
Computer Vision Group
TUM School of Computation, Information and Technology
Technical University of Munich

Automatically Differentiable Dense Visual
Dynamic SLAM for RGB-D Cameras

Scientific work for obtaining the academic degree
Master of Science (M.Sc.) in Mechatronics and Robotics
at the TUM School of Computation, Information and Technology of the Technical University of
Munich

Supervisor Prof. Dr. Daniel Cremers
Computer Vision Group

Advisor Mariia Gladkova, M.Sc.
Computer Vision Group

Submitted by Jingkun Feng

Submitted on December 20, 2023 in Garching





Disclaimer

I hereby declare that this thesis is entirely the result of my own work except where otherwise
indicated. I have only used the resources given in the list of references.

Garching, December 20, 2023 (Signature)



Abstract

Visual Simultaneous Localization and Mapping (vSLAM) in dynamic environments remains
a critical challenge for real-world applications. Most existing visual SLAM approaches rely
on the static environment assumption, while works addressing dynamic environments re-
quire considerable engineering effort, showing limited scalability. This thesis proposes a fully
differentiable, dense, dynamic RGB-D SLAM pipeline by leveraging deep learning to avoid
heavily engineered components. Building upon ∇SLAM [1], we propose a deep-learning-
based visual odometry that performs direct image alignment on feature and uncertainty maps
learned by a convolutional neural network (CNN). Additionally, the differentiable Levenberg-
Marquardt algorithm and the convolutional M-Estimator are employed to enhance robustness
and accuracy in tracking. In line with past works, our pipeline first experimented with the
motion segmentation method that combines semantic and geometric segmentation to iden-
tify moving objects. Then, we propose a novel moving instance segmentation method by
exploiting the uncertainty maps predicted by the CNN. For mapping, the differentiable Point-
Fusion method of ∇SLAM is preserved. Our experiments on synthetic and real-world data
demonstrate the effectiveness of our system, showing promising performance in tracking and
producing meaningful 4D reconstruction of dynamic environments. In our evaluation, we
identify vital limitations of the proposed pipeline and open up potential directions for future
work.
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Chapter 1

Introduction

Simultaneous Localization and Mapping (SLAM) is a cornerstone technology in the rapidly
advancing field of robotics and autonomous systems. Its capability to track the system’s
location while concurrently constructing a map of an unknown environment is pivotal for
real-world applications such as autonomous navigation. Particularly, in the realm of visual
dynamic SLAM, the challenges intensify as the system must contend with not only mapping
and localization but also the inherent complexities of dynamic, ever-changing environments.
Despite the recent considerable progress in visual SLAM, appropriately handling dynamic en-
vironmental properties remains challenging. On the other hand, leveraging neural networks
offers promising avenues in relative sub-tasks and enhances the efficacy of visual SLAM sys-
tems. This thesis explores the possibility of further empowering the performance of visual
SLAM systems by proposing an automatically differentiable SLAM pipeline for RGB-D images,
which provides robust camera tracking and estimates and reconstructs moving rigid bodies
in dynamic environments.

1.1 Challenges of Dynamic Visual SLAM

The use of automatic systems such as robots, autonomous vehicles, and drones stands highly
on their ability to interact with the environment, which always consists of static and dynamic
objects. Thus, for safety and interacting purposes, the system must accurately perceive the
dynamic 3-dimensional world in real time.

Visual SLAM, one of the most essential problems in computer vision, has drawn significant
interest in robotic applications over the past few years [2]. The majority of existing works
have been conducted to develop accurate and robust visual SLAM systems based on the
static environment assumption [3] [4]. Although they perform well in static or quasi-static
environments, the dynamic participants in environments usually cause catastrophic failure of
these methods. Some works have been carried out with weighting factors designed under the
prior assumption of input data distribution; some have proposed using an M-estimator. They
enhance the robustness to the changes of illumination, inevitable sensor noise, and slight
dynamics but cannot still handle complex environmental dynamics in an open world.

With the increasing interest in deploying visual SLAM in real-world tasks, dynamic SLAM
has been introduced to target environments with multiple moving entities. Most works esti-
mate camera motion by trivially eliminating the dynamic pixels, while only a few pieces have
been conducted to simultaneously track the camera and objects in the scene. Nonetheless,
previous works demand considerable engineering effort, as each module must be carefully
designed and tuned. As a consequence, this restricts their ready deployment in real-world
settings.
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Contemporary learning-based methods have shown superiority over classic geometric-
based methods in handling more challenging conditions, such as lack of features, poor illu-
mination due to haziness, and significant ego-motions [5][6]. Yet, these methods struggle in
dynamic environments if they do not account for moving objects at training, as these objects
would introduce unpredictable variations in lighting or occlusions.

1.2 Contributions

The primary intention of this work is not to defeat or surpass any existing dynamic SLAM sys-
tems but rather to offer another possibility for the development of visual SLAM in cooperation
with other robotic tasks by proposing an end-to-end pipeline.

In this work, we propose an automatically differentiable dense visual SLAM pipeline using
RGB-D images, which has robust performance in dynamic environments, coupled with the
capability to track and reconstruct moving rigid objects. Extending and adapting the exist-
ing differentiable SLAM system, ∇SLAM [1], as our development baseline, we first replace
the differentiable Iterative Closest Points (ICP) in ∇SLAM with the unrolled conventional
direct method. The combined photometric and geometric errors are minimized using a dif-
ferentiable Levenberg-Marquardt algorithm in a coarse-to-fine optimization framework. To
improve efficiency, our pipeline leverages the inverse compositional approach for optimiza-
tion. It has been proven that the inverse compositional approach performs comparable to
the widely used forward compositional approach and is yet more efficient [7]. Subsequently,
inspired by works such as [8], [9], and [5], we propose a convolutional neural network to
learn deep feature maps and deep uncertainty maps. We formulate a deep feature-metric
residual and down-weight the impact of feature vectors in uncertain regions, which are most
likely under distinct lighting changes or contain moving objects.

We introduce two approaches with individual characteristics to handle the moving objects
in the scene. The first one utilizes a pretrained segmentation model, MaskRCNN[10], to pro-
vide prior information on the foreground objects. Among the predicted foreground objects,
we generate a binary mask to filter the regions predicted to be of movable object classes, such
as people, animals, etc. Although MaskRCNN can provide temporally consistent segmenta-
tion masks to the classes in its train data, it shows limited capability to generalize to novel
object categories. To mitigate this limitation, we introduce the second approach, exploiting
the uncertainty map to propose dynamic regions. These regions are down-sampled to sets
of points. We fed these points as prompts to a generic segmentation model, FastSAM [11],
in order to extract segmentation masks. Thanks to the powerful segmentation model, our
system can detect all moving objects in the scene. Similar to camera motion estimation, we
track the moving objects using bundle adjustment based on the probabilistic feature-metric
direct image alignment.

We conduct an extensive evaluation of the proposed pipeline on multiple datasets accord-
ing to two configurations:

• Moving camera in static environments. This configuration reflects the static environ-
ment assumption of primary classic optimization-based visual SLAM methods. Evalu-
ation in such a configuration validates our approach’s essential capability to track the
camera movement with sufficient accuracy and robustness.

• Moving camera in dynamic environments. Accurate camera and object motion esti-
mation and robustness to dynamic objects is one of the main objectives of our approach.
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If our target is achieved, we validate it with this most realistic and complex configura-
tion.

Moreover, we perform ablation studies to validate the contribution of each component.
We also provide a qualitative simulation of the convergence basin of the feature-metric direct
image alignment. The simulation demonstrates this method’s robustness under significant
lighting changes and scenes with multiple dynamic objects.

1.3 Outline

In Chapter 2, it is presented a comprehensive overview of visual SLAM approaches, ranging
from general visual SLAM to dense SLAM with RGB-D inputs, and extending to deep-learning-
based SLAM techniques. Additionally, we cover the domain of motion segmentation and,
ultimately, the integration of these methods into dynamic SLAM.

Chapter 3 provides the necessary background knowledge of the topic. To ease under-
standing, we first unify the notation we use throughout this thesis. After that, it is introduced
the mathematical foundations of the approach developed in this thesis, including the pin-
hole camera model, rigid-body transformation of camera and objects, and the computational
graph.

Chapter 4 details the developed approaches in this thesis. Beginning with an overview
of the pipeline, each involved component is detailed following their sequential order in the
pipeline, covering the probabilistic feature-metric direct image alignment, the inverse compo-
sitional approach, the convolutional neural network to learn feature map and feature-metric
uncertainty map, the moving object segmentation methods, and the differentiable association
of detected instances.

Chapter 5 presents the evaluation results of the developed system over multiple represen-
tative datasets. We demonstrate the system’s effectiveness in estimating camera motion and
tracking dynamic objects. Quantitative and qualitative results compared to multiple baselines
are presented and analyzed in this chapter.

Moreover, in 6, we identify and discuss the contribution of each proposed component in
our framework through ablation studies, followed by a discussion about the empirically ob-
served limitations of the system, presenting ideas of possible extensions and future research
directions.

Eventually, we summarize our findings of the project in Chapter 7.



Chapter 2

Related Work

2.1 Visual SLAM

Visual SLAM, as a particular form of SLAM, focuses on sensor recordings in monocular, stereo,
or RGB-D images. Classic solutions can be divided into feature-based methods (indirect
methods), which rely on feature detection and matching, and direct methods, which optimize
an objective function over pixel-wise photometric error [2]. Compared to indirect methods,
direct methods make use of more information from the image, including lines and intensity
variations, which exhibit its capability to work in texture-less scenes [12][13][14]. However,
optimization over photometric errors is more difficult since it has a small convergence basin
and can easily be stuck in a sub-optimal solution. In this project, we try to avoid this problem
by extending direct image alignment to the domain of feature maps inspired by works like
[8][5][9].

2.2 Dense RGB-D SLAM

The RGB-D sensor provides explicit depth measurements, simplifying the depth estimation
and easing the development of dense SLAM. KinectFusion [15] proposed an RGB-D SLAM ap-
proach with a truncated signed distance function (TSDF) based map representation, which is
fast and robust in small environments. Successive works [16][17] extend the same principle
to large-scale environments using appropriate data structures, e.g., octree map representa-
tion. Surface elements (surfels) [18] are another frequently applied map representation in
the domain of RGB-D SLAM. Similar to point clouds, a map of surfels encodes extra informa-
tion - typically a radius and a normal - in addition to the spatial information in its elements.
In contrast to TSDF, surfels produce inherently fewer memory footprints. Hence, they can
avoid the storage overhead due to switching representation between mapping and tracking,
which is typical of TSDF-based fusion methods. PointFusion [19] proposed a surfel-based
RGB-D SLAM approach for large environments with local and global loop closure. Elas-
ticFusion [20] took further advantage of surfel-based fusion and introduced a loop closure
optimization through non-rigid surface deformations.

