]

=

[
ŝijR̂ijRT

j Ri ŝijR̂ijRT
j (ti − tj) + t̂ij

0T 1

]
(2.14)

After scale normalizations, we have ŝi = ŝj = 1 since for next PGO camera poses {Ti}
are converted to Sim(3) poses Si with scale si = 1. Other components of camera poses
Si do not change due to scale normalization. Relative rotation measurements R̂ij are
also not affected by scale changes.

ŝijR̂ij
!≈ sij

si

sj
Rij

R̂ij = Rij

ŝij ← sij
si

sj

(2.15)

ŝijR̂ijRT
j (ti − tj) + t̂ij = sij

si

sj
RijRT

j (ti − tj) + t̂ij

= si

(
sij

sj
RijRT

j (ti − tj

)
+

t̂ij

si
)

!≈
sij

sj
RijRT

j (ti − tj) + tij

t̂ij ← tijsi

(2.16)

We derive ŝij using first component of the residual in 2.15. We cannot remove si, sj terms
completely from the translation part of the residual, since ŝij is already derived and
value of t̂ij cannot remove sj from the term. Although we cannot keep the translation of
the residual the same, with t̂ij we derive in Eq. 2.16, we rescale the translation term of
the residual with a scale factor of si after normalization. This way, residuals point in
the same direction as before. This is an intuitive result. During PGO, the optimization
changes the scale of frame i from the initialization value of 1 to si. Assume si > 1 w.l.o.g.

11



2 Preliminaries

This means that the PGO optimization "realizes" that the current scale of local frame i is
shorter than the world frame scale. Since the relative pose constraint Sij is expressed in
that local frame i, when we normalize the scale of frame i back to 1, we need to also
scale up the relative translation tij by factor si. When we computed the relative pose
constraints Sij, we did not know that the frame’s scale was off compared to the world
frame scale, so we computed the translation in the "wrong" scale. Now after PGO, where
we have figured out the right scale compared to the other frames, we can correct the
translational part of the relative poses tij and thus also properly scale the residual to
be in the same scale as the other frames. So, we can argue that this is a better outcome
than keeping the translational part of the residual the same.

12



3 Related Work

3.1 Indirect Approaches

For the SLAM problem, many feature-based indirect systems have been proposed such
as monoSLAM [19], PTAM [20], and more recently ORB-SLAM [5]. While initially filter
based solutions were preferred, keyframe based solutions are demonstrated to be more
accurate than filtering [21]. We focus on ORB-SLAM as it includes good parts from
previous literature.

3.1.1 ORB-SLAM

ORB-SLAM is a sparse, indirect SLAM system with local bundle adjustment, loop
closure detection with bag of words, global pose graph optimization, and global bundle
adjustment. An overview of the system is shown in Fig. 3.1a. Same features are used
for all tasks; tracking, mapping, relocalization, and loop closure. It focuses on map
maintenance with a strategy where it quickly grows the global map during exploration
but also aggressively removes redundant keyframes and map points. It also suggests an
automatic map initialization strategy which was missing in PTAM, based on a heuristic
selection between a fundamental matrix for non-planar scenes and a homography for
planar scenes.

ORB-SLAM builds a covisibility graph. A local covisible area is used for tracking
and mapping. The pose graph, named essential graph, contains a spanning tree, loop
closure connections, and strong edges from covisibility graph. Spanning tree is built by
connecting each new keyframe to the keyframe with most number of covisible points.
See Fig. 3.1b for examples of covisibility graph, spanning tree, and essential graph.
Essential graph is optimized to correct loop closures. An additional global bundle
adjustment is also applied after pose graph optimization.

3.2 Direct Approaches

With direct methods, actual sensor measurements are used. This way, the sensor can be
modeled better where factors such as exposure time can be used as model parameters
instead of being unknown noise sources.

For direct methods, initially dense or semi-dense approaches are preferred.
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(a) (b)

Figure 3.1: a) Overview of ORB-SLAM b) An example for reconstruction and graphs
([5], Fig. 1, 2)

Dense methods use all points in frames and they use the neighborhood information with
a geometry prior which usually assumes neighborhoods are smooth. Sparse methods
use only a set of independent points without any geometry prior.

DTAM [22] and LSD-SLAM [23] are some examples for direct, dense/semi-dense systems.
The disadvantage of dense approaches is the infeasibility of the joint optimization of
poses and geometry, due to the geometry prior they use with correlations between
parameters.

3.2.1 Direct Sparse Odometry

Later, Direct Sparse Odometry (DSO) [3] is proposed as a direct, sparse visual odometry
system where a photometric error is optimized without any geometry prior. DSO does
point selection based on intensity gradients with a dynamic grid search. This way,
edges or sparsely textured regions can be sampled as well in contrast to feature-based
approaches.

DSO uses a photometric camera calibration model which includes lens attenuation,
gamma correction, and known exposure times.

For a point p hosted in keyframe Ii, the photometric cost of the observation of p in
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keyframe Ij is

jEp = ∑
uk∈Np

wk‖(Ii[uk]− bi)−
tieai

tjeaj
(Ij[u′k]− bj)‖γ (3.1)

where Np is the set of pixels over a small patch around p; u′k is the projection of uk to Ij;
ti, tj are exposure times of Ii, Ij; ai, bi, aj, bj are affine brightness parameters for Ii and Ij;
‖ · ‖γ is the Huber norm; and wk =

c2

c2+‖∇I‖2
2

is a gradient dependent weight reducing
effect of high gradient pixels.

Affine brightness transfer model e−ai(Ii − bi) is used for sequences without known
exposure times.

Photometric cost function 3.1 depends on geometric and photometric parameters.

DSO jointly optimizes all model parameters including camera poses, camera intrinsics,
and geometry parameters. Affine brightness parameters are also optimized. It employs
a sliding window approach where old camera poses and points are marginalized.

Although DSO is an important work since it was the first direct sparse approach with a
non-linear optimization framework, DSO is a visual odometry system and cannot reuse
the rich information from the revisited parts of the environment.

3.2.2 Direct Sparse Odometry with Loop Closure

Direct Sparse Odometry with Loop Closure (LDSO) [4] extends DSO to a visual SLAM
system with a loop closure detection and correction module similar to ORB-SLAM.

