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Abstract

Wood ants thrive as expert navigators in the same cluttered, dynamic, light-variant environ-
ments where most robot navigation algorithms fail [1, 2]. Virtual Reality (VR) is a novel
technique to study the visual ecology and navigation strategies of these insects [3, 4]. We
evaluate the functionality of a novel treadmill and VR system that allows experiments with
untethered walking insects [5, 6]. In a series of four experiments with incrementally complex
visual stimuli, we validate the setup and gather insights into the ants’ behaviour. The system
works remarkably well to study ant navigation, despite a few limitations. On the behavioural
side, ants use oscillations as a visuomotor control mechanisms even when deprived of sen-
sory feedback from the environment (rot. close-loop). Furthermore, ants exploit edges
as information-rich features in both simple and complex visual scenarios. Both of these
behaviours have important implications for the design of robotic navigation architectures. VR
opens a new opportunity to learn from the simple yet effective navigation strategies of ants
and design new biomimetic navigation systems.
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Kurzfassung

Waldameisen gedeihen als erfahrene Navigatoren unter Bedingungen, in denen die meisten
Roboternavigationsalgorithmen versagen: überladene, dynamische Umgebungen mit ständig
wechselnden Lichtverhältnissen [1, 2]. Virtuelle Realität (VR) bietet eine neue Methodologie
um die visuelle Ökologie und Navigation dieser Insekten zu untersuchen [3, 4]. Wir bewerten
die Funktionalität eines neuen Systems, ein an ein VR System gekoppeltes Laufband, mit
dem laufende Insekten untersucht werden können, ohne sie zu fixieren [5, 6]. In einer Reihe
von vier Experimenten mit visuellen Reizen zunehmender Komplexität validieren wir den
Versuchsaufbau und sammeln neue Erkenntnisse zum Verhalten der Ameisen. Zur Unter-
suchung der Navigation von Ameisen eignet sich das System trotz mancher Limitierungen
bemerkenswert gut. Wir haben herausgefunden, dass Ameisen trotz mangelnder visueller
Rückkopplung (rot. close-loop) ein Oszillationsmechanismus zur visuomotorischen Regelung
anwenden. Außerdem nutzen Ameisen die potenziell informationsreichen Eigenschaften
von Kanten in einfachen und komplexen Szenen aus. Beide beobachteten Verhaltensweisen
können wegweisend sein für das Design von neuartigen Navigationsarchitekturen für Roboter.
VR eröffnet neue Möglichkeiten von den einfachen, aber eleganten Strategien von Ameisen
zu lernen, um neue bionische Navigationssysteme zu entwickeln.
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1. Introduction

From single celled organisms to mammals with complex behaviour, visual systems have
played an important role in evolution. The analogous development of light sensitive organs
has fascinated scientists since Darwin first posed his theory of evolution [7]. And not
surprisingly, behaviour is tightly intertwined: visually guided behaviour acts both as the
driver as much as the consequence of these evolving systems. Take the notorious "eagle eye"
as an example where the predator’s hunting behaviour and distinct sharp vision (a vertebrate
lens eye) evolved in synchrony [8]. Or, on an independent line of evolution, compound eyes
in insects have evolved along with remarkable control and navigation behaviours [9].
Human behaviour has also evolved strongly around vision. In fact, there is significantly
more research in vision than in any another sensory modality, up to the point that more
general concepts like "perception" or "perceptual memory" are often used synonymously to
"visual perception" and "visual memory" [10]. By no coincidence, human design of artificial
intelligence and autonomous agents reflects this tendency for vision over other modalities.
One key role for vision in natural and artificial systems is to provide information to navigation
systems. Roughly defined as finding a suitable path between the current location and a goal,
navigation is a necessary precursor for more complex behaviours [11, 12]. Robot navigation
strategies based on vision have received significant attention in the last three decades due
to the large application scope and promising results in reaching true autonomy [11]. While
contemporary visual navigation algorithms have succeeded in niche applications, navigating
the complex, undetermined, and chaotic real world remains a challenge to be solved [13].
Natural agents have clearly found solutions to the problems of navigation through complex
environments. Quite notoriously, insects have evolved vision and navigation systems strongly
constrained by their tiny brains and low visual sensory resolution. Insects are capable of
performing simple yet elegant computations to achieve their navigation tasks, e.g. foragers of
many social insect species can travel vast distances and find their way back home in the most
complex of environments [9, 14].
Ants belong to this group of expert navigators. Although ants have access to a variety of
orientation mechanisms [15], including some forms of social cues, solitary foragers rely
foremost on vision to navigate [1, 16]. Foraging ants learn the necessary visual information to
guide long and complex routes between their nest and a stable food site [17, 18]. And when
compared to artificial systems, ants have taken a different approach to solve the problem
of navigation. Contrary to map based technical implementations like visual Simultaneous
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1. Introduction

Localization and Mapping (vSLAM), ant navigation is thought to be of procedural nature,
whereby ants use visual cues to trigger appropriate behaviours [1]. Furthermore, evidence
shows ant navigation to rely on the overall appearance of scenes rather than segmenting
individual visual features [19].
Although efforts to develop bio-inspired robots that mimic the ants remarkable navigation
strategies have come far, plenty of questions regarding the visual ecology and spatial memory
of the model foragers still remain unanswered [1, 20]. Research on ant navigation has
historically been limited to two approaches: field work and lab experiments. Research using
either needs to compromise between portraying foragers in their natural environments and
control over the stimuli influencing the research subjects. However, developments in computer
vision and computer graphics have created the opportunity to adapt a new technique of
experimentation: virtual reality (VR). Using VR to study the visual ecology of navigating ants
promises the best of both methodologies: absolute control over the stimuli while simulating
the ant’s natural scenery.
As a study subject, we choose wood ants. These species of ants thrives as a navigator in exactly
the kind of cluttered, dynamic and uncontrolled environment in which most robots fail to
navigate. Understanding the underlying behavioural and neuronal mechanisms involved in
their navigation could lead to a breakthrough in robot navigation.
Following this logic, this project aims to shed some light into virtual reality as a method to
study ant navigation.

1.1. Research Goals and Project Outline

The use of virtual reality as a methodology to study insects is novel, however not unheard
off. In general, most of the research in insect behaviour focuses on the common fruit fly. VR
has been extensively validated for the study of these organisms [21]. However, most of the
validated VR methodologies, including those developed for social insects [4, 3], fixate the
study specimens to a tether. This methodology significantly constraints natural behaviour.
A less invasive method requires the parallel development of a multilateral treadmill system
where walking insects can move "naturally" in response to the VR stimuli without changing
location [5]. Goulard et al. [6] recently developed such a treadmill for ant study. Under their
supervision, this project contributes to the development and validation of this system. The
following research objectives are pursued:

1. Build upon the development of a trackball and VR system for untethered ants.

2. Authenticate the system as a research methodology to study ant visual navigation.

3. Evaluate the influence of a "close-loop" setting in the ant’s navigation behaviour.

4. Describe ant behaviour when confronted with natural images in the VR setting.

2



1. Introduction

To put the project into context, I begin by reviewing relevant literature (Chapter 2). The answer
to two questions summarize the outcome of this literature review: what are shortcomings of
state-of-the-art visual navigation algorithms like vSLAM, and what do previously proposed
ant navigation algorithms look like?
The outcomes of the first research goal are mainly described in the methods (chapter 3). Here
I detail upon the integration of the treadmill and VR systems as well as the implementation
of different experimental settings including a closed-loop rotation system.
The results in chapter 4 are divided into two sections: (i) validation of the system to investigate
ant navigation and (ii) ant navigation in complex VR scenes. Research goals 2 and 3 are
explored in the first part. Using two sets of experiments with a simple visual cue, I describe
and compare ant navigation on the open- and close-loop system. Research goal number 4
is detailed in the second part; here, I describe ant navigation on the novel system with a
complex artificial and a complex natural scene.
Finally, a discussion over the results is offered in chapter 5. Here I reflect upon the four
research goals and summarize the validity of the novel system to study ant navigation.
Furthermore, I describe follow-up experiments that could eventually lead to a new robot
navigation algorithm inspired by ants.

3



2. Literature Review

Both natural and artificial agents rely on spatial memory to navigate, i.e. agents need to
remember information about their surroundings in order to be able to return to that specific
location. Navigation using vision is the primary modality for both expert animal navigators
and state-of-the-art robot navigation algorithms [11, 9]. That being said, visual spatial
navigation varies in complexity. We distinguish four levels of cognitive complexity [22]. In
increasing order:

1. recognition of a location upon re-encounter

2. visual servoing towards a clear visual cue at the destination

3. visual homing, i.e. comparing a stored "home" view to guide the agent back to its "base"

4. linking visual information to a "map-like" representation of space

Even the simplest of these visual recognition tasks, challenges agents to deal with all sort of
visual problems [22, 13]. Breakthroughs in computer science have advanced robot navigation
significantly. Even so, navigation in certain locations, e.g. cluttered, dynamic, outdoor
environments, remain unconquered. And yet, ants and other social insects thrive as navigators
under these conditions; evolution seems to have found clever solutions to many of these
visual problems [9].
In order to explore new strategies for visual navigation, it is important to understand the
limitation of previous approaches. This chapter systematically explores the most important
techniques in visual navigation. Both technical algorithms and biologically inspired models
are categorized by their strategy. The main drawbacks of each approach are outlined. Figure
2.1 offers an overview over the categorization.
In literature, we find a distinction between indoor and outdoor navigation [23, 11]. The latter
is then divided in structured (e.g. roads) and unstructured environments. However, if we
ignore methods involving an external reference frame (e.g. GPS), outdoor navigation shares
similar constraints with its indoor counterpart. This thesis focuses on this set of application
scenarios and thus treats outdoor navigation as a complex, less controlled version of indoor
environments.
Based on the available information and strategy, visual (indoor) navigation algorithms can be
roughly divided into three categories: mapless systems [24], map-based systems and map-
building systems (Fig. 2.1; [23, 11, 25]). While mapless systems vary in cognitive complexity
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2. Literature Review

Figure 2.1.: Overview vision-based navigation methodologies. Adapted from [25].

(levels 1-3), the latter two use maps, and thus fall into the highest level of cognitive complexity
(level 4).

2.1. Robot Visual Navigation Using Maps

Increasing developments in computer vision have made vision based navigation specially
effective to pursue robot autonomy. In the last three decades, countless research efforts have
been made to improve their navigation algorithms. Most approaches are based on the use of
maps. Depending on the task and the previously available information, agents can employ
map-based or map-building systems [23, 25].

2.1.1. Map-Based Systems

Map-based systems require a predefined spatial layout of the environment. The data structure
and detail varies from a full CAD model to a simple graph, depending on the system [24].
At its core, the map is used to generate a sequence of expected landmarks while the vision
system attempts to locate them. A successful match allows the robot to self-estimate its
position in the map relative to the recognized landmark. Hence, navigation using this method
is a sequence of four steps: (i) image acquisition, (ii) landmark detection, (iii) matching of
expectation, and observation and finally (iv) position estimation.
The complexity of these systems lies mainly in the third step, matching (correspondence
problem). Different approaches to solve it have been proposed [24, 23]:

5



2. Literature Review

Absolute Methods The system does not know the starting position of the robot. Hence, an
exact match between features is required to locate the agent within the map (correspondence
problem).

Incremental Methods These algorithms keep track of the localization uncertainty starting
from a known position. Hence, an exact match is only needed to recalibrate the error
propagation. The matching problem is reduced to a probabilistic analysis.

Landmark Tracking The general idea is to trace known landmarks matched at a known
starting position across subsequent frames. Here, landmarks can be either natural or artificial
and need to be defined by a human operator.

Map-based system are quite successful to solve tasks in known and well-defined environments.
However, they are strongly affected by certain limitations [24, 23]:

• Prior knowledge of the environment in the form of a map is needed. Without an addi-
tional obstacle avoidance systems, they are unable to navigate dynamic environments.

• Ambiguities in matching increase the complexity and reduce the systems’ robustness.
Map-based systems are unsuitable to navigate cluttered, chaotic environments.

2.1.2. Map-Building Systems

Map-building systems have received the highest attention in recent years. Compensating
one of the main drawbacks of map-based systems, map-building systems navigate the
environment, while building a representation of it. Although other methods exist, by far
the leading strategy, is Simultaneous Localization and Mapping (SLAM). These systems are
able to navigate unknown environments by performing three activities in parallel, navigation,
mapping and localization [24, 23, 2].
Vision based SLAM (vSLAM) algorithms have been greatly developed in the last thirty years,
and are currently considered the state-of-the-art approach for visual robot navigation. Hence,
a more detailed analysis of the strategies employed, and their shortcomings, is in order:

vSLAM Methods

With the rapid development in camera technology, camera sensors have become cheaper, they
consume less power and are able to provide robust and highly detailed real time information
of the environment. vSLAM algorithms rely solely on cameras as their navigation sensor;
significantly increasing the range and flexibility, not to say affordability, of their application
domain. Nevertheless, compared to other approaches that use different sensors (e.g. Lidar),
vSLAM algorithms come with a higher technical difficulty due to the limited field of view [2,
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26].
vSLAM works in four modules. In the first module, the sensor data is retrieved and pre-
processed. Next, the Front-End module uses the image motion to generate a first estimate
of position. In parallel, a system called Loop Closure uses the preprocessed sensor data to
calculate the similarity between the current image and a stored map representation. The third
module, Back-End, constraints the initial estimation from the Front End with the information
from the Loop Closure. Finally, the Back-End solves an optimization problem between the
last module, Map, and its current global estimate of the agent’s position [2].
Based on the method employed by the Front-End, vSLAM algorithms are divided in two
categories: indirect and direct methods [2, 25]:

Indirect methods Indirect Methods are based on the assumption of geometric consistency.
Instead of using entire images, algorithms in this category use geometric features to estimate
the image motion. A feature should be invariant to rotation, viewpoint and scale changes, as
well as robust against noise, blur and illumination. These feature points need to be extracted,
matched and estimated. The first step, feature extraction, is a computational expensive
operation, hence the success of the algorithm relies heavily on the speed and quality of
feature extraction (feature extraction problem). SIFT is the most used extraction method (see
section 2.2.2 for more detail). Like with absolute map-based systems, matching is also an
important issue, heavily constrained by mismatches and moving targets (correspondence
problem).
Furthermore, the density of distinct points that the algorithm can reconstruct has a strong
influence on the application domain; indirect methods do not perform well in cluttered
texture-less environments [2, 25].

Direct methods Direct methods are based on the greyscale-value invariance assumption:
a pixel has the same greyscale value in subsequent images. Hence, the direct method does
not extract individual features, but uses all the information in the image to estimate image
motion. Algorithms under this category are more robust to geometric changes. They are in
general faster and are better at dealing with dense maps. The achievable density of these
maps is proportional to the available computational power. Nevertheless, these algorithms
are sensitive to direct sunlight and shadows, illumination variance and specular reflections [2,
25].

Hybrid methods Hybrid methods attempt to increase efficiency by exploiting each of the
previous methods at its strongest. They first employ indirect methods to initialize feature
correspondence and then turn towards direct methods to refine the camera poses [25].

7
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Challenges of vSLAM

Although vSLAM algorithms have come a long way, plenty of challenges remain to be solved.
Mainly, how to robustly navigate more complex environments while meeting the requirements
of real-time agents [27, 2]:

• vSLAM algorithms are still not very good at dealing with dynamic environments.
Moving elements in a robot’s surrounding significantly complicate feature matching
and generate unwilling changes in illumination.

• Texture richness is important. Indirect methods perform poorly in texture-less environ-
ments. Furthermore, regular patterns can cause mismatches and missing features.

• Variance in illumination violates the underlying assumption of direct methods. It has
jet to be solved for dynamic scenarios and refined for static ones. Intense sunlight and
shadows, as well as reflections common in uncontrolled outdoor spaces, can cause the
system to fail.

• The complex computations required to match camera poses and find a global optimum,
constraints to the size and speed of agents running vSLAM algorithms.