2.3 Deep-learning-based SLAM

Deep learning has shown its capability in many computer vision tasks, e.g., classification. It
has recently been used to redefine a subset of components of the complete SLAM system to
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be differentiable or even directly applied to SLAM. Numerous works have attempted to train
models for sub-tasks of visual SLAM, for instance, feature detection [21] and matching [22],
optical flow estimation [23], and depth estimation [24][25] [26]. In particular, SuperPoint
[21] and its follow-up, SuperGlue [22], were designed to perform feature detection and fea-
ture matching and have shown better robustness than hand-crafted features. It has been
reported that deep-learning-based methods deliver superior performance in these upstream
tasks and, therefore, can facilitate solving the downstream visual SLAM tasks [27] [28] [29]
[30].

Additionally, visual representation learning for SLAM-related tasks is of great interest. In
contrast to methods that study the geometry part of the task, these works focus on learning
robust and invariant dense representations. For example, CodeSLAM [31] presents a dense
representation of scene geometry, which is conditioned on intensity data from a single image
and generated from a small number of parameters. On the other hand, GN-Net [8] and LM-
Reloc [32] propose novel loss functions based on the classic Gauss-Newton and Levenberg-
Marquardt optimization algorithms to learn feature-metric representations of the RGB map.
Their loss functions constrain the reprojection errors of pixel correspondences instead of the
relative pose error between consecutive frames. Likewise, [9] focuses on learning robust and
invariant features for camera pose estimation, which can re-localize in large environments
given coarse pose priors. Intentionally, these methods tackle re-localization, but their learned
features are robust to temporal and seasonal scene changes and can be directly applied for
image alignment.

In addition to re-localization, feature-metric representation has also been widely researched
to improve the accuracy and robustness of visual odometry. For instance, [33] proposes to
use feature-metric loss instead of photometric loss for self-supervised ego-motion estimation.
In a concurrent work, Xu et al. extend the idea of [34] employing a convolutional network to
learn a pixel-wise feature map along with a deep feature-metric uncertainty map to formulate
a deep probabilistic feature-metric residual.

Furthermore, several researchers have attempted to construct SLAM systems that are
end-to-end trainable [35][36][37]. ∇SLAM [1] implements differentiable versions of iter-
ative closest points (ICP), Levenberg-Marquardt optimization, and ray casting, allowing for
errors in the map to be propagated back to sensor measurements, without sacrificing ac-
curacy. Despite ∇SLAM’s full differentiability, it imitates classic methods in a differentiable
manner without trainable parameters, meaning it cannot be trained. Thus, its performance is
bounded by the accuracy of the classic counterparts of its components. In contrast, iMap[38],
NICE-SLAM [39], and NICER-SLAM [40], using a differentiable render with neural implicit
representations, neural radiance fields, has an end-to-end trainable pipeline. Meanwhile,
Teed et al. propose DROID-SLAM [6], which adopts the state-of-the-art dense optical flow
estimation network [23] with a novel implicit global bundle adjustment optimization model
to the problem of visual odometry. It outperforms leading methods on a variety of challeng-
ing datasets, including Euroc [41] and TartanAir [42] datasets. Nonetheless, it trained the
visual odometry beforehand and combined it with a well-designed back-end in the inference
time, meaning it is not end-to-end trainable. Based on these works, with the increasing in-
volvement of advanced and well-designed learning-based models, it is anticipated that the
upcoming advancement in dense SLAM will lead to enhanced accuracy and robustness.
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2.4 Motion Segmentation

Motion segmentation is dedicated to identifying dynamic pixels in an image, which probably
capture moving instances. This task is particularly important in dynamic visual SLAM as it
facilitates the SLAM system in robust camera tracking and in tracking moving objects. In
existing dynamic SLAM systems, moving instances are mostly identified in three ways: 1. Ini-
tialization of background/foreground; 2. Utilizing geometry constraints and optical flow;
3. Employing deep learning models[30]. Approaches relying on geometric cues investigate
the properties of epipolar geometry to segment static and dynamic features. At the same time,
optical flow, corresponding to the motion field in an image, can also be used to segment a
moving object [43][44]. Additionally, geometric segmentation can refine masks provided by
an instance segmentation approach [45]. In the meantime, researchers have also been using
deep learning approaches to tackle motion segmentation. Thanks to the great potential of
neural networks, deep features, deep optical flow, and other deep components have been
catalyzing new ideas to segment moving objects in the environment [46][47].

Among these three solutions, the first alternative is currently the most popular choice,
showing convincing effectiveness in a considerable number of dynamic SLAM systems, such
as [48], [49], [45] and [16]. They leverage segmentation models to obtain prior environmen-
tal knowledge, splitting background and foreground objects. However, widely used learning-
based methods such as Mask R-CNN[10] and DeepLab[50] learn to segment instances under
the supervision of labels. Using supervised learning heavily restricts these methods’ ability to
generalize to real-world scenarios because of a limited range of labels in training datasets.
Dynamic SLAM systems mentioned above, acquiring semantic information from these net-
works, suffer naturally from the bounded generalization of these supervised methods.

Recently, segmentation approaches have addressed this limitation differently. For exam-
ple, CutLER[51] exploits unsupervised learning to achieve more generalizable object detec-
tion and instance segmentation. It utilizes the MaskCut[51] to generate pseudo-masks of
multiple instances of an image and train a detector using the pseudo-masks of unlabeled
data. On the other hand, Kirillov et al. proposes a promptable segmentation system, Segment
Anything (SAM), which simplifies the segmentation process as a foundational model. SAM’s
meticulously crafted network architecture supports interactive segmentation using different
prompts. Together with its successor works, such as [11] [53], SAM revolutionizes the field of
computer vision by providing cutting-edge performance and, most importantly, the possibility
of using different types of prompts from keypoints, bounding boxes to masks, and even text
to select the segmentation of interest. This novel feature opens up interesting research di-
rections in further exploiting semantic information in various tasks, including dynamic visual
SLAM. In this work, we exploit this potential by integrating the FastSAM [11] in our pipeline
and using points spawning from an uncertainty map as prompts to segment moving instances.

2.5 Dynamic SLAM

As a specific case of semantic SLAM, dynamic SLAM mainly focuses on identifying and appro-
priately handling the active entities in environments. As introduced in the last section, SLAM
systems can detect moving objects using deep-learning-based segmentation models, geomet-
ric cues, and neural networks. Once objects in motion are identified, multiple ways exist
to leverage this information to enhance SLAM. Several existing approaches suggest treating
moving objects as outliers and eliminating them from the map [48][54]. For instance, Dy-
naSLAM [48] tackles the tasks by detecting moving objects and filtering them before feeding
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the visual cues into the visual odometry pipeline. He et al. propose an online vSLAM system
without predefined dynamic labels for dynamic environments, which is built on ORB-SLAM3
[56] and combines semantic information, depth information, and optical flow to distinguish
foreground and background and recognize dynamic regions. Though they achieve supe-
rior performance in estimating camera trajectories, trivially ignoring pixels capturing moving
objects leads to loss of information on images. Consequently, methods like these provide re-
stricted aid to scenarios where robots interact with other dynamic participants around them.

On the contrary, [49][45] [16] have developed methods that effectively reduce the im-
pact of dynamic elements in scenes. They estimate ego camera motion while simultaneously
tracking and reconstructing the moving objects. Grinvald et al. introduce a novel multi-object
TSDF formulation [57] that can track and reconstruct dynamic objects. This formulation
allows for maintaining a single volume for the entire scene with all objects therein. Never-
theless, these solutions are often heavily engineered and remain improvable, with scope for
substantial enhancements.



Chapter 3

Preliminaries

In this chapter, we first unify the notations used in the thesis and then revisit the important
concepts, including the rigid body transformation, the pinhole camera projection, and the
computational graph, which are prerequisites to understanding the problem we tackle and
the proposed approaches.

3.1 Notation

Throughout the paper, we distinguish scalars, vectors, and matrices by denoting them differ-
ently, i.e., scalars with regular letters s, vectors with small bold letters v, and matrices with
capital bold letters M. Moreover, we differ homogeneous coordinates p̄ from conventional
coordinates p.

Localization is a problem of estimating transformation between different coordinate sys-
tems. Therefore, in this thesis, we may encounter vast transformation calculations. For this,
we denote coordinate systems using the symbol F with a subscript to identify a specific frame.
For example, FW represents the world coordinate system, and FC is the camera coordinate
system. The transformation from FW to FC is written as TW C .

3.2 Rigid Body Transformation

3.2.1 Euclidean Transformation between Coordinate Systems

Rigid body transformation, also known as Euclidean transformation, interprets the movement
of an object in Euclidean space with respect to a coordinate system while preserving its size
and shape - the Euclidean distance between every pair of points of the body. Formally, a rigid
body transformation T in 3-dimensional Euclidean space is a map:

T : R3 7→ R3 (3.1)

such that for any points p,q ∈ R3 belong to the body denoted as a set of points X the following
conditions hold true:

∥p− q∥= ∥T (p)− T (q)∥ ∀p,q ∈ X (3.2)

T (p)× T (q) = T (p× q) ∀p,q ∈ X (3.3)

In general, a rigid-body transformation consists of a rotation and a translation. Various
ways are used to represent the rotation, including axis-angle, Euler angle, and quaternions.
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To ease the read, we mainly employ the rotation matrix R, a 3 × 3 orthogonal matrix with
the following special properties:

det(R) = 1 (3.4)

RRT = I (3.5)

It belongs to the special orthogonal group defined as:

SO(n) =
�

R ∈ Rn×n|RRT = I, detR= 1
	

(3.6)

which particularly specifies the rotation in 3D space. Together with a translation vector
t ∈ R3, a rigid body transformation T of a 3-dimensional coordinates p can be then expressed
as:

T (p) = Rp+ t (3.7)

The 3-dimensional coordinates p = [x , y, z]T can be expended to the so-called homoge-
neous coordinates, p̄ = [x .y, z.1]T . We can also integrate the rotation matrix R ∈ SO(3) and
the translation vector t ∈ R3 in a 4 × 4 matrix called transformation matrix T as:

T=

�

R t
0 1

�

(3.8)

The resulting matrix T is in the special Euclidean group SE(3) defined as:

SE(3) =

�

T=

�

R t
0 1

�

∈ R4×4 | R ∈ SO(3), t ∈ R3

�

(3.9)

Then, we can formulate a rigid body transformation easily with a matrix multiplication as
T (p) = Tp̄. On top of that, transformations can be chained as matrix products:

T2(T1(p)) = T2 T1 p̄ (3.10)

Note that this matrix multiplication results in a homogeneous coordinate, which should be
converted to a conventional Euclidean coordinate afterwards.

Since the Rotation matrix is orthogonal, its transpose RT denotes an inverse rotation. This
is particularly useful as it allows us to represent the inverse transformation as the inverse of
matrix T:

T−1 =

�

RT −RT t
0 1

�

(3.11)

Additionally, we represent the identity transformation matrix as a 4 × 4 identity matrix I4×4

3.2.2 Lie Algebra - Parameterization of Rigid Body Transformation in Optimization

An appropriate parameterization of the rigid body transformation is vital in optimization
problems. As interpreted above, the translation and rotation components in a rigid body
transformation consist of six degrees of freedom. Parameterizing the translation component
in three dimensions, denoted as t, is straightforward. It comprises three elements and pos-
sesses three degrees of freedom, corresponding to movements along the x , y, and z axes.