LDSO modifies the point selection strategy of DSO to select some of the points as
repeatable feature points using Shi-Tomasi algorithm [8] and computes their ORB
descriptors [12]. All selected points are still used for visual odometry. Having these
feature points, LDSO uses common practices from indirect approaches. Loop closures are
detected with a feature-based bag of words approach. For each loop closure candidate
Ij for the current keyframe Ii, an SE(3) relative pose Tij is estimated by solving the PnP
problem using 3D-2D feature point matches. Then, a Sim(3) relative pose Sij is optimized
using Gauss-Newton method with 3D and 2D geometric constraints, initialized from
the estimated relative pose Tij with relative scale sij being 1.

A depth map Di is created for the current keyframe Ii by projecting active map points to
Ii. Using this depth map, depth values can be estimated for some feature points. Let
P = {jpk} and Q = {ipk} be the sets of matched feature points for Ij and Ii respectively
with matching indices. Let Q1 ⊆ Q be the set of points without an estimated depth and
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Q2 = Q \Q1. The cost function for the optimization of relative pose Sij is

Eloop = ∑
ipk∈Q1

w1‖SijΠ−1(jpk, djpk
)−Π−1(ipk, dipk

)‖2+

∑
ipk∈Q2

w2‖Π(SijΠ−1(jpk, djpk
))− ipk‖2

(3.2)

where w1 and w2 are weights for balancing the 3D error and the 2D reprojection error.
By optimizing Sij, relative scale sij is also estimated.

Relative pose estimation step also acts as a loop closure verification step with multiple
thresholds.

LDSO creates a covisibility graph from the sliding window optimization. It combines
relative poses from the covisibility graph with the estimated relative poses for loop
closures and uses these as constraints for pose graph optimization.

LDSO uses DSO as its SLAM frontend where odometry is estimated and applies loop
closure detection and pose graph optimization in the backend.

With loop closure correction, LDSO recovers accumulated drift in the unobservable
degrees of freedom, i.e. global translation, rotation, and scale in the monocular case.
Although LDSO uses detected loop closures for pose graph optimization, reobservations
cannot be utilized in local photometric bundle adjustment due to the absence of a global
map.

3.2.3 Direct Sparse Mapping

Direct Sparse Mapping (DSM) [1] is a visual SLAM system with a persistent map based
on local photometric bundle adjustment (PBA). Having a global map enables DSM to
detect and utilize reobservations. It proposes a local window selection strategy which
uses both temporally close keyframes and covisible keyframes. DSM uses a coarse-
to-fine optimization scheme and employs a robust influence function to decrease the
effect of outliers in the optimization based on T distribution. We give details of DSM in
Chapter 4.
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Direct Sparse Mapping (DSM) [1] is a visual SLAM system with a persistent map based
on local photometric bundle adjustment (PBA). The persistent map enables retention of
all keyframes and reuse of information in PBA.

DSM consists of a tracking frontend and an optimization backend. The tracking frontend
tracks frames and points and also handles coarse initialization for the optimization.
The optimization backend determines which keyframes should be included in the local
window and jointly optimizes all active keyframes and map point parameters.

There are two threads for tracking and mapping. The tracking thread obtains a camera
pose for each frame and decides when to add a new keyframe. The mapping thread
processes new frames to track points from active keyframes and handles new keyframe
creation by recalculating the local window, activating new points, and invoking PBA.
The mapping thread also maintains the map locally consistent by removing outliers,
detecting occlusions, and avoiding duplicating points. DSM uses the pinhole camera
model. All images are first undistorted.

4.1 Local Map Covisibility Window

DSM uses a local map covisibility window (LMCW) to select active keyframes Ka which
is a combination of temporal and covisibility criteria with respect to the latest keyframe.
Figure 4.1 depicts LMCW.

The temporal window Kt is selected in a similar approach as in DSO where the most
recent keyframes are chosen. Each new keyframe I0 is added to the temporal window
and another keyframe is removed. The two most recent keyframes I1, I2 are always
preserved for the odometry accuracy. The removed keyframe is selected from the rest,
based on a criterion which favors observations that render high parallax. This results
with a temporal window with keyframes that are evenly distributed in space. This
part is crucial during exploration as new points are initialized and it helps to maintain
odometry accuracy.

In the covisible window Kc, keyframes that are covisible with those in the temporal part
are selected. Keyframes with active map points that project into depleted areas (with
respect to active map) in the latest keyframe I0 are favored to get a more representative
active map. This helps to avoid getting duplicate points when selecting new active
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Figure 4.1: A LMCW example with 4 temporal keyframes (blue), 3 covisible keyframes
(orange), and the latest keyframe I0 (red). Kc = Nc and Kt = Nt for this
figure. (Source [1])

points for the latest keyframe I0. While this works to avoid duplicate active points
in the active window Ka, it does not prevent duplicate map points in the global map
K. Covisible window selection strategy needs to process all inactive keyframes which
can take substantially longer with increasing number of keyframes, especially for long
trajectories.

By using covisible keyframes, the system benefits from scene reobservations, decreasing
motion drift and structural inconsistencies. Since there is no explicit compensation of
the drift for larger loops, keyframe reuse is effectively limited to local mapping and
smaller loops.

LMCW does not take photo-consistency into consideration, it only considers geometry.
As a result, keyframes with camera poses that point to the same part of the map can
be labeled as covisible even if they do not actually observe the same scene, e.g. due to
occlusion. This is an important issue for non-convex environments such as in the Kitti
dataset [24]. We address this issue in Section 5.6.

4.2 Point Visibilities

Point visibilities on the latest keyframe are computed for the active points of all
keyframes K when selecting temporal and covisible windows. When the active points
are selected for the new keyframe from the candidate points, visibility information of
the active points is set for all active keyframes. Point visibilities are also updated in local
BA, e.g. when observations are removed as outliers.
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4.3 Covisibility Graph

DSM builds a covisibility graph by updating keyframe connections for active keyframes
after every local BA. Covisibility connections are based on the total number of points
from the keyframe pairs that are visible on the other frame. Point visibility information
is not computed here, previously computed information is used.

Interestingly, this covisibility graph structure is not used anywhere in the code. We
modify and utilize the covisibility graph in our work.

4.4 Photometric Bundle Adjustment

DSM uses the photometric cost function proposed by DSO (Eq. 3.1) with some modifica-
tion.

