
ΣIGMA: Scale-Invariant Global Sparse Shape Matching
Supplementary

A. Proofs

In the following we provide proofs for all lemmata from
the main paper.

A.1. Proof of Lemma 1

Invariance of the PLBO We demonstrate that, despite
using the vertex coordinates X explicitly, the operator ∆

(X )
proj

is agnostic to the extrinsic orientation of the input pose X .
Specifically, it is invariant under arbitrary rigid body trans-
formations from the Euclidean group E(3).

Lemma 1. Let ∆(X) := ∆
(X )
proj ∈ R|X|×|X| be the pro-

jected Laplace-Beltrami operator for the vertices X, de-
fined in Eqn. (1). For any rigid body transformation(

R t
0 1

)
∈ E(3), with R ∈ O(3), t ∈ R3, (10)

it holds that ∆(X) = ∆(XR> + 1t>).

Proof. We first simplify the rigidly transformed vertices
XR> + 1t> in homogeneous coordinates

(
XR> + 1t> 1

)
=

(
X 1

)(R> 0
t> 1

)
= X̃Q>

(11)
where X̃ :=

(
X 1

)
∈ R|X|×4 is the neutral input pose

and Q :=

(
R t
0 1

)
. We then directly obtain the invariance

of the projection matrix defined in Eqn. (2)

ΠXR>+1t> = I− X̃Q>(QX̃>X̃Q>)−1QX>

= I− X̃(X̃>X̃)−1X̃> = ΠX. (12)

The last equality is valid for any Q, because E(3) ⊂ GL(4).
Since the Laplacian matrix ∆

(X )
stiff is, by construction, invari-

ant under rigid-body transformations, inserting Eqn. (12)
into Eqn. (1) directly yields the desired equality.

A.2. Proof of Lemma 2

Lemma 2. Let
(
P, X̂, Ŷ

)
be a global optimiser of Eqn. (4).

(a) Let X ′ :=
(
sX,F(X ), I

)
be a rescaled input shape X ,

where a scalar factor s > 0 is applied to the vertex
coordinates. Then

(
P′, X̂′, Ŷ′

)
:=

(
P, X̂, sŶ

)
is a

global optimiser of Eqn. (4) between X ′ and Y .

(b) Let X ′′ :=
(
XR> + 1t>,F(X ), I

)
be a rigidly trans-

formed version of X with R ∈ SO(3), t ∈ R3. Then(
P′′, X̂′′, Ŷ′′

)
:=

(
P, X̂, ŶR> + 1t>

)
is a global

optimiser of Eqn. (4) between X ′′ and Y .

Lemma 2a – Invariance of Global Scaling

Proof. Rescaling the shape X → X ′ affects the shape di-
ameter in the same manner d′X = s dX with s > 0. On the
other hand, the orientation features h• are fully scale invari-
ant, since we leverage scale-invariant scalar input fields and
the outer normals are normalised to unit length. Likewise,
the Laplacian stiffness matrix ∆

(X )
stiff is unaffected, and the

projection Π(X ) defined in Eqn. (2) of X ′ becomes:

Π(X ′) = I− X̃S
(
(X̃S)>X̃S)−1(X̃S

)>
= I− X̃(X̃>X̃)−1X̃> = Π(X ), (13)

where the homogeneous coordinates X̃ are rescaled with
the diagonal matrix S := diag(s, s, s, 1) ∈ R4×4. Hence,
the projected LBO ∆

(X )
proj from Eqn. (1) scale-invariant.

Inserting these scale shift identities yields the following
optimisation problem Eqn. (14):

min
P′,X̂′,Ŷ′

1

ndY

∥∥X̂′I −P′YJ
∥∥
F

+
1

ndX

∥∥1

s
Ŷ′J −P′>XI

∥∥
F

+
λdef

|X|dY
∥∥∆

(X )
projX̂

′∥∥
F

+
λdef

|Y|dX
∥∥1

s
∆

(Y)
projŶ

′∥∥
F

+
λori

n

∥∥h(X ) −P′h(Y)
∥∥
F
, (14)

s.t. P′ ∈ {0, 1}n×n, P′>1n = 1n, P′1n = 1n,

Substituting P′ → P, X̂′ → X̂ and 1
s Ŷ′ → Ŷ then results

in exactly the optimisation problem from Eqn. (4) with the
original inputsX andY . Inserting the global optimiser from



the original, unscaled problem
(
P, X̂, Ŷ

)
directly results

in the global optimiser
(
P′, X̂′, Ŷ′

)
=

(
P, X̂, sŶ

)
of the

scaled problem.

Lemma 2b – Invariance of Rigid Transformations

Proof. Applying a rigid transformation X → X ′′ to the
shape X → XR> + 1t> leads to XI → XIR

> + 1t>

directly, where R ∈ SO(3) and t ∈ R3. On the other hand,
∆

(X )
proj is invariant to rigid transformation (cf. Lemma 1),

so the term ∆
(X )
proj stays unaffected. Furthermore, the

orientation-aware features h• are rigid transformation in-
variant, as discussed in Sec. 3.2 of the main paper.