The situation for the rotation component, however, is more complex. It contains nine
elements when it is presented as a 3 by 3 matrix. Despite this, it only has three degrees of
freedom. This discrepancy arises because of the constraints imposed on the matrix that be-
longs to SE(3) (Equation (3.6)). Directly representing the constraints of rotation matrices in
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optimization problems can be challenging and may limit the range of optimization strategies
that can be applied.

As introduced above, the transformation belongs to the special Euclidean group SE(3), a
subgroup of the Lie group. It encompasses the space of rigid body transformation in three
dimensions. Most importantly, it is a differentiable manifold. This property is significant
because it implies we can leverage the Lie algebra, which links to the tangent space at the
identity transformation I4×4.

The Lie algebra representation of a transformation T, denoted as ξ ∈ se(3), can be ex-
pressed as a six-entry vector [ωT ,vT ]T ∈ R6. Here, ω ∈ R3 specifies the rotation and can be
understood as akin to angular velocity. Likewise, v ∈ R3 indicates the translation, analogous
to linear velocity.

We can transform from T to ξ through the exponential map:

ex p : se(3) 7→ SE(3) (3.12)

This mapping has a closed-form expression that involves matrix exponentiation and the ap-
plication of Rodrigues’ formula. The inverse mapping, from ξ back to T, is achieved via the
logarithm map, defined as:

log : SE(3) 7→ se(3) (3.13)

It’s worth mentioning that when ξ = 0, it corresponds to the identity transformation I4×4.
This relation between SE(3) and se(3) greatly facilitates the optimization of rigid body trans-
formations.

3.2.3 Camera-World Transformation

Most visual odometry algorithms in standard visual SLAM assume that all the observed
changes are attributed to the camera motion in space relative to an inertial frame, usually
the world frame.

Given a point p observed by the camera denoted as pC w.r.t the camera frame FC , we can
represent the same point in the world frame FW by using the relative transformation between
FC and FW :

p̄W = TW C p̄C (3.14)

The applied relative transformation here also corresponds to the relative position and orien-
tation of the coordinate frame FC as seen in the world coordinate frame FW . We call this the
camera pose. Analogously, we defined the object pose similarly, which is detained in the next
section. A schematic visualization of this relative transformation is shown in Figure 3.1.

Tracking camera frame-to-frame estimates the relative transformation TW
Ct Ct+1

between one
camera frame FCt

and the other camera frame FCt+1
in the world frame, see Figure 3.2. To

ease the reading, we omit the superscript when the relative frame is fixed, such as the world
frame. Conventionally, we attach the world coordinate frame to the first camera frame:

TW C0
= I4×4 (3.15)

and convert the successors’ pose by concatenating the relative transformations as:

TW Ct+1
= TW C0

. . .TCt−1Ct
TCt Ct+1

(3.16)
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Figure 3.1: Camera-world transformation. World and camera coordinate frames are denoted as FW and FC
respectively. The coordinate frame’s axes are colored, x in red, y in green, and z in blue. TW C represents the
camera pose, interpreting the position and orientation of the camera as seen from the world coordinate frame.
Meanwhile, TW C is the rigid body transformation of coordinates in FC to FW .

Figure 3.2: Relative camera pose transformation. Given two coordinates of the camera at different time FCt

and FCt+1
as well as the world frame FW , TCt Ct+1

represents the relative transformation from pCt+1
to pCt

.

3.2.4 Moving Object Transformation

In the context of dynamic SLAM, in addition to camera poses, we also have to account for
moving objects’ motion. The observed object motion is a combination of the camera motion
as well as its ego motion. Object tracking is accomplished by first estimating the camera’s
relative transformations w.r.t to the object at a given timestamp j, then converting the trans-
formation to the world coordinate frame.

Let’s break down the process and first take a look at estimating camera motion relative
to a fixed coordinate frame attached to an object FOj

. Considering the object is temporally
static, while the camera is moving, we wish to compute the transformation of the camera
from time j > i to i observed in FOj

denoted as TO
Ci C j

. As estimating the camera relative poses

in the world coordinate frame, we express TO
Ci C j

as:

TO
Ci C j
= (TO

OCi
)−1 TO

OC j
(3.17)

Given the initial pose of the camera FCi
in the object frame TW

CiO
= TO

CiO
, we compute the pose
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Figure 3.3: Camera and object motions from times i to j > i. TCi C j
represents camera motion, while TOiOj

defines the object motion. Transformations in purple depict camera tracking and those in orange illustrate the
computation in Equation (3.18).

of the camera FC j
in the object frame by concatenating transformations:

TO
C jO
= TO

C j Ci
TO

CiO

= (TO
Ci C j
)−1 TO

CiO

(3.18)

Given the camera motion from j to i expressed in the world coordinate frame TW
Ci C j

, we
can obtain the object pose in world frame by transforming the above result to the world
coordinate frame. Sequentially, combining this with camera tracking, we have the ultimate
expression for object tracking:

TWOj
= TW C j

TO
C jO

= TW C j
TO

C j Ci
TO

CiO

= TW Ci
TCi C j

TO
C j Ci

TO
CiO

(3.19)

3.3 Pinhole Camera Model and Jacobians

We define the image space domain as Ω ⊂ N2, where an RGB-D frame is composed of a depth
map D of depth values d : Ω → R and a colour image C of 3-channel (Red, Green, Blue)
colour values in each pixel c : Ω→ N3. The colour map can be converted to an intensity map
using

I= 0.299 ·R+ 0.587 ·G+ 0.114 ·B (3.20)

The re-projection of an image point x with the inverse depth ρ = 1
d from a camera frame

FCi
to another camera frame FC j

is formulated according to the so-called warping function
as:

x′ = Πc(Ti j ·Π−1
c (x, ρ)) (3.21)

We calculate the relative transformation Ti j between two frames in the above equation with

Ti j = C j ◦C−1
i (3.22)
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Ci and C j here refer to the transformation from the inertial (world) coordinate system to the
respective camera-fixed coordinate system:

Ci = TW Ci
, C j = TW C j

(3.23)

i.e. the i-th and j-th camera poses. Furthermore, Πc in equation (3.21) is the pinhole projec-
tion function

Πc(p) =





fx
X
Z + cx

f y
Y
Z + cy



 (3.24)

and Π−1
c is the inverse projection:

Π−1
c (x, ρ) =















px−cx
fx

py−cy

f y

1

ρ















(3.25)

given a number of 3D points written in homogeneous coordinates p̄ = (X , Y, Z , W )T , pixel
coordinates x= (u, v)T , and camera intrinsic parameters c = { fx , f y , cx , cy}.

To facilitate optimization, it is essential to compute the Jacobians of residuals with respect
to camera poses Ci, C j, and inverse depth ρ. We employ the local parameterizations eξi Ci

and eξ j C j, while considering the inverse depth d as a vector in R1. Note that here ξ ∈ se(3)
is the Lie algebra of the Lie group T ∈ SE(3), and they are a map from one to the other using
exponential and logarithm maps as

T= exp(ξ) , ξ= log(T) (3.26)

The Jacobians of both the projection and inverse projection functions are computed as fol-
lows:

∂Πc(p)
∂ p

=





fxρ 0 − fx Xρ2 0

f yρ 0 − f y Xρ2 0



 (3.27)

∂Π−1
c (x,ρ)

∂ ρ
=







0
0
0
1






(3.28)

Considering the local parameterization, we compute the Jacobian of the 3D point transfor-
mation and reorganize it using the adjoint operator:

p′ = exp(ξ j) ·C j · (exp(ξi) ·Ci)
−1 · p

= exp(ξ j) ·C j ·C−1
i · exp(−ξi) · p

= exp(ξ j) · exp(−AdjC jC
−1
i
ξi) ·C j ·C−1

i · p
(3.29)

This repositioning allows us to compute the Jacobians using the established generators:

∂ p′

∂ ξ j
=

�

W ′ I3×3 −p̂′

03×1 03×1

�

=







W ′ 0 0 0 Z ′ −Y ′

0 W ′ 0 −Z ′ 0 X ′

0 0 W ′ Y ′ −X ′ 0
0 0 0 0 0 0







(3.30)
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with the skew-symmetric matrix of the transformed 3D point p̂′. By applying the chain rule,
we can calculate the complete Jacobians w.r.t. the twist ξ as:

∂ x′

∂ ξ
=
∂Πc(p′)
∂ p′

∂ p′

∂ ξ
(3.31)

and w.r.t. the inverse depth d as:

∂ x′

∂ ρ
=
∂Πc(p′)
∂ p′

∂ p′

∂ p

∂Π−1
c (x,ρ)

∂ ρ
(3.32)

3.4 Differentiability and Computational Graphs

Differentiability is a fundamental concept in calculus that refers to the ability of a function to
have a derivative at each point in its domain. A function f (x) is considered differentiable at
a point x if the derivative f ′(x) exists at that point. This means that there is a unique tangent
to the curve of the function at that point, and the slope of this tangent is the value of the
derivative.

Differentiability is crucial in deep learning for several reasons. First, deep learning models
like neural networks are typically trained using gradient-based optimization techniques like
gradient descent. Applying these techniques is only possible if we can compute the gradients
of the loss function with respect to the model’s parameters, i.e., the loss function is differ-
entiable. While directly computing the gradients of the loss function is usually cumbersome,
in practice, we employ back-propagation to ease the computation. We formulate the loss
function as a computational graph to compute each node’s gradients with respect to its input.
Then, we calculate the gradients of the loss w.r.t each weight by applying the chain rule.
Therefore, the differentiability of every operation involved in the loss function is necessary
for using back-propagation.

Figure 3.4: A computation graph. The red and blue nodes represent variables and operations, respectively.
Directional edges represent data flow. Black edges indicate a forward pass with results from the upstream steps
above the arrows, while red edges show local gradients w.r.t. the source variables in the backward pass. This
graph computes the function f (z ·(x+ y)) with f being an arbitrary differentiable function. The gradients w.r.t. any
variables can be computed using the chain rule. For instance, the gradient w.r.t. to x is ∂ g

∂ x = f ′(z(x + y)) · z · 1.

As introduced above, the computational graph is the foundation of gradient-based learn-
ing architectures in deep learning, as it typically represents all functions and approximations.
A computational graph is formally defined as a directed acyclic graph, which we denote as
G = (V, E). Here, V is a set of nodes v ∈ V holding variables and operators, and the directed
edges E represent the control flow. Moreover, each node specifies the computation rules for



3.4 Differentiability and Computational Graphs 15

the gradients of its outputs relative to its inputs, ensuring the differentiability of the graph.
Function representation in computational graphs offers flexibility, allowing for nesting and
composition while preserving differentiability. For instance, an example computational graph
for computing g using the function f (z · (x + y)) is illustrated in Figure 3.4.