For a point p hosted in keyframe Ii, the cost of the observation of p in keyframe Ij
is

jEp = ∑
uk∈Np

wrk wgk

(
(Ii[uk]− bi)−

eai

eaj
(Ij[u′k]− bj)

)2

(4.1)

where Np is the set of pixels over a small patch around p, u′k is the projection of uk in
Ij, ai, bi, aj, bj are affine brightness functions for Ii and Ij, wrk is the robust influence
function, and wgk = c2

c2+‖∇I‖2
2

is a gradient dependent weight reducing effect of high
gradient pixels.

Affine transfer model is used to handle camera automatic gain control and changes in
scene illumination.

Using widely separated covisible keyframes can cause spurious observations resulting in
occlusions and reflections which violate the photo-consistency assumption. The robust
influence function wrk is used to handle this. It is based on photometric error distribu-
tions which are computed for each keyframe using all observations. T distribution is
used as it is observed to explain sparse photometric error well.

Photometric cost function is used for geometry initialization, PBA, and map reuse.

The total error for LMCW is

E = ∑
Ii∈Ka

∑
p∈Pi

∑
j∈obs(p)

jEp (4.2)

where Ka is the set of active keyframes, Pi is the set of map points of Ii, obs(p) is the set
of observations for point p.
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Optimization is affected by estimation drift as a result of covisible keyframes which are
temporally distant. To compensate for this drift, a multi-scale, coarse-to-fine scheme is
employed to increase photometric convergence radius. Estimated geometry from each
level is used as an initialization for the next level.

Eq. 4.2 is minimized after each new keyframe using iteratively reweighted Levenberg-
Marquardt algorithm.

4.5 Map Points

In DSM, points are hosted in keyframes, represented with an inverse depth. New points
are first initialized, then become ready for activation when their depth has been refined,
and finally are activated to be optimized in the local PBA.

When a frame becomes a keyframe, candidate points are extracted for this frame. Image
gradients are used to select salient points with an adaptive gradient threshold. DSM
uses a dynamic grid approach for point selection. A frame is first divided into cells,
then for each cell it tries to select the best point. Depending on the number of selected
points compared to the desired number of points np, the window size w for the grid is
heuristically adjusted, i.e. if we get more points than np the window size w is increased
and vice versa.

With each new keyframe Ii, candidate points p of the active keyframes Ka are tracked
to this new keyframe Ii to initialize or refine their depth estimates. Then, "good
candidates" (which are initialized successfully, can be projected into the last keyframe,
etc.) of the temporal keyframes Kt are refined further based on all active keyframes
Ka. When a candidate point is initialized, it has an initial depth estimate, but this
depth estimate only becomes reliable after it is successfully refined. Note that neither
can every candidate point be initialized successfully nor every initialized candidate
point be refined successfully. After candidate points are refined, eligible optimized
candidate points p̂ of the temporal keyframes Kt are activated. When a candidate point
becomes active, its depth is not updated again with this procedure. So, after a candidate
point is optimized, there is no difference between whether it is a candidate point or an
active point in terms of depth (before local bundle adjustments). If an active point later
becomes an outlier, it is deleted.
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Closure

In our work, we use DSM method and its open source code 1 as a baseline and extend
it to have loop closure detection and pose graph optimization. Before going into the
details of each subsystem in the next sections, we present a high-level overview of the
entire system.

We use a feature based bag of words approach to detect loop closure candidates, and
for this we need distinctive feature points. We modify the point selection procedure of
DSM to ensure that a fraction of all selected points are corners. We also compute ORB
descriptors of detected corners.

We convert the corner descriptors of each keyframe to a bag of words representation to
build a database of the past keyframes. To select possible loop closure candidates for
the latest keyframe Ir, we query the frame database for similar frames. After filtering
the results, we use the resulting frames as loop closure candidates for the frame Ir. For a
loop closure candidate Ic, we estimate an initial relative pose Src between the candidate
frame Ic and the reference frame Ir by solving the PnP problem. Then, we optimize this
relative pose Src and use it as a constraint in pose graph optimizations.

To correct the global map using the detected loop closures, we run pose graph opti-
mizations where we use relative poses {Sij} between frames based on the detected loop
closures and the covisibility graph as constraints and we optimize the keyframe poses
{Si}.

Differently from previous methods such as LDSO which applies pose graph optimiza-
tion as a post processing step, we use pose graph optimization results in tracking
and mapping. We update keyframe poses {Ti}, map points {ip̃k}, and relative pose
measurements {Sij} based on the optimization results.

We make modifications to the covisible window selection procedure. Only geometry
is considered for covisible window selection in the original approach. We add an
appearance-based verification step to prevent false covisibility connections especially
for non-convex environments where a geometry-based control is not enough to verify
visibility. Covisible window search considers every inactive keyframe in the original ap-
proach. We reduce this search range to the inactive neighborhood of the active temporal

1github.com/jzubizarreta/dsm
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keyframes to partially prevent the search range from growing unbounded.

We maintain a graph of connected keyframes, namely the covisibility graph. We use
neighborhood Ni to refer to the neighborhood of a frame Ii which includes both covisible
frames and temporally connected frames. Temporally connected frames are the frames
that have been in the temporal window at the same time for at least one local bundle
adjustment. We have a covisibility threshold to define covisible frames, which requires at
least 100 active points that are visible from the other frame in total for the both frames.
We do not have such a threshold for temporally connected frames.

For loop closure verification, we depend on 3D points and for this we want as many
points to be optimized for a querying keyframe as possible. For this, we have a small
delay between creation of a keyframe Ii and loop closure detection for it. This helps
us to get more 3D points with more accurate depth estimates after a number of local
bundle adjustments. We wait 5 keyframes, i.e. until keyframe Ii leaves the temporal
window (maximum number of temporal keyframes is 5 by default), but this is a heuristic
parameter that can be adapted.

