

IDP: 3D MOT using Neural Radiance Fields

Student: Burak Cuhadar

Student Number: 03720534

Advisor: Mariia Gladkova

Technische Universität München

TUM School of Computation, Information and Technology

Chair of Computer Vision

Munich, 21. March 2024

Motivation

- Success of Radiance Fields methods: NeRFs, 3D Gaussian Splatting etc.
- Static scene assumption
- Dynamic scenes, individual objects

Related Work: NeRF

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t)\sigma(\mathbf{r}(t))\mathbf{c}(\mathbf{r}(t),\mathbf{d})dt, \text{ where } T(t) = \exp\left(-\int_{t_n}^t \sigma(\mathbf{r}(s))ds\right)$$

Related Work: NeRFs with Deformation Field

- works on monocular camera
- Deformation Field
- D-NeRF, Nerfies, HyperNeRF

Related Work: NeRFs for Scene Decomposition

Related Work: Neural Scene Graphs

Related Work: Neural Scene Graphs

ТШ

Related Work: STaR

Related Work

	Dynamic Scenes	Scene Decomposition	Object Tracking
NeRFs with deformation field: D-NeRF, Nerfies, HyperNeRF	\checkmark		
NeRFs for Scene Decomposition: D2NeRF, EmerNeRF	\checkmark	\checkmark	
Neural Scene Graph	\checkmark	\checkmark	✓ (uses off-the-shelf 3D Tracker)
STaR	✓	✓	 ✓

- Ours:
 - Rigid object tracking
 - Supports multiple objects
 - Decomposes each object individually implicitly

Method

$$p_o = T_{ow}^j(t) * p_w, where T_{ow}^j(t) \in SE(3)$$

Method: Composition

$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} T_i (\alpha_i^S \mathbf{c}_i^S + \sum_{j=1}^{V} \alpha_i^{D_j} \mathbf{c}_i^{D_j})$$

where $T_i = \exp\left(-\sum_{j=1}^{i-1} (\sigma_j^S + \sum_{k=1}^{V} \sigma_j^{D_k})(s_{j+1} - s_j)\right)$

$$\alpha_i^S = 1 - \exp(-\sigma_i^S(s_{i+1} - s_i)),$$

$$\alpha_i^{D_j} = 1 - \exp(-\sigma_i^{D_j}(s_{i+1} - s_i))$$

Method: Loss

$$\mathcal{L}$$
 = \mathcal{L}_{RGB} + $\beta \mathcal{L}_{transparency}$ + $\gamma \mathcal{L}_{decomposition}$ + $\eta \mathcal{L}_{static}$ + $\lambda \mathcal{L}_{ray}$

•
$$\mathcal{L}_{transparency} = \sum_{i=1}^{M} (\mathcal{H}(\alpha_i^S) + \sum_{j=1}^{V} \mathcal{H}(\alpha_i^{D_j}))$$

• $\mathcal{L}_{decomposition} = \left(\overline{\alpha}_i^S \log \overline{\alpha}_i^S + \overline{\alpha}_i^D \log \overline{\alpha}_i^D\right) \left(\alpha_i^S + \alpha_i^D\right)$ where $\overline{\alpha}_i^S = \alpha_i^S / (\alpha_i^S + \alpha_i^D)$

TUTI

Method: Loss (from D2NeRF)

$$\mathcal{L}_{static} = -\sum_{i=1}^{N} p(\mathbf{r}_{i}) \log p(\mathbf{r}_{i})$$
,where $p(\mathbf{r}_{i}) = \frac{\alpha_{i}}{\sum_{j} \alpha_{j}} = \frac{1 - \exp(-\sigma_{i}\delta_{i})}{\sum_{j} 1 - \exp(-\sigma_{j}\delta_{j})}$

$$\begin{split} \mathcal{L}_{ray}^{j}\left(\mathbf{r}\right) &= \max_{t \in [t_{n}, t_{f}]} w^{j}\left(\mathbf{r}(t)\right)\\ \text{,where } w^{j}\left(\mathbf{x}\right) &= \frac{\sigma^{D_{j}}\left(\mathbf{x}\right)}{\sum_{i} \sigma^{D_{i}}\left(\mathbf{x}\right) + \sigma^{S}(\mathbf{x})} \in [0, 1] \end{split}$$

