
3D-MOT using Neural Radiance Fields

Burak Cuhadar
Technical University of Munich

03720534
burak.cuhadar@tum.de

Abstract

In this project, we focus on 3D Multi-object Tracking
problem where we aim to reconstruct the scene as well. To
achieve that, we utilize the Neural Radiance Fields(NeRF)
method which proved successful in recent years for the
novel view synthesis task. However, the assumption for the
NeRF method is that the scene is static. Therefore, it is not
suitable for the 3D-MOT problem where there are dynamic
objects in the scene. We assume there are only rigidly mov-
ing objects and propose to estimate the rigid pose of the
objects jointly with the NeRF networks. In particular, we
optimize different networks for each object and for the static
background. We do not utilize any labeled data, but we use
the ground truth object poses for a noisy initialization. On
our synthetic dataset, we demonstrate our method can re-
construct the scene and estimate the object poses jointly.
We also show that the objects and the scene are decomposed
successfully.

1. Introduction
In recent years, the community has investigated im-

plicit representations for scene reconstruction and novel
view synthesis after the advent of Neural Radiance
Fields(NeRFs) [7]. There have been many works trying to
apply the NeRF method to different scenarios. One par-
ticular scenario where it is challenging to apply NeRF is
found when the scene is dynamic because the basic assump-
tion of NeRF is that the scene is static. However, there are
already many works that have adapted NeRF for dynamic
scenes [5, 11, 13, 18]. Some works that deal with dynamic
scene reconstruction using NeRFs, also aim to decompose
the scene into its individual objects [8, 10, 24, 25]. This
object decomposability is especially useful for autonomous
driving or mobile robotics scenarios, as those scenarios re-
quire distinguishing the individual objects in the scene such
as cars, pedestrians etc. to be able to track their position and
also make predictions about their motion.

In this work, we are interested in applying NeRF

for a dynamic scene in an autonomous driving scenario,
where we also aim to decompose the scene into the
static(background) part and the dynamic parts. Each ob-
served car is represented individually so that we can track
them and also generate novel trajectories for each car.
We utilize the method presented in ”STaR: Self-supervised
Tracking and Reconstruction of Rigid Objects in Motion
with Neural Rendering” paper [25]. Differently from the
STaR paper, we use our own dataset generated with CARLA
simulator [1] and also apply the method for more than one
object.

2. Related Work
NeRFs for Dynamic Scenes There have been many
works that try to adapt the NeRF method for dynamic
scenes, where there can be any non-rigid deformation ob-
served on the scene. One such prominent example is called
Nerfies [11]. They reconstruct dynamic scenes by opti-
mizing a volumetric deformation field. Based on a frame-
specific latent deformation code, the deformation field is
optimized to warp observed points into a canonical 5D
NeRF. Building upon the Nerfies method, HyperNeRF [12]
lifts the NeRFs into a higher dimensional space and slice
it depending on the latent deformation code specific to the
frame by slicing surface field which again is modeled by an
MLP, to allow discontinuities in the deformation field.

NeRFs for Scene Decomposition For some applications,
decomposing the scene into its static and dynamic parts or
into the observed objects in the scene may be desired. For
example, a method called D2NERF [21] aims to decom-
pose the observed scene from a monocular video into dy-
namic and static parts in a self-supervised fashion. The
authors achieve it by representing static and dynamic parts
seperately by two different NeRFs, where HyperNeRF rep-
resents the dynamic part [12] to model temporal changes.
They also present a novel loss to aid the optimization for
better decomposition. Another approach called Unsuper-
vised Discovery of Object Radiance Fields(uORF) aims to
decompose the scene into its background and objects from a

1



Figure 1. Method Overview: Blue color denotes the learnable parameters

single image by leveraging NeRFs and slot attention to infer
object latent codes [24]. Similar to that work, ObSuRF [14]
utilizes attention and NeRFs to decompose the scene from
a single image. Differently from uORF, ObSuRF also uses
a novel loss to use the depth information for faster training.
All the methods mentioned above that decompose the scene
into its objects work on static scenes where the objects do
not move. The method called STaR [25] assumes there are
only rigid objects that move between the frames where the
rigid objects can be tracked and reconstructed with NeRFs
in a self-supervised way. They represent the background
and the object with individual NeRFs and allow the object’s
relative pose between the frames to be optimized on the Lie
algebra. We build upon this work and going to investigate it
in more detail in Section 3.