• Scarcity influences the precision during navigation and the quality of the arising maps.
There is a trade-off between density and computational power.

• Mismatches by the Loop Closure detection have the potential to limit the system’s
robustness and fail navigation in both dynamic and static environments.

2.2. Mapless Systems

As established before, keeping a "map-like" representation of space requires the highest level
of cognition (level 4), i.e. relying on maps (either prebuilt or built during navigation) is an
expensive strategy with a strong influence on performance. And yet, evidence suggests that
social insects are able to perform complex navigational tasks without the use of cognitive
maps [28]. Here, I shall hence focus on the next most complex cognitive ability, homing (level
3).
Systems in this category are relatively new compared to the previously described ones.
This section reviews the most important technical and biomimetic approaches to mapless
navigation. Special emphasis is made on insect-navigation models and algorithms.

2.2.1. Optic Flow

Optic flow (OF) is a strategy employed both by humans and animals. Agents use the motion
of the surface elements in the environment to calculate a moving direction and the distance

8
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to obstacles [24]. Speed and accuracy can be regulated according to the task at hand. Bees,
expert navigators, are known for their mastery of this strategy. These insects are able to
regulate flight direction, speed and height as well as avoid obstacles and calculate odometry
with little more than optic flow calculations [9].
Already in 1993 Santos-Victor et al. [29] proposed an optic flow algorithm inspired by the
bee’s flight strategies. Here, localization is achieved by comparing the image velocity of both
eyes (i.e. cameras). If both sides move at the same speed the agent keeps moving forwards,
however if there is a difference, the robot steers in the direction of lower speed.
Robots implementing optic flow as a navigation strategy face two important challenges: (1) OF
cannot disentangle distance from velocity, and (2) OF is very small and thus less descriptive
in the direction of flight [30]. De Croon, De Wagter and Seidl [30] recently proposed a method
that treats optic flow as a learned and not innate feature. Their robot achieves smoother
landings, better obstacle avoidance and higher speeds by implementing a previous learning
process.

Homing based on Optic Flow OF is a powerful tool for steering and object avoidance. It
is however often underestimated as a method of spatial memory. Vardy and Möller [31]
proposed in 2005 a series of techniques based on insect homing that allow corresponding two
images by means of optic flow. They show multiple methods, including block matching and
differential OF as plausible models of efficient insect homing. The simplicity and robustness
of these methods and their propensity for low-frequency features are ideal for lightweight
robot navigation.

2.2.2. Feature-Based Tracking

Equivalent to its map-based and map-building counterparts, mapless feature-based methods
also track the relative changes of previously extracted features across subsequent images.
Since in this case no map is involved, a learning step, where the agent remembers its
surrounding in the form of snapshots at the home location, is required [24].
A feature is a landmark that can be clearly segmented from the image’s background. First,
the agent must extract the same feature in both the current image and snapshot (feature
extraction problem). Then, each feature has to be matched in the current and remembered
image (correspondence problem) [24]. Extraction approaches vary on the level of landmark
uniqueness, while some methods strive for maximal distinctive features, others use less
unique features [31]:

Maximal Distinct Features

Algorithms in this category strive to extract maximally distinct features. The ideal feature is
unique to the point, that it can be corresponded with 100% accuracy, i.e. there is no other

9
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feature that could look like that. The computer vision algorithm SIFT stands out for its
popularity and performance:

Scale Invariant Feature Transform A milestone in feature extraction was the invention of
the scale invariant feature transform (SIFT) algorithm [32]. SIFT is nowadays a standard
method in landmark detection, both for map-building and mapless technical systems alike.
In a series of image operations, SIFT extracts features invariant to scaling, rotation and
illumination, significantly increasing robustness to matching upon re-encounter.
In order to establish one-to-one correspondences, distinct feature methods have to search for
the landmark in the whole image. Since the entire image is searched through anyway, no
preprocessing steps like image aligning are needed. That being said, distinct features are
hard to extract in cluttered environments. Furthermore, the extraction and matching process
are both computational expensive and a trade-off between computation speed and onboard
load has to be made for autonomous agents [24].

Less Distinct Features

Less distinct features are significantly easier to extract, matching, however, is often ambiguous.
One of the first models of insect navigation falls into this category:

The Snapshot Model Most insect navigation research and many robot navigation algo-
rithms relate to the snapshot model. Based on landmark navigation experiments with bees,
Cartwright and Collet [33] described a homing method capable of deriving a heading direc-
tion from the discrepancies between a single snapshot and the current image. Less unique,
dark and bright features are used to navigate. The difference between snapshot and current
image is used to generate a relative movement vector. By iteratively lessening the mismatch
between features, the agent is able to navigate back home.
When using non-unique features, many correspondences might exist. To solve this problem
with reliability, the agent needs to align the current view and the snapshot view to a common
coordinate system. The implications are both unpractical and biologically implausible, which
is why follow-up research has focused on methods of alignment matching [31].

2.2.3. Appearance-Based Matching

In its core, appearance based methods store representations of the environment and associate
them with the correct command to steer the agent to its goal [24]. It is a two-step approach.
First, the agent has to learn prominent information of its surrounding and attach the appro-
priate steering information to it. Afterwards, during navigation, the agent has access to the
correct steering command upon re-encounter with a previously learned template. Different
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methods employ different sources of information to describe unique locations. Two strategies
derived from ant navigation are worth highlighting:

Image Warping The warping method, initially proposed by Franz et al. [34], has proven its
value by multiple robotic implementation as a robust homing strategy. The general idea is to
compute the set of all possible positions and rotations between the current location and the
goal. The current image is distorted (warped) to approximate the view the robot would have,
had it moved according to the corresponding parameters. The warped image can then be
compared with the snapshot by a similarity measure. Homing is achieved by an exhaustive
search for the parameters that generate the most similar warping.
The robustness of this method makes it a very reliable navigation strategy. Nevertheless, the
cognitive complexity grows exponentially with the space of possible parameters, making it
unsuitable for lightweight navigation in complex environments.

Image Difference Function The homing algorithm presented by Zeil et al. [35] is surpris-
ingly simple yet effective. The home location is saved as an omnidirectional image. The Image
Difference Function (IDF) calculates the pixel-wise similarity (root-mean-square) between the
current image and snapshot. In natural images, the difference increases monotonically with
distance from the home location, so gradient descent can be used to determine a heading
direction. To address the image-align problem, compass information can be abstracted from
an equivalent gradient in the rotation Image Difference Function (rIDF).
Although successful in both indoor and outdoor experiments, this strategy is limited by a
certain distance from the home location, within which, a global minimum of the function
exits (often called catchment area) [36]. Further research has shown, that the catchment area
can be significantly expanded by stitching views together and forming routes [37, 38, 39].

2.3. Summary: Technical and Biomimetic Navigation Algorithms

Navigation is a complex task that agents need to master to achieve true autonomy. This
chapter reviews some of the most influential approaches to visual navigation proposed in
the last 30 years. Table 2.1 shows an overview of the different methodologies and their main
drawbacks.
Certain ideas and strategies stretch across the presented categories. A comparison of the

limitation of each methodology leads to certain conclusions:

• Navigation with a map is an anthropomorphic notion. Social insects are an example
of how complex navigational tasks can be achieved without them. Prebuild maps are
just not practical, and building a map during navigation is an expensive luxury. The
procedural nature of mapless strategies is simple yet effective.
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Table 2.1.: Overview of the reviewed algorithms.

Method Category Strategy Main Drawback(s)

Absolute Map-based Exact feature match Map needed, robustness

Incremental Map-based Uncertainty propagation Map needed

Landmark Tracking Map based Known landmark match Landmark design

Indirect vSLAM Geometric consistency Texture, map scarcity

Direct vSLAM Greyscale-value invariance Lightning variability

Hybrid vSLAM Direct and Indirect vSLAM Comp. complexity

Correspondence OF Mapless Optic Flow Robustness

SIFT Feature-Based Maximal distinct features Comp. complexity

Snapshot Model Feature-Based Indistinct Features View alignment

Image Warping Appearance-Based Image Distortion Comp. complexity

IDF Appearance-Based Pixel-Wise Similarity Catchment area

• Across categories, methodologies relying on geometric features (indirect vSLAM, feature-
based mapless) are faced with the feature extraction problem. Robust navigation requires
these features to be scale, rotation and illumination invariant. Feature extraction
algorithms like SIFT are computational expensive and perform poorly in cluttered,
texture-poor environments. Systems that employ less distinct features (Snapshot Model)
perform better under these conditions, but are unpractical due to the image-alignment
prerequisite.

• Using the information encoded in the entire image instead of single features leads to
more robust algorithms (direct vSLAM, appearance-based mapless). A good metric for
image similarity are pixel-wise comparisons. The image attribute used to describe a
location varies across methods. One of them, photometric comparison, is susceptible to
extreme lighting conditions. Optic flow is another source of information that can be
exploited to describe a location. The IDF strategy shows promising results, and it has
been shown that bigger catchment areas can be achieved by stitching multiple views
together.

Mapless, appearance-based strategies are both biologically plausible models of insect nav-
igation and efficient solutions for robot navigation. Current robotic implementations of
these techniques still struggle under certain environmental conditions: cluttered, dynamic,
light-variant sceneries. Wood ants have adapted to navigate under precisely these conditions.
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Yet, we know little about the visual ecology of these expert navigators. In other words, we
have a good model on HOW ants (and robots) can use visual information to navigate, but
still need to understand WHICH information in their natural panorama plays a decisive role.
New research methodologies are needed to explore this question.
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Our VR/treadmill system provides a novel technique to investigate the visual ecology of wood
ants. This chapter deals with the methodologies involved, and is divided in 3 sections. First, I
describe the integration between the treadmill and VR systems. I report the functionality and
limitations of the experimental setup. Next, I describe the experiments we performed. We
collected four datasets, divided in two groups: (i) with a simple visual cue, and (ii) with a
complex scene. These groups correspond to the two main sections of the results (Chapter 4).
Finally, I describe the tools and methods used to analyse the data on each of the four datasets.

3.1. Integration of the Treadmill and VR System

The system is composed of two subsystems, the motion compensating treadmill and the VR
setting. In a previous publication, Goulard et al. [6] documented the treadmill subsystem
extensively, however at that stage of the systems’ development, the VR system had not yet
been developed. In this section the functionality of the experimental setup and the new
integration between both subsystems is described. Figure 3.1 offers an overview of the
complete experimental setting.

3.1.1. Motion Compensating Treadmill

The motion compensating treadmill works through an information loop (3.1A blue, [6]). The
ants are positioned on top of a white foam sphere with a diameter of 120 mm. Aligned to the
centre of the sphere, a high speed zenithal camera (Basler ace acA640-750 µm – monochrome)
tracks the movements of the ant. The camera is positioned 150 mm above the sphere and
is equipped with a 12 mm focal lens objective. External lighting is provided by four lights,
each consistent of three white LEDs and a diffusive cover. The lights are supported by
a white cardboard plane that blocks external visual stimuli. The camera communicates
with a Raspberry Pi (4 Model B) microcontroller (running Ubuntu 17), which serves as the
computation unit of the treadmill system. Here, the motion of the ant is computed into a
compensating motor signal and forwarded to the motor controller via USB. An Arduino Uno
microcontroller connected to 3 motor drivers (STMicroelectronics, ULN-2064B) controls the
rotation of the rotors. The three stepper motors (SANYO SY42STH38 - 0406A) are equally
distributed around the sphere and tilted by 60 deg. Each one is equipped with a dual disc
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Figure 3.1.: Experimental Setting. (A) Information flow between systems: treadmill subsystem
(blue) and VR subsystem (orange). The black arrow symbolizes communication in the close-
loop condition. (B) Top view. VR system is composed of three screens arranged in an
equilateral triangle around the trackball. (C) Panoramic picture from inside the VR chamber.
The horizontal lines of the displayed visual elements are distorted to accommodate the
system’s geometry and appear as projected equidistantly from the ants’ perspective. (D)
Picture of the experimental setup.

omni wheel (aluminium, diameter: 60 mm, 2 discs, 5 rollers/ disc) to avoid creating friction
when the ball has to rotate perpendicularly to the axis of the rotor. The compensation signal
is carried out by the three motors to rotate the sphere and keep the ant at the centre of the
ball. A white board covers the space around the top of the sphere (5 cm) and supports the
three screens of the VR system. A small webcam is additionally fitted to the cardboard ceiling
and allows the experimenter to look inside the chamber without disturbing the ant.

Motion Tracking

The position and orientation of the ants are tracked every 700 frames−1. The exposure time
is set to 1000µs. A custom Python program developed by Goulard et al. [6] and slightly
modified by me is used. Each frame is binarized using a threshold of 50% and reversed such
that the ants appears as a white "blob" in a black background. Based on previous frames
and size, an ellipse is fitted around the contour of the blob that most likely represents the
ant. The centre and orientation of the ellipse are calculated. The orientation is approximated
with a ±180 deg uncertainty, which is resolved in post-processing by assuming the ant moves
forwards, and kept consistent by minimizing the heading change between two consecutive
frames. The initial orientation is determined by the experimenter by looking at the ant though
the webcam and "flipping" the orientation in case of a mismatch. Sudden movements of the
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ants might cause a mismatch in orientation further into the trial. These are addressed in the
data analysis.

Controller

The x and y position of the ant, estimated from the centre of the tracked ellipse, are used to
actuate the motors and keep the ant in the centre of the sphere. The system employs two pro-
portional derivative (PD) controllers, one for each coordinate. For a detailed implementation
of the controller, see [6]. The only change from the previous implementation of the system
are the control parameters. After mounting the VR and treadmill system together, I manually
optimized the proportional and derivative gains (Kp = 1, Kd = 0.05). The control feedback
loop is kept at a frequency of approx. 500 Hz.

3.1.2. Virtual Reality System

The VR system (Fig. 3.1A and B orange) is composed of three LCDs (WINSTAR TFT-LCD
Module 7") with a resolution of 800x480 px. The screens (165x100 mm) are mounted on the
white board around the sphere, forming an equilateral triangle. Each screen is powered
independently and connected via HDMI to its individual graphics process unit (GPU). All
three screen-GPUs connect via micro-USB to a central GPU running Ubuntu 17. The VR
computer runs a custom python program developed by Goulard et al. [40] and slightly
modified by me. The communication between the GPUs is coordinated by an instance of
the Robot Operating System (ROS); the central VR GPU serves as master and the individual
screen-GPU’s subscribe to it.
The VR system supports the display of simple visual shapes and natural panoramic images.
Regardless of the input, the displayed visual elements are distorted to fit the screen geometry,
i.e. as the image elements move towards the corners, the horizontal lines are scaled dispropor-
tionally to accommodate for the change in perspective. Hence, from the centre of the sphere,
the visual elements all look as if projected equidistantly. Figure 3.1 shows the result of the
distortion on the example of a black rectangle on one of the corners.
The system is also able to display panoramic images. These are first unwrapped (black
pixels are used to fill up empty space) and then distorted to accommodate for the change in
perspective. The system is able to display full colour images, nevertheless for the experiments
presented in this thesis, we transform the images into black and white (Fig. 3.3).

3.1.3. Systems Integration

The treadmill and VR systems communicate using ROS. The treadmill computer serves as
ROS-master, and the VR computer subscribes as a listener. This way both systems stay in
synchrony. The experimental conditions, i.e. type and duration of visual display, are defined
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by the VR system. This one remains in standby until a new "trial" is started globally by the
treadmill system. Communication happens at a rate of approx. 65 Hz. At each time step, the
treadmill system communicates the estimated heading direction of the ant to the VR system.
Two important data outputs are generated. The treadmill outputs the angular velocity of the
sphere at a rate of approx. 113 Hz and the VR system outputs the heading direction of the
ant at a rate of approx. 65 Hz. The timestamp of each data entry is synchronized by the ROS.