Method: Optimization

- Rigid pose optimization with PyPose library
- Pose initialization
 - Translation noise ~ N(0,1)
 - Rotation noise around y-axis ~ N($\pi/32$, $\pi/16$)
- 3-stage optimization:
 - Appearance Initialization
 - until MSE loss of 9e-4
 - Optimization for the first k frames
 - until MSE loss of 1e-3
 - Online training
 - until MSE loss of 1e-3 and minimum 70k iterations

Dataset

- synthetic dataset using CARLA
- 50 views for training, 6 for validation, 12 for testing
- two datasets: one-vehicle(16 frames) and two-vehicle(12 frames)

-	Sequence	One-vehicle			Two-vehicle		
sitio	Metric	PSNR ↑	SSIM ↑	LPIPS \downarrow	PSNR ↑	SSIM ↑	LPIPS \downarrow
odu	NeRF-time	26.29	0.869	0.321	23.73	0.833	0.313
JO I	STaR [24]	25.98	0.871	0.312	23.40	0.818	0.333
0	Ours	26.23	0.874	0.306	23.65	0.829	0.314
	Sequence	One-vehicle			Two-vehicle		
ic	Metric	PSNR ↑	SSIM \uparrow	LPIPS \downarrow	PSNR ↑	SSIM \uparrow	LPIPS ↓
Sta	NeRF-time	26.55	0.871	0.316	23.81	0.834	0.307
	STaR [24]	26.32	0.873	0.306	23.65	0.821	0.322
	Ours	26.43	0.875	0.302	23.75	0.830	0.308
	Sequence One-vehicle			Two-vehicle			
ynamic '	Metric	PSNR ↑	SSIM \uparrow	LPIPS \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow
	NeRF-time	17.64	0.596	0.004	19.62	0.659	0.006
Д	STaR [24]	17.14	0.583	0.055	15.98	0.492	0.056
	Ours	18.58	0.665	0.033	19.31	0.661	0.045

Ground-Truth

Ours

Nerf-Time

Ground-Truth

Ours

Nerf-Time

Ground-Truth

Ours

Nerf-Time

STaR

Ground-Truth

Ours

STaR

Experiments: Pose Estimation

One-vehicle Dataset

Two-vehicle Dataset

Experiments: Pose Estimation

	One-vehicle	Two-vehicle		
		Mean	First car	Second car
ATE	0.146	0.424	0.540	0.308
KPE	0.182	0.709	1.2/1	0.207

	Mean	First Vehicle	Second Vehicle	
3D IOU:	0.924	0.932	0.917	

Experiments: Object Decomposition

G.T. Mask

Estimated Mask

	One-vehicle	Two-vehicle		
2D IOU	0.79	0.67		

Experiments: Object Decomposition

Experiments: Ablation Study

_	Metric	PSNR↑	SSIM ↑	LPIPS \downarrow
sitior	Ours(only entropy reg.)	23.40	0.818	0.333
ödi	Ours(entropy + dynamic reg.)	23.39	0.818	0.332
Jon	Ours(entropy + ray reg.)	23.51	0.824	0.320
0	Ours	23.65	0.828 0.829	0.310 0.314
	Metric	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow
-	Ours(only entropy reg.)	23.65	0.821	0.322
atio	Ours(entropy + dynamic reg.)	23.63	0.821	0.321
St	Ours(entropy + ray reg.)	23.69	0.826	0.312
	Ours(entropy + static reg.)	23.71	0.829	0.310
	Ours	23.75	0.830	0.308
	Metric	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow
amic	Ours(only entropy reg.)	15.98	0.492	0.056
	Ours(entropy + dynamic reg.)	16.07	0.498	0.056
Jyr	Ours(entropy + ray reg.)	17.33	0.575	0.042
Π	Ours(entropy + static reg.)	19.29	0.658	0.050
	Ours	19.31	0.661	0.045

Experiments: Ablation Study

with static reg.

Ground-Truth RGB

w/o ray reg.

> with ray reg.

ПΠ

Conclusion

- Adapted NeRF for dynamic scenes with rigid objects
- Limitations:
 - \circ longer sequences
 - fixed number of objects
- Future work:
 - real-world datasets
 - ego-vehicle camera
 - adapt to changing number of vehicles