Object-aware NeRFs for Urban Scenarios Another line
of work focuses on reconstructing urban driving scenes
where the individual vehicles can be reconstructed indepen-
dently. For example, in the Neural Scene Graphs [10], the
scene is rendered using one NeRF for static background and
one NeRF for the vehicles conditioned on object-specific la-
tent codes. However, that method requires the scene graph
of the scene, which means extensive labeling is required.
Using only camera images and off-the-shelf algorithms to
predict object tracks, camera poses and 2D image segmen-
tations; Panoptic Neural Fields [4] has the capabilities of
semantic and panoptic segmentation, object decomposition,
and object bounding box optimization which the Neural
Scene Graphs method lacks. Since we generally need large
sclae reconstruction for urban scenarios, the SUDS method
[18] can successfully reconstruct large-scale urban dynamic
scenes into its static part and instances by using RGB im-
ages, sparse LiDAR and off-the-shelf 2D optical flow esti-
mation methods.

Object-centric Learning With the proven success of the
Attention [19] mechanism across many fields, there also
emerged new kinds of methods for unsupervised object-
centric learning based on Slot Attention [6]. In that work,
the authors propose to encode the images using the Slot At-
tention module which uses self-attention to encode the im-
age into distinct slots each explaining a part of the image,

ideally the background or the objects. That way, the ob-
jects are discovered in unsupervised way. Based on this slot
attention module, ObSuRF uses NeRFs as the decoder to
render the objects and the background so that we get a ra-
diance field representation of the scene and the individual
objects [15].

3. Method

Our method is based on the Neural Radiance Fields [7]
and STaR [25] methods. Firstly, we are going to explain the
NeRF method as the preliminaries in Section 3.1 and then
how we adapted it for dynamic scenes where there are rigid
objects in motion in Section .

3.1. Neural Radiance Fields(NeRFs)

In NeRFs, the scene is represented as a 5D vector-valued
function whose input is the 3D location and 2D viewing
direction. The output of this function is 3D RGB color and
volume density σ. The function is approximated by an MLP
network Fθ : (x,d) → (c, σ), but in practice two MLPs are
optimized where one of them is used for sampling points
on the ray for the second one. The color for each pixel is
rendered by using quadrature rule on volumetric rendering
equation [7]:

Ĉ(r) =

N∑
i=1

Ti(1− exp(−σiδi))ci ,

where Ti = exp(−
i−1∑
j=1

σjδj).

Since generally much of the space if empty or occluded,
naively sampling along a ray repeatedly would result in an
inefficient way to optimize this network. To alleviate this,
the authors also proposes a hierarchical volume sampling
where for one network the samples on the rays are uniform
and for the other network more samples are used in addition
to uniform samples where those additional samples come
from a distribution defined by the densities estimated by the
first network. In addition to this, positional encoding is also
leveraged to be able to more easily approximate a high fre-
quency function such as the one we want to approximate.

2



3.2. 3D MOT using NeRFs

One of the assumptions of the NeRF method is that the
scene is static and does not change from frame to frame. To
be able to apply NeRF for a dynamic scene and also to track
3D rigid objects in the scene through time, we leverage the
ideas presented in the Star and D̂2NeRF papers [25], [21].

We represent the static scene which does not contain any
of the moving rigid objects and does not change from frame
to frame as in the original NeRF method. To represent dy-
namic parts of the scene (individual vehicles in our dataset),
we again user the vanilla NeRF method, but transform the
input point samples by the optimized poses for each car be-
fore inputting it to the network:

FS
θ : r(si),d → σS

i , c
S
i (1)

F
Dj

θ : r(si),d, ξj(t) → σ
Dj

i , c
Dj

i ; j ∈ V (2)

where V is the predefined number of rigid dynamic ob-
jects, ξj(t) ∈ se(3) is the transformation from time t to time
0, for the vehicle j. Therefore we treat the first frame as the
canonical frame for the dynamic parts, so that the static and
dynamic NeRFs are aligned. The transformation of samples
is then done by exp(ξj(t))r(si), which is given as the input
to the dynamic NeRF networks.