Inserting these rigid transformation identities yields the
following optimisation problem Eqn. (15):

min
P′′,X̂′′,Ŷ′′

1

ndY

∥∥X̂′′I −P′′YJ
∥∥
F

+
1

ndX

∥∥Ŷ′′J −P′′>(XIR
> + 1t>)

∥∥
F

+
λdeform

|X|dY
∥∥∆

(X )
projX̂

′′∥∥
F

+
λdeform

|Y|dX
∥∥∆

(Y)
projŶ

′′∥∥
F

+
λorient

n

∥∥h(X ) −P′′h(Y)
∥∥
F
, (15)

s.t. P′′ ∈ {0, 1}n×n, P′′>1n = 1n, P′′1n = 1n,

Substituting P′′ → P, X̂′′ → X̂ and Ŷ′′ → ŶR> +
1t>, we have:

min
P,X̂,Ŷ

1

ndY

∥∥X̂I −PYJ
∥∥
F

+
1

ndX

∥∥(ŶJR> + 1t>)−P>(XIR
> + 1t>)

∥∥
F

+
λdeform

|X|dY
∥∥∆

(X )
projX̂

∥∥
F

+
λdeform

|Y|dX
∥∥∆

(Y)
proj(ŶR> + 1t>)

∥∥
F

+
λorient

n

∥∥h(X ) −Ph(Y)
∥∥
F
, (16)

s.t. P ∈ {0, 1}n×n, P>1n = 1n, P1n = 1n,

The first, third and fifth term in Eqn. (16) are same as
the corresponding terms in the original problem of Eqn. (4),
hence the only critical terms are the second and forth. The
second can be rewritten as follows:

∥∥ŶR> + 1t> −P>(XIR
> + 1t>)

∥∥
F

=
∥∥(Ŷ −P>XI)R>

∥∥
F

=
∥∥Ŷ −P>XI

∥∥
F

(17)

The first equality holds because P>1 = 1 holds by con-
struction. The second equality follows from the fact the
SO(3) elements do not affect the Frobenius norm.

For the forth term we have the following equalities:

∥∥∆
(Y)
proj(ŶR> + 1t>)

∥∥
F

=
∥∥∆

(Y)
projŶR> + ∆

(Y)
proj1t>

∥∥
F

=
∥∥∆

(Y)
projŶR>

∥∥
F

=
∥∥∆

(Y)
projŶ

∥∥
F

(18)

where we utilise the linearity of the PLBO, and the fact
that the constant vector 1t> lives in its nullspace (the first
and second equality). The third equality holds because ro-
tations do not affect the Frobenius norm.

Hence,
(
P′′, X̂′′, Ŷ′′

)
=

(
P, X̂, ŶR> + 1t>

)
is the

global optimiser of the rigidly transformed problem.

B. Implementation Details
B.1. Shape Reconstruction

In Fig. 3 examples of the reconstructed shapes using the
area-normalised LBO, i.e. the stiffness matrix component
∆

(X )
stiff of the Laplacian, and PLBO are illustrated for qual-

itative comparison. It demonstrates that the PLBO leads
to more realistic results whereas the LBO leads to over-
smoothed reconstructions. For obtain these results, we fixed
the correspondences in the Erec term of our final objective
defined in Eqn. (4) and run our full implementation to esti-
mate X̂ and Ŷ. This results in fast optimisation since the
unknowns are continuous variables living in R3 and helps
to show the quality of the reconstruction in very high reso-
lution (10k faces) with clean correspondences. Since the re-
constructed shapes are only a by-product of our method, we
use lower resolution meshes (500 faces) in all experiments
for the sake of faster optimisation, but a similar reconstruc-
tion behaviour of PLBO and LBO can be observed in this
case as well.

The idea of projecting LBO has been explored in [26],
with a focus on preserving a certain subspace of the LBO
(approximating the low frequency end of the spectrum), for
the task of fast spectral decomposition. In contrary, we
aim to exclude the subspace of shape coordinates by the
adding it to the kernel (of PLBO) for geometry reconstruc-
tion. Hence both approaches can be seen complementary.