System Open- and Close-Loop

The integration of both systems allows to manipulate the feedback loop between the ant and
its environment. From a systems’ perspective, the natural condition of the world is open-loop.
This means that the ant has an influence on how she perceives the environment by moving,
e.g. when the ant rotates clockwise, the visual features appear to rotate anti-clockwise. This
is an example of a rotational open-loop. In translational open-loop, when the ant moves
towards an object, the projection of the object on the ants’ retina grows.
In its current stage of development, the VR system is not yet capable of simulating a
translational open-loop, i.e. when the ant moves towards a black rectangle, the display size of
the rectangle stays the same. Hence, our system is constantly in translational close-loop.
For rotation, the system offers the possibility to change between open- and close-loop. If a
visual stimulus stays at the same position on the screen, the system is simulating the natural
open-loop condition. However, if we rotate the visual stimuli on the screens by the same
amount and direction as the ant rotates, then the system is in close-loop and the ant has no
control over what she sees. This is a powerful tool to analyse the neuronal circuitry of the
insects. To achieve this condition, the VR system takes the estimated orientation of the ant
communicated by the treadmill and rotates the displayed stimulus accordingly.

3.2. Experiments

To test the functionality of the system and learn more about the visual strategies employed by
ants, we designed two groups of experiments. All the experiments were carried out at the
University of Sussex in Brighton, UK.

3.2.1. Wood Ants

We work with wood ants (Formica rufa) that are kept in the laboratory (Fig. 3.2). The colony
was collected from woodland (Broadstone Warren, East Sussex, UK) and is housed in large
tanks in a lab with regulated temperature of 20-25°C. Water, sucrose and dead crickets are
provided ad libitum on the surface of the nest. Ants are kept under a 12 h light to 12 h dark
cycle. During the experiments, the food supply is kept at a minimum in order to increase
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Figure 3.2.: Wood ant. Image shows a forager of the species Formica rufa standing on the
trackball while facing a black bar as a unique visual cue in an otherwise white environment.

foraging motivation. Water access remains constant.
During an experiment, we are mostly interested in ants with a strong motivation to forage.

To only select "motivated" ants, we position a small plastic box without lid on the surface of
the nest. Motivated foragers climb inside the box. The inner walls are painted with a fluon
solution, so the ants can not climb back out. Only ants that pass the "box-test" are tested on
the VR system.

Ant Marking

In some experiments, individual ants are tracked across multiple trials. Between each trial,
the ants are returned to their nest momentarily. In order to differentiate them, ants in these
experiments are marked. We use acrylic paint in different colours to mark the thorax and
abdomen of the ants with a tiny drop of paint. Through a colour code, we are then able to
identify individuals.

3.2.2. Experimental Procedures

The general procedure to test the ants is constant across all trials. After depositing the ant
on the surface of the trackball with a plastic flag, the experiment is started. Within the first
30sec, the experimenter determines if the heading orientation is being tracked correctly, and
otherwise flips it with a keyboard command. The ant stays on the treadmill until (i) the time
is over (either 3 or 10 min), (ii) the experimenter notices that the ant tracking flipped the
heading direction, or (iii) the ant escapes the treadmill. In any case, the tracking is stopped,
and the ant is collected. Trials that incidentally stop in the first 30% of the total time are not
saved. In these cases, the same ant is tested again.
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Experiment Conditions Trials Time Frame

Open-loop C20: s0, s1, s2, s3 43 27-29.04.2021
Open-loop C20: s1, s2, s3 26 13.07.2021
Open-loop C40: s1, s2, s3 45 14-16.07.2021
Close-loop 0, ±30 offset 69 21-22.04.2021
Close-loop ±20 offset 31 12-13.07.2021
Close-loop ±10, 40 offset 64 17-19.07.2021
Artificial Pattern A1, B2, A3, B4 95 09-11.06.2021
Natural Image A1, B2, A3, B4 74 13-14.05.2021
Natural Image A5 13 18.05.2021
Natural Image B1, C1 35 13-14.05.2021

Table 3.1.: Overview of recording days and sample sizes for all four datasets.

Experiments with a Simple Visual Cue

Two datasets with a simple visual cue were collected: open- and close-loop. Both follow the
same experimental procedures. A simple black rectangle is used as a unique visual landmark
in an otherwise white environment (Fig. 3.2). The size of the cue is of 35 deg high and
20 deg wide. The close-loop dataset uses an additional experimental condition where the cue
dimensions are altered to 35x40 deg. All the experiments in this group last a maximum of
10 min. In this group, only naive ants are tested. Table 3.1 provides an overview of the test
dates and sample sizes.

Experiments with a Complex Pattern or Image

In order to test the VR’s ability to display complex visual stimuli, as well as explore the visual
ecology of wood ants, two datasets were collected: artificial pattern and natural image. Both
have similar experimental procedures. In this group, we test individual ants multiple times
(see Ant Marking). The marked ants are returned to their nest after each trial for approx.
3 hours. In the natural image experiment, the fifth and last trial is conducted four days later.
Table 3.1 provides an overview of the test dates and sample sizes.

Artificial Pattern The visual stimulus used in this dataset is a panoramic pattern of black
rectangles (Fig. 4.11). The rectangles are organized in groups. There are three groups: one
wide rectangle, two middle-sized rectangles and four thin rectangles. The height of all bars is
the same. The panoramic pattern was designed in Cartesian coordinates and wrapped into
polar coordinates using an external function (MATLAB 2021a, PolarToIm(img, 0, 1, 1024, 1024)
[41, 42]). The polar pattern is then fed into the VR system. This process is followed for each
rotation of the pattern.
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Figure 3.3.: Natural woodland image. (A) Raw image in original rotation, (B) image from
A rotated by +90 deg and transformed to black and white. (C) Picture from inside the VR
chamber with condition C, which is image A rotated by -90 deg.

Natural Image For this dataset we use a panoramic picture taken in the woods (Abbots
Woods, East Sussex, UK) using a fish-eye camera (Kodak SP360 4K). We selected the image
for its texture richness. The raw picture is rotated according to the desired condition (A, B,
C). We binarize the pictures before feeding them into the VR system. Figure 3.3 shows each
of the steps.

3.3. Data Analysis

For the entire data analysis, I use MATLAB [41]. The data outputs (see 3.1.3) for each trial are
saved in .csv format and imported into MATLAB. In total, four datasets were collected, namely:
open-loop, close-loop, artificial pattern and natural image. Each is analysed independently.

3.3.1. Data Preprocessing

As described before, one of the shortcomings of the tracking system is the inability to dif-
ferentiate between the head and tail of the ant, leading to an ±180 inaccuracy. To deal with
this, at the beginning of each trial the experimenter flips the heading direction manually in
case of a wrong head-tail match (happens in 50% of the trails). During the trial, the treadmill
system assumes a minimal change in heading direction between two frames and hence keeps
this one constant. Nevertheless, if an ant makes a very sudden turn or stands on its hind
legs (reducing the ellipse shape to a circle), the ant-tail matching might fail again. These are
ant-induced flips (happens in about 10% of the trials), and the data afterwards is not useful
any more.
All datasets undergo the same preprocessing step. Based on the recorded heading direction, I
calculate the angular velocity each 0.2 seconds. A threshold in the angular velocity is manually
fitted to each dataset to identify strong sudden changes in heading direction, i.e. a flip either
manually induced by the experimenter at the beginning or by the ant due to a strong sudden
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movement (close-loop: threshold = 455 deg/second, all others: threshold = 750 deg/second).
A correction induced by the experimenter at the beginning needs to happen within the first
60 sec. Data before this flip is cut off. Any subsequent flip outside this time fame is considered
ant-induced, and the data after the flip is cut off. Hence, only data after the human correction
and before an ant-induced-flip, is considered further. Finally, the total recording time after
the cuts needs to be greater than 10% of the experiment time, trails that do not match this
criterium are discarded.
Afterwards, all heading angles are rotated by 90 deg to accommodate to the system’s coordi-
nate system, which has a zero value at the centre of screen one and positive angular velocities
in counterclockwise rotations.

3.3.2. Chunks and Activity Levels

I use the activity of the motors as a metric to segment ant behaviour. The underling
assumption is the following: ants are attracted to visual landmarks. When an ant moves
towards a landmark, it will decrease its angular speed and increase its forwards speed. A
high forward speed on the treadmill is reflected in a high (counter) speed of the trackball.
Hence, the level of ant attraction is proportional to the rotation velocity of the trackball.
To exploit this, I segment the motor angular velocity data into chunks of uninterrupted
activity. Figure 3.4 illustrates the chunk extraction process. First, I sum the x (A) and y
angular velocities (Θ̇x and Θ̇y) and take the absolute (B). Each data entry is then classified into
a quadratic scale, assigning each entry a value between one and four based on the strength
of the signal. To encode the density of the signal, I calculate the average value over a 2 sec
widow (C). Here, all values under 0.05 are rounded down to zero. The resulting step function
encodes both the density and the amplitude of the signal. I smooth this function using a
moving median and a window of 1000 entries (D).
The smoothed step function is divided into chunks. A chunk is a period of time within which
the step function never reaches zero. For each chunk, I determine the integral under the step
function. Integrals under a value of 100 are discarded as noise. All other integral values
(one per chunk) in a dataset are pooled together, and the quartiles are calculated. I use the
quartiles as boundaries and assign each chunk an activity level between one and four (E).
Since the treadmill and VR data are synchronized, I can take the time interval of each chunk
and apply the same division to the ant’s heading data. The activity level, which is soley based
on motor activity, is kept. As an end result, I have the ant’s heading direction data segmented
and categorized into activity chunks (F).

3.3.3. Individual Analysis

Although the overall analysis of the data followed the same methodologies, in each dataset I
performed some specific manipulations in the data. This section gathers these techniques.
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Figure 3.4.: Activity chunks extraction process. Motor angular velocity in blue, ant angular
velocity in grey. (A) Raw motor angular velocity in x direction (Θ̇x). (B) Absolute sum of Θ̇x

and Θ̇y. Thresholds used to sort data in next step. (C) Motor activity divided in four levels
according to amplitude. Density of the signal is encoded by the average amplitude in a 2 sec
window. (D) Contour of the smoothed motor activity. Data is divided into chunks within
which the motor activity does not reach zero. (E) Motor data (same as B) with the extracted
chunks. The integral under the contour of each chunk is calculated and divided into one of
four quartiles of activity. (F) Angular velocity of the ant with the chunk divisions and labels
calculated on the base of motor activity.

Circular Histograms

For all circular histograms presented in the results, I use the polarhistogram() function with a
bin size of 5 deg and a normalization set to probability. The mean and variance values of all
circular data are calculated using the circular statistics toolbox [43]. All histograms within a
dataset are scaled by the same factor. The dots on the outer rim of the plot have the mean
angle for an individual ant or chunk and are colour coded to represent the relative variance of
that mean. To do this, I pool together the variance value of all ants in that condition, calculate
the quartiles and use these to assign each dot a fill-strength: fully-filled = low variance, no-fill
= high variance.

Moments of Fixation

For the experiment presented in section 4.1.2, I pool all screen variations together. To achieve
this, I rotate the heading direction of the ants by the offset of the respective condition to
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screen 1. Then I define "moments of fixation". An ant is considered to fixate a visual cue if its
heading direction stays within ±45 deg of the centre of the cue for at least 5 seconds.

Mean Heading Direction in a Moment of Fixation A qualitative analysis of the data led
to the assumption that ants fixate the edges of the cue rather than the centre. To test for this
hypothesis, the mean heading direction of the fixations is calculated. Most of the ants switch
between cue edges within one fixation once or even twice. In these cases, the mean heading
direction balances down to the cue centre (by definition 0). To account for this, fixations that
cross the centre of the cue for longer the 30% of the entire duration of the fixation are divided
at the crossing point. If this is the case, two individual mean values are calculated, one for
the values below zero and one for all values above zero. In subsequent analysis, I weight
these means by the amount of data entries they are calculated from. The 30% threshold is
determined through a qualitative analysis of the splits.

Turning Points, Frequency and Amplitude

To analyse the oscillations in heading direction, I extract the "turning points", i.e. points
where the ant starts turning in a new direction. To do this, I first smooth the data using the
smoothdata() function. In the case of the open-loop, I only calculate the turning points of data
within a ±45 deg range centred to zero by definition, so the data can be smoothed directly
with a factor of 0.15. In the case of the close-loop, the angle range is much greater, so I first
unwrap the data (unwrap()), smooth the data by a factor of 0.015 and wrap it back to ±π

(wrapToPi()). For both conditions, I then calculate the differential of the smoothed heading
direction, i.e. the angular velocity between every data entry. A turning point is a point where
the angular velocity switches sign or is exactly zero.
The frequency and amplitude are calculated as the difference in time and heading direction
between two subsequent turning points. I filter out turning points (and hence amplitudes
and frequencies) where the corresponding amplitude is smaller than 0.5 deg in the open-loop
and smaller than 5 deg in the close-loop. This serves as a noise filter.

Angular Velocities The angular velocities presented in the open-loop results are calculated
using the diff() function. The range of the data allows for the normal differential function.
Since the data here is split in small fixations, the angular velocity has to be calculated before
smoothing to avoid losing the expression on the edges. The angular velocities in the close-loop
are calculated after smoothing using the circ_dist() function [43]. This is necessary due to the
step-like character and range of the data.
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Image Difference Function

In section 4.2.2 I evaluate the similarity betweens the display of the three different rotations of
the same image. To do so, I took a panoramic picture from inside the experimental chamber
(we removed the trackball and placed a fish-eye lens, Kodak SP360 4K instead). This is an
approximation of what the ant sees inside the chamber. I unwrap the pictures using the
external function ImtoPolar(img, 0.35, 0.85, 700, 3072) [42]. I then binarize the resulting image
and flip it vertically to accommodate to our perception.
The rotation image difference function calculates the pixel wise root-mean-square difference
between each 10 deg rotation of image A against all images, A, B and C.

3.3.4. Statistics

All statistics are calculated using MATLAB and the Statistics and Machine Learning Toolbox
[41]. For all circular data, I use an external toolbox [43].
Given the high frame rate of the treadmill system, the data is quite dense, e.g. a 10 min
recording of ant heading generates around 50,000 entries. The statistical tests employed to
analyse the data, namely circular Rayleigh-Test (RT), circular V-Test (VT), circular K-Test (KT)
and Kolmogorov-Smirnov Test (KS-T) are not build to handle such high sample sizes [44].
To deal with this, when performing the statistical tests, I take only every x data entry, where x
is the data length divided by a factor of 200. This value was manually adjusted based on the
dimension of the p values (10−20 < p < 1) and is kept constant throughout the entire analysis.
Given the arbitrariness of this adjustment, all statistical results presented in this thesis should
be taken as an orientation. To represent the magnitude of very low p values, if p is smaller
than 10−4, I use the notation p « 0.05.
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The use of VR in behavioural experiments opens new opportunities to investigate the visual
ecology of ants. The novel system described in chapter 3 allows ants to move freely (un-
tethered) without changing location and gives the experimenter full control over the visual
stimuli the ants are subject to. In this chapter, I describe the performance of the overall system
in two parts.
First, I explore how the treadmill and VR system integrate by presenting a single visual bar
either in open or close-loop. From a systems’ perspective (engineering perspective), open-loop
is when the agent has control of how the environment looks like, i.e. if the ant moves towards
something or rotates in one direction, its visual perception of an object grows, or rotates
in the opposite direction. This is how an animal naturally perceives the world. Contrarily,
in close-loop the agent has no power over their perception of the environment, if the ant
moves, the retinal image stays the same. It is worth mentioning, that in biology these terms
are used inversely; from the perspective of the animal, close-loop is the natural state of the
environment. Here we stick to the engineering definition.
At its current state of development, only rotational open-loop is supported by the VR system.
This means, that when the ant moves towards a visual cue, the retinal projection does not
grow as it would in the real world. Hence, for all the experiments described in this thesis, the
system is in translational close-loop, and we can only change between rotational open- and
close-loop.
The second part of this chapter deals with the representation of more complex patterns and
images on the VR system. I explore the limitations in representation and the orientation
behaviour of ants in response to complex visual scenes.

