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Direct methods
- raw sensor measurements
- photometric error

Goal

create a direct SLAM system with
- local mapping
- global mapping

Motivation
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Odometry SLAM
[1]



photometric bundle adjustment (PBA)

has advantages of direct approaches & sparse data

uses a sliding window 
marginalizes old frames and points

cannot reuse information

accumulated drift on long trajectories

Direct Sparse Odometry (DSO) [2]
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extends DSO with
- loop closure detection (LC)
- pose graph optimization (PGO)

Detecting revisited scenes helps reduce drift

Reobservations are not used in local optimization

Direct Sparse Odometry with Loop Closure (LDSO) [3]
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global map

Local Map Covisibility Window (LMCW)
reuse of keyframes and map points

a coarse-to-fine optimization scheme
a robust influence function
outlier management using t-distribution

no explicit compensation of the drift for larger loops

Direct Sparse Mapping (DSM) [4]
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So far, we have seen
- DSO: a direct VO
- LDSO: a direct SLAM with loop closure
- DSM: a direct SLAM with map reuse

We propose an extention of DSM, LDSM, a direct SLAM system with
- loop closure detection
- pose graph optimization
- map reuse
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Direct Sparse Mapping with Loop Closure (LDSM)
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Main Method



We need feature points for loop closure detection and verification

DSM uses image gradients to select points
not usually repeatable, e.g. points from weakly textured regions or edges

select a portion of points as repeatable feature points

do not select non-feature points near feature points

We use Shi-Tomasi corners [5] and ORB descriptors [6]

Feature Point Selection
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DBoW3 [7]

- converts images into bag of words vectors
- implements a database enabling queries

query the database for similar keyframes to 𝐼!

filter the neighborhood 𝑁!
- temporal connections
- covisible connections with >100 shared points

take 10 best candidates {𝐼"}
future work: use an adaptive threshold

Loop Closure Detection
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[8]



Loop Closure Detection
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corner matches: descriptor similarity

estimate 𝑆𝑖𝑚 3 relative pose 𝑆!" by solving the PnP problem

create & use depth maps to estimate depth of 2D points
3D points: active points, optimized candidate points, points with estimated depth

solve PnP both ways to derive relative scale 𝑠!"

Relative Pose Estimation

12Erkam Uyanik | Local and Global Mapping for Direct SLAM



corner matches: descriptor similarity + spatial closeness
allows locally unique matches

𝐸#$$% = ,
&!,(!∈%

( 𝑝* − 𝑆!" ∗ 𝑞* +" + Π(𝑝*) − Π 𝑆!" ∗ 𝑞* +#)

𝑆!": 𝑆𝑖𝑚 3 transformation from 𝐼" to 𝐼!
𝑃 = 𝑝* , 𝑞* : set of 3D point matches between 𝐼! and 𝐼"
Π(⋅): projection function
| ⋅ |+" , | ⋅ |+# : Huber norms

Relative Pose Optimization
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Relative Pose Optimization
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Covisible window selection procedure originally
- traverses all inactive keyframes
- only applies a geometric check

limit search range to the inactive neighborhood

add a feature-based control step
to prevent false covisibility connections

Changes to LMCW
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Changes to LMCW
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relative pose constraints from loop closures and covisibility graph

relative poses from covisibility graph are based on local BA, not based on camera poses
to not use PGO results to define subsequent PGO problems

𝐸%,$ =,
*,-

𝑤*- log.*/ 0 (𝑆*- ∗ 𝑆1-23 ∗ 𝑆1*)

𝑆1*: 𝑆𝑖𝑚 3 pose of 𝐼*
𝑆*-: 𝑆𝑖𝑚 3 relative pose from 𝐼- to  𝐼*
log.*/ 0 : maps 𝑆𝑖𝑚 3 to its tangent space, ℝ4

𝑤*-: 100 for loop closures, 1 otherwise

Pose Graph Optimization
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We wait 5 keyframes without a loop closure to run PGO

We update frame poses, map points, and relative pose 
constraints based on PGO results

Pose Graph Optimization
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Pose Graph Optimization
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We wait 5 keyframes without a loop closure to run PGO

We update frame poses, map points, and relative pose 
constraints based on PGO results



Pose Graph Optimization
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Kitti Odometry dataset [9]

11 sequences from a driving car

6 sequences with one or more loops: 00, 02, 05, 06, 
07, 09

Results
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LDSM

DSM
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Results
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EuRoC MAV dataset [10]

11 sequences in 3 indoor environments



27Erkam Uyanik | Local and Global Mapping for Direct SLAM

LDSM

DSM



Conclusion
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Contributions

- LDSM, a direct SLAM system with local and global mapping
- a significant improvement over DSM for long trajectories with large loops
- comparable performance to LDSO and ORB-SLAM [11]

Future Work

- map maintenance strategy to remove redundant keyframes and map points
- runtime performance
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