A standard SLAM pipeline often consists of several components that are inherently non-
differentiable. Specifying gradients in a computational graph is impossible for some forward
computations in these components. For instance, in a dense 3D SLAM pipeline like [15], ele-
ments such as nonlinear least squares modules using the Levenberg-Marquardt algorithm and
raycasting routines are not differentiable. Additionally, in particular operations like sampling,
although gradients exist, they are zero in almost all cases. Consequently, a pipeline involving
these operations has extremely sparse gradient flows, which poses a significant challenge in
the context of gradient-based learning methods.



Chapter 4

Methodology

In this chapter, we present the core of this paper by detailing the proposed pipeline and the
corresponding components. The schematic overview of the pipeline is illustrated in Figure
4.1. We ensure the pipeline’s differentiability by integrating end-to-end deep-learning-based
components and introducing differentiable counterparts for essentially non-differentiable
components due to various facts. Here, we interpret our pipeline component by compo-
nent, following the process order of our pipeline (Section 4.1-4.9). At the same time, we will
explain the differentiable solutions to methods that are originally non-differentiable, such as
the Levenberg-Marquardt optimization and the Hungarian algorithm. After introducing the
methods, we detail the implementation of the components, presenting the network architec-
tures and training setups (Section 4.10).

Figure 4.1: System overview. Our system takes consecutive pairs of RGB-D frames as input. We perform
camera and object tracking using the probabilistic feature-metric direct image alignment (Section 4.1). To this
end, incoming RGB images are fed into the feature/primary uncertainty extractor, which predicts dense high-
dimensional feature pyramids and primary uncertainty pyramids for each frame. Then, we minimised the residuals
that combine feature-metric and geometric terms using the differentiable Levenberg-Marquardt algorithm and the
deep m-estimator in a coarse-to-fine fashion. Meanwhile, the deep m-estimator predicts the secondary dense
uncertainties that focus on dynamic regions. We exploit these dynamic-aware uncertainty maps to segment mov-
ing objects (Section 4.7). The segmentation masks are applied to track dynamic objects, while the binary mask
generated from them is utilized to refine the camera pose estimates. As result, our system returns camera and
object trajectories and reconstructs the dynamic environment with time in 3D.
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4.1 Direct Image Alignment

The first stage of this project consists of extending ∇SLAM [1] by replacing the ICP with Di-
rect Image Alignment (DIA) in visual odometry. DIA is conventionally defined as a method to
estimate the camera poses based on the assumption of intensity consistency of the environ-
ment observed in different perspectives, minimizing pixel-wise photometric errors. However,
this assumption holds merely for the Lambertian surfaces. Moreover, the intensity map is a
highly non-convex function, which results in the optimization often being easily trapped in
a local minimum. Thus, we first combine the photometric term with a geometric residual as
done in existing works [49][45] to enhance the robustness of the DIA, where the geometric
residual implies the consistency of the depth measurement in every co-visible pixels across
different frames. This is referred to as the combined DIA from the conventional DIA in the
remainder of the thesis distinguished.

Given two RGB-D frames at timestamp t i and t j, we use It and Dt to denote the mapping
from pixel coordinates to intensity and depth maps respectively, where the index t ∈ {i, j}
indicates the timestamp. The objectiveness here is to find a rigid body transformation Ti j
that minimizes the following cost function:

Et rack = min
ξi j∈se(3)

(Ephoto +ωEgeo) (4.1)

This cost function is similar to the tracking mechanisms used in other RGB-D SLAM systems
[19]. The key distinction, however, lies in our approach’s adaptability to dynamic environ-
ments. Our approach tracks multiple instances simultaneously like [49] and [45] .

The photometric term in Equation (4.1) constrains the intensity consistency of pixels
across frames:

Ephoto =
∑

x∈Ω j

∥rI∥22 (4.2)

where rI is the photometric residual. It can be mathematically formulated as:

rI = Ii(x
′)− I j(x) (4.3)

with coordinates of pixels x ∈ Ω j. Respectively, the warped pixel coordinates x′ can be ob-
tained by applying the warping function described in Equation (3.21).

The geometric term in previous works [45][16][49] is mostly defined as a point-to-plane
ICP [58] or even point-to-point ICP. In contrast, we define our geometric term similarly to
the photometric residual, replacing the intensity maps I in Equations (4.3) and (4.2) with
depth maps D:

Egeo =
∑

x∈Ω j

∥rD∥22 (4.4)

Here, we define the geometric residual rD as:

rD = Di(x
′)−
�

Ti j · Π−1
�

x j

� �

Z (4.5)

The operation [·]Z is a look-up function which returns the z-component of a coordinate. This
geometric error trivially measures the depth difference between inverse projected 3D points
of the reference frame and the transformed points from the target frame.

The coefficient ω in Equation (4.1) is a scalar factor to balance the contribution of these
two residual terms. This weight scale is set as ω = 0.01. This specific value is selected to
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ensure that the individual Chi-square errors have similar magnitude as suggested in [5]. Ad-
ditionally, this factor is particularly useful when we combine geometric and feature-metric
residuals as it will appropriately scale the features and uncertainties to achieve an optimal
balance with the geometric term in the training process.

Having defined the cost functions, we calculate the Jacobian necessary for the optimiza-
tion. The Jacobian of the photometric error w.r.t. the twist ξi j ∈ se(3) ∈ R6 of the rigid body
transformation Ti j can be computed using the chain rule:

JI =∇IT Jw =∇IT JP JT (4.6)

where ∇I is the image gradient, which can be expanded as:

∇I=





∂ I
∂ x

∂ I
∂ y



 (4.7)

The remaining terms Jw = JP JT is described in detail in Section 3.3. Analogously, we can
compute Jacobian of the geometric error with

JD =∇DT JP JT −





0
0
1





T

JT (4.8)

where ∇D computes the depth image gradient:

∇D=





∂D
∂ x

∂D
∂ y



 (4.9)

The overall residual combining the photometric and geometric terms can be written as:

r=

�

rI
rD

�

∈ R2×1 (4.10)

and respectively the Jacobian is

J=

�

JI
JD

�

∈ R2×6 (4.11)

for each x ∈ Ω j. To increase the radius of the convergence basin, the optimization is per-
formed from coarse to fine.

As shown in Figure 4.2, the DIA can be formulated in a computational graph. Since
warping and interpolation are essentially differentiable, so is the unrolled combined DIA if
we applied gradient-based optimization or Gauss-Newton optimization. However, due to the
limitations of these optimization methods to different extents, the community prefers using
the Levenberg-Marquardt optimization algorithm (LM), which adapts itself with a damping
factor between gradient descent and Gauss-Newton. However, the adaptive damping factor is
determined at every iteration, making the LM algorithm not differentiable. ∇SLAM and many
other works [36][34] introduce multi-layer perceptrons to predict the damping factor based
on the computed Jacobian. In this way, we can mitigate the conditional selection schema to
decide the damping factor and mimic the decision process in a differentiable fashion instead.
The differentiable LM algorithm is introduced later in Section 4.5.
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Figure 4.2: A single iteration of the DIA represented in a computational graph. For each update iteration,
we warp the previous frame to the current frame using the initial pose or the estimated pose from the last itera-
tion. Jacobians and residuals are computed and leveraged in the Levenberg-Marquardt algorithm as described in
Equation (4.21). Since the LM algorithm involves non-differentiable operations in determining the damping factor
λ (drawn in a dashed circle), gradient flow in this graph is not possible.

4.2 Probabilistic Feature-metric Direct Image Alignment

Instead of image intensity, the probabilistic feature-metric DIA performs over learned feature
representation of the colour images. We utilize the power of a convolutional neural network
(CNN) to extract a multi-level hierarchy of features. To enhance their robustness and ensure
better generalization across various datasets, we perform L2-normalization over these fea-
tures along the channels.

Given two images at different timestamp, Ii and I j, a CNN extracts a Dl -dimensional
feature map Fl ∈ RWl×Hl×Dl at each level l ∈ {1, ..., L} for each of them. Following the spirit
of direct alignment, we defined a feature difference by substituting the image intensity in
Equation (4.3) with the learned feature-metric representation F:

rF = Fi(x
′)− F j(x) (4.12)

In addition to the feature maps, our CNN can also learn complex visual priors. Therefore,
we employ it to further improve the robustness of our method. To this end, we introduce
an uncertainty encoder alongside the feature encoder to predict a pixel-wise uncertainty
map σl ∈ RHl×Wl . To combine the uncertainties with the feature-metric representation, we
leverage the probabilistic feature-metric residual proposed by Xu et al. in [5]. For each pixel,
this residual is defined as an uncertainty-normalised feature difference:

rPF =
rF

σF
=

Fi(x′)− F j(x)
Ç

σ2
i (x
′) +σ2

j (x)
(4.13)

where x′ is the warped pixel coordinates from x. rF is the feature difference between the
correspondences on the feature map as defined in Equation (4.12) and σF is the joint uncer-
tainty combining the individual uncertainties. Equation (4.13) steers the two feature maps
to be as similar as possible while downweighing the uncertain features.

Given this probabilistic feature-metric residual, we compute the feature-metric error over
all non-occluded pixels in Ω j as:

EPF =
∑

x∈Ω j

∥rPF∥22 (4.14)

This nonlinear least-squares cost combined with the geometric costs described in Equations
(4.4) and (4.5) is progressively minimized from an initial pose estimate T0 using the differ-
entiable LM algorithm in a coarse-to-fine manner.
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Existing works have proposed various ways to formulate and apply similar uncertainty
maps [9][59]. Our choice is natural since our CNN model is modified based on the one
proposed in [5]. However, we do not explicitly compare this formulation to other existing
methods. Hence, this design choice may be revisited in future work.

Classic image alignment operates on the image intensity, which is not robust to rapid
changes like strongly varying lighting and occlusions caused by moving objects. In contrast,
this learned representation, inspired by past works on using deep features for camera track-
ing, is robust to significant illumination changes. Meanwhile, it provides meaningful gradi-
ents for successful alignment with a more extensive and smoother convergence basin. While
our approach also addresses the formed nonlinear least-squares problem in a coarse-to-fine
manner like the classic method, it diverges from the standard practice of using Gaussian im-
age pyramids. Instead, our feature pyramids are learned hierarchically at multiple levels,
allowing us to extract contextual information from a broader receptive field, which enhances
the alignment process’s effectiveness.

4.3 Inverse Compositional Approach

The DIA, as a special type of the Lukas-Kanade algorithm [7], is conventionally solved using
the forward compositional approach. In contrast, we employ the inverse compositional (IC)
approach for probabilistic feature-metric DIA, since the IC approach is more efficient com-
pared to the forward approach without sacrificing accuracy in pose estimation [7].

In DIA, an image Ii transformed using the warp parameters ξi j is compared with its con-
secutive frame I j(x), also known as the template in image alignment. We write down this
transformation explicitly as:

Ii(w(x, ρ, ξ)) = Ii

�

Πc(exp(ξi j) ·Π−1
c (x, ρ))
�

(4.15)

and omit the inverse depth ρ within the warping function w in the following to ease the
reading.