4.1. Treadmill and VR Integration in Open- and Close-Loop

Wood ants are innately attracted to conspicuous visual cues [45]. Most insects are attracted to
dark visual objects, and bars and cylinders are commonly used in behavioural experiments
[33, 46].
We start testing the open-loop VR-system with the display of a simple black bar against a
white background. We test 111 naive ants in seven different conditions. The visual cue is
displayed at the centre of one of the three screens (S1, S2 and S3) or not at all (control = S0).
The height of the bar remains constant (35 deg), however two different widths, 20 deg (C20)
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Figure 4.1.: Polar histograms of heading directions in response to a simple black cue. The
width of the cue is 20 deg (blue) and 40 deg (orange) respectively. The cue is displayed
in either of the three screens (S1, S2, S3) or not at all (S0). Rectangles on the edge of
each histogram show the position of the respective cue. The circular histograms show the
probability distribution for the entire group, bin size 5 deg. The circles show the mean
heading direction for each ant in the group. The circle shade of colour encodes the variance
in quartiles, fully-filled = low variance, no-fill = high variance.

and 40 deg (C40), are tested. We use both widths in all three screen variations. Each of the
resulting seven groups has approx. 15 ants (S0: n=15; C20: S1 n=18, S2 n=16, S3 n=16; C40:
S1-S3 n=15). Each ant is tested for a maximum of 10 min. Figure 4.1 shows the ants’ heading
directions in response to the simple stimulus in each condition.
The ants show the expected (innate) attraction towards the visual cue in all but one conditions

of the bar (S1 C20 and C40: Rayleigh-Test (RT) p « 0.05, V-Tests (VT) p « 0.05; S2 C20 and C40:
RT p « 0.05, VT p « 0.05; S3 C20: RT p « 0.05, VT p « 0.05; S3 C40: RT p = 0.39). The ants in
the control are not significantly directed (S0: RT p = 0.4), and the variation in cue width does
not significantly influence the heading distribution (K-Test (KT) C20 vs. C40: S1 p=0.69, S2
p=0.32, S3 p=0.18).
The results validate the ants’ ability to express their natural behaviour despite the novel,
unnatural experimental setting. The display of visual information in either of the three
screens is equivalent. Furthermore, the control condition lets us rule out any directional
biases caused by the setup. Nevertheless, the presented (raw) data is quite turbulent, and the
ants’ behaviour is shadowed by noise introduced by the experimental setup and settings.

4.1.1. Using Ant Activity as a Metric to Filter Behaviour

Although the experimental setting allows the ants to move untethered, the movement and
vibrations of the treadmill introduce some noise into the data. Furthermore, as discussed
before, the visual stimuli presented to the ants does not change in response to the ants’
translational movements, i.e. the cue does not "grow" as it should if the ant would approach it
naturally. I assume this to have an effect on the ants’ motivation to continue moving towards
a landmark they do not seem to ever get close to. This section investigates a method to filter
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Activity S0 S1 S2 S3 ∑ S1-S3
75-100% 13 13/13 14/13 11/09 38/35
50-75% 21 12/12 9/03 18/11 39/26
0-50% 59 28/17 34/08 20/07 82/32

Table 4.1.: Chunk sample sizes divided by activity level and conditions. Values for C20 and
C40 before and after the slash respectively (C20/C40).

the ants’ behaviour.
Roughly, the ants’ behaviour while on the treadmill can be divided into one of three activities:
(i) resting, (ii) exploration and (iii) attraction. Most of the ants engage in resting behaviour (i)
at least once while on the treadmill. Here, the ants stop running and keep the same heading
direction for a longer period of time. Video recordings from inside the VR chamber often
show the ants rubbing their antenna with their front legs during these resting periods. An
extreme example of this is seen in Figure 4.1 S3, just at the edge of the cue, the blue histogram
is significantly bigger for a single bin.
In the exploration activity (ii), the ants constantly change their heading direction. The
control condition is a good example of how the heading distribution looks liked during this
activity (Fig. 4.1 S0). During exploration, the ants might rotate through the cue without
acknowledging it (if there is one) or change into attraction (iii) behaviour upon encounter.
This last activity is when the ants display a clear attraction for the visual cue and attempt to
run towards it. A high activity level and low heading variance are typical for this activity.
The overall directness of the S1 to S3 conditions is due to this activity.
As discussed in detail in chapter 3.3.2, I developed a system to categorize the ants’ activity
during the experiment. Based on the movement of the ball (i.e. angular speed induced by the
motors) I divide the recording in so-called "activity chunks". Each chunk is defined by an
integral value that encodes the duration and the amplitude of the activity; a high integral is a
relatively long and strong moment of ant activity. The integral is completely arbitrary as an
absolute value, but functions as a relative comparison.
I analyse the activity for the experiment with the simple black cue. Chunks with an integral
under a threshold (100) are initially filtered out as noise from the motor vibrations. A total of
454 chunks across all conditions are extracted. The integrals of all other chunks are pooled
and the quartiles calculated. The data is then split into 4 levels of activity using the integral
quartiles as boundaries (see Tab. 4.1 for sample sizes). Figure 4.2 shows the heading direction
data split into activity levels. The lower two levels are pooled together (0-50%) as they
displayed the same characteristics in the distribution.

The heading direction is not directed for any cue location or cue width in the lowest three
activity levels (0-75%; S0-S3, C20 and C40: RT p > 0.05 for all). In the highest activity level
(75-100%), all but one conditions are directed and have a mean towards the centre of the
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Figure 4.2.: Polar histograms of heading directions divided by activity levels. Each row shows
the heading data within a level of activity. The width of the visual cue is 20 deg (blue) and
40 deg (orange) respectively. The cue is displayed on either of the three screens (S1, S2, S3)
or not at all (S0). The angle of the centre of each screen is marked in the top left plot. The
polar histograms show the probability distribution for the entire group, bin size 5 deg. The
circles show the mean heading direction for each ant in the group. The circle shade of colour
encodes the variance in quartiles, fully-filled = low variance, no-fill = high variance.

respective visual cue (S0: RT p=0.8; S1 C20 and C40: RT and VT p « 0.05; S2 C20 and C40 RT
and VT p«0.05; S3 C20: RT and VT p<0.05, C40: RT p=0.08).
The level of activity is a good metric to separate the ants’ behaviour. This separation of the
data roughly corresponds to the three behaviours described above. In the lowest two activity
levels, we can see single, very concentrated bins characteristic for resting behaviour (i) for all
four groups. The angle of the resting moments is randomly distributed, hence the visual cue
has no effect during resting. Activity between 50 and 75% is equally spread all around the
circle, but less punctuated. This matches the characteristics of exploration behaviour (ii): high
activity and heading variance, with a slight influence by the visual cue. Exploration can also
be seen in all conditions. Attraction behaviour (iii) can be clearly seen in the highest activity
level. The histograms are (mostly) directed towards the visual cue, and the motivation of the
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ant to pursue the cue is mirrored in the strong motor rotation.
Interestingly, the control condition shows some exploration behaviour in the top level (Fig.
4.2 S0 75 - 100%). This suggests that this might be the case for the other conditions as well,
and might explain the lack of directness in the S3’s conditions. We also need to consider that
the ants in the control condition could still be engaging in low attraction behaviour to any
random element of the visual environment.
The ants are able to express some of their natural behaviour on the treadmill. The experimental
setup introduces some noise into the data, yet I have developed a methodology to filter our
noise and extract the ants’ behaviour. This serves as a foundation for a more in depth analysis
of behaviour.

4.1.2. Landmark Attraction in the Open-Loop

Instead of moving straight forward, wood ants are known to oscillate when they are navigating
towards a landmark. This strategy allows them to adjust their heading direction and extract
parallax information [46]. In this section, I investigate how ants fixate a simple, conspicuous
visual landmark on the treadmill. I start by describing the path details of ants attracted to the
visual cue in the rotational open-loop experiment.
Parting from the results of section 4.1.1, we are only interested on the attraction behaviour
and thus only consider the chunks in the top level of activity (75-100%). Furthermore, I pool
together conditions S1 to S3 by rotating the data such that all screen centres align (S2 rotated
by -120 deg and S3 by +120 deg). The control is also not considered any further. Hence, we
have two conditions of the visual cue, C20 and C40 with 38 and 35 chunks of strong activity
respectively.
To further investigate cue attraction, I define "moments of fixation" within the activity chunks.
An ant is considered to fixate the landmark if its heading direction is within ±45 deg of the
cue centre for longer than 5 seconds. I extracted 138 moments of fixation for C20 and 115 for
C40, with an overall mean duration of 11 sec. Figure 4.3 shows the characteristics of a fixation
with two examples.

Edge Fixation

Ants on the treadmill oscillate to fixate the visual cue. Instead of fixating the centre of the cue,
they alternate between fixating the left and the right edge of the cue (Fig. 4.4). In figure 4.3,
the blue path shows a typical fixation of the left C20 edge (10 deg). The mean heading angle
along the path (blue dashed line) is 14.2 deg which roughly corresponds to the left edge.
However, a lot of ants do not only fixate one of the edges, but alternate between them during
a single fixation (orange path). In these cases, the mean of the entire path would balance
out to approx. zero. To investigate the actual fixation angle, I separate the fixations at the
crossing point and calculate two separate means. In the orange path, the ant oscillates around
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Figure 4.3.: Heading direction during a fixation. The plot shows two examples of a fixation,
one for the C20 condition (blue, ant 7 fixation 11) and one for C40 (orange, ant 75 fixation
10). Paths smoothed for representation. Dots represent the turning points. Frequency and
amplitude are calculated between two neighbouring turns. Each segment is categorized by its
direction to the cue centre: towards the cue (black arrows) or away from the cue (red arrows).
Dashed lines show the mean for each path respectively. Since the orange path crosses the cue
centre, two mean values are calculated. Coloured bars on the left show the position of the
cue.

the right C40 edge (mean: -19.48 deg) before crossing over and oscillating around the left C40
edge (second mean: 18.53 deg).
Figure 4.4 gathers the mean angles for all fixations. The histograms are weighted by the
amount of data points represented by each mean value. In the C20 condition, we can see a
clear peak in probability around both of the edges, -10 deg and +10 deg. In comparison, in the
C40 condition, the probability is higher further away from the cue centre, however not quite at
the expected ±20 deg. A possible explanation is that the impulse to switch edges is governed
by the distance between them: the higher the distance, the higher the need to switch. Hence,
in the C40 position the ant sees both edges 40 deg apart, and has a stronger impulse to switch
to the other edge. This spreads the distribution of heading directions and moves the means
towards the centre. In fact, the paths in C40 have around 10% more crossings than C20.
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Figure 4.4.: Distribution of weighted mean headings. C20 in blue and C40 in orange. Bin size
1.5 deg. For each fixation, either two or one mean heading values are calculated, depending
on the ant crossing the cue centre for more than 30% of the path or not. Each mean value is
weighted by the amount of data points it represents.

Amplitude and Frequency of Oscillation

For each fixation, I extract the turning points, i.e. the moments where the ant switches
moving direction. I calculate the frequency and amplitude of the oscillation as the time and
angle difference between each neighbouring turning point (Fig. 4.3 illustrates this process).
Figure 4.5 pools together all the fixations. The frequency is relatively constant across all
fixations, with a mean value of 1.6 Hz in both conditions (Kolmogorov–Smirnoff test (KS-T):
C20vsC40 p>0.05). The amplitude has a mean value of 11 deg in C20 and 12.8 deg in C40
(KS-T: C20vsC40 p>0.05), it is however more spread towards the high amplitudes, specially in
the C40 condition. This can be explained by the fact that the oscillations while changing cue
edge tend to be of higher amplitude, specially in C40 where the ant needs to travel a longer
distance between edges.

Angular Velocity During Fixations

Lastly, I investigate the angular velocity during a fixation. I break down the oscillation and
categorize each turn according to its direction: (i) towards the cue or (ii) away from the cue
(Fig. 4.3 illustrates this with black and red arrows respectively). Figure 4.6 shows the angular
velocity for ants moving towards (bottom) and away (top) from the cue at different angular
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Figure 4.5.: Frequency (A) and amplitude (B) of the fixations. Box plots show the distribution
of values for both conditions C20 (blue) and C40 (orange). The middle line shows the median,
the box frame the 25th and 75th percentiles. Whiskers show all extreme values not considered
outliers (crosses). Filled dots represent the mean values.

distances from the cue centre. In general, ants on the treadmill move at a speed of approx.
13 deg per second, which is consistent with our frequency and amplitude calculations.
In the towards speeds, there is a drop in velocity around 35 and 40 deg which rises again
towards 45 deg. This is the same angle upon which Goulard et al. [40] measured ants to first
react to the presence of the visual cue on a previous version of the VR system. Hence, when
moving towards the cue, the ants slow down upon first encounter with the black rectangle.
The edges of the respective cues are roughly marked by a speed decrease, the C20 angular
velocity falls slightly between 10 and 15 deg in a similar dimension as the C40 does between
20 and 25 deg. Furthermore, the C40 speed is higher than the C20 for the lower distances
(20-0 deg). Again, we can explain this with the fact that the ants need to travel a higher
distance between cue edges and hence keep a higher velocity as they move past the cue centre.

Ants in this experiment are in rotational open-loop. They express the same oscillation
behaviour [46] and edge attraction [47] previously described in ant research. Both behaviours
rely on the visual feedback the ants gathers while navigating. To better understand the
neuronal regulations of these behaviours, we exploit the experimental setup and test the ants
in rotational close-loop.

4.1.3. Ant Behaviour in the Close-Loop

One of the remarkable opportunities that come with the VR system, is the possibility to close
the loop between the ant and its environment. This section seeks to validate the close-loop
condition with a comparison between the results in section 4.1.2 and a set of new close-
loop experiments. Furthermore, I explore the implications of the closed-loop on the ants’
behaviour.
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Figure 4.6.: Angular velocity during periods of fixation. Box plots show the distribution of
angular velocities in relation to the distance of the ant from the cue centre. Each box plot
gathers the velocities in ±5 deg range. The middle line shows the median, the box frame the
25th and 75th percentiles. Whiskers show all extreme values, not considered outliers (not
displayed). The dots show the corresponding mean for each group. Bottom half of the plot
shows velocities while approaching the cue, top half while moving away from it. Condition
C20 in blue and C40 in orange.

Using the same simple visual cue (35 x 20 deg, equivalent to the C20 condition in open-loop),
we test 150 ants on the treadmill while on close-loop. The visual cue is rotated by the system
to always be directly in front of the ant (offset = 0 deg, angular distance between cue centre
and ant heading) or to have an offset of ± 10, 20, 30 and 40 deg for a total of 9 different
conditions (-40: n=16, -30: n=22, -20: n=15, -10: n=15, 0: n=18, +10: n=13, +20: n=15, +30:
n=22, +40: n=14). Each ant is tested for a maximum of 10 min.
Following the assumption that ants have an innate attraction to the visual cue, I use the
activity level methodology previously described to filter behaviour (Fig. 4.7). A negative offset
between heading direction and cue centre should generate mostly negative angular velocities,
and the opposite for positive offsets. The integral boundaries are similar in dimension to the
open-loop experiments. Since by design the ant is always in viewpoint of the visual cue, in
theory the ants should always be in attraction behaviour. This is also the case with every
ant at the very start of the trial (all ants have a chunk of strong activity at the beginning).
However, as the trial progresses, most ants temporally abandon the attempt to approach the
cue and also engage in exploratory and resting behaviour.
I filter out unwanted behaviour in the lower levels of activity (0-68%). The top level of activity
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Figure 4.7.: Angular velocity for each offset condition and activity level. Box plots show the
distribution of angular speeds for each offset of the cue. Each plot stands for one level of
activity: 0-50%, 50-68% and 68-100%. Sample sizes displayed on top. The middle line shows
the median, the box frame the 25th and 75th percentiles. Whiskers show all extreme values,
not considered outliers (not displayed).