When there is a loop in a trajectory, we expect to detect multiple loop closure pairs for
that segment of the map and we prefer to use all loop closure pairs for a segment in
PGO. For this, we employ a delay mechanism where we wait 5 keyframes without a loop
closure to run PGO after we verify a loop closure. We also wait at least 20 keyframes
between consecutive PGO runs as a cooldown period. This way, we run PGO with more
loop closure edges and thus get more accurate corrections. But more importantly, we
decrease the number of PGO calls and thus runtime significantly. As a result, the map
gets updated less frequently with some delay. So, there is a trade-off between increasing
runtime performance and keeping the map more up-to-date. For Kitti sequence 00, on
average, we get 304.6 loop closures while we run PGO only 9.4 times (see Table 6.1). We
assess the effect of this strategy in Section 6.3.4.

For optimization problems we use Ceres [17]. We use OpenCV [25] implementations of
various computer vision algorithms.

5.1 Feature Point Selection

To detect loop closure candidates with a feature based bag of words approach, we first
need to have some repeatable points. DSM as a direct method extracts points based on
image gradients without taking repeatability into consideration and these points are not
necessarily distinguishable, repeatable points, e.g. points from weakly textured regions
or edges. We cannot use these points to detect loops, we need to introduce repeatable
feature points such as corners. While we cannot use non-feature points for loop closure
detection, we can use both feature and non-feature points for tracking and mapping,
as the feature point selection algorithms also favor pixels with high gradients. So, we
extract feature points as a fraction of all points. All points are used for tracking and
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mapping as usual but in addition we compute descriptors for the feature points and use
them for loop detection.

We get feature points by using either FAST or Shi-Tomasi corner detectors. We use
FAST threshold of 30 for FAST detector and quality level (minimum accepted quality
of corners relative to the best corner) of 0.01 for Shi-Tomasi detector. Our method is
agnostic towards corner detector choice. DSM selects 1500 points for a frame by default.
We increased this to 2000. We discuss the effect of this change in Section 6.3.2. Out of all
points, we select 1/3.5, i.e. 571 points by default, as feature points.

DSM uses a dynamic grid approach for point selection. While we preserve this logic to
select non-feature points, we also detect repeatable feature points using a similar grid
approach. Since the window size w is adjusted to get the desired number of points np,
we still get the same number of points in total and the adjusted window size w affects
the selected corners the same way as other points.

Grid approach helps us to get a homogeneous selection across the frame. We do not
want to get all corners from a small, highly textured region of the scene, which may
not be visible from another perspective. With a homogeneous selection, we increase the
probability of detecting mostly the same corners for a scene from different perspectives,
even if there is some degree of occlusion.

Since what we call a corner changes depending on the resolution of an image, we need
to consider corners for each level of the image pyramid, similar to how non-feature
points are selected for each image level. We detect corners for each pyramid level,
without limiting the total number of corners. After detecting all suitable corners, we
select one corner per grid cell, regardless of the detected pyramid level. Then, we filter
nearby corners (with a radius of 4 pixels). The remaining steps are applied to this initial
selection.

We want to select more corners for pyramid levels with higher resolution, since we have
more information and thus we get more corners for those levels. For this, we split the
total number of corners for detection levels inversely proportional to detection level,
e.g. 3n, 2n, and n points for a pyramid with 3 levels. For the default pyramid level of
3 and number of corners of 571, we try to select 285, 190, and 95 corners from level
1 (original image resolution), level 2, and level 3 respectively. If we cannot complete
the total number of corners this way, we select from the remaining corners regardless
of their detection level. We refine corner locations by finding their subpixel accurate
locations [26]. We limit the maximum offset during refinement to 0.5 pixel in order to
preserve the repeatability of points.

After finalizing the selection of corners, we select non-feature points with the original
selection approach of DSM. Since not all candidate points can be initialized and activated,
in the point selection step DSM selects a high number of redundant points. For our
needs, we want as many of the corners to be activated as possible to get their estimated
depth to be optimized. Although for some candidate points we also get optimized
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depth, all active points have an optimized depth, which is also optimized in local bundle
adjustment. To increase probability of corners getting activated and also to prevent
selection of duplicate points, we remove non-feature points that are too close to selected
corners (with a radius of 5 pixels). This way, we do not get adjacent points that are
very similar, which can hinder some corners from getting activated. Fig. 5.1 shows the
difference between feature points and non-feature points.

Figure 5.1: An example of the original (top) and the modified (bottom, shows only fea-
ture points) point selection procedure. With feature points we get repeatable
points such as window corners.

After selecting all points, we also compute feature orientations, which we need for
descriptor computation. For this, we use the intensity centroid approach as is usually
done for ORB descriptors [12]. We then compute ORB descriptors, which are rotation
invariant binary descriptors. As a binary descriptor, ORB is computationally very
efficient compared to alternative methods such as SIFT [10]. This is especially important
for us since we do not want to increase computational complexity too much for the point
selection part with additional feature extraction and descriptor computation steps.

5.2 Depth Map Creation and Depth Estimation

For loop closure verification, we depend on depth information of points. We can use
active points p̃ and optimized candidate points p̂ as 3D points, since both of which
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have depth information. We do not use candidate points p with initialized (but not
optimized) depths as they are not reliable. We rely on optimized (but not activated)
candidate points p̂ since they can become active points at any time without further
changes, i.e. they have reliable depth information.

Since we select only a fraction of candidate points as corners and only a portion of all
candidate points become active or have an optimized depth estimation, the number of
3D corners can be the bottleneck for loop closure verification, which in turn decreases
the number of accepted loop closures. To prevent this, we create depth maps for frames
if needed, and estimate depths for points without depth information using these depth
maps.

We project all active points {p̃k} from the neighborhood Ni of a frame Ii to Ii. For suc-
cessfully projected points, we keep their positions and corresponding depth information
in the depth map. Additionally to active points from the neighborhood Ni, we also
record active points {ip̃k} of Ii in its depth map, which have precedence over projected
points.

For a given point p, we estimate its depth as the depth of the closest point to it in the
depth map. The search area is limited to a circle of radius 5 in `1 norm, i.e. in Manhattan
geometry.

For next steps, when we refer to 3D points of a frame Ii, they include active points ip̃k,
optimized candidate points ip̂k, and points with estimated depths ip∗k .

Figure 5.2: A loop closure pair (left) from Kitti sequence 00 with the point cloud of
their neighborhoods (right) aligned with the estimated relative pose. In the
point cloud, we see the street from the top. Orange map points are from the
neighborhood of the querying keyframe (top left) and blue map points are
from the neighborhood of the candidate keyframe (bottom left). Well aligned
points indicate the accuracy of the estimated relative pose.
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5.3 Loop Closure Detection

For loop closure detection, we use a feature based bag of words approach, namely
DBoW3 [16]. We use the vocabulary which is prepared for our problem from ORB-
SLAM, which is also used by LDSO.