Minimizing the photometric cost with respect to the warp parameters is a nonlinear opti-
mization task. Therefore, we iteratively solve for the warp parameters ξ+ = ξ◦∆ξ. The warp
increment ∆ξ can be obtained by linearizing the following equation using the first-order
Taylor expansion at every iteration

min
∆ξ
∥Ii(w(x, ξ+∆ξ))− I j(x)∥22 (4.16)

min
∆ξ
∥Ii(w(x, ξ)) +

∂ Ii(w(x, ξ))
∂ ξ
︸ ︷︷ ︸

Steepest descent image

∆ξ− I j(x)∥22 (4.17)

Then, we can solve the linearized equation using optimization algorithms such as the LM al-
gorithm. However, the steepest descent image here depends on the warp parameters, which
are updated iteratively. This means the formulated optimization problem requires repeated
computation of the steepest descent image at every iteration.

On the other hand, using the IC algorithm to solve this non-linear optimization problem
avoids the re-computing of Jacobain components. Unlike Equation (4.16), we linearize the



4.4 Deep M-Estimator 21

objective by applying the warp increments ∆ξ to the template I j(x):

min
∆ξ
∥Ii(w(x, ξ))− I j(w(x, ∆ξ))∥22 (4.18)

min
∆ξ
∥Ii(w(x, ξ))− I j(w(x))−

∂ I j(w(x))

∂ ξ
∆ξ))∥22 (4.19)

The iterative update of the warp parameters must be adjusted accordingly using the inverse
increments as:

ξ+ = ξ ◦ (∆ξ)−1 (4.20)

∆ξ= (JT WJ+λdiag(JT WJ))−1JT Wr (4.21)

As the term ∂ I j(x)/∂ ξ in Equation (4.19) does not depend on ξ, the IC algorithm com-
putes this term beforehand and chains it with other Jacobian components, preventing the
re-computation at the iterations. Hence, it is a more efficient algorithm.

We leverage the IC algorithm in our pipeline mainly for its efficiency. Moreover, as the
deep probabilistic feature-metric DIA employed in our pipeline results in an identical opti-
mization problem to the classic DIA, integrating it with the IC algorithm requires nearly no
extra effort.

4.4 Deep M-Estimator

To further enhance the robustness of the motion tracking in our pipeline, we apply the M-
Estimator. The M-Estimator is designed to be more robust to outliers than trivial estimators
like least squares. In the context of visual SLAM, they can provide more reliable estimates
of a camera’s motion and gain better environment reconstruction, even when some sensor
readings are inaccurate or noisy. In particular, in a dynamic environment, where moving
objects are often distinct sources of outliers in camera motion estimation, the application of
the M-Estimator significantly increases the system’s performance.

The robust version of DIA adapts the objective function (4.1) with an additional weight
matrix W:

arg min
Ti j∈SE(3)

rT Wr (4.22)

Accordingly, the optimization using the Levenberg-Marquardt update step is adjusted as fol-
lows:

(JT WJ+λdiag(JT WJ))−1∆ξ= JT Wr (4.23)

The diagonal weight matrix W in this equation is contingent on the residual and is selected
in accordance with the desired robust loss function ρ. This matrix is integral in determining
how the loss function responds to different residual values, in particular, the outliers.

The Huber estimator is one of the most applied m-estimators in visual SLAM [60]. To
implement a Huber estimator in a visual SLAM system, one replaces the L2 loss with the
Huber loss [61] in the cost terms. The Huber loss is a combination of the mean squared error
function, also known as L2 loss, and the absolute value function, L1 loss. It is mathematically
formulated as:

Lδ(a) =

¨

1
2 a2 for |a| ≤ δ,

δ(|a| − 1
2δ) otherwise,

(4.24)
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This combination is crafted such that it is differentiable, i.e. the derivatives are continuous.
However, the parameter δ it uses requires careful tuning to balance between robustness and
sensitivity. Moreover, it fully relies on the residuals computed at the previous step and is
restricted to a particular error model.

Keeping these limitations in mind, in line with [34], we use a fully convolutional network
called deep M-Estimator φM to learn a weight matrix Wθ from not only the residual but also
the encoded feature maps of the two input frames:

Wθ = φM

�

Fi(x
′
k), F j(x), rk

�

(4.25)

The subscript k here indicates the k-th update iteration.
The deep M-Estimator enables the unrolled optimization algorithm to effectively filter out

non-essential data elements like outliers. Furthermore, using this model prevents us from
determining the robust function of a particular error model. Instead, we condition the robust
function itself on the input. Thus, this method enhances the algorithm’s accuracy by following
closely the relevant information.

Although the weight matrix described here has similar functionality as the uncertainty
map introduced in Section 4.2, we decouple their contribution by training our model for two
stages. Firstly, we use the identity matrix as the weight matrix and train the model to predict
primary uncertainties σ ∈ RH×W . At this stage, we train the model on static sequences only.
In this way, we ensure that the uncertainty maps can downweigh features learned from pixels
with strong lighting changes and sensory noises. In the second stage, we activate the weights
Wθ ∈ RH×W of the deep M-Estimator and train on dynamic sequences. Through this, the
weight matrix serves as the secondary uncertainty map that encodes uncertainties caused by
dynamic pixels, while the primary uncertainty map facilitates the invariance to other outlier
sources. Thus, throughout this paper, we also denote the weight matrix Wθ as the so-called
dynamic-aware uncertainties Ud yn to emphasize its function. Our experiments showed the
effectiveness of this two-stage training strategy (see Section 4.10.2).

4.5 Deep Levenberg-Marquardt Algorithm

We optimize the cost function by employing the Levenberg-Marquardt (LM) algorithm. How-
ever, the original LM algorithm presents non-differentiable characteristics due to two key
challenges:

• The algorithm requires the specification of a termination condition. The iterative opti-
mization terminates either when the cost is below the predefined convergence threshold
or when a particular number of iterations is reached. This condition control flow makes
the algorithm’s output non-differentiable with respect to the input.

• The algorithm updates the damping factor λ in Equation (4.21) according to the cur-
rently computed cost in each iteration. It increases λ if the cost does not decline after
a step; otherwise, it reduces this factor. This way, the LM algorithm adapts the opti-
mization steps between Gauss-Newton optimization and gradient descent. However,
this if-else-based schema prevents the differentiability of the algorithm.

When the solution of the LM algorithm is non-differentiable with respect to the input feature
maps, it becomes impossible to learn feature representation through back-propagation. As
suggested in previous works [1][36], we can fixate the number of iterations and omit the
convergence threshold to addressee the first non-differentiable property. This is considered
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as incomplete optimization. LM algorithm is known for possessing fast convergence speed
regarding iteration numbers. Hence, using sufficient iterations, usually a small value, shows
no obvious disadvantages in most cases but reduces memory usage instead.

The second difficulty has been tackled differently in past works. Jatavallabhula et al.
proposed a soft reparameterization of the damping mechanism. They defined smooth gating
functions based on the logistic function to approximate the damping factor in each iteration.
This approximation enables differentiability in the LM algorithm. However, it offers no learn-
ing capability, limiting its scalability. Conversely, other works [36][34] propose to predict the
damping coefficient using neural networks.

To address these challenges, we adapt the fully connected neural network introduced in
[34]. The network predicts the damping factor λθ based on the matrices JT WJ and JT Wr:

λθ = φLM

�

JT WJ, JT Wr
�

(4.26)

This concept allows the output of the LM update process to carry crucial information about
the predicted damping parameter.

4.6 Pose Initialization

A relatively accurate pose initialization is crucial for DIA. Though leveraging the Gaussian
image pyramids can enlarge the convergence basin of frame-to-frame tracking, these coarse-
to-fine optimization methods are particularly sensitive to results estimated at coarser levels.
Poor initial estimates propagated down to finer levels are often the failure source of a SLAM
pipeline, leading to long convergence time or even divergence.

Traditional methods use an identity pose or assume a constant motion model for initial-
ization. For instance, in [62] Gladkova et al. suggests a set of pose candidates based on
assumptions such as no motion and constant motion. They choose the candidate with the
smallest cost as the valid initialization. These assumptions, however, hold only in strictly
limited conditions like slow motion and small baseline. For example, when they are not valid
in wide baseline settings, an iterative optimization process can become trapped in an incor-
rect local minimum. To tackle this issue, as suggested in past works [5] [59], we train a
convolutional neural network to provide an initial pose for the direct alignment.

Our network has a compact and effective design (see Section 4.10). It takes concatenated
outputs from the coarsest-level view encoder of two frames as input and offers an effective
starting point for the optimization process at the coarsest level:

ξ0 = φT

�

{W1
i , W1

j }
�

(4.27)

Several works [34][5] suggest generating the final prediction as the weighted average of a set
of hypothetical poses. However, no ablation studies in their work are provided to show the
effectiveness of this design. Unlike them, we maintain a compact network design by making
the final prediction, comprising a 3D Euler angle and a 3D translation vector directly.

4.7 Moving Object Segmentation

The dynamic regions, as a crucial factor that affects the accuracy as well as the robustness
of a visual SLAM system in dynamic environments, are handled in our pipeline using seg-
mentation like in other works such as [49], [48], [16], and [45]. In this thesis, we proposed
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two alternatives to segment the moving instances. The first approach follows the idea of
[45], combining the prior segmentation from Mask R-CNN [10] and a refinement step using
geometric cues (Section 4.7.1). The other approach employs the promotable properties of
the up-to-date work in semantic segmentation, FastSAM [11], leveraging the advantages of
the dynamic-aware uncertainty map predicted by the deep M-Estimator at the previous stage
(Section 4.4) to provide promising segmentation of moving instances (Section 4.7.2).

4.7.1 Mask R-CNN Refined by Geometric Segmentation

As suggested in previous works [49] [45] [16], we utilize the top-performing instance seg-
mentation network Mask R-CNN [10] to detect and segment objects of classes which are
likely dynamic such as people. Mask R-CNN is a convolutional neural network (CNN) devel-
oped on the top of the two-stage detector, Faster R-CNN [63]. It works by designing a new
branch, in addition to the classification and regression branches of Faster R-CNN, to predict
the object masks.

More recently, Li et al. have rolled out an improved Mask R-CNN model with a standard
vision transformer (ViT) as the backbone in [64], which has potentially superior scaling
properties. However, in our experiments, the latest model showed no distinct improvement
in the segmentation results but had noticeably slower inference than the original model,
evidencing a general limitation of the ViT-based methods. Therefore, we chose the per-
trained model of the original Mask R-CNN to ensure that our system can predict instance
segmentation in a reasonable time range. Examples of instance segmentation using Mask
R-CNN on different datasets are shown in Figure 4.3.

Our approach uses the results of Mask R-CNN to provide prior information on dynamic
entities in the observed environment. We run the segmentation on a limited set of labels to
segment only objects of chosen classes that are naively considered motion initiators, such as
humans, animals, cars, etc.