To render RGB color, we use the alpha-blending ap-
proach presented in the NeRF paper by composing the out-
puts static and dynamic NeRFs:

Ĉ(r) =

N∑
i=1

Ti(α
S
i c

S
i +

V∑
j=1

α
Dj

i c
Dj

i ) (3)

where Ti = exp

−
i−1∑
j=1

(σS
j +

V∑
k=1

σDk
j )(sj+1 − sj)


(4)

and αS
i = 1− exp(−σS

i (si+1 − si)), (5)

α
Dj

i = 1− exp(−σ
Dj

i (si+1 − si)). (6)

To be able to use (3) for color composition, we need to
have the same samples for both static and dynamic NeRFs.
Therefore during importance sampling [7], we use σS

j +σD
j

3.2.1 Loss Functions

Our total loss function is the following:

L = LRGB + βLtransparency + γLdecomposition

+ ηLstatic + λLray

The first term is the MSE loss used in NeRF, which is
the squared difference between estimated RGB and ground
truth RGB values.

Transparency Regularization Following STaR [25], we
regularize the estimated transparencies of the static and dy-
namic NeRFs to be close to 0 or 1 using entropy:

Ltransparency =

M∑
i=1

(H(αS
i ) +

V∑
j=1

H(α
Dj

i )), (7)

where H is the binary entropy function.

Decomposition Regularization The STaR method uses a
regularization term to encourage a disentagled decomposi-
tion of the scene. It is achieved by a loss term that disen-
courages the static and dynamic volumes having large oc-
cupancies at the same time:

Ldecomposition =
(
αS
i logαS

i + αD
i logαD

i

)
(αS

i + αD
i ),

(8)

where αS
i = αS

i /(α
S
i + αD

i ).

Static Regularization The InfoNeRF method [2] defines
the entropy of a single ray using the estimated density for
the samples on the ray:

Lstatic = −
N∑
i=1

p (ri) log p (ri) (9)

,where p (ri) =
αi∑
j αj

=
1− exp (−σiδi)∑
j 1− exp (−σjδj)

. (10)

Then they add this term to the loss function to penalize
density distributions that are not focused on a single loca-
tion. They also mask the non-hitting rays according to the
estimated opacity before using this term for all rays [2].

Ray Regularization To prevent density floaters in the dy-
namic NeRFs, we leverage the ray regularization loss pro-
posed in D2NeRF [21] and define for the object j:

Lj
ray (r) = max

t∈[tn,tf ]
wj (r(t)) (11)

,where wj (x) =
σDj (x)∑

i σ
Di (x) + σS(x)

∈ [0, 1] (12)

Then Lray is defined as the mean of Lj
rays over all ob-

jects and ray samples.

Dynamic Regularization We also tried the dynamic reg-
ularization term used in EmerNeRF [22] paper, which is
simply the mean of the dynamic NeRF densities. However,
our experiments showed that this term couldn’t be mini-
mized during the training. Therefore, we do not include
this in our final implementation.

3



3.2.2 Optimization

Rigid pose optimization The STaR method optimizes the
poses using an analytical Jacobian that can be computed
during the forward pass. However, in this work we use the
PyPose library [20], which provides LieTensor modules to
allow the computation of gradients for se(3) algebra.

We follow the 3-stage optimization presented in STaR
[25]: Appearance initialization, optimization for the first k
frames, and online optimization.

Appearance Initialization To provide an initialization
for our method, we train the static NeRF using images from
only the first frame, until the RGB MSE loss for the fine
network reaches the threshold m1.

Pose Initialization During our experiments, we noticed
that initializing object poses with identity does not lead to
convergence. Therefore, we initialize the object poses with
ground truth poses with added noise. To achieve that, we
sample from the normal distribution with a mean of 0 and
a standard deviation of 1 meter and add that to the ground-
truth poses. For noisy rotation, we sample from the normal
distribution with a mean of π/32 radians and a standard de-
viation of π/16 radians and add that to the y-axis angle.