(68-100%) gathers the chunks where the ants move mostly towards the cue and are hence
considered to be engaged in attraction behaviour. The boundary is moved down from the
original 75% to 68% in order to increase the sample sizes of the top activity level. The sample
sizes are displayed at the top of Figure 4.7. For all further analysis, I only consider the chunks
in the 68-100% level.

Close-loop Oscillation

Despite the unnatural close-loop setting, the ants stick to their innate oscillation behaviour
while attempting to approach the cue. Figure 4.8 shows, on the example of a chunk in the
no-offset condition, a typical oscillation in the close-loop. The heading angle corresponds to
the general coordinate system of the VR setting, it is however completely arbitrary for the ant,
since the only visual stimulus is always just in front of her. A qualitative inspection of the
heading angles along the paths shows no difference between the different offset conditions.
Compared to the paths in the open-loop (Fig. 4.3), the spread of angles is much higher. In

the open-loop the fixations are limited to a ±40 deg range by definition, here the distances
covered by the ants in the close-loop are significantly higher. This is reflected in significantly
higher amplitudes (KS-T with Bonferroni correction: open-loop vs. close loop for all offsets
p«0.0125; all offsets vs. all offsets: p>0.01). Figure 4.9B shows the distribution of amplitudes
for the different offsets. Here, the two different directions (towards and away from the cue
centre) for each offset value are pooled together.
In the close-loop, the amplitudes are around four times as long as in the open-loop (close-loop
0: mean (mn) =40 deg, 10: mn=43 deg, 20: mn=46 deg, 30: mn=39 deg, 40: mn=55 deg; open-
loop: mn=13 deg). The amplitude remains constant in the 0, ±10, ±20 and ±30 conditions, it
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Figure 4.8.: Close-loop oscillation. Example oscillation from ant 5 chunk 7 in the condition
with no-offset. Path smoothed for representation. Dots show turning points, which are
extracted for further analysis.

increases however at an offset of ±40. The frequency behaves anti-proportionally (Fig. 4.9A).
The distribution is not very spread, however it is approx. four times smaller than in the
open-loop (KS-T with Bonferroni correction: open-loop vs. close loop for all offsets p«0.0125;
all offsets vs. all offsets: p>0.01; close-loop 0: mn=0.5 Hz, 10: mn=0.4 Hz, 20: mn=0.3 Hz, 30:
mn=0.4 Hz, 40: mn=0.4 Hz; open-loop: md=1.6 Hz).
While in close-loop, the ants still oscillate when attracted to a conspicuous visual cue. Without
the visual feedback of moving past the cue, the amplitude of the oscillations quadruples. The
underlying frequency of the oscillations drops anti-proportionally, i.e. longer oscillations
require more time. The angular velocity of the oscillations should thus remain constant across
the open- and close-loop.

Angular Velocity in the Close-Loop

As expected, the general angular velocity remains constant in the open- and close-loop (Fig.
4.10). We have a mean angular velocity of 14 deg per second (compared to 13 deg/sec. in the
open-loop).
In the close-loop, there is an increase in speed at a 40 deg offset. It corresponds to an increase
in amplitude with a constant frequency. There is also a slight drop in speed in the away
20 deg close-loop distribution. This correlates with an increased spread in amplitudes at this
offset. Given the relative low sample size of this condition, this could be attributed to noise in
the data.
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Figure 4.9.: Frequency (A) and amplitude (B) in the open and close-loop. Box plots show
distribution of values for all chunks in the respective condition. For the close-loop (red) data
separated by offset (plus and minus pulled together). For comparison, open-loop (blue) in the
corresponding C20 condition. The middle line shows the median, the box frame the 25th and
75th percentiles. Whiskers show all extreme values, not considered outliers (crosses). Filled
dot represents the mean value of each group.

Despite the simplicity of the visual stimuli we present to the ants in these two sets of
experiments, the ants display some complex mechanisms of navigation. Ants use the edges
of the visual cue as fixation points during attraction. Furthermore, they are able to adapt
their oscillation mechanisms to the close-loop condition, where they are deprived of parallax
information. This offers us new insights into their underlying neuronal mechanisms. To
gather more insights into their behaviour on the treadmill, we expand the complexity of the
visual stimuli.

4.2. Validating the Display of Natural Images on the VR Setting

The first part of the results dealt with validating the integration of treadmill and VR setting in
the two loop conditions. The system works well as a whole and the ants are able to express
simple innate behaviour while in the experimental setting. In this section I focus on the
VR setting. I evaluate the feasibility to display more complex patterns and natural images.
Furthermore, I research how ants interact with more complex natural and artificial scenes.
As described in section 3.1.2, the VR setting consists of three screens arranged around the
treadmill in an equilateral triangle. The system takes panoramic images as input and distorts
them to accommodate them to the screen geometry. The image distortion as well as visual
features of the setting, like the screen edges, introduce some noise into the VR setting. I
evaluate to what degree this noise constraints experiments on the VR system. Furthermore, I
address a simple behavioural question, do ants as a population have a preferred direction in
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Figure 4.10.: Angular velocity in the close and open-loop. Box plots show the distribution of
angular velocities in relation to the distance of the ant from the cue centre. For the close-loop
(red) the distance is equal to the offset between heading direction and cue centre. In the
open-loop (blue), each box plot bins ±2.5 deg. The middle line shows the median, the box
frame the 25th and 75th percentiles. Whiskers show all extreme values, not considered
outliers (not displayed). The dots show the corresponding mean for each group. Bottom half
of the plot shows velocities while approaching the cue, top half while moving away from it.

a complex natural scene?

4.2.1. Display of Complex Artificial Patterns

We expand the visual stimuli to include a whole range of black bars with different widths.
Figure 4.11A shows the geometry of the pattern. Using this pattern, we test 55 different ants
in three rotations of the visual stimulus: (A) the four thin bars aligned at the centre of screen
one (Fig. 4.11A), (B) pattern from A rotated by 120 deg such that the four thin bars are at the
centre of screen two and (C) pattern from A rotated by +90 deg such that the thin bars fall
into a corner between two screens. Figure 4.11C illustrates the perspective of the ants with a
panoramic picture from inside the VR chamber for condition C.
Different to the experiments introduced in section 4.1, here we are not only interested in

the ants’ innate behaviour but on the behavioural consistency of the individual ants and
population. Hence, some ants are tested multiple times. 20 ants are tested, alternating
conditions A and B for up to 4 times. Between each trial, the marked ants are returned to
their nest for approx. 3 hours. The amount of ants decreased during the experiment as some
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Figure 4.11.: Complex Artificial Image. The visual stimulus is composed of three groups
of bars with different widths. Three rotations of the image are used, condition A as in (A),
condition B as a +120 deg rotation of A and condition C as a -90 deg rotation of A (C). (A)
Planar pattern as by design. (C) Panoramic image from inside the experimental chamber.

Figure 4.12.: Heading distributions against complex artificial pattern. The same ant is tested
up to 4 times with alternating conditions A and B. B is rotated by 120 deg in respect to A.
Background images show the corresponding orientation of the pattern. Circular histograms
show the probability distribution of heading directions with a bin width of 5 deg. The circles
show the mean heading direction for each ant in the group. The circle fill encodes the variance
in quartiles, fully-filled = low variance, no-fill = high variance.

individuals did not emerge again from the nest (A1: n=20, B2: n=18, A3: n=12, B4: n=11).
Each trial lasts a maximum of 3 min. Figure 4.12 shows the development in heading direction
for the entire group.
The ants’ paths in all four groups are directed (RT: A1, B2, A3 and B4 p«0.05), and all four

distributions have a mean direction towards the centre of the screen displaying the four thin
bars (VT: A1, B2, and A3 p«0.05, B4 p<0.05). The four distributions are not significantly
different from each other (KT with Bonferroni correction A1-B4 vs A1-B4 p»0.017 for all
combinations). In all repetitions, the ants seem to have a clear attraction for the pattern with
the four thin bars, regardless of the orientation of the visual pattern.
To investigate if the attraction to the patterns is learned during this experiment or innate in
the population, we test additional naive ants with condition B for the first time (B1: n=16) and
with condition C for the first time (C1: n=18). Figure 4.13 shows the distribution of heading
directions in conditions A, B, C where all the ants are exposed for the first time to the setting.
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Figure 4.13.: Heading distributions against complex artificial pattern. Naive ants are tested
for the first time in one of 3 orientations of the same pattern. With A as default, B is rotated by
+120 deg and C is rotated by +90 deg. Background images show the corresponding rotation
of the pattern. Circular histograms show the probability distribution of heading directions
with a bin width of 5 deg. The circles show the mean heading direction for each ant in the
group. The circle fill encodes the variance in quartiles, fully-filled = low variance, no-fill =
high variance.

From the three distributions, only A1 is directed (RT: B1 p>0.05, A1 p«0.05, C1 p>0.05). While
in condition A, the population seems to have a great interest for the four thin bars, in B and
C there seems to be no preferred direction.

Although not directed, the ants in B1 do show some interest in the thin bars as well as
the edge between screens one and two. There are also some ants interested in the single
wide bar, something not seen again in other conditions. In condition C1 the distribution is
quite uniform around the circle. The results in Figure 4.13 suggest that the attraction for the
thin bars in conditions B2, A3 and B4 might be learned from the first exposure during A1.
Furthermore, a preferred direction might be more consistent for individual foragers as for the
entire population.
If we evaluate the progression of individual ants in the A-B-A-B sequence, certain behaviour
patterns emerge:

• Out of the 20 tested ants, only 7 showed a clear attraction towards the four thin bars on
their first trial. Out of these 7, 3 did not emerge again, and the remaining four showed
a learned attraction towards the four bars in subsequent trials.

• A group of 6 ants showed no clear attraction to any feature in the patterns on their first
trial (2 of them also in the second), however in subsequent trials each of them focused
on the four thin bars pattern. It seems as if the ants first explored the panorama and
learned the "preferred" pattern for subsequent trials.

• 6 of the ants showed no preference in a pattern, but rather have a preferred external
direction regardless of the rotation of the pattern. Out of the 6, 2 kept this attraction in
at least three trials, 2 abandoned it after the second trial and then attracted towards the
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four thin bars pattern and 2 did not record for more than two trails.

• 1 ant showed no preferred direction in any of the four trials.

The general trend seems to suggest that the first trial is not very definitive. Although many
o the ants recognize the four thin bars as the preferred direction immediately, most either
explore the whole panorama first or keep an external preferred direction at the beginning.
Once the four bars have been acknowledged as a preferred direction, the ant will keep heading
there in all subsequent trials. Most of the ants that did not do so in the beginning, eventually
recognize and head towards the four bars. Hence, the four thin bars pattern seems to be an
advantageous direction to follow as a population, and most ants need some exposure before
recognizing it.

Ants show learning behaviour of a complex visual pattern in the treadmill. For one, this
validates the effectivity of our system. With increasing exposure, ants finally settle on a
preferred heading direction as a population. To better understand this behaviour, we expose
the ants to a woodland scene and explore their behaviour while on a simulation of their
natural habitat.

4.2.2. Display of Complex Natural Images

In chapter 3 we concluded that most artificial navigation systems fail to navigate in complex,
outdoor, dynamic environments. This is exactly the kind of environment in which wood
ants thrive as expert navigators. To investigate the visual ecology of the ants in their natural
habitat, the VR setting needs to be able to robustly display panoramic images from the woods.
In this section I evaluate the display of a complex woods scene on the VR setting.
The panoramic image was taken using a fish-eye camera in the same habitat where the ants
kept in the lab were previously collected (Fig. 3.3). We selected the image for its texture
richness, i.e. multiple distinct elements. Roughly, the selected scene has three distinct features:
a small hill, a wide hill and a tree. The image is transformed to black and white and distorted
to fit the screen geometry. We exposed the ants to three orientations of the image: (A) original,
(B) image A rotated by +90 deg and (C) image A rotated by -90 deg.

Image Distortion in the VR system

The panoramic image was taken in the woods with a fish-eye lens. In order to display it in
the VR setting, the original image is distorted to accommodate the geometry of the setting.
Hence, a feature that falls into the edge between two of the screens has to be scaled up so
that, from an ant’s perspective, it seems as if it were closer to the ant and not far in the
corner. Furthermore, in the unwrapping process of the fish-eye pictures, black pixels have
to be introduced to fill the screens. In order to evaluate the distortion of the VR setting, we
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took a panoramic picture form inside the VR chamber for each of the rotations. This is an
approximation of what the ant sees during the recordings.
I take the pictures from inside the VR chamber, unwrap them and convert to black and white.
I then calculate the similarity between the images using a rotation Image Difference Function
(rIDF): image A is rotated every 10 deg and the pixel wise root-mean-square difference
towards each of images A, B and C is calculated. Figure 4.14 shows the unwrapped VR
chamber pictures and the image difference function between A and the respective rotation.
The difference towards image A at a 0 deg rotation of Image A is by design 0 (Fig. 4.14A).

Figure 4.14.: Image difference function of the woodland image. (A) Original image, (B) image
A rotated by +90 deg and (C) image A rotated by -90 deg. Difference function (blue): image A
is rotated every 10 deg and the pixl wise root-mean-square difference towards each of images
A, B and C is calculated.

The rIDF of A against A lets us evaluate how distinct the elements in the chosen woods
picture are. The function in A fluctuates around 0.7 and has no distinct minima, hence the
features of the image are quite distinct. In B and C, we see that the IDF has a clear minimum
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at the edge of the small hill. If the display of the images on the VR screens were perfect, the
function should reach 0 at these positions, instead it only drops to approx. 0.5.
The image distortion and the added setting features like the screen edges introduce quite
some noise into the VR setting. Nevertheless, the same position on the panorama is clearly
identifiable in both rotations inside the VR chamber.

Ant Preferred Direction in the Complex Natural Environment

To evaluate the display of the woods image, we test a total of 56 ants in the 3 different
rotations of the image. 21 ants are tested alternating conditions A and B for up to 5 times.
Between each trial, the marked ants are returned to their nest for approx. 3 hours. Trial five
happened one weekend after four. The amount of ants decreased during the experiment as
some individuals did not emerge back from the nest (A1: n=21, B2: n=20, A3: n=18, B4: n=15,
A5: n=13). Each trial lasted a maximum of 3 min. Figure 4.15 shows the development in
heading direction for the entire group.
In general, there seems to be an attraction for one of the elements, the big hill, as a visual

Figure 4.15.: Heading distributions against panoramic woods image. The same ant is tested
up to 5 times with alternating conditions A and B. B is rotated by 90 deg in respect to A.
Background images show the corresponding rotation of the image. Circular histograms show
the probability distribution of heading directions with a bin width of 5 deg. The circles show
the mean heading direction for each ant in the group. The circle fill encodes the variance in
quartiles, fully-filled = low variance, no-fill = high variance.

feature. The distribution of heading directions is quite constant in subsequent trials within
the same rotation. Nevertheless, the fixation point varies slightly between A and B. All five
conditions are directed (RT: A1 p«0.05, B2 p<0.05, A3 p<0.05, B4 p<0.05, A5 p«0.05). In all
the conditions, the ants seem to be directed towards one of the corners between the screens.
All but one of the distributions is directed towards the corner over which the big hill falls
(VT for 180 deg: A1 p<0.05, A3 p=0.45, A5 p«0.05; VT for -60 deg: B2 p«0.05, B4 p«0.05). The
distribution in A3 breaks the pattern, it is, however, more spread and directed towards the
other corner (VT for -60 deg with Bonferroni correction: A3 p<0.025).
There seems to be an attraction towards the wide hill in the natural image. This is probably
the most conspicuous element of the environment, it almost resembles the black rectangle we
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used in previous experiments. As we established in section 4.1.2, ants do not fixate the centre
of such a rectangle, but fixate on the edges. In this case, the most conspicuous edge to fixate
is not the side edges of the wide hill, but the corner of the screens which falls within the
visual element. The ants seem to clearly prefer the wide hill as a visual stimulus and either (i)
the impulse to fixate an edge is stronger than to be consistent with learned behaviour or (ii)
they do not see the slight difference in the position of the edge relative to the wide hill and
hence believe they are bing consistent.
To control for learned behaviour, we test additional naive ants with condition B for the first
time (B1: n=20) and with condition C for the first time (C1: n=15). Figure 4.13 shows the
distribution of heading directions in conditions A, B, C where all the ants are exposed for
the first time to the setting. All three distributions are directed (RT: B1 p<0.05, A1 p«0.05, C1
p<0.05). They are also all directed towards the corner that falls over the wide hill (VT for
-60 deg: B1 p<0.05, VT for 180 deg: A1 p«0.05, VT for 60 deg: C1 p<0.05).
At a population level, the ants seem to be naively attracted to the edge in the wide hill. The
spread of the distributions falls with subsequent trials, suggesting that the ants learn the
visual feature of a strong edge inside a wide hill. On subsequent trials, they attempt to match
the learned pattern and probably do not realize there is a slight offset between the screen
corner and the wide hill.