(a) Segmentation result of TUM RGB-D Dataset (b) Segmentation result of Bonn Dynamic RGB-D Dataset

Figure 4.3: Segmentation results using Mask R-CNN with class labels of interest. On the one hand, persons
in scenes, even only partially visible, can be segmented by Mask R-CNN with few failures, while moving objects
that are not included in the COCO dataset [65] such as the balloon in (a) can not be detected. On the other hand,
although "chair" is one of the labels in COCO, it is not essential an initiator since its movement can only triggered
by creatures. That said, we assume it is stationary at first and classify whether it is moving in the following stage
using geometric cues. This way, we maintain as much information as possible for camera tracking.

The segmentation results of Mask R-CNN can only bring limited benefit to our pipeline if
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no improvement strategies are applied. On the one hand, mask R-CNN excels in object de-
tection yet has a notifiable limitation that restricts it from being directly used in our pipeline.
Similar to other up-to-date semantic segmentation methods, it often yields imprecise (over-
smoothed) object boundaries (see Figure 4.3). Moreover, as a supervised learning method, it
can only predict categories in the training dataset. For instance, it cannot detect the balloon
in Figure 4.4b. This characteristic naturally bounds the generalization of the model in the
open-world setting.

On the other hand, we select merely a set of interests, which is essentially motion initiator,
to balance the speed and accuracy. The selection further narrows down the categories that
the model needs to segment. However, a moving object in reality is often triggered into
motion by other active objects. With the predefined labels, Mask R-CNN cannot detect these
passively moving objects.

Considering this limitation, to improve the segmentation results of Mask R-CNN, Rünz
et al. concluded that informative RGB-D data allowing for over-segmentation of the image
can be used to refine the imprecise object boundaries generated by semantic segmentation
models [45]. They propose a geometric segmentation approach, studying the geometric cues
hidden in input depth data. This approach is adjusted and employed in our work.

According to [45], an edginess map is generated by investigating the depth discontinuity
φd and surface concavity φc. The depth discontinuity term φd is defined as:

φd =max
i∈N
|(vi − v) · n| (4.28)

Conceptually, computing the gradient of the depth map can also extract contours of discon-
tinuity depth, resulting in a comparable edginess map as Equation (4.28). Additionally, the
concavity term φc is formulated as:

φc =max
i∈N

¨

0 if (vi − v) · n< 0

1− (ni · n) otherwise
(4.29)

In the above two equations, v represents vertices, while n denotes normals. Vertex maps are
typically obtained by back-projecting the depth map D into 3D space. Subsequently, we can
compute normals from the vertex map. The subscript i indicates that the values are computed
on a neighbouring pixel within a local neighbourhood N . In particular, this approach defines
a pixel to be on an edge when

φd +κφc > θ (4.30)

where θ is a threshold, and κ is the relative weight to balance the two terms. Eventually,
the image is segmented by running a connected-components analysis (CCA) algorithm on
the edginess map. This method captures the intuition that the image area usually portrays
geometric edges 1. when there is either a manifest change in depth or 2. where the surface
bends sharply, often concave regions.

Nonetheless, this approach struggles to distinguish physically connecting objects. For in-
stance, a walking person can not be segmented from the ground as his feet touch the floor
(details can be found in Section 6.2.2). Mitigating this requires careful adjustment of the
weighting factor, which balances the contribution of the concavity of objects and discontinu-
ity of depth. However, tuning this coefficient is not trivial and is very case-sensitive.

Attempting to address this problem, we experiment with various methods and outline
our insights and the results in Section 6.2.2. However, based on extensive experiments, we
found that despite the disadvantages mentioned above, this geometric segmentation method
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(a) Example from Bonn RGB-D Dynamic Dataset

(b) Example from TUM RGB-D Dataset

Figure 4.4: Segmentation results combining Mask R-CNN and geometric segmentation. For each example,
images shown from left to right from up to down represent 1. RGB input; 2. depth input; 3. results of Mask R-CNN
with specified classes of interest; 4. geometric edges; 5. geometric segmentation, and 6. final segmentation.
These two examples demonstrate that our method can identify and segment passively moving objects, such as
the balloon in the first example and the chair in the second. However, the chair is only partially segmented, which
reflects one of the limitations of this method.

provides stable results in most cases. Moreover, we can account for objects subject to exter-
nal forces in the fused segmentation by adjusting the merging mechanism introduced in [45].

To merge the geometric and instance segmentation, Rünz et al. performs geometric seg-
mentation for each frame, while instance segmentation using Mask R-CNN is applied asyn-
chronously for nondeterministic frames. According to their two-stage segmentation merging
schema, they first map the geometric segmentation Mg = {C0, C1, ..., Cn} to the existing se-
mantic segmentation Ms = {L0, L1, ..., Ln} by identifying the maximum overlap which should
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be greater than the threshold ϕ. Formally, a component Ci ∈ Mg with the number of pixels
denoted as |Ci| is considered as a candidate to be mapped to a component Lk ∈ Ms if:

|Ci ∩ Lk|
|Ci|

≥ ϕ (4.31)

After that, they assign each component similarly with object labels generated by rendering
all existing models. This step requires a very accurate tracking of the camera and objects. We
also note that Rünz et al. selected a broader set of interesting categories than us, including
not solely the motion initiators. In our case, we must also generate and maintain the masks of
externally manipulated objects. Therefore, Directly integrating this schema into our pipeline
is unrealistic.

Instead, we simplify the mapping from masks to models by warping the merged results
from the previous step using estimated camera motion. We first apply Mask R-CNN for every
incoming frame to predict prior segmentation and fuse it with the geometric segmentation
using Equation (4.31). Then, the predicted masks from the previous frame are propagated to
the current frame using the warping function. By computing the overlap of the newly gen-
erated and the propagated masks, we generate temporally consistent masks of the passively
moving instances. Unlike [45], we perform the segmentation merging for every incoming
frame. Besides, we select ϕ = 45% to ensure larger moved objects are merged as well. Figure
4.4) shows some example results, while more examples and a discussion about the limita-
tions of this method are detailed in Section 6.2.2. Eventually, the generated segmentation is
utilized as binary masks to eliminate the dynamic pixels that tend to cause failure in tracking
the camera. With this approach, we do not explicitly track the objects, i.e., our pipeline using
this approach is capable of achieving accurate and robust camera motion estimation in dy-
namic environments, but it lacks the ability to track objects. Thus, we introduce the second
segmentation approach in the following section, with which our pipeline can track both the
camera and objects.

4.7.2 Uncertainty Prompted Moving Object Segmentation

Our visual odometry model predicts two pixel-wise uncertainty maps for every incoming
frame. Thanks to our two-stage training, we can decouple the influence of two types of fac-
tors, i.e., the significantly varying illumination and the dynamic pixels, encoding them with
two individual uncertainty maps. The one that encodes the motion captured by pixels offers
informative data, which empowers the development of our second moving instance segmen-
tation approach.

Pixels encompassing motion elements usually cannot hold the photometric as well as geo-
metric consistency across frames, becoming one of the most frequent failure sources in track-
ing. Our CNN model predicts promising uncertainty maps which identify regions that possibly
capture moving entities, assigning them with higher uncertainty - lower weights. This capa-
bility coincides with the intent to move instance segmentation. Therefore, we propose to
exploit a novel moving instance segmentation approach leveraging the learned uncertainty
maps.

Alongside these uncertainty maps, we leverage the prompt features of a recently rolled
out generic segmentation approach, FastSAM [11]. This approach provides the opportunity
to generate segmentation of interests using prompt inputs such as points, bounding boxes,
and segmentation masks predicted by the model itself (Note that until the completion of this
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thesis, the feature of using masks inferred by other models such as Mask R-CNN is still under
development). To this end, we have to convert the uncertainty maps to a type of available
prompts for which we choose to use points.

(a) Segmentation results using all points at once for images from TUM RGB-D

(b) Segmentation results combining individual uncertainty prompt points with background prompts for images from Co-Fusion

Figure 4.5: Segmentation results using uncertainty-prompted moving object segmentation. The upper ex-
amples show segmentation results using all uncertain points (coloured yellow) to prompt FastSAM [11]. This way,
instances are grouped in one mask, which can be used to eliminate dynamic regions, enhancing the robustness
and accuracy of camera tracking. The lower examples are generated by inputting a single uncertain point and
background points to prompt the segmentation. The results can be used to identify individual moving instances.
Thus, in addition to improving camera pose estimates, they are useful for object tracking.

Pixels depicting dynamic elements are assigned with distinctly lower certainty values than
the static regions. However, the uncertainty maps are not perfect. They appear with noises,
possibly due to illumination changes not fully covered by the primary uncertainty encoder.
Thus, we apply a chain of average and max pooling to extract representative information from
the maps. The pixel coordinates extracted in this way are often more reliable than raw, noisy
uncertainty maps. Moreover, using pooling to sample points preserves the differentibility of
our pipeline.

Figure 4.5 conveys the segmentation results generated by this approach. As it shows, if
we feed all points to FastSAM at once, the model segments all pixels of interest using a single
label and cannot distinguish between instances. To this end, one can potentially cluster the
sample points and provide FastSAM with the grouped prompts set by set to produce instance
segmentation. Instead of clustering, we choose to maintain the number of points at nFG by
controlling the kernel size and the number of pooling operations. These points are used to
prompt the foreground object. In addition, we extract nBG points with the highest certainty to
indicate the background. Then, together with the background points, the foreground points
are sent one by one to FastSAM. The model returns segmentation masks of identical numbers
as the foreground points. We employ the same merge technique described in Equation (4.31)
to fuse masks with large overlaps and obtain the ultimate set of instance segmentation masks
S = {S1,S2, ...,Sn} with n≤ nFG.

The first two visualizations in Figure 4.5b exemplify one of the main advantages of em-
ploying FastSAM. Note that the object prompt points in these two examples are located on
different parts of the airship. The connection between the upper and lower parts of the air-
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ship is visually hard to identify. However, FastSAM can provide us with segmentation of the
whole object correctly without further requirements. The inherently top performance of this
state-of-the-art segmentation method mitigates post-processing, making our pipeline more
concise, although this capability is traded with a long inference time, which is discussed in
Section 6.2.5.

4.8 Dynamic Visual Odometry

In reality, moving objects can be either rigid or non-rigid. Since the starting points for solv-
ing them are often different, they are both challenging problems in themselves. Note that we
refer to non-articulated rigid instances by rigid bodies and consider articulated bodies as non-
rigid. We propose two approaches to handle non-rigid and rigid bodies to provide adapted
solutions to dynamic objects. For non-rigid bodies, we eliminate them using segmentation
masks to perform robust camera motion estimation based solely on the remaining static pix-
els. We also estimate the camera poses using the filtered data for rigid bodies. Meanwhile, we
track the object’s motion using the adopted feature-metric direct image alignment introduced
in this section.

4.8.1 Camera tracking

Unlike visual odometry designed for static environments, which performs camera tracking
using all non-occluded pixels, dynamic visual odometry usually omits the pixels capturing
moving instances. Following this idea, we eliminate the dynamic pixels using the segmenta-
tion masks generated in the previous step. Given a union set of the segmentation masks MO
which indicates all pixels in motion, for camera tracking, we minimize the combined error:

argmin
ξCi C j
∈se(3)

∑

x∈(Ω j\MO)

�

rT
PF WPF rPF + rT

DWDrD

�

(4.32)

where rPF and rD are the probabilistic feature-metric and geometric residual, respectively. We
solve for the pose by iteratively optimizing this combined error, leveraging the differentiable
LM algorithm over the feature pyramids.