Online Training After appearance initialization training,
we start optimization of the poses jointly with the NeRF pa-
rameters. We first allow the optimization of the first k poses,
and after fine NeRF MSE loss reaching a certain threshold
m2, we start to increment k one by one. We increment k
when, again, the fine MSE loss reaches m2. However, when
the dynamic objects are much smaller than the static scene,
the m2 threshold is reached too quickly before the poses
are optimized properly. Therefore, we also set a minimum
number of iterations to be trained for before incrementing
k, which we call Nonline

4. Experiments
In our experiments, we want to test the success of our

method in tracking 3D objects jointly with radiance field
optimization. To this end, we show our results for scene
reconstruction, novel view synthesis, 2D IOU for object de-
composition between frames, and 3D IOU for object pose
tracking.

Implementation Details We use PyTorch and PyPose to
implement our method. For optimization, we use the Adam
optimizer [3]. We list the hyperparameters used during
our experiments in Table 1. Our NeRF implementation
follows NeRF-Pytorch [23], and [9] for the MLP imple-
mentation. We use 256 samples for uniform sampling and

256 samples for importance sampling. For further details,
we provide the implementation for our method: https:
//github.com/burakcuhadar/3D-MOT-using-
Neural-Radiance-Fields.

k m1 m2 Nonline β γ η λ

5 9e-4 1e-3 70K 1e-3 1e-3 1e-5 1e-5

Table 1. Hyperparameters

Dataset We created synthetic datasets for evaluation us-
ing CARLA simulator [1]. We have both one-object
and two-object datasets where the objects move between
frames. In both datasets, we have 50 camera views for train-
ing, 6 for validation, and 12 for testing. In the one-vehicle
dataset, we have a video of 16 frames; in the two-vehicle
one, we have 12 frames.

Figure 2. Example views from our dataset

Baseline Similar to STaR [25], we implement a NeRF
method for the baseline where the network gets the normal-
ized timestamp as an input in addition to the view direction
and 3D location. This provides a basic NeRF method that
can be generalized to dynamic scenes. We call it NeRF-time
in the tables.

4.1. 4D Novel View Synthesis Evaluation

We compare our method with the Nerf-time baseline and
our STaR reproduction on the novel view synthesis task. In
Figures 6 and 7, we first report the renderings across dif-
ferent timesteps from a given camera view and then report
the renderings for a fixed timestep from different camera
views, respectively. In Figure 6, our STaR reproduction
fails to provide realistic renderings from novel views. We
can see that the rendered cars contain a lot of artifacts, and
along their trajectories, we observe artifacts of the same
color as the cars. The reason is that the static and dynamic
NeRFs could not be decomposed successfully. Comparing
our method with Nerf-time, we also see that some details of

4

https://github.com/burakcuhadar/3D-MOT-using-Neural-Radiance-Fields
https://github.com/burakcuhadar/3D-MOT-using-Neural-Radiance-Fields
https://github.com/burakcuhadar/3D-MOT-using-Neural-Radiance-Fields


the cars can be rendered better by our method, such as the
bottom parts of the cars. This is especially apparent when
we magnify the renderings of the vehicles in Figure 8. In the
second row of the figure, we observe that the car is rendered
more realistically than the Nerf-Time and STaR methods.

In Figure 7, the difference between our method and Nerf-
time is more pronounced for car renderings. Our method
can render cars with more detail and fewer artifacts. In these
renderings, we also again see that our StAR reproduction
performs poorly, meaning that our additional regularizers
help significantly.

Quantitave evaluation results are reported in Table 2. We
measure the metrics first on the final renderings and then
only on the scene’s static and dynamic parts separately. We
observe that the Nerf-time baseline performs better than our
method regarding the PSNR metric on the final rendering
and the static parts but ours performs better than Nerf-time
in terms of SSIM and LPIPS in the one-vehicle dataset.
In the dynamic part evaluation, our method is better than
the baseline regarding PSNR and SSIM in the one-vehicle
dataset but worse than that in the two-vehicle dataset re-
garding the PSNR metric. We also observe that our STaR
reproduction performs poorer than ours on these metrics.

4.2. Relative Object Pose Estimation Evaluation

We report the estimated relative pose of the vehicles with
respect to the first frame. For that, we use the ATE and RPE
metrics [16]. In addition, we also transform the ground truth
bounding box of the first frame with our estimated relative
poses and compare it against the ground truth bounding box
in the subsequent frames to measure 3D IOU and report the
mean in Table 4.