We first compute the bag of words representation for a reference keyframe Ir using
its corner descriptors. Then we query the frame database for the keyframes that are
similar to the keyframe Ir. After the query, the keyframe Ir is added to the image
database. We do not want to get keyframes that are close to the reference keyframe in
time and place, i.e. if they are in the same segment of the trajectory it is not considered
as a loop. This filtering is usually done (e.g. [4]) by using temporal information, e.g.
excluding temporally adjacent keyframes from the results. We keep track of covisibility
information and we know that covisible keyframes will not form loop closures. So, in
addition to temporally connected keyframes, we also exclude covisible keyframes of
the keyframe Ir from the results. This way we apply a broader filter than just using the
temporal information.

We query the 20 most similar frames. After filtering temporal and covisible connections,
we keep at most 10 candidates. Here, we do not filter query results further based on
similarity scores, but an adaptive threshold based on similarity score could be used
to filter out bad candidates and in turn increase runtime performance similar to what
ORB-SLAM does.

Loop closure verification happens at next steps during relative pose estimation and
optimization. We stop if we do not meet necessary conditions and thresholds at any
step. This is supposed to ensure that no false positive loop closure is inserted into the
global map.

We run next steps for each loop closure candidate Ic. We keep all verified candidates.
So, for a query keyframe Ir, we can add multiple loop closure constraints to the global
map.

5.4 Relative Pose Estimation

5.4.1 Feature Point Matching

Let us consider a single loop candidate Ic for reference keyframe Ir based on feature
points. We want to estimate relative pose Src from Ic to Ir using the feature points. For
this, first we need to get feature point matches between the two frames. At this step, we
only use point similarities for matching based on point descriptors.

We can use a brute-force approach to match descriptors by checking hamming distances
between all possible matches. This would result with the best possible matching between
two sets of descriptors. As an alternative to brute-force approach, we can use DBoW3,
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which would be approximate but faster than brute-forcing. DBoW3 builds a vocabulary
tree that discretizes the descriptor space and we can only check the possible matches for
features that correspond to the same word in the tree, instead of comparing all possible
matches. In our method, we can opt to use either of these approaches. We provide
comparison for these two approaches in Section 6.3.3.

For the best match for a descriptor, i.e. the match with minimum hamming distance,
we have two more conditions. We check if the distance is less than or equal to a fixed
threshold, which is 50, to prevent matches with weak similarity. We also expect the
best match to be substantially better than the second best match. For this, we check if
the minimum hamming distance is less than 60% of the second best hamming distance.
This way, we do not accept matches with high uncertainty.

We expect to get at least 10 corner matches to proceed with relative pose estima-
tion.

5.4.2 Relative Pose Estimation

We estimate the relative pose Src between the two frames by solving the Perspective-
n-Point (PnP) problem using an iterative method based on a Levenberg-Marquardt
optimization and Random Sample Consensus (RANSAC) [27]. By solving the PnP
problem, we estimate a relative pose Trc with rotation and translation from 3D-2D point
matches. RANSAC helps us to use only the inliers for finding the relative pose since we
might get wrong matches from the previous step. To solve the PnP problem, we expect
at least 10 3D corners.

We want to get a similarity transformation Src with rotation, translation, and scale but
we cannot estimate scale from the PnP problem. In order to estimate the relative scale
src, we get pose estimates both ways, i.e. we get both T̃rc and T̂cr. T̃rc is computed using
3D points from frame c and 2D observations from frame r. T̂cr is computed using 3D
points from frame r and 2D observations from frame c. We expect to get at least 10
inliers for both solutions.

We derive components of Src as follows:

src =
‖̂tcr‖
‖̃trc‖

trc = src ∗ t̃rc

Rrc = R̃rc

(5.1)

In our formulation the relative translation trc is in the scale of frame r. Since t̃rc is in the
scale of frame c, we rescale it to frame r.

Src we derived here serves just as an initialization of the subsequent optimization.
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5.5 Relative Pose Optimization

5.5.1 Projected Point Matches

Now that we have an initial relative pose estimation Src, we try to find a new set of
corner matches for pose optimization. Unlike the previous set of matches for which we
only use descriptor similarity without considering spatial positions, we now match 3D
points by relying mainly on their spatial position as a constraint. We project 3D points
from the candidate keyframe Ic to the reference keyframe Ir. Then, for each projected
point, we get nearby 3D points of the reference frame Ir (with a radius of 5 in `1 norm)
and select the best match from these nearby points. Here, we filter points that do not
have similar corner angles (larger than 0.2 rad) and points that have a hamming distance
larger than 50. Since we only consider a small neighborhood for each point, we can
include matches that are not unique across the whole image, which were filtered by the
second-best distance check in the initial whole image matching we apply for relative
pose estimation. We expect at least 10 matches.

2D-2D Point Matches with Epipolar Line Search

We use the number of projected point matches as a validity check for covisible keyframe
candidates (see Section 5.6). In this use case, we do not use depth maps for runtime
considerations but it results with a small number of 3D points.

To remedy this issue, we utilize epipolar geometry for the corners cpi without depth
and we search for the best match with the same steps as before, we just make the search
around the epipolar line of the point cpi on reference frame Ir instead of around its
projection on reference frame Ir.

Note that we do not require matched corners rpi from the reference frame Ir to have
depth information, since we only need the number of matches and we will not use
points themselves.

Since the reliability of 2D-2D matches is lower than 3D-2D matches, we have stricter
conditions for them. We filter points that have a hamming distance larger than 30. We
also require that we have at least 2 3D-2D matches. We expect to get only 5 matches
(instead of 10) for this use case.

5.5.2 Relative Pose Optimization

Using these matches we now refine the relative pose between the two keyframes. We
have matched points which almost coincide when one point is projected to the other
frame. Assuming that most of these matches actually point to the same 3D point in the
world (we applied many filters until this point to support this assumption), ideally with
a perfect relative pose (and assuming perfect points) they need to coincide exactly. That
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5.6 Changes to LMCW

is, we can optimize the relative pose by checking the correspondence of these matched
points.