We validate the system ability to simulate the natural habitat of the ants. Here we see the

Figure 4.16.: Heading distributions against panoramic woods image. Naive ants are tested
for the first time in one of 3 rotations of the same pattern. With A as basis, B is rotated by
+90 deg and C is rotated by -90 deg. Background images show the corresponding rotation of
the pattern. Histograms show the probability distribution of heading directions with a bin
width of 5 deg. The circles show the mean heading direction for each ant in the group. The
circle fill encodes the variance in quartiles, fully-filled = low variance, no-fill = high variance.

same tendency towards a preferred direction as we saw with the artificial pattern. The corners
between the screen appear to slightly limit our display of panoramas, given their edge like
character and the ants’ attraction towards them.
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The analysis of four experiments with increasingly complex visual stimuli allows us to
gather valuable insights on the limitations of our experimental setting. We expose some
complex navigation mechanisms employed by ants to navigate different conditions and
scenarios. In the next chapter, I summarize these results and offer some explanations for the
observed behaviours.
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Navigation is an essential behaviour any truly autonomous agent needs to master [24].
Approximately thirty years of research in robot navigation has explored multiple approaches
to provide artificial agents with spatial cognition [23, 11, 25]. Although these algorithms
have come far, robot navigation still fails to perform well in cluttered, dynamic, light variant
environments [2, 27].
It is in these sceneries where wood ants thrive as expert navigators. Despite their tiny brains
and low sensory resolution, ant foragers are capable of extraordinary navigation feats [1].
Contrary to the state-of-the-art approach for robot navigation, vSLAM, ant navigation does
not require the use of maps or the extraction of features from the visual panorama [28, 35]. To
better understand the visual ecology of wood ants and the underlying neuronal mechanisms,
a new research methodology is required.
Developments in computer vision and graphics have opened up virtual reality (VR) as a
novel technique to study insect behaviour [21]. VR offers the experimenter the ability to
simulate the natural environment of the study subject, while having complete control over
the visual stimuli the animal is exposed to. Furthermore, VR allows us to invert the loop that
naturally exists between the environment and an animal’s behaviour, which in turn opens the
possibility to study the behaviour to brain loop of the animal in real time [48].
Recently, Goulard et al. [6] initiated the development of such a system. Different to previous
approaches, where the insects are tethered [4, 3], the proposed setup combines a 3DoF motion
compensation treadmill for walking insects [5], with a VR system. The success of the treadmill
was already documented [6], however the integrated treadmill and VR systems have yet to be
validated for the study of insect navigation.
This thesis deals with the integration of the VR and treadmill system. We designed a series of
behavioural experiments to test the limitation of the new experimental setup, and gather new
knowledge about mechanisms of visual navigation in ants. In this chapter, I gather the results
and discuss possible implications. In the first part, I evaluate the experimental setup and
explore new features for future development. In the second part, I reflect upon the observed
ant behaviour and what this means for future research.
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5.1. Evaluation of the Virtual Reality Experimental Setting

On a general scale, the proposed experimental setup works remarkably well as a novel
technique to study ant navigation. We designed four experiments of increasing complexity,
recorded a total of 498 ants and evaluated more than 50 hours of recordings. During the
experiments, we saw the wood ants express some of the same natural behaviours that have
been documented in the past: innate landmark attraction [45], oscillatory movement towards
a goal [46], edge fixation [47] and pattern learning [33]. A more in depth discussion on these
behaviours is offered in section 5.2.
That being said, we also observed certain shortcomings and limitations of the experimental
setting, mainly:

• The treadmill controller is imperfect, causing unwanted oscillations and vibrations of
the trackball during the recording.

• The corners between the screens act as unwanted visual features in the VR setting.

• The system does not support the simulation of a translational open-loop. Hence, the
natural behaviour of the ant can only be expressed to a certain limit.

• The ant tracking has a ±180 degree uncertainty, which has to be thoroughly compen-
sated by the experimenter and data analysis.

In this section I address these limitations, evaluate them within the greater context and offer
some modifications.

5.1.1. Hardware Limitations

Motor Control

One of the main sources of noise in the experimental setting is the treadmill itself. The
trackball often vibrates and oscillates inadequately. Unwanted movements of the trackball
can be followed back to two causes: (i) tracking failure and (ii) control. The first one shall be
addressed in the Software Limitations (Sec. 5.1.2).
The treadmill is controlled in a loop. The x and y position of the ant are determined by
the tracking subsystem and used to calculate a counteracting set of rotation vectors for the
trackball. These are then transformed into three motor signals, which will in turn move the
ant back to the centre of the setup. The new position is tracked, and the loop is closed. Two
PD controllers serve this purpose. The respective gains were optimized by the experimenter
using a trial and fail strategy over a range of sensible values. One possible tweak would be to
revisit these parameters in an attempt to reduce the noise.
A second option involves expanding the controllers to include an integral component. The
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oscillations of the trackball are most likely due to a lack of damping, and this can be addressed
with a PID controller. Additionally, the system could be expanded to include an optical
encoder on each of the motors. The additional sensory data would increase the control
accuracy independently of the tracking subsystem and compensate for the PID with a second,
shorter feedback loop.
Although the treadmill introduces some noise into the data, I present and validate a method-
ology to filter out most of this noise (Sec. 4.1.1). I use the motor angular velocities to identify
moments of high ant activity. The damping and vibration problem described above is stronger
when the ant stops moving, hence filtering for high ant activity lets us get away with the
most undisturbed chunks of data. This methodology is tested on two independent datasets
and proves to be a valuable tool to extract ant behaviour.

Unintentional Visual Stimuli

One of the first steps I take, is to control for any setup or room stimuli which could be
influencing the ant. The results of the open loop experiment (Fig. 4.1 control) show none
such clear effects. Nevertheless, pictures from inside the VR setting show that the lights are
not as diffuse as we hoped for, and could potentially be aiding the ants in their orientation. A
simple fix would be to replace the four individual lamps by a ring light around the high-speed
camera.
A much bigger source of noise is the geometry of the screens. Each of the screens is framed,
and at the corners where two screens meet, the frames build an edge that interrupts the image
display. The effect this has on the ants is made clear in the natural scene experiment, where
the edges prove to be strong enough to influence the ants’ heading direction (Sec. 4.2.2).
One possible concern is the size of the angle between the two screens. Right now, the screens
are arranged in an equilateral triangle and the angle is acute (60 deg). An ideal VR setting
would have no edges at all, but a cylindrical screen around the trackball. This could be
approximated by increasing the number of screens, the more screens, the greater the angle
between them. Although this seems like a logical approximation to make, it could also have
negative side effects. The distortion of the images to accommodate the screen geometry has
no visible effect in our results (Figs. 3.1C, and 4.14), i.e. the manipulations performed by the
VR setting on the visual display, already quite accurately approximate a cylindrical display.
However, increasing the amount of screens would also increase the number of conspicuous
edges between them. These, on the other hand, I show to influence the ants (Sec. 4.2.2). A
better investment would hence involve frameless screens to remove any external, conspicuous
edges.
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5.1.2. Software Limitations

Translational Open-Loop

Roughly, an ant can translate, i.e. change position but keep orientation, or rotate, i.e. change
orientation while on the same location. Open-loop is the natural state between an ant and
its environment, i.e. any movement the ant makes, will influence her perception of the
environment. If she rotates, the environment rotates in an opposite direction, if she translates,
the objects in the direction of translation grow. By design, the treadmill constraints all
translation movements but keeps rotations. This means that an ant on the treadmill is in
translation close-loop, i.e. when she moves towards the black bar, this one stays the same size.
Although this is clearly an unnatural state for the ant, the repercussions on our experiments
are not so obvious. For one, in the natural open-loop, there are two situations where a visual
stimulus does not change size upon translation. The first one involves big elements that
are very far away and can clearly be segmented from the skyline, e.g. a mountain does not
change size in the ants’ immediate perception. The second involves a very big, textureless
element that is very close to the ant and cannot be segmented from the skyline, i.e. the ant is
so close she only sees "black" growing.
Hence, all the visual stimuli we present to the ant while in translational close-loop, are
probably perceived as either very big, and far or very big and close objects. This implicates,
that the ant does not "notice" she is in an unnatural situation but is rather expressing her
natural behaviour towards very far and very close features. In fact, this might provide an
explanation on why the ants in the natural scene experiment (Sec. 4.2.2) preferred to head
towards the "wide hill". This is the element on the image closest to the screen top, and, given
the translational close-loop, could be perceived as the closest feature of the panorama (very
big very close) and thus the preferred feature to explore.
To further study the perception effect of close and far away objects, our system needs to be
able to simulate the translational open-loop. Luckily, the constraints of the treadmill can be
compensated by the VR. That is, a future version of the system should scale the size of a
visual cue displayed on the VR screen depending on the forward speed (trackball speed) in
that direction.

Mismatch in Ant Heading Direction

As detailed in chapter 3.1.2, the ant is tracked by fitting an ellipse around the contour of a
white blob (against a black background) that most likely represents the ant. This method
is quite robust to determine the position of the ant, however does not support the differen-
tiation between the head and the tail of the ant. Once the system has a heading direction,
it minimizes the change between frames to keep it constant. However, an initial failure to
correct the mismatch would have catastrophic effects on the results and their interpretation.
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At the beginning of a recording, there is a 50% chance that the head tail match is incorrect.
Therefore, the experimenter needs to manually fix this by looking through the webcam. A
failed flip by the experimenter, or a flip to far into the trial, are unlikely, yet additional sources
of noise into our dataset. Furthermore, in around 10% of the trials, ants provoke an accidental
flip of the tracking. This is often due to a sudden rotation or because the ants stand on their
hind legs and the tracking looses track of their heading direction.
In the experiments presented in this thesis, I overcame these limitations in the data analysis,
at the expense of losing some valuable data. A future version of the system might address
this issue in real time. It could include a more robust algorithm to estimate the heading
direction of the ant given the moving direction of the trackball, i.e. the head is most likely to
be in the direction the ant is moving forward in.

Despite its current limitations, the treadmill and VR system is a great and novel tool to
study the visual ecology and navigation strategies of ants. In the four experiments we perform,
we were able to collect valuable new insights into the mechanisms of visual navigation in
ants.

5.2. Wood Ant Behaviour While on the Experimental Setting

We use the novel treadmill and VR system to study visual navigation in ants while they are
exposed to increasingly complex visual stimuli. First, we test the ants’ innate response to a
simple black rectangle. We compare the effects between rotational open- and close-loop. We
then increase the complexity and present an artificial visual pattern of rectangles in different
widths. Here, we explore the preferred direction on a population and individual level. Finally,
we expose the ants to a natural woodland scene. Across all four datasets, certain behavioural
trends emerge. In this section I explore their implications.
We chose to study ants because of their extensive (shared) navigational toolkit, impressive
spatial cognition and learning abilities [1]. Furthermore, ants are central place foragers and
as such we have additional access to their motivations, behaviours and neuronal mechanisms.
Extensive research has shown insects to be innately attracted to black bars [45]. We take
advantage of this attraction to study the navigation strategies of wood ants. Although plenty
of research with trackballs and VR has been done with fruit flies [21] and even ants [4, 3], our
integrated motion compensation treadmill and VR system opens new research possibilities.
For one, this system allows for the first time to study untethered walking insects.
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5.2.1. Open- and Close-Loop Oscillations

Plenty of research has documented oscillations in the paths of ants. Oscillations provide the
insects with a robust visuomotor control strategy [49, 46]. With each turn, the ant can extract
parallax information and regulate its heading direction towards a goal. In our experiments,
we observe these oscillations during periods when the ants show a clear attraction towards a
conspicuous visual landmark. Furthermore, I document the difference between open- and
close-loop navigation on the oscillations’ morphology.

Stuck in The Close Loop

The angular speed of oscillations remains relatively constant in both the open- and close-loop.
While on open-loop, we document higher angular speeds when the cues are wider. This is
consistent with previous results that show ants to regulate the speed of their oscillation by
approximating the magnitude of the required turn [49, 47]. Furthermore, we observe that
an ant moving towards a visual cue slows down when the cue first appears at an angle of
(±40 deg), only to then increase its speed as it rotates towards it.
This effect is marked strongest in the close-loop experiment, where the cue is constantly kept
at an offset of (±40 deg). Here the ants show significantly higher speeds compared to the
open-loop and to other offsets. A possible explanation is, that the ants are stuck with the cue
on the position in their visual field, that triggers a constant neuronal response to speed up.
Despite the "hacked" neuronal response, the ants do not just follow the cue around the arena
in circles, but the underlying frequency of their oscillations kicks in. Hence, the increased
speed only causes higher amplitudes in their natural oscillation.
This is a good example of the potential of VR as an experimental methodology. In this
experiment, we close the environment to behaviour loop and are able to draw conclusions
about the behaviour to neuronal circuit implications. To draw more conclusions around
this, a future experiment might record the switch between open- and close-loop. Here, the
ants would navigate in the open loop until they fixate a visual cue, upon which the system
switches to close-loop.

Amplitude and Frequency of Oscillations

As detailed above, the angular velocity does not change between open- and close-loop (other
than in the ±40 deg offset). Nevertheless, the magnitude of the oscillations between these two
conditions changes by a factor of 4: the amplitudes in the close-loop are four times higher
and the frequency is four times smaller. Given the anti-proportionality between these two
variables, one of them is causing the other. Is the change frequency or amplitude driven?
Most likely, the change is driven by a change towards larger amplitudes. As discussed above,
ants use oscillations to regulate their heading direction. They set up their angular speed
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before each turn in response to the approx. distance toward the visual cue [49, 47]. As they
pass the cue, they rely on parallax information to regulate the amplitude of the oscillation. In
the close-loop, they are deprived of this feedback, hence the factor four in amplitude. Longer
amplitudes require more time, hence the drop in frequency.

Oscillations appear to be a fundamental element of ant navigation. For one, they are a
powerful tool to regulate the heading direction and extract parallax information. Ants show
oscillation behaviour, even when in rotational close-loop, where they are deprived of sensory
feedback.
In engineering terms, ant oscillations are a simple yet elegant technique for active sampling.
Active sampling is a paramount activity any navigation system needs to engage in. The
efficiency of an agent’s sampling method will determine the quality of the sensory data and
directly impact the computation power required to analyse it. Most technical applications
differentiate between a sampling and a motion activity (or subsystem). Yet, I show how
the ants’ oscillation behaviour is deeply embedded into the agent’s natural motion. Further
research into the underlying frequencies and amplitudes of these oscillations will shed some
light into possible imitations of this tight relationship between sampling and motion for robot
navigation.

5.2.2. Edge Fixation

Edges play a decisive role in both artificial and natural navigation [23]. For one, they are easy
to extract features of an image. Even strategies that do not rely on feature extraction greatly
benefit from the high contrast of edges. Ants have been shown to use edges as a strategy to
align and match retinotopic views [50, 47].