One-vehicle Two-vehicle
Mean First car Second car

ATE 0.146 0.424 0.540 0.308
RPE 0.182 0.769 1.271 0.267

Table 3. Pose Evaluation Metrics

We also provide visualization of the estimated trajectory
against the ground truth one and the initialized trajectory in
Figure 3. Although the pose initialization is very crude, we
can successfully optimize the poses converging closely to
the ground truth poses.

Mean First Vehicle Second Vehicle

0.924 0.932 0.917

Table 4. 3D IoU Comparison for two-vehicle dataset

Figure 3. Comparison of the ground truth trajectory with
the estimated trajectory and the initialization trajectory. Left:
one-vehicle dataset. Right: two-vehicle dataset.

4.3. Object Decomposition Evaluation

To measure the object decomposition ability of our
method, we get a 2D mask of the objects from their NeRFs
using the estimated densities. In particular, we assume the
pixel is occupied if the cumulative transmittance of the last
sample on the ray going through that pixel is less than 0.1.
We report the Intersection over Union(IoU) between the
ground truth object mask and the predicted object mask in
Table 5. In addition, we provide some examples for our ob-
ject mask against the ground truth object mask in Figure 4.
We can also render each NeRF individually to get the static
background and separate moving vehicle renderings. Figure
5 shows some examples of those decomposed renderings.

One-vehicle Two-vehicle

2D IOU 0.79 0.67

Table 5. Object Decomposition Evaluation

4.4. Ablation

4.4.1 Regularization Terms

We provide our ablation study for the regularization terms
in Table 6. As suggested in STaR [25], we use the regu-
larization terms defined by Equations 7 and 8. We denote
the experiment where we only use those entropy regular-
ization terms in the first line of each section in Table 6.
As a result of those experiments, we see that the ray reg-
ularization(Equation 11) and static regularization(Equation
9) terms improve the metrics of our method. The dynamic
regularization term did not have any positive effect. Our ex-
periments show that combining entropy regularization with
static and ray regularization gives us the best method.

5



C
om

po
si

tio
n

Sequence One-vehicle Two-vehicle

Metric PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NeRF-time 26.29 0.869 0.321 23.73 0.833 0.313
STaR [25] 25.98 0.871 0.312 23.40 0.818 0.333
Ours 26.23 0.874 0.306 23.65 0.829 0.314

St
at

ic
Sequence One-vehicle Two-vehicle

Metric PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NeRF-time 26.55 0.871 0.316 23.81 0.834 0.307
STaR [25] 26.32 0.873 0.306 23.65 0.821 0.322
Ours 26.43 0.875 0.302 23.75 0.830 0.308

D
yn

am
ic

Sequence One-vehicle Two-vehicle

Metric PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NeRF-time 17.64 0.596 0.004 19.62 0.659 0.006
STaR [25] 17.14 0.583 0.055 15.98 0.492 0.056
Ours 18.58 0.665 0.033 19.31 0.661 0.045

Table 2. Quantitative comparison of our method to baselines in novel-view synthesis task: These results are measured on our test
views.

Figure 4. Object masks for one-vehicle dataset. From left to
right: Ground truth image, ground truth object mask and the pre-
dicted object mask

4.4.2 Pose Optimization Library

We experimented with pose optimization libraries that can
work within the PyTorch framework: PyPose [20] and Li-
eTorch [17]. We first started using the LieTorch library, but
our experiments failed with pose optimization. Therefore,
we switched to another alternative called PyPose, which
was better documented than LieTorch and has active sup-
port and development. We successfully implemented our
approach using PyPose.

Figure 5. Decomposition of the scene into the static back-
ground and the dynamic vehicle for the one-vehicle dataset.
From left to right: Composed rendering, static background and
the vehicle

4.4.3 Sliding Window Optimization

Our method fails to optimize for long sequences as de-
scribed in 4.5. Therefore, we experimented with sliding
window optimization, where instead of optimizing for all
the frames up until the current frame, we optimize only for
the frames in a window with a particular length ending at the
current frame, and we slide it by one frame further when we
reach the m2 threshold described in 3.2.2. We experimented

6



G
ro

un
d-

tr
ut

h
O

ur
s

N
er

f-
tim

e
ST

aR
[2

5]

Figure 6. Qualitative comparison of our method to baselines in novel-view synthesis task for two-vehicle dataset across the first five
frames.