4.8.2 Moving Object Tracking

Like camera tracking, we track identified objects from frame to frame and estimate their
trajectories based on the probabilistic feature-metric DIA introduced in 4.2. Note that we
mainly focus on tracking the objects in this work, for which we assume the initial relative
poses between objects and camera denoted as TCr Or

are given. We formulate the residuals
identically to (4.1), but only considering the pixels within an estimated segmentation mask
Si ∈ S. The transformation of the object Oi w.r.t. to the local coordinate frame fixed on the
reference camera Cr is calculated by minimizing the cost function:

EOi
(ξCr

Or Ol
) =
∑

x∈Si

�

rT
PF WPF rPF + rT

DWDrD

�

(4.33)

where the feature-metric residual is formulated as:

rPF (ξ
Cr
Or Ol
) =

Fl(x′)− Fr(x)
p

σl(x′)2 +σr(x)2
(4.34)
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and the geometric residual as:

rD(ξ
Cr
Or Ol
) =
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(4.35)

with the warped pixel coordinate x′ using the warping function. We optimise the above
cost function using the IC approach (Section 4.3) with a differentiable Levenberg-Marquardt
method (Section 4.5) in a coarse-to-fine manner. Additionally, ξCr

Or Ol
is initialized by the

Pose-Net which is discussed in 4.6. Since objects of small size or at further distance occupy
minor image space, pyramidal down-sampling with fixed levels might significantly impact
the alignment success due to potential over-smoothed pixels, i.e., information loss, for small
objects on the coarse levels. To overcome this, inspired by DirectTracker [62], we adapt the
scaling levels based on the size of objects online, while the downsample scales remain the
same as for camera tracking.

4.8.3 2D Association

In the association step of our process, we use the estimated relative motion of objects to
align the segmentation mask from the current frame with the previous frame. We employ the
Hungarian algorithm [66] to establish one-to-one correspondences between objects across
these frames.

As the base for matching, we compute the distance matrix D using the 2D Intersection over
Union (IoU) metric (see Section A for detailed definition). Conventionally, a correspondence
between objects is considered valid and accepted if the similarity score, as measured by
the IoU metric, exceeds a predefined minimum threshold. However, the association violates
differentiability in this way.

To this end, we employ the Hungarian Network (Hnet) [67]. Hnet is a differentiable ver-
sion of the Hungarian algorithm [66] using a deep neural network shown in 4.6. It estimates
the association matrix Ã, given the distance matrix D as input. These two matrices are of
identical dimensions.

This differentiable implementation allows it to be integrated with other deep-learning
tasks that require permutation invariance in end-to-end training, which makes it a good fit
in our pipeline. Besides, this implementation is simpler yet more efficient than the existing
alternative [68].

Once matches are established, the segmentation masks from the current frame that suc-
cessfully align with those from the previous frame are assigned a tracking ID corresponding
to their matched counterpart. Their tracklets, or the sequences of observed positions over
time, are then integrated into the corresponding object trajectories.

In classic approaches like [62], in cases where an object in the current frame does not find
a match in the previous frame, they investigate whether it has been consistently tracked in 3D
in earlier sequences. If this is the case, the object and its corresponding warped mask are re-
tained in memory. This handles scenarios where the input segmentation masks lack temporal
consistency, ensuring that objects are accurately tracked despite inconsistent segmentation
across frames.

However, we do not tackle this issue with the above approach due to the concern about
breaking the pipeline’s differentiability. Instead, we consider any objects in the current frame
that cannot be assigned with an existing ID in the previous frame as new objects. Conse-
quently, our method highly relies on the temporal consistency of segmentation, which reflects
a key limitation of our pipeline.
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Figure 4.6: Block diagram of Hungarian Network [67]. This architecture comprises a gated recurrent unit
(GRU), a single-head self-attention network [69], and a fully connected network. The GRU decouples the informa-
tion from the pairwise input distance matrix along the temporal and feature-wise dimensions. Its output is fed into
the self-attention network, which estimates the correct associations at each time step. The final fully connected
network estimates the association matrix Ã using a Sigmoid activation function. The association is addressed as
a multi-class, multi-label classification task.

4.9 Mapping with Differentiable PointFusion

In addition to localization, the other core task in SLAM is mapping, for which we adopt the
differentiable PointFusion approach proposed in ∇SLAM [1] and reconstruct the scene with
moving components using surfels. As this is not part of our contribution, we overview the
approach here and refer the readers to the original paper [1] for technical details.

Differentiable PointFusion (∇PointFusion) addresses the differentiable but non-smooth
operations in conventional dense mapping and fusion, such as clipping, indexing, thresh-
olding, and decision-making, by leveraging locally smooth functions and soft association. It
allows us to incrementally fuse redundant observations of the same map element and main-
tain the final reconstructed map in a manageable size.

Note that although the original implementation of PointFusion [19] supports dynamic
scenes, segmenting dynamic objects and updating reconstruction even of moving objects, this
function is not realized in ∇PointFusion. The ability of the visual odometry in our pipeline
to detect and track moving objects equips ∇PointFusion with the capability of reconstructing
dynamic environments.

4.10 Implementation Details

The full system is implemented in Python by extending ∇SLAM [1]. We developed the dif-
ferentiable front-end by adapting and reusing several components from [5] and [34]. The
differentiability of the system is guaranteed by taking advantage of the auto-diff properties
of the PyTorch framework [70]. There are 16M learnable parameters in our implementation.
The architectures of each component and the training setup are outlined in the following
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subsections.

4.10.1 Architectures

Figure 4.7: View encoder and feature extractor. The view encoder on the left side is constructed in U-Net
architecture [71], consisting of an encoder and a decoder. The VGG16 backbone [72] is used in the encoder with
additional batch normalization layers between the convolutional layers and activation function. The decoder is
built by chaining up-sampling layers (blue) and basic convolutional blocks (yellow), which groups a convolutional
layer, a batch normalization layer, and an ELU layer. The results of the decoder Wl at each level l ∈ {1,2, 3,4}
are sent to the feature extractor, where the ultimate feature maps Fl used for direct alignment are generated.
The feature extractor on the right side is an adaptation block (green) grouped by a 1 × 1 convolutional layer, a
batch normalization layer, and an ELU layer. Dimension of the resulting intermediate and final feature maps are
represented as [Height, Width, Channel].

Figure 4.7 shows the architecture of the view encoder and feature extractor. Within a
U-Net-like architecture, the encoder extracts progressively richer semantic information and
a larger spatial context of the image with decreasing resolution. The subsequent decoder
adapts feature maps for alignments, restoring the resolution and maintaining low-level infor-
mation with skip connections.

The view encoder encodes the input RGB images, extracting low-lever features Wl at pyra-
midal levels l ∈ {1, 2,3, 4}, which are utilized in the following feature extractor, uncertainty
extractor, and initialization pose network. Lv et al. and Xu et al. proposed to use concatenated
RGB-D data of two frames as input of the network for view representation learning [34][5].
However, we believe this manner offers merely duplicated information to the network and
yet obtains restricted benefits. Besides, using concatenated RGB-D images as input may not
be a good design choice, as the depth images from realistic data possess boundaries of zero
values (see Figure 5.2 in Section 5.1). Thus, our view encoder only requires RGB images of
the current frame as input. Similar to [8], the design of the view encoder is based on the
U-Net architecture [71]; it is constructed with VGG16 backbone [72] and a 4-level pyramid
using bilinear up-sampling in the decoder. The intermediary outputs of the decoder, Wl , are
fed into the feature extractor, which predicts 16-dimensional feature maps. Moreover, Wl are
sent to an uncertainty encoder to estimate scalar pixel-wise uncertainty maps. Its architec-
ture is shown in figure 4.8.

The architecture of our initialization pose network is depicted in Figure 4.9, which is
adapted from [5]. It predicts an initial pose on the coarsest level of the coarse-to-fine opti-
mization. Its input is a concatenation of the outputs of the two frames from the view encoder.
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Figure 4.8: Uncertainty Encoder. The uncertainty encoder takes the results on each pyramid level of the de-
coder, Wl , and predicts the scalar pixel-wise uncertainty maps, Ul ∈ RH l×W l

. Each pyramid level l ∈ {1,2, 3,4}
is an adaptation block (green) followed by a 1 × 1 convolutional layer and a truncated exponential layer.

In contrast to [5], our pose net returns a single prediction rather than a weighted sum of
multiple hypotheses. In this way, we save the effort of choosing the number of hypotheses
without observing any distinct declines in performance. The predicted pose is parameterized
with 3 Euler angles and a 3-dimensional translation vector.

Figure 4.9: Initialization pose network. The initialization Pose-Net takes the concatenated coarsest view-features
{W1

i ,W1
j } from the decoder and predicts an initial pose, which is parameterized as 3 Euler angles and a 3D

translation vector. It consists of a basic convolutional block (yellow) and an adaptation block (green) followed
by an average operation over all pixels (blue) and a fully connected network (red). Dimension of the resulting
intermediate feature maps are represented as [Height, Width, Channel].

4.10.2 Training

The model is trained in a supervised fashion using RGB data from the TUM RGB-D [73] and
the Bonn Dynamic RGB-D [74] datasets. The initial pose estimate from the pose network
and the estimated pose T̂i j = exp(ξ̂i j) are compared to the ground truth pose Ti j = exp(ξi j).
For this purpose, we use the 3D End-Point-Error (EPE) as suggested in [5] to supervise the
training, which is mathematically defined as:

L =
1
|P|

∑

i∈L

∑

p j∈P
∥exp(ξ̂i j)p j − exp(ξi j)pB∥2 (4.36)

It measures the Euclidean distance between back-projected 3D points in the frame F j trans-
formed to the frame Fi using the ground truth and the estimated transformation, respectively.
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L = {1,2, 3,4} represents the pyramid levels and exp(ξ̂i j) is the pose estimate after iterative
update using the LM algorithm on every pyramid level. This loss allows the resulting gradi-
ents in every component of the visual odometry to back-propagate to the input sensory data
and update all the learning weights. Moreover, 3D EPE can balance the translation and rota-
tion with a single loss compared to combining the translation and rotation relative pose error.
The two uncertainties introduced in Section 4.2 and in Section 4.4 are learned end-to-end
and implicitly constrained by the 3D EPE.

We train the model from scratch using ADAM [75] and learning rate decay. The learning
rate is initialized at 0.0005 and gradually reduced every five epochs until the 20th epoch.
All neural networks in the model are trained together from the TUM RGB-D the Bonn RGB-D
Dynamic datasets in two separate stages. In the first stage, we train the model using only se-
quences of static scenarios in datasets. Subsequently, the dynamic-aware uncertainties Ud yn
are trained in particular on the dynamic sequences in the second stage.