Edge Switching

In our experiments, we see the effect of edges multiple times. In the open-loop experiment,
ants alternate between fixating the left and right edge of the simple visual cue. This is an
interesting approach. Ants have been shown to navigate parallel to edges as a strategy for
economizing visual recognition along routes [50], however the advantage of keeping track of
both edges is not obvious.
Our recordings show, that the frequency of change between edges is relatively high (up to
two times in 5 sec) and that the impulse to change is related to the distance between edges
(the higher the distance the higher to need to change). A possible explanation is, that this is a
compromise between edge extraction and centre of mass calculations [47]. The edges are easy
to keep track off and provide the strongest parallax information to regulate the oscillations,
and by alternating between them, the path will balance towards the centre of mass of the
landmark.
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In other to draw more meaningful concussions, a few additional conditions of the experiment
would be useful, namely a 30 deg wide cue and a cue where the distance between the edges
is grater than >40 deg, which is the angle at which I showed first signs of attraction.

Edge Density

In the experiment with the artificial pattern, the ants show a preferred direction towards the
four thin bars pattern (Sec. 4.2.1). The density of edges is highest at this position, and this
could cause this pattern to be the most attractive to follow. For one, this is the position in
the panorama with the highest density of visual information, and hence the easiest to match
upon re-encounter. In fact, we observe that the interest towards the four bars is learned, i.e.
the ants do not always prefer them at first, however most of them eventually do, and once
they have "selected" the four bars as a preferred direction, they stick to it.
It is possible that the ants relate the four thin bars to the shape of trees, a common visual
feature in their natural habitat. This however raises the question on why, while exposed to a
natural scene, the ants go for the wide hill and completely ignore the real tree in the image.

Edge Focus

Finally, we also saw a clear attraction towards the unintentional edges formed by the corners
between the screens. In the natural image experiment (Sec. 4.2.2) there is a clear preference
towards the wide hill visual feature in all the rotations. I theorize that the translational
close-loop manipulation of perspective could make the wide hill appear as the closest feature
in the panorama, and hence the easiest to explore first.
The hill is however quite wide (approx. 130 deg), and the exact focus point within the hill
changes based on the orientation of the image within the setup. I show there to be a corre-
lation towards the corners between the screens, i.e. the ants’ heading direction is directed
towards the corner that falls within the wide hill. I already established the benefits of edges
in terms of information richness. It is possible then, that the corner only serves as an aid
to better keep track of the hill, and the ants do not really notice a difference in the relative
position of the corner to the hill when exposed multiple times to the image in changing
orientations. A fourth condition in this experiment, where the wide hill falls exactly within
two of the corners, might help further explore their influence.

In general, edges seem to have a strong influence in the strategies undertaken by the ants.
This is not surprising given their richness in information, and is consistent with the findings
of years of computer vision research [51]. Most computer science approaches have however
focused on the active extraction of these features. Ant research has not found such active
extraction of features [47]. Instead, ants benefit from edges through an indirect use of their
information richness.
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On a neuronal level, edge attraction indicates towards a control loop with plasticity. Here, the
ants’ behaviour is innately regulated by the presence of an edge-like visual stimuli. Hence,
the response is "automatic". Furthermore, we see evidence of a distributed control system.
Multiple edges put parallel control loos into conflict, and complex behaviours emerge as a
result of their resolution. Robotic navigation systems have a lot to learn about these neuronal
architectures. For one, edges are such important sources of visual information, that edge
recognition should allocate special hardware resources and free up costly software calculations.
Combined with a distributed control system, robots could benefit from the information
richness of edges without the need for complex extraction and matching algorithms.

5.3. Conclusion

We use virtual reality as a novel technique to study the visual ecology and navigation of
wood ants. Four research objectives are pursued:
Firstly, we successfully integrate the VR and treadmill system. This combination allows us
to test untethered ants in complex VR sceneries. We are also able to test ants in rotational
close loop. Secondly, we tested the system extensively and authenticated its functionality as a
novel technique to study ant navigation. A careful analysis of the limitations of the system
serves us as scaffolding for future development.
Thirdly, we gained useful insights into the navigation strategies of ants. Ant oscillation
appears to be an important strategy in their navigation, both in open- and close-loop. We
also see the strong influence of edges as an indirect visual feature rich in information. Both
behaviours have important implications for the design of robot navigation architectures.
Finally, we are able to expose ants to complex VR scenes. We see a learned preference for a
specific direction in the panorama.
We shed some light into all four research objectives and provide a strong foundation for the
future research of ant navigation through virtual reality.
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A.1. Data and Scripts

All collected data, as well as all the python and MATLAB scripts used, can be found at
https://app.box.com/folder/136369815441. For access, please contact the administrator.

Treadmill 2021
Data

artificial_scenes_prefered_direction_aspd_[95] ....artificial pattern dataset
close_loop_offset_compare_cloc_[164] .....................close-loop dataset
natural_scenes_prefered_direction_nsdp_[126] ........natural image dataset
open_loop_fixed_cue_olfc_[113] ............................open-loop dataset
Data Structure and File Nomenclature.txt

Treadmill and VR Scripts
V5_07.06.2021

Master_Offset.py ...........................................main VR script
TestWidget_tkinter.py ................................main treadmill script

Matlab Scripts
Res_ASPD ...........................................main artifical pattern script
Res_CLOC ................................................ main close-loop script
Res_NSPD .............................................main natural scene script
Res_OLFC ................................................main open-loop script
image_difference ................................................... IDF script
CircStat2012a ....................................circular statistics toolbox [43]
support_functions ................................secondary analysis functions
plot_functions ..................................................plot functions
image_functions ........................................image transformations

Natural Images
ASPD_Images ..................................................artificial patterns
NSPD_Images ....................................................natural images

Lab Book

54



List of Figures

2.1. Overview vision-based navigation methodologies. Adapted from [25]. . . . . . 5

3.1. Experimental Setting. (A) Information flow between systems: treadmill sub-
system (blue) and VR subsystem (orange). The black arrow symbolizes com-
munication in the close-loop condition. (B) Top view. VR system is composed
of three screens arranged in an equilateral triangle around the trackball. (C)
Panoramic picture from inside the VR chamber. The horizontal lines of the
displayed visual elements are distorted to accommodate the system’s geometry
and appear as projected equidistantly from the ants’ perspective. (D) Picture of
the experimental setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2. Wood ant. Image shows a forager of the species Formica rufa standing on the
trackball while facing a black bar as a unique visual cue in an otherwise white
environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3. Natural woodland image. (A) Raw image in original rotation, (B) image from
A rotated by +90 deg and transformed to black and white. (C) Picture from
inside the VR chamber with condition C, which is image A rotated by -90 deg. 20

3.4. Activity chunks extraction process. Motor angular velocity in blue, ant angular
velocity in grey. (A) Raw motor angular velocity in x direction (Θ̇x). (B)
Absolute sum of Θ̇x and Θ̇y. Thresholds used to sort data in next step. (C)
Motor activity divided in four levels according to amplitude. Density of the
signal is encoded by the average amplitude in a 2 sec window. (D) Contour
of the smoothed motor activity. Data is divided into chunks within which
the motor activity does not reach zero. (E) Motor data (same as B) with the
extracted chunks. The integral under the contour of each chunk is calculated
and divided into one of four quartiles of activity. (F) Angular velocity of the
ant with the chunk divisions and labels calculated on the base of motor activity. 22

55



List of Figures

4.1. Polar histograms of heading directions in response to a simple black cue. The
width of the cue is 20 deg (blue) and 40 deg (orange) respectively. The cue is
displayed in either of the three screens (S1, S2, S3) or not at all (S0). Rectangles
on the edge of each histogram show the position of the respective cue. The
circular histograms show the probability distribution for the entire group, bin
size 5 deg. The circles show the mean heading direction for each ant in the
group. The circle shade of colour encodes the variance in quartiles, fully-filled
= low variance, no-fill = high variance. . . . . . . . . . . . . . . . . . . . . . . . 26

4.2. Polar histograms of heading directions divided by activity levels. Each row
shows the heading data within a level of activity. The width of the visual cue
is 20 deg (blue) and 40 deg (orange) respectively. The cue is displayed on either
of the three screens (S1, S2, S3) or not at all (S0). The angle of the centre of each
screen is marked in the top left plot. The polar histograms show the probability
distribution for the entire group, bin size 5 deg. The circles show the mean
heading direction for each ant in the group. The circle shade of colour encodes
the variance in quartiles, fully-filled = low variance, no-fill = high variance. . . 28

4.3. Heading direction during a fixation. The plot shows two examples of a fixation,
one for the C20 condition (blue, ant 7 fixation 11) and one for C40 (orange, ant
75 fixation 10). Paths smoothed for representation. Dots represent the turning
points. Frequency and amplitude are calculated between two neighbouring
turns. Each segment is categorized by its direction to the cue centre: towards
the cue (black arrows) or away from the cue (red arrows). Dashed lines show
the mean for each path respectively. Since the orange path crosses the cue
centre, two mean values are calculated. Coloured bars on the left show the
position of the cue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4. Distribution of weighted mean headings. C20 in blue and C40 in orange. Bin
size 1.5 deg. For each fixation, either two or one mean heading values are
calculated, depending on the ant crossing the cue centre for more than 30% of
the path or not. Each mean value is weighted by the amount of data points it
represents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5. Frequency (A) and amplitude (B) of the fixations. Box plots show the distri-
bution of values for both conditions C20 (blue) and C40 (orange). The middle
line shows the median, the box frame the 25th and 75th percentiles. Whiskers
show all extreme values not considered outliers (crosses). Filled dots represent
the mean values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

56



List of Figures

4.6. Angular velocity during periods of fixation. Box plots show the distribution
of angular velocities in relation to the distance of the ant from the cue centre.
Each box plot gathers the velocities in ±5 deg range. The middle line shows
the median, the box frame the 25th and 75th percentiles. Whiskers show all
extreme values, not considered outliers (not displayed). The dots show the
corresponding mean for each group. Bottom half of the plot shows velocities
while approaching the cue, top half while moving away from it. Condition C20
in blue and C40 in orange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.7. Angular velocity for each offset condition and activity level. Box plots show
the distribution of angular speeds for each offset of the cue. Each plot stands
for one level of activity: 0-50%, 50-68% and 68-100%. Sample sizes displayed
on top. The middle line shows the median, the box frame the 25th and 75th
percentiles. Whiskers show all extreme values, not considered outliers (not
displayed). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.8. Close-loop oscillation. Example oscillation from ant 5 chunk 7 in the condition
with no-offset. Path smoothed for representation. Dots show turning points,
which are extracted for further analysis. . . . . . . . . . . . . . . . . . . . . . . . 35

4.9. Frequency (A) and amplitude (B) in the open and close-loop. Box plots show
distribution of values for all chunks in the respective condition. For the close-
loop (red) data separated by offset (plus and minus pulled together). For
comparison, open-loop (blue) in the corresponding C20 condition. The middle
line shows the median, the box frame the 25th and 75th percentiles. Whiskers
show all extreme values, not considered outliers (crosses). Filled dot represents
the mean value of each group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.10. Angular velocity in the close and open-loop. Box plots show the distribution
of angular velocities in relation to the distance of the ant from the cue centre.
For the close-loop (red) the distance is equal to the offset between heading
direction and cue centre. In the open-loop (blue), each box plot bins ±2.5 deg.
The middle line shows the median, the box frame the 25th and 75th percentiles.
Whiskers show all extreme values, not considered outliers (not displayed). The
dots show the corresponding mean for each group. Bottom half of the plot
shows velocities while approaching the cue, top half while moving away from it. 37

4.11. Complex Artificial Image. The visual stimulus is composed of three groups of
bars with different widths. Three rotations of the image are used, condition A
as in (A), condition B as a +120 deg rotation of A and condition C as a -90 deg
rotation of A (C). (A) Planar pattern as by design. (C) Panoramic image from
inside the experimental chamber. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

57



List of Figures

4.12. Heading distributions against complex artificial pattern. The same ant is tested
up to 4 times with alternating conditions A and B. B is rotated by 120 deg
in respect to A. Background images show the corresponding orientation of
the pattern. Circular histograms show the probability distribution of heading
directions with a bin width of 5 deg. The circles show the mean heading
direction for each ant in the group. The circle fill encodes the variance in
quartiles, fully-filled = low variance, no-fill = high variance. . . . . . . . . . . . 38

4.13. Heading distributions against complex artificial pattern. Naive ants are tested
for the first time in one of 3 orientations of the same pattern. With A as default,
B is rotated by +120 deg and C is rotated by +90 deg. Background images
show the corresponding rotation of the pattern. Circular histograms show the
probability distribution of heading directions with a bin width of 5 deg. The
circles show the mean heading direction for each ant in the group. The circle
fill encodes the variance in quartiles, fully-filled = low variance, no-fill = high
variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.14. Image difference function of the woodland image. (A) Original image, (B)
image A rotated by +90 deg and (C) image A rotated by -90 deg. Difference
function (blue): image A is rotated every 10 deg and the pixl wise root-mean-
square difference towards each of images A, B and C is calculated. . . . . . . . 41

4.15. Heading distributions against panoramic woods image. The same ant is tested
up to 5 times with alternating conditions A and B. B is rotated by 90 deg in
respect to A. Background images show the corresponding rotation of the image.
Circular histograms show the probability distribution of heading directions
with a bin width of 5 deg. The circles show the mean heading direction for each
ant in the group. The circle fill encodes the variance in quartiles, fully-filled =
low variance, no-fill = high variance. . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.16. Heading distributions against panoramic woods image. Naive ants are tested
for the first time in one of 3 rotations of the same pattern. With A as basis, B
is rotated by +90 deg and C is rotated by -90 deg. Background images show
the corresponding rotation of the pattern. Histograms show the probability
distribution of heading directions with a bin width of 5 deg. The circles show
the mean heading direction for each ant in the group. The circle fill encodes
the variance in quartiles, fully-filled = low variance, no-fill = high variance. . . 43

58



List of Tables

2.1. Overview of the reviewed algorithms. . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1. Overview of recording days and sample sizes for all four datasets. . . . . . . . 19

4.1. Chunk sample sizes divided by activity level and conditions. Values for C20
and C40 before and after the slash respectively (C20/C40). . . . . . . . . . . . . 27

59



Bibliography

[1] P. Graham and A. Philippides. “Vision for navigation: What can we learn from ants?”
In: Arthropod Structure & Development 46.5 (2017), pp. 718–722. doi: 10.1016/j.asd.
2017.07.001.

[2] A. Li, X. Ruan, J. Huang, X. Zhu, and F. Wang. “Review of vision-based Simultaneous
Localization and Mapping”. In: 2019 IEEE 3rd Information Technology 2019, pp. 117–123.

[3] Z. Kócsi, T. Murray, H. Dahmen, A. Narendra, and J. Zeil. “The Antarium: A Recon-
structed Visual Reality Device for Ant Navigation Research”. In: Frontiers in Behavioral
Neuroscience 14 (2020), p. 599374. doi: 10.3389/fnbeh.2020.599374.

[4] P. Schultheiss, A. Buatois, A. Avarguès-Weber, and M. Giurfa. “Using virtual reality
to study visual performances of honeybees”. In: Frontiers in Behavioral Neuroscience 24
(2017), pp. 43–50. doi: 10.1016/j.cois.2017.08.003.

[5] S. Shigaki, S. Fukushima, D. Kurabayashi, T. Sakurai, and R. Kanzaki. “A novel method
for full locomotion compensation of an untethered walking insect”. In: Bioinspiration &
Biomimetics 12.1 (2016), p. 016005. doi: 10.1088/1748-3190/12/1/016005.

[6] R. Goulard, C. Bühlmann, J. E. Niven, P. Graham, and B. Webb. “A motion compensation
treadmill for untethered wood ants (Formica rufa): evidence for transfer of orientation
memories from free-walking training”. In: Journal of Experimental Biology 223.Pt 24 (2020).
doi: 10.1242/jeb.228601.