C
om

po
si

tio
n

Metric PSNR ↑ SSIM ↑ LPIPS ↓

Ours(only entropy reg.) 23.40 0.818 0.333
Ours(entropy + dynamic reg.) 23.39 0.818 0.332
Ours(entropy + ray reg.) 23.51 0.824 0.320
Ours(entropy + static reg.) 23.62 0.828 0.316
Ours 23.65 0.829 0.314

St
at

ic

Metric PSNR ↑ SSIM ↑ LPIPS ↓

Ours(only entropy reg.) 23.65 0.821 0.322
Ours(entropy + dynamic reg.) 23.63 0.821 0.321
Ours(entropy + ray reg.) 23.69 0.826 0.312
Ours(entropy + static reg.) 23.71 0.829 0.310
Ours 23.75 0.830 0.308

D
yn

am
ic

Metric PSNR ↑ SSIM ↑ LPIPS ↓

Ours(only entropy reg.) 15.98 0.492 0.056
Ours(entropy + dynamic reg.) 16.07 0.498 0.056
Ours(entropy + ray reg.) 17.33 0.575 0.042
Ours(entropy + static reg.) 19.29 0.658 0.050
Ours 19.31 0.661 0.045

Table 6. Ablation study for regularization terms

with windows of length 2,3,4 and 5 but still failed to work
on longer sequences.

4.5. Limitations

Our experiments showed that our method cannot gen-
eralize for long video sequences. For example, in our one-
vehicle dataset, after the 9th frame, our estimated poses start
to diverge, and in our two-vehicle dataset, we observe this
after the 8th frame. Therefore, we report our results until
those frames and leave the investigation of improving pose
estimation as a future work.

5. Conclusion

We reproduced the STaR method [25] and extended it
for multiple objects in this work. Then, we successfully
demonstrated its performance on our synthetic dataset. As
a further work, this method can be tested on real-world
datasets with many more moving objects than our dataset.
Furthermore, the issue with pose estimation for longer se-

7



G
ro

un
d-

tr
ut

h
O

ur
s

N
er

f-
tim

e
ST

aR
[2

5]

Figure 7. Qualitative comparison of our method to baselines in novel-view synthesis task for two-vehicle dataset for the fifth frame
seen from different views.

quences should be investigated for the successful applica-
tion of this method to real-world scenarios. Testing this
method on datasets with ego-vehicle cameras would also be
interesting, demonstrating its application to the autonomous
driving problem.

References

[1] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio
Lopez, and Vladlen Koltun. Carla: An open urban driving
simulator, 2017. 1, 4

[2] Mijeong Kim, Seonguk Seo, and Bohyung Han. Infonerf:
Ray entropy minimization for few-shot neural volume ren-
dering, 2022. 3

[3] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization, 2017. 4

[4] Abhijit Kundu, Kyle Genova, Xiaoqi Yin, Alireza Fathi,
Caroline Pantofaru, Leonidas Guibas, Andrea Tagliasacchi,
Frank Dellaert, and Thomas Funkhouser. Panoptic neural
fields: A semantic object-aware neural scene representation,
2022. 2

[5] Zhengqi Li, Qianqian Wang, Forrester Cole, Richard Tucker,
and Noah Snavely. Dynibar: Neural dynamic image-based
rendering. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4273–
4284, 2023. 1

[6] Francesco Locatello, Dirk Weissenborn, Thomas Un-
terthiner, Aravindh Mahendran, Georg Heigold, Jakob
Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-
centric learning with slot attention, 2020. 2

[7] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis, 2020. 1, 2, 3

[8] Michael Niemeyer and Andreas Geiger. GIRAFFE: Rep-
resenting scenes as compositional generative neural feature
fields. https://arxiv.org/abs/2011.12100, 2020. 1

[9] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable volumetric rendering: Learn-
ing implicit 3d representations without 3d supervision, 2020.
4

[10] Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt,
and Felix Heide. Neural scene graphs for dynamic scenes.