Let cP = {cpk} be the 3D points from the candidate frame Ic and rP = {rpk} be the
matched 3D points from the reference frame Ir with matching indices.

The similarity transformation Src from candidate frame Ic to reference frame Ir is
optimized by minimizing the error

E = ∑
cpk∈cP

(‖ rpk − Src ∗ cpk‖γ1 + ‖Π(rpk)−Π(Src ∗ cpk)‖γ2) (5.2)

where || · ||γ1 , || · ||γ2 are the Huber norm functions. We use Huber loss parameter of 1
for both 3D Euclidean distance and 2D reprojection error terms.

After the optimization, we check residuals to get inliers using fixed thresholds for 3D and
2D Euclidean errors (we expect both errors to be less than 1), then remove the outliers
from the problem. We expect to have at least 10 inliers. We solve the optimization
problem again with only using the inliers. At this point, we check the average cost per
point for the optimized problem to determine whether we have a good case for loop
closure. If the normalized cost is small enough (less than 1), we save the optimized
relative pose for these keyframes and consider the loop closure verified.

See Fig. 5.2 for an example of a loop closure pair with aligned point clouds of their
neighborhoods.

We have manually tuned many of the parameters and thresholds in this section to get
good performance. In future work, a more systematic parameter search might yield
even better results across different datasets.

5.6 Changes to LMCW

To select covisible window for newly added keyframe Ir, DSM traverses all inactive
keyframes Ii, project active points ip̃k to the newly added keyframe Ir and set their
visibilities. Then, it selects the optimal covisible window. There are two problems with
this approach.

For long trajectories, this search grows linearly with the number of keyframes. As a
result, covisible window selection starts to take increasingly longer part of the runtime.
We decrease this search window from all previous keyframes to only the covisible
frames of the temporal connections of Ir, i.e. only the second degree of connections on
the covisibility graph. As a downside, this would inevitably prevent some of the true
covisibility connections from being added to covisibility graph. We also prevent visibility
updates for the map points of old keyframes which we do not consider. As a result, this
change can result with fewer covisibility connections, fewer map point observations, and
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5 Direct Sparse Mapping with Loop Closure

Figure 5.3: An example pose graph for Kitti sequence 00 without modified LMCW and
covisibility threshold. Blue lines show covisibility constraints. Green lines
show loop closure constraints.

therefore with a drop in BA accuracy if we use it without the loop closure module. But
we expect the loop closure module to detect some of the connections that we possibly
missed during covisible window selection. So, we are interested in the performance of
this change with the enabled loop closure module.

The original covisible window selection only checks if points can be geometrically
projected to the keyframe Ir. This works fine in a convex environment such as a room.
But in a non-convex environment such as a neighborhood with non-covisible streets, we
get many false covisible frame matches from LMCW. This prevents us from successfully
correcting loops with pose graph optimization, since each part of the map is essentially
connected to every other part.

To solve this issue, in addition to the geometric check, we also apply a feature-based
check. We check the number of projected point matches (see Section 5.5.1). Since we need
to make this control for many keyframes every time, we do not use depth estimation
from depth map and instead we also use 2D-2D matches by utilizing epipolar geometry
(see 5.5.1). For the projection check, we require at least 5 corner matches, 2 of which
should be 3D-2D matches. Compare Fig. 5.3 with Fig. 5.4 for the effect of the added
feature-based verification step. In Fig. 5.3, frames from non-crossing streets surrounded
by buildings in a city center are wrongly labeled as covisible, which prevents pose graph
optimization to correct the scale drift.
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5.7 Pose Graph Optimization

5.7 Pose Graph Optimization

We detected loop closures with optimized relative poses which conflict with the informa-
tion from local mapping. We run a global pose graph optimization with all keyframes
to decrease this conflict by distributing large errors between loop closure pairs to all
keyframes and consequently correct loops.

We fix the first keyframe I1 and optimize the rest of the keyframes. The non-fixed frame
poses Si are optimized by minimizing the error

EPGO = ∑
i,j∈C

wij logSim(3)(Sij ∗ S−1
j ∗ Si) (5.3)

where C is the set of connected keyframe pairs that are derived from loop closures
or covisibility graph, logSim(3) is the logarithm function to map Sim(3) to R7, and the
weight wij = 1 for constraints from covisibility edges and wij = 100 for loop closure
constraints to increase the importance of the latter.

For each keyframe Ii, we add relative poses Sij for the keyframes Ij in its neighborhood
Ni. We also add a relative pose Sij for the parent keyframe Ij of Ii in the spanning tree.
Spanning tree follows the same logic in ORB-SLAM. Although the parent node Ij of
Ii in the spanning tree is also connected to Ii in covisibility graph, this connection is
not guaranteed to be in Ni due to the covisibility threshold on the number of covisible
points, e.g. if it decreases over time.

We need to derive relative poses Sij for covisible keyframes Ii, Ij. This can be computed
before each PGO using the current camera poses Ti, Tj where we convert Tij to Sij by
using the scale of 1, which is the scale of the fixed keyframe pose S1. This was our
first approach. The problem with this approach is that we update camera poses based
on PGO results and use camera poses to set up the PGO problem. So, if we end up
deteriorating camera poses, then we would not be able to correct it with later PGO calls
because we permanently corrupted the camera poses.

The solution to this, and also our current approach, is to use relative poses based on
local bundle adjustment. After each local bundle adjustment, we compute relative poses
between active keyframes and store it. We do not update these relative poses after PGO
calls (other than reflecting scale changes). So, these relative poses do not correspond to
current camera poses which we set based on PGO results, but rather correspond to the
last local bundle adjustment where both keyframes were active.

The pose graph we optimize is similar to the essential graph of ORB-SLAM. ORB-SLAM
uses a subset of covisibility graph to decrease the optimization complexity. This is not
our main concern. We only take strong covisibility connections to filter false covisible
keyframe pairs since covisibility information is not photometrically verified in local
window.
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5 Direct Sparse Mapping with Loop Closure

Figure 5.4: An example of a pose graph before (left) and after (right) the optimization
for Kitti sequence 00. Blue lines show covisibility constraints. Green lines
show loop closure constraints.

See Fig. 5.4 for an example of a pose graph before and after the optimization.