B.2. Details on the Orientation-Aware Feature

Inspired by [33], the orientation-aware feature defined
in Eqn. (8) requires two scalar-valued features f (X ) and
g(X ) besides the unit outer normal n(X ) as input which en-
code the information of shape orientation. In theory, we
can use any pair of scalar-valued features to construct an



Figure 10: Visualisation of our orientation-aware feature.
Red and blue indicate the respective orientation−1, 1 while
white indicates values in-between.

orientation-aware feature map. However, there are several
aspects one needs to take into consideration. First, the
scalar-values features should be scale invariant. Second,
their gradient fields should not be close to parallel, since the
cross-product of two parallel vectors will vanish. In prac-
tice, we choose the 1st and 70-th frequency of the wave ker-
nel signature [4] as the f (X ) and g(X ) due to their dissimi-
lar frequencies which effectively avoids near-parallel gradi-
ent fields. Empirically we found it works well for our pur-
pose. See Fig. 10 for an illustration. Note that although the
orientation-aware features can be easily computed densely
for every vertex, only the ones for the sparse keypoints are
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Figure 11: Quantitative results with k = 5 for MINA [6]
and ours. Our method produces global optimal results for
all instances for this (smaller) optimisation problem within
15min.

utilised in Eqn. (7). As shown in Fig. 10, the feature map is
noisy, especially under the presence of non-isometric defor-
mations. Hence, it helps to disambiguate the intrinsic shape
symmetry, however, it does not fully exclude symmetrically
flipped matchings and does not lead to fine-grain feature
alignment.

C. Further Experiments
C.1. Experiments with Default Settings in MINA [6]

The results shown in the main paper are obtained under a
more conservative search space pruning than was proposed
in the original paper, namely k = 11, where the original
MINA defaults to k = 5. Below we show additional exper-
imental results using k = 5 and argue that in general less
pruning is more favourable.

As shown in Fig. 11, MINA achieves accurate correspon-
dences and certifies 80% globally optimal pairs within 1h
in its original setting with a solution search space restricted
to only allowing k = 5 matching candidates per keypoint.
In this setting, SIGMA still outperforms MINA and is able
to find the global optima of all 71 TOSCA [9] matching
pairs with better accuracy within 15 minutes. Note that the
matching accuracy of SIGMA does not improve compared
to the case of k = 11 (cf. Fig. 4), this is because the more
aggressive pruning inevitably excludes some correct match-
ings which effects the matching performance negatively.
Therefore, a more conservative pruning with higher k is
preferable in practice. Removing the pruning completely
leads to an extremely enlarged search space and, thus, also
higher runtime.

C.2. Robustness to Keypoints

Compared to MINA, our SIGMA is less sensitive to the
exact position of keypoints. Our experiments (Fig. 4, 6) on
SHREC20 non-isometric shows the robustness of SIGMA,
since the keypoints were hand-picked by the dataset au-
thor and an absolute matching does not exist. Addition-
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Figure 12: PCK curves on SMAL [51] with independent
FPS Sampling.

Figure 13: Qualitative results of SIGMA on SMAL [51]
with independently FPS-sampled keyponits.

ally we consider the challenging scenario of sampling the
keypoints for each shape independently using farthest point
sampling (FPS). Here, there are no guarantees that mean-
ingful correspondences exist. Quantitative and qualitative
results on SMAL can be seen in Fig. 12, 13. Compared to
other keypoint-dependent approaches (MINA and PMSDP),
our method is the least sensitive to keypoint positions but a
certain drop in performance is expected.

C.3. Ablation on λrec & λ′ori

Our ablation is based on 20 randomly sampled TOSCA
shape pairs and an (equivalent) version of the original ob-
jective presented in Eq. (4) for practical reasons.

λrecErec(P, X̂, Ŷ) + Edef(X̂, Ŷ) + λ′oriEori(P) (19)

We note it can be easily converted to the formulation in
Eq. (4) by setting λrec = λ−1

def and λ′ori = λori ∗λrec. More-
over, all the experiments (except otherwise mentioned) are
conducted under the setting of λdef = 5 and λori = 2.5e−2,
which corresponds to λrec = 2e−1, λ′ori = 5e−3.

As both the Erec and Edef terms in the objective are
dispensable (cf. Eq. (4, 19)), we first conduct the abla-
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Figure 14: Ablation study on λrec & λ′ori. (Left) By setting
λ′ori = 0, the lowest mean geodesic errors are obtained at
λrec ∈ {1e−5, 3e−1, 9e−1} (Right) The λrec is fixed
to be {1e−5, 3e−1, 9e−1} respectively, the lowest mean
geodesic error is obtained at λ′ori = 5e−3. Note that overall
the (cyan) curve with λrec = 1e−5 lies above the other two
curves, suggesting its suboptimal performance.

tion on λrec alone, i.e. λ′ori = 0. The search range cov-
ers from 1e−8 to 1e5 in logarithmic scale, with a refined
search range between 1e−1 and 1e0. As shown in Fig. 14
(left), the set of minimal mean geodesic error are achieved
at {1e−5, 3e−1, 9e−1}.

Consequently, we fix λrec to be {1e−5, 3e−1, 9e−1}
respectively and fine tune λ′ori. The quantitative results
in Fig. 14 (right) suggest that the best accuracy is ob-
tained at λ′ori = 5e−3. In summary, the optimal set-
ting (for the 20 randomly subsampled TOSCA pairs) is
λrec = 3e−1, λ′ori = 5e−3, which is close to the setting
chosen in the main paper.