[7] D.-E. Nilsson. “The evolution of eyes and visually guided behaviour”. In: Philosophical
Transactions of the Royal Society B: Biological Sciences 364.1531 (2009), pp. 2833–2847. doi:
10.1098/rstb.2009.0083.

[8] D. Miller and R. Stegmann. “The Eye of the Eagle”. In: European Journal of Implant and
Refractive Surgery 3.1 (1991), pp. 71–73. doi: 10.1016/S0955-3681(13)80155-4.

[9] M. V. Srinivasan. “Visual control of navigation in insects and its relevance for robotics”.
In: Current Opinion in Neurobiology 21.4 (2011), pp. 535–543. doi: 10.1016/j.conb.2011.
05.020.

[10] F. Hutmacher. “Why Is There So Much More Research on Vision Than on Any Other
Sensory Modality?” In: Frontiers in Psychology 10 (2019), p. 2246. doi: 10.3389/fpsyg.
2019.02246.

60

https://doi.org/10.1016/j.asd.2017.07.001
https://doi.org/10.1016/j.asd.2017.07.001
https://doi.org/10.3389/fnbeh.2020.599374
https://doi.org/10.1016/j.cois.2017.08.003
https://doi.org/10.1088/1748-3190/12/1/016005
https://doi.org/10.1242/jeb.228601
https://doi.org/10.1098/rstb.2009.0083
https://doi.org/10.1016/S0955-3681(13)80155-4
https://doi.org/10.1016/j.conb.2011.05.020
https://doi.org/10.1016/j.conb.2011.05.020
https://doi.org/10.3389/fpsyg.2019.02246
https://doi.org/10.3389/fpsyg.2019.02246


Bibliography

[11] F. Bonin-Font, A. Ortiz, and G. Oliver. “Visual Navigation for Mobile Robots: A Survey”.
In: Journal of Intelligent and Robotic Systems 53.3 (2008), pp. 263–296. doi: 10.1007/s10846-
008-9235-4.

[12] F. Zeng, C. Wang, and S. S. Ge. “A Survey on Visual Navigation for Artificial Agents
With Deep Reinforcement Learning”. In: IEEE Access 8 (2020), pp. 135426–135442. doi:
10.1109/ACCESS.2020.3011438.

[13] Y. D. V. Yasuda, L. E. G. Martins, and F. A. M. Cappabianco. “Autonomous Visual
Navigation for Mobile Robots: A Systematic Literature Review”. In: ACM Computing
Surveys 53.1 (2020), pp. 1–34. doi: 10.1145/3368961.

[14] R. Wehner, B. Michel, and P. Antonsen. “Visual navigation in insects: coupling of
egocentric and geocentric information”. In: Journal of Experimental Biology 199.1 (1996),
pp. 129–140. doi: 10.1242/jeb.199.1.129.

[15] C. Bühlmann, M. Mangan, and P. Graham. “Multimodal interactions in insect naviga-
tion”. In: Animal Cognition 23.6 (2020), pp. 1129–1141. doi: 10.1007/s10071-020-01383-
2.

[16] T. S. Collett, P. Graham, R. A. Harris, and N. Hempel–de–Ibarra. “Navigational Memo-
ries in Ants and Bees: Memory Retrieval When Selecting and Following Routes”. In:
Advances in the Study of Behavior. Vol. 36. Academic Press, 2006, pp. 123–172.

[17] M. Kohler and R. Wehner. “Idiosyncratic route-based memories in desert ants, Melopho-
rus bagoti: How do they interact with path-integration vectors?” In: Neurobiology of
Learning and Memory 83.1 (2005), pp. 1–12. doi: 10.1016/j.nlm.2004.05.011.

[18] M. Mangan and B. Webb. “Spontaneous formation of multiple routes in individual
desert ants (Cataglyphis velox)”. In: Behavioral Ecology 23.5 (2012), pp. 944–954. doi:
10.1093/beheco/ars051.

[19] J. Zeil. “Visual homing: An insect perspective”. In: Current Opinion in Neurobiology 22.2
(2012), pp. 285–293. doi: 10.1016/j.conb.2011.12.008.

[20] B. Webb. “Chapter 1 Using Robots to Understand Animal Behavior”. In: Advances in the
Study of Behaviour. Vol. 38, pp. 1–58.

[21] S. N. Fry, N. Rohrseitz, A. D. Straw, and M. H. Dickinson. “TrackFly: virtual reality for
a behavioral system analysis in free-flying fruit flies”. In: Journal of Neuroscience Methods
171.1 (2008), pp. 110–117. doi: 10.1016/j.jneumeth.2008.02.016.

[22] T. Stone, M. Mangan, A. Wystrach, and B. Webb. “Rotation invariant visual processing
for spatial memory in insects”. In: Interface focus 8.4 (2018), p. 20180010. doi: 10.1098/
rsfs.2018.0010.

61

https://doi.org/10.1007/s10846-008-9235-4
https://doi.org/10.1007/s10846-008-9235-4
https://doi.org/10.1109/ACCESS.2020.3011438
https://doi.org/10.1145/3368961
https://doi.org/10.1242/jeb.199.1.129
https://doi.org/10.1007/s10071-020-01383-2
https://doi.org/10.1007/s10071-020-01383-2
https://doi.org/10.1016/j.nlm.2004.05.011
https://doi.org/10.1093/beheco/ars051
https://doi.org/10.1016/j.conb.2011.12.008
https://doi.org/10.1016/j.jneumeth.2008.02.016
https://doi.org/10.1098/rsfs.2018.0010
https://doi.org/10.1098/rsfs.2018.0010


Bibliography

[23] G. N. DeSouza and A. C. Kak. “Vision for Mobile Robot Navigation: A Survey”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 24.2 (2002), pp. 237–267.
doi: 10.1109/34.982903.

[24] M. S. Güzel. “Autonomous Vehicle Navigation Using Vision and Mapless Strategies: A
Survey”. In: Advances in Mechanical Engineering 5 (2013), p. 234747. doi: 10.1155/2013/
234747.

[25] Y. Lu, Z. Xue, G.-S. Xia, and L. Zhang. “A survey on vision-based UAV navigation”.
In: Geo-spatial Information Science 21.1 (2018), pp. 21–32. doi: 10.1080/10095020.2017.
1420509.

[26] T. Taketomi, H. Uchiyama, and S. Ikeda. “Visual SLAM algorithms: a survey from
2010 to 2016”. In: IPSJ Transactions on Computer Vision and Applications 9.1 (2017). doi:
10.1186/s41074-017-0027-2.

[27] J. K. Makhubela, T. Zuva, and O. Y. Agunbiade. “A Review on Vision Simultaneous
Localization and Mapping (VSLAM)”. In: 2018 International Conference on Intelligent and
Innovative Computing Applications (ICONIC). IEEE, 122018, pp. 1–5. isbn: 978-1-5386-
6477-3. doi: 10.1109/ICONIC.2018.8601227.

[28] A. Cheung, M. Collet, T. S. Collett, A. D. Dewar, F. Dyer, P. Graham, M. Mangan,
A. Narendra, A. Philippides, W. Stürzl, B. Webb, A. Wystrach, and J. Zeil. “Still no
convincing evidence for cognitive map use by honeybees”. In: Proceedings of the National
Academy of Sciences 111.42 (2014), E4396–E4397. doi: 10.1073/pnas.1413581111.

[29] J. Santos-Victor, G. Sandini, F. Curotto, and S. Garibaldi. “Divergent stereo for robot
navigation: learning from bees”. In: Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition. 1993, pp. 434–439. isbn: 1063-6919. doi: 10.1109/CVPR.1993.341094.

[30] G. C. H. E. de Croon, C. De Wagter, and T. Seidl. “Enhancing optical-flow-based control
by learning visual appearance cues for flying robots”. In: Nature Machine Intelligence 3.1
(2021), pp. 33–41. doi: 10.1038/s42256-020-00279-7.

[31] A. Vardy and R. Möller. “Biologically plausible visual homing methods based on
optical flow techniques”. In: Connection Science 17.1-2 (2005), pp. 47–89. doi: 10.1080/
09540090500140958.

[32] D. G. Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. In: Inter-
national Journal of Computer Vision 60.2 (2004), pp. 91–110. doi: 10.1023/B:VISI.
0000029664.99615.94.

[33] B. A. Cartwright and T. S. Collett. “Landmark maps for honeybees”. In: Biological
Cybernetics 57.1-2 (1987), pp. 85–93. doi: 10.1007/BF00318718.

62

https://doi.org/10.1109/34.982903
https://doi.org/10.1155/2013/234747
https://doi.org/10.1155/2013/234747
https://doi.org/10.1080/10095020.2017.1420509
https://doi.org/10.1080/10095020.2017.1420509
https://doi.org/10.1186/s41074-017-0027-2
https://doi.org/10.1109/ICONIC.2018.8601227
https://doi.org/10.1073/pnas.1413581111
https://doi.org/10.1109/CVPR.1993.341094
https://doi.org/10.1038/s42256-020-00279-7
https://doi.org/10.1080/09540090500140958
https://doi.org/10.1080/09540090500140958
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1007/BF00318718


Bibliography

[34] M. O. Franz, B. Schölkopf, H. A. Mallot, and H. H. Bülthoff. “Where did I take that
snapshot? Scene-based homing by image matching”. In: Biological Cybernetics 79.3 (1998),
pp. 191–202. doi: 10.1007/s004220050470.

[35] J. Zeil, M. I. Hofmann, and J. S. Chahl. “Catchment areas of panoramic snapshots in
outdoor scenes”. In: Journal of the Optical Society of America. A 20.3 (2003), pp. 450–469.
doi: 10.1364/JOSAA.20.000450.

[36] W. Stürzl and J. Zeil. “Depth, contrast and view-based homing in outdoor scenes”. In:
Biological Cybernetics 96.5 (2007), pp. 519–531. doi: 10.1007/s00422-007-0147-3.

[37] B. Baddeley, P. Graham, P. Husbands, and A. Philippides. “A model of ant route
navigation driven by scene familiarity”. In: PLOS Computational Biology 8.1 (2012),
e1002336. doi: 10.1371/journal.pcbi.1002336.

[38] P. B. Ardin, M. Mangan, and B. Webb. “Ant Homing Ability Is Not Diminished When
Traveling Backwards”. In: Frontiers in Behavioral Neuroscience 10 (2016), p. 69. doi:
10.3389/fnbeh.2016.00069.

[39] P. Graham, A. Philippides, and B. Baddeley. “Animal cognition: multi-modal interac-
tions in ant learning”. In: Current Biology 20.15 (2010), R639–40. doi: 10.1016/j.cub.
2010.06.018.

[40] R. Goulard, C. Bühlmann, J. E. Niven, P. Graham, and B. Webb. (personal communication
August 2021).

[41] The Mathworks Inc. MATLAB 2021a. 2021. url: https://uk.mathworks.com/products/
matlab.html.

[42] P. Manandhar. Polar To/From Rectangular Transform of Images. 2007. url: https://www.
mathworks.com/matlabcentral/fileexchange/17933-polar-to-from-rectangular-
transform-of-images.

[43] P. Berens. CircStat: A Matlab Toolbox for Circular Statistics. 2009. url: http://www.
jstatsoft.org/v31/i10.

[44] E. Batschelet. Circular Statistics in Biology. London: Academic Press, 1981.

[45] C. Bühlmann and P. Graham. “Innate visual attraction in wood ants is a hardwired
behaviour seen across different motivational and ecological contexts”. In: bioRxiv (2021),
p. 2021.01.29.428794. doi: 10.1101/2021.01.29.428794.

[46] D. D. Lent, P. Graham, and T. S. Collett. “Phase-dependent visual control of the zigzag
paths of navigating wood ants”. In: Current Biology 23.23 (2013), pp. 2393–2399. doi:
10.1016/j.cub.2013.10.014.

[47] D. D. Lent, P. Graham, and T. S. Collett. “Visual Scene Perception in Navigating Wood
Ants”. In: Current Biology 23.8 (2013), pp. 684–690. doi: 10.1016/j.cub.2013.03.016.

63

https://doi.org/10.1007/s004220050470
https://doi.org/10.1364/JOSAA.20.000450
https://doi.org/10.1007/s00422-007-0147-3
https://doi.org/10.1371/journal.pcbi.1002336
https://doi.org/10.3389/fnbeh.2016.00069
https://doi.org/10.1016/j.cub.2010.06.018
https://doi.org/10.1016/j.cub.2010.06.018
https://uk.mathworks.com/products/matlab.html
https://uk.mathworks.com/products/matlab.html
https://www.mathworks.com/matlabcentral/fileexchange/17933-polar-to-from-rectangular-transform-of-images
https://www.mathworks.com/matlabcentral/fileexchange/17933-polar-to-from-rectangular-transform-of-images
https://www.mathworks.com/matlabcentral/fileexchange/17933-polar-to-from-rectangular-transform-of-images
http://www.jstatsoft.org/v31/i10
http://www.jstatsoft.org/v31/i10
https://doi.org/10.1101/2021.01.29.428794
https://doi.org/10.1016/j.cub.2013.10.014
https://doi.org/10.1016/j.cub.2013.03.016


Bibliography

[48] J. Lim and T. Celikel. “Real-time contextual feedback for close-loop control of navi-
gation”. In: Journal of Neural Engineering 16.6 (2019), p. 065001. doi: 10.1088/1741-
2552/ab2ffa.

[49] D. D. Lent, P. Graham, and T. S. Collett. “Image-matching during ant navigation
occurs through saccade-like body turns controlled by learned visual features”. In:
Proceedings of the National Academy of Sciences 107.37 (2010), pp. 16348–16353. doi:
10.1073/pnas.1006021107.

[50] S. C. Pratt, S. E. Brooks, and N. R. Franks. “The Use of Edges in Visual Navigation
by the Ant Leptothorax albipennis”. In: Ethology 107.12 (2001), pp. 1125–1136. doi:
10.1046/j.1439-0310.2001.00749.x.

[51] D. R. Waghule and R. S. Ochawar. “Overview on Edge Detection Methods”. In: 2014
International Conference on Electronic Systems, Signal Processing and Computing Technologies.
IEEE, 1/9/2014 - 1/11/2014, pp. 151–155. isbn: 978-1-4799-2102-7. doi: 10.1109/ICESC.
2014.31.

64

https://doi.org/10.1088/1741-2552/ab2ffa
https://doi.org/10.1088/1741-2552/ab2ffa
https://doi.org/10.1073/pnas.1006021107
https://doi.org/10.1046/j.1439-0310.2001.00749.x
https://doi.org/10.1109/ICESC.2014.31
https://doi.org/10.1109/ICESC.2014.31

	Acknowledgments
	Abstract
	Kurzfassung
	Contents
	Introduction
	Research Goals and Project Outline

	Literature Review
	Robot Visual Navigation Using Maps
	Map-Based Systems
	Map-Building Systems

	Mapless Systems
	Optic Flow
	Feature-Based Tracking
	Appearance-Based Matching

	Summary: Technical and Biomimetic Navigation Algorithms

	Methods
	Integration of the Treadmill and VR System
	Motion Compensating Treadmill
	Virtual Reality System
	Systems Integration

	Experiments
	Wood Ants
	Experimental Procedures

	Data Analysis
	Data Preprocessing
	Chunks and Activity Levels
	Individual Analysis
	Statistics


	Results
	Treadmill and VR Integration in Open- and Close-Loop
	Using Ant Activity as a Metric to Filter Behaviour
	Landmark Attraction in the Open-Loop
	Ant Behaviour in the Close-Loop

	Validating the Display of Natural Images on the VR Setting
	Display of Complex Artificial Patterns
	Display of Complex Natural Images


	Discussion
	Evaluation of the Virtual Reality Experimental Setting
	Hardware Limitations
	Software Limitations

	Wood Ant Behaviour While on the Experimental Setting
	Open- and Close-Loop Oscillations
	Edge Fixation

	Conclusion

	Appendix
	Data and Scripts

	List of Figures
	List of Tables
	Bibliography