5.8 Global Map Updates

After a pose graph optimization, we update the frame poses Ti and inverse depths idk of
their points ipk (2D positions of points are always fixed, only the depth changes when
the frame pose changes). We absorb the optimized scale si into the points and drop it
from the camera pose. This way, we get the camera pose Ti by simply using rotation
matrix Ri and translation ti of the optimized pose Si

Si :=
[

siRi ti
0T 1

]
Ti ←

[
Ri ti
0T 1

] (5.4)

For every point ipk hosted on keyframe i with optimized scale factor si, inverse depth
idk is updated as

idk ←
idk

si
(5.5)
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5.8 Global Map Updates

We update relative poses Sij to reflect scale changes as (see Section 2.6.1 for details)

tij ← tijsi

sij ← sij
si

sj

(5.6)

We also update covisibility graph for loop closure pairs, so that next local bundle
adjustments could benefit while selecting covisible window. For each loop closure pair
{Ii, Ij} and for each pair of keyframes {Ik ∈ Ni, Il ∈ Nj}, we update visibilities and add
a new edge to the covisibility graph for the keyframe pair, if the keyframe pair do not
already have a connection in the covisibility graph.
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6 Results

We evaluate our proposed method LDSM on Kitti Odometry [24] and EuRoC MAV
[28] datasets and provide comparisons with DSM, LDSO, and ORB-SLAM methods in
monocular settings. We use the reported experiment results from [4] for LDSO and
ORB-SLAM. We also share ablation and parameter studies in the last section.

We compare LDSM in detail with DSM and a DSM variant with modified point se-
lection strategy (named DSM-corner or DSM-c in short) in our experiments. We use
the same configuration of DSM parameters for all DSM variants (same as the public
implementation other than number of candidate points for which we use 2000). Unless
stated otherwise, for LDSM and DSM-c we use Shi-Tomasi corners, use the modified
LMCW; and for LDSM we run PGO with a delay of 5 keyframes, and have a cooldown
period of 20 keyframes. We also use the updated search range for covisible window
selection for DSM method to get feasible runtime on long trajectories. DSM fails for
Kitti dataset sequences in real-time configuration. We provide results where tracking
and mapping processes are sequentialized. We report RMS absolute trajectory error
(ATE) after aligning estimated trajectories with ground truths in Sim(3).

6.1 Kitti Odometry Dataset

The Kitti odometry dataset contains 11 sequences from a driving car in its training set
with ground truth trajectories. Sequences contain many large loops and it is ideal to see
the effect of loop closure correction. There are 6 sequences with one or more loops: 00,
02, 05, 06, 07, 09. For sequences 07 and 09, there is only one large loop encompassing
the entire trajectory.

We provide detailed comparisons of LDSM, DSM, and DSM-c methods on the Kitti
dataset. For these experiments, we use the default parameters. We run each method on
the Kitti sequences 5 times. We provide normalized cumulative error plots in Fig. 6.2a
which show the percentage of successful runs with an error below a certain threshold.
This way we visualize both accuracy and robustness of the methods at the same time.
With higher thresholds we see the number of sequences the methods do not fail and
with lower thresholds we see the number of sequences the methods perform well. We
also provide heatmaps for all experiments in Fig. 6.2b for LDSM and DSM.

With loop closure correction, we see significant improvements for sequences with loops
other than sequence 09. LDSM detected the loop for sequence 07 in 3 out of 5 times but
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6 Results

Figure 6.1: Sim(3) aligned trajectories of Kitti sequences 00, 02, 05, and 07 ([29])

failed to detect the loop for sequence 09 in all runs. For sequence 02, LDSM can correct
scale drift using detected loops, but that is not enough to fully correct the trajectory.
LDSM does not produce robust results for Sequence 02. See Fig. 6.1 for some qualitative
results.

Table 6.1 shows average errors for each sequence in the dataset. It also includes results
from LDSO and ORB-SLAM methods. For most of the sequences, our method achieves
comparable accuracy to LDSO and ORB-SLAM. For sequences with loops, LDSM has
the best accuracy for sequence 05 and 06. DSM also shows its quality for sequences
without any loop, such as 03 and 04, which translates to good performance for LDSM as
well.
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6.2 EuRoC MAV Dataset

(a) (b) LDSM (top), DSM (bottom)

Figure 6.2: Result on Kitti dataset. a) Normalized cumulative errors. Numbers in the
legend give the area under the curve. b) Full evaluation results. Columns
represent sequences and rows represent iterations.

Seq. DSM LDSM LDSO ORB-SLAM # loops # PGOs
00 127.87 18.87 9.32 8.27 403.6 9.4
01 13.16 13.50 11.68 - 2.2 1.0
02 127.82 91.65 31.98 26.86 138.2 5.6
03 1.27 1.34 2.85 1.21 14.0 2.6
04 0.35 0.67 1.22 0.77 9.6 2.2
05 59.60 5.00 5.10 7.91 222.8 5.8
06 71.62 4.85 13.55 12.54 102.2 2.8
07 28.27 9.89 2.96 3.44 1.0 1.0
08 110.63 118.50 129.02 46.81 5.6 2.8
09 67.13 67.21 21.64 76.54 1.0 1.0
10 7.71 10.42 17.36 6.61 0.4 0.4

Table 6.1: RMS ATE (m) for Kitti dataset. ORB-SLAM fails for seq. 01. # loops and #
PGOs columns give the average number of detected loop closures and the
average number of PGO calls for the sequences for LDSM method respectively.

6.2 EuRoC MAV Dataset

The EuRoC MAV dataset [28] contains 11 stereo sequences in 3 different indoor environ-
ments. In [1], DSM is only evaluated on the EuRoC MAV dataset. It is a widely used
dataset to evaluate VO and SLAM methods and many state-of-the-art methods perform
quite well on it.

We run each method on all the EuRoC MAV sequences forwards and backwards, 5
times on left camera images, for 110 runs in total. Fig. 6.3 contains the results. We
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omit sequence V2_03 from the results as we do not get consistent results to make useful
comparisons. Although DSM already works really well for the EuRoC dataset and the
EuRoC dataset does not have large loops, LDSM gets better results for all machine
hall (MH) sequences. For V1 and V2 environments, LDSM has similar performance to
DSM.