8



Fi
rs

tV
eh

ic
le

Se
co

nd
V

eh
ic

le

Ground-Truth Ours NeRF-Time STaR

Figure 8. Closer look to the renderings of our method and baselines in novel-view synthesis task for the two-vehicle dataset.

https://arxiv.org/abs/2011.10379, 2020. 1, 2
[11] Keunhong Park, Utkarsh Sinha, Jonathan T. Barron,

Sofien Bouaziz, Dan Goldman, Steven Seitz, and Ri-
cardo Martin-Brualla. Deformable neural radiance fields.
https://arxiv.org/abs/2011.12948, 2020. 1

[12] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T.
Barron, Sofien Bouaziz, Dan B Goldman, Ricardo Martin-
Brualla, and Steven M. Seitz. Hypernerf: A higher-
dimensional representation for topologically varying neural
radiance fields, 2021. 1

[13] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-NeRF: Neural radiance fields
for dynamic scenes. https://arxiv.org/abs/2011.13961, 2020.
1

[14] Karl Stelzner, Kristian Kersting, and Adam R. Kosiorek. De-
composing 3d scenes into objects via unsupervised volume
segmentation, 2021. 2

[15] Karl Stelzner, Kristian Kersting, and Adam R. Kosiorek. De-
composing 3d scenes into objects via unsupervised volume
segmentation, 2021. 2

[16] Jrgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Bur-
gard, and Daniel Cremers. A benchmark for the evaluation
of rgb-d slam systems. pages 573–580, 10 2012. 5

[17] Zachary Teed and Jia Deng. Tangent space backpropagation
for 3d transformation groups, 2021. 6

[18] Haithem Turki, Jason Y. Zhang, Francesco Ferroni, and Deva
Ramanan. Suds: Scalable urban dynamic scenes, 2023. 1, 2

[19] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need, 2023. 2

[20] Chen Wang, Dasong Gao, Kuan Xu, Junyi Geng, Yaoyu Hu,
Yuheng Qiu, Bowen Li, Fan Yang, Brady Moon, Abhinav
Pandey, Aryan, Jiahe Xu, Tianhao Wu, Haonan He, Daning

Huang, Zhongqiang Ren, Shibo Zhao, Taimeng Fu, Pranay
Reddy, Xiao Lin, Wenshan Wang, Jingnan Shi, Rajat Talak,
Kun Cao, Yi Du, Han Wang, Huai Yu, Shanzhao Wang, Siyu
Chen, Ananth Kashyap, Rohan Bandaru, Karthik Dantu, Ji-
ajun Wu, Lihua Xie, Luca Carlone, Marco Hutter, and Se-
bastian Scherer. Pypose: A library for robot learning with
physics-based optimization, 2023. 4, 6

[21] Tianhao Wu, Fangcheng Zhong, Andrea Tagliasacchi, For-
rester Cole, and Cengiz Oztireli. D2nerf: Self-supervised
decoupling of dynamic and static objects from a monocular
video, 2022. 1, 3

[22] Jiawei Yang, Boris Ivanovic, Or Litany, Xinshuo Weng, Se-
ung Wook Kim, Boyi Li, Tong Che, Danfei Xu, Sanja Fidler,
Marco Pavone, and Yue Wang. Emernerf: Emergent spatial-
temporal scene decomposition via self-supervision, 2023. 3

[23] Lin Yen-Chen. Nerf-pytorch. https://github.com/
yenchenlin/nerf-pytorch/, 2020. 4

[24] Hong-Xing Yu, Leonidas J. Guibas, and Jiajun Wu. Unsu-
pervised discovery of object radiance fields, 2022. 1, 2

[25] Wentao Yuan, Zhaoyang Lv, Tanner Schmidt, and Steven
Lovegrove. Star: Self-supervised tracking and reconstruc-
tion of rigid objects in motion with neural rendering, 2020.
1, 2, 3, 4, 5, 6, 7, 8

9

https://github.com/yenchenlin/nerf-pytorch/
https://github.com/yenchenlin/nerf-pytorch/

	. Introduction
	. Related Work
	. Method
	. Neural Radiance Fields(NeRFs)
	. 3D MOT using NeRFs
	Loss Functions
	Optimization


	. Experiments
	. 4D Novel View Synthesis Evaluation
	. Relative Object Pose Estimation Evaluation
	. Object Decomposition Evaluation
	. Ablation
	Regularization Terms
	Pose Optimization Library
	Sliding Window Optimization

	. Limitations

	. Conclusion