Sequence DSM DSM-c LDSM
MH_01 0.0713 0.0685 0.0434
MH_02 0.0446 0.0520 0.0430
MH_03 0.1718 0.1838 0.0606
MH_04 0.1356 0.1885 0.0840
MH_05 0.1951 0.2124 0.0834
V1_01 0.1284 0.1110 0.1813
V1_02 0.1497 0.1368 0.0736
V1_03 0.1466 0.2139 0.1575
V2_01 0.0632 0.0798 0.0702
V2_02 0.1326 0.1792 0.1330

(a)
(b) LDSM (top) and DSM (bottom)

Figure 6.3: Results for EuRoC MAV dataset using left camera images. We omit V2_03
from the results. a) RMS ATE (m) b) Full evaluation results.

6.3 Ablation and Parameter Studies

6.3.1 Point Selection Strategy

We want to verify that modified point selection strategy does not deteriorate the accuracy
of DSM. For this, we compare DSM variants with and without modified point selection
strategy, without any other changes we propose, on a subset of Kitti sequences (00, 02,
05, 06). We provide normalized cumulative error plots and heatmaps in Fig. 6.4. Based
on these results, we can claim that modified point selection strategy does not affect the
performance of DSM.

6.3.2 Number of Candidate Points

By default, DSM selects 1500 candidate points for each keyframe. We assess the effect of
using a larger number of candidates. Fig. 6.5 shows heatmaps, normalized cumulative
errors, and average number of detected loop closures for two LDSM experiments on Kitti
dataset with 1500 and 2000 candidate points. With more candidates, LDSM detects more
loop closures for all Kitti sequences. It also achieves to detect the single loop in Kitti
sequence 07 and have a better accuracy for sequence 05, but it loses some accuracy for
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6.3 Ablation and Parameter Studies

(a) (b) DSM-c (top) and DSM (bottom)

Figure 6.4: Results of point selection strategy experiments. a) Normalized cumulative
errors. b) Full evaluation results.

sequences 00 and 02. Overall they perform similarly. The fact that we tuned parameters
for the loop closure verification part using 1500 candidate points might explain the
worse performance for some sequences with loops despite having more loop closures
when we use more candidate points. We might get better results with 2000 candidate
points after retuning parameters for the loop closure verification part.

(a) (b) 1500 (top) and 2000 (bottom)

Seq. 1500 2000
00 362 403.6
01 0.6 2.2
02 101.2 138.2
03 4.8 14
04 2.2 9.6
05 161.4 222.8
06 60.4 102.2
07 0 1
08 0.2 5.6
09 0 1
10 0.2 0.4

Figure 6.5: Effect of number of candidate points. Kitti results for LDSM with 1500 and
2000 candidates. a) Normalized cumulative errors. b) Full evaluation results.
c) Average number of loop closures

6.3.3 Matching Based on Brute Force and BoW

To match feature points between two frames, using BoW is a more efficient approach
than brute force. On the other hand, brute force provides the best possible matching.
See Table 6.2 for a comparison based on Kitti experiments. With BoW, we get slightly
worse results compared to brute force.
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Seq. BoW Brute
00 21.53 18.87
02 98.35 91.64
05 4.90 5.00
06 5.77 4.85

Table 6.2: Effect of descriptor matching algorithm. Kitti results for LDSM with BoW
(left) and brute force (right) matching

6.3.4 Optimization Frequency

We run PGO with a delay of 5 keyframes, and have a cooldown period of 20 keyframes
by default. For some sequences we detect hundreds of loop closures, but we run PGO
less than 10 times for a sequence on average (Table 6.1). While this help us significantly
in terms of speed, instead of waiting for loop closures to accumulate, running PGO more
frequently would provide better results and also help by reflecting global corrections to
local mapping earlier.

We have not observed a big improvement when we run PGO more frequently on Kitti
sequences as shown in Table 6.3. The effect of optimization frequency depends on the
trajectories as well. Since in Kitti sequences, we get loop closures in well separated
groups, the effect might be different on another dataset.

Seq delay: 0, cooldown: 5 delay: 5, cooldown: 20
00 13.35 18.87
02 50.62 91.65
05 7.13 5.00
06 7.36 4.85

Table 6.3: Effect of PGO frequency. Kitti results for LDSM with more frequent (left) and
less frequent (right) optimizations.
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7 Conclusion

In this master’s thesis, we have proposed Direct Sparse Mapping with Loop Closure
(LDSM), a direct SLAM system with global mapping, loop closure detection, and global
pose graph optimization. Benefiting from the advancements of previous methods, we
have built our direct SLAM system as an extension of DSM, by modifying the point
selection procedure and introducing loop closure detection and pose graph optimization.
We have made changes to DSM to prevent addition of incorrect connections to covisibility
graph and to reduce search range for covisible window, which are critical for the
performance and feasibility of pose graph optimization. We have also built visual
debugging tools (see Fig. 5.2, 5.4) which were very useful for tuning loop closure
verification steps and understanding issues with the pose graph optimization step.

In our evaluations on public datasets, we showed that the modified point selection
procedure which now includes repeatable feature points does not negatively affect the
performance. With loop closure correction, we achieved significant improvements for
sequences which contain large loops. On the Kitti Odometry dataset, LDSM shows
comparable performance to LDSO and ORB-SLAM in monocular settings. We also
assessed different parts of our system and shared parameter studies.

In our work, we have mainly focused on the localization accuracy. For a SLAM system,
runtime performance is also very crucial. One of the main drawbacks regarding runtime
is the unbounded nature of our global map. DSM does not have a map maintenance
strategy to remove redundant keyframes and map points from the global map. It avoids
duplicating active points in the local window and creating redundant keyframes in
previously visited scenes, but accumulating drift limits these to a local scale. With pose
graph optimization we successfully correct accumulated drifts and correct the global
map, but we do not have a strategy to remove redundancies after correcting the map.
Keeping the global map bounded with a map maintenance strategy would significantly
improve the runtime performance.

Another aspect we can improve regarding runtime performance is the implementation.
We have not utilized a separate thread for loop closure detection and global pose
optimization yet. We can also parallelize various subtasks such as the map updates
after local and global optimizations. We have not spent time to implement algorithms
efficiently and instead opted to use third-party implementations. We can detect time
consuming parts and replace them with more efficient implementations, e.g. we can
implement a custom PBA solver.
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