For each stage, the data are split into three subsets, including a train set (80%), a valida-
tion set (10%), and a test set (10%). We select several sequences entirely from the datasets
for testing, while the remaining sequences are split into training (last 90% of each sequence)
and validation (first 10%) sets. The datasets’ splitting is detailed in Table 4.1.

Our splitting schema is modified from [5], where they inversely take the first 95% for
training and the rest for validation. We’ve observed that the last part of the sequences mainly
consists of slower motions than the former. This results in the validation set being much
easier than the training set. Consequently, whether the model is over-fitting becomes tricky
to determine. Our splitting schema can mitigate this issue as the first 10% of the sequences
that we used for validation consists of a richer pattern of motions than those at the end.
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Dataset TUM RGB-D [73] Bonn RGB-D Dynamic [74]

Split Setup Sequences #frames Sequences #frames

Train-
validation

static

fr1_desk2, fr1_floor,
fr1_room, fr1_xyz, fr1_rpy,

fr1_plant, fr1_teddy,
fr2_360_hemisphere,
fr2_large_no_loop,

fr2_large_with_loop,
fr2_pioneer_slam,
fr2_pioneer_slam2,
fr2_pioneer_slam3,

fr2_xyz, fr2_rpy,
fr2_dishes,

fr2_360_kidnap,
fr2_desk_with_person,

fr3_long_office_household

Train: 31053
Val: 3856

static, static_close_far
Train: 10407

Val: 1298

dynamic

fr3_walking_halfsphere,
fr3_walking_rpy,
fr3_sitting_rpy,

fr3_sitting_static,
fr3_sitting_xyz]

Train: 5802
Val: 719

crowd, kidnapping_box2,
mov-

ing_nonobstructing_box,
placing_obstructing_box,

balloon, plac-
ing_nonobstructing_box3,

mov-
ing_nonobstructing_box2,

balloon_tracking,
moving_obstructing_box,

remov-
ing_nonobstructing_box,

plac-
ing_nonobstructing_box2,

synchronous,
removing_obstructing_box,

crowd2, synchronous2,
remov-

ing_nonobstructing_box2,
moving_obstructing_box2,

kidnapping_box,
person_tracking

Train: 12617
Val: 1551

Test

fr1_360, fr1_desk,
fr2_desk, fr2_pioneer_360,

fr3_walking_static,
fr3_walking_xyz

5889

person_tracking2, crowd3,
plac-

ing_nonobstructing_box,
balloon2,

balloon_tracking2

3030

Table 4.1: Dataset splits. We train and test our model using sequences from TUM RGB-D [73] and Bonn RGB-D
Dynamic [74]. We split the data into three subsets, train, val, and test sets, with the ratios of approximately 80%,
10%, and 10%. We selected several sequences for testing, while the remaining sequences were used to construct
the train and validation sets. The first 10% of frames of sequences in the train-validation split is used as validation,
and the rest are applied for training.



Chapter 5

Evaluation

We evaluated the proposed method quantitatively using synthetic and real sequences with
ground truth data from various datasets. In this chapter, we present the evaluation results
after introducing the datasets and metrics used in our experiments.

5.1 Datasets

To validate the effectiveness of the proposed system, we select two synthetic and two realistic
datasets, including pure static scenes and dynamic scenes captured by static and moving
cameras. The dataset we select includes both RGB and depth images. Among them, the
synthetic datasets can provide us with well-synchronized colour and depth image pairs, while
we must associate them with each other for realistic datasets. The deep-learning components
are trained using partitions of the TUM RGB-D [73] dataset and the Bonn RGB-D Dynamic
[74] dataset. Thus, we merely evaluate the remaining test splits of these two datasets. Since
we do not in particular target the tracking of non-rigid objects like humans in scenes, for
the dynamic sequences in the realistic datasets that involve non-rigid moving objects, we
eliminate them using segmentation masks to improve the robustness of the camera motion
estimation relying on the extracted static background of the scene.

5.1.1 ICL-NUIM Dataset

(a) Noise-free RGB (b) Noise-free depth (c) RGB with noise (d) Depth with noise

Figure 5.1: Representative RGB-D image pairs of the ICL-NUIM dataset [76]. (a) and (b) are RGB and depth
data without sensor noise extracted from the "living room" scene, while (c) and (d) extracted from "office" are
modelled with sensor noise.

The ICL-NUIM dataset [76] contains two different static indoor scenes, namely "living
room" and "office", consisting of a collection of synthetic handheld RGB-D camera sequences.
Both scenes come with perfect ground truth camera trajectory for evaluating the algorithms’



5.1 Datasets 37

accuracy. As a synthetic dataset, it provides well-synchronized colour and depth image pairs
for every frame. Moreover, in addition to synthetic imagery (see Figure 5.1a and Figure 5.1b),
this dataset provides typically observed real-world artefacts in both RGB and depth data by
carefully modelling sensor noise (see Figures 5.1c and 5.1d). The noisy colour and depth data
are used to simulate realistic conditions in our evaluation. Since this dataset is much easier
than the actual applicant scenarios of dynamic SLAM, we mainly apply it to demonstrate that
the proposed system performs comparable to the baseline proposed in ∇SLAM [1].

5.1.2 TUM RGB-D Dataset

(a) RGB and depth input of static environment (b) RGB and depth input input of dynamic environment

Figure 5.2: Example images from the TUM RGB-D dataset [73]. Example (a) taken from the freiburg1_desk
sequence consists of a purely static environment, while (b) from the freiburg3_walking_xyz sequence presents a
dynamic environment with moving people. The real depth input is nosier than the synthetic data (s. Figure 5.1d),
containing more invalid pixels, especially near the border.

The TUM RGB-D dataset [73] provides a rich collection of RGB and depth images for eval-
uating the performance of visual SLAM algorithms. It includes sequences with and without
moving objects, adding to the complexity and realism of the SLAM challenges it presents.
However, its RGB and depth data captured by the Kinect camera are in different frame rates.
Although this has been carefully taken care of by synchronizing the data as prepossessing, we
cannot fully mitigate its impact on the approach, which relies on a good association between
colour and depth images. This is discussed in detail in section 6.2.2. Moreover, the moving
instances in this dataset are restricted to only one class, people, which is non-rigid. They’re
not in the scope of our targeted categories. Therefore, when evaluating the system on this
dataset, we mainly eliminate the impact of the moving people by filtering the related pixels
using segmentation masks generated by methods discussed in Chapter 4.

5.1.3 Bonn RGB-D Dynamic Dataset

The Bonn RGB-D Dynamic dataset [74] is a successor of TUM RGB-D but concentrates more on
dynamic scenarios. It contains 24 highly dynamic sequences where people perform different
tasks, such as interacting with objects or walking around and two static sequences with the
ground truth pose of the sensor. Identical to TUM RGB-D dataset, our approach can not
completely resolve the synchronization issue of RGB and depth data in this dataset.

5.1.4 Co-Fusion Dataset

The Co-Fusion dataset, which is introduced along with the work Co-Fusion [49], contains two
synthetic indoor dynamic scenes. It has been widely used in evaluating other dynamic visual
SLAM algorithms. However, the moving objects’ classes in these two sequences rarely appear
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(a) Static indoor environment (b) Moving people (c) Playing with a balloon (d) Placing a cardboard box

Figure 5.3: Example images from the Bonn RGB-D Dynamic dataset [74]. Four typical representative sce-
narios in the Bonn RGB-D Dynamic dataset are shown here. Among them, the first one (a) illustrates a static
environment. The rest shows various dynamic scenes. (b) visualizes multiple synchronously moving people, while
(c) and (d) present images of a person manipulating different objects, including balloons and cardboard boxes.

(a) Airship (b) Toy car and rocking horse (c) Moving toy cars and a static airplane model

(d) Mask of airship (e) Masks of toy car and horse (f) Masks of toy cars

Figure 5.4: Example RGB images and segmentation masks from the Co-Fusion dataset. Input RGB images
are shown on the upper row, while the corresponding object masks are listed below. Examples (a), (b), (d), and
(e) visualize the three moving objects in the room sequence, including the airship, the toy car, and the rocking
wooden horse. The remainder shows the two moving toy cars in the car sequence. Note that all other objects not
coloured in the masks are not moving.

in datasets of classification or segmentation tasks and therefore highly limit the performance
of the segmentation models which are trained in a supervised manner, such as Mask R-
CNN [10] which we use in one of our proposals. Different from the other selected datasets,
the Co-Fusion dataset includes ground truth segmentation masks of the moving instances,
with which we can evaluate the effectiveness of our segmentation model quantitatively by
calculating the Intersection over Union (IoU).

5.2 Metrics

To verify the effectiveness of our method from various perspectives, we employ multiple
metrics during evaluation. Typical metrics for evaluating visual SLAM or visual odometry
methods include the Absolute Trajectory Error (ATE [m]) and the Relative Pose Error of rota-
tion and translation (RPEt ran [m/Frame] and RPErot [Deg/Frame]) introduced in [73]. The
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ATE assesses the total trajectory accuracy by aggregating positional discrepancies between
ground truth and reconstructed locations. In contrast, the RPE focuses on local motion dis-
crepancies, serving as an indicator of drift. We evaluate the translation and rotation RPE
in separate steps because it is not intuitive to understand from the numeric result how the
distribution between the two errors is if they are embedded in one error.

Moreover, to ensure these measures are independent of scene length, they are commonly
represented as the root-mean-square error (RMSE). To demonstrate the effectiveness of our
segmentation model, we calculate the intersection over union (IoU) of the predicted and
ground truth segmentation masks, particularly for the Co-Fusion dataset. These metrics’ de-
tailed definitions and mathematical formulation are provided in Appendix A. Furthermore,
we visualize the 3D reconstruction of the particular scenes to provide intuitive results.

5.3 Evaluation Results

We summarize the evaluation results into two categories depending on the type of environ-
ment, i.e., the static environment (Section 5.4) and the dynamic environment (Section 5.5).
In this way, we first demonstrate our method’s ability to estimate camera trajectories. This is
important because our object pose estimation is calculated by concatenating the object poses
estimated in a local coordinate and the camera transformation, as described in Section 3.2.4.
Without accurate camera tracking, our method cannot guarantee satisfying object-tracking
results.

Then, we evaluated it in a comprehensive setting with the camera moving in dynamic en-
vironments. Since our pipeline does not include a method that explicitly distinguishes elastic
and rigid objects, we manually categorize the sequences we use in evaluation. If a sequence
contains a non-rigid moving instance, we merely filter all moving objects using the segmen-
tation masks so that our system can achieve more accurate and robust camera tracking. If
all the dynamic objects in a sequence are rigid, we track both the camera and objects for this
sequence. In evaluation, we compare our methods with non-learning and learning-based,
static and dynamic approaches.

We choose ∇SLAM [1] as our development baseline, but it is not initially crafted for
dynamic SLAM. Its visual odometry is a differentiable implementation of the pure geometric
Point-to-Plane ICP method [77], known for its robustness to lighting changes. Therefore, we
only compare our pipeline to it on sequences with a static environment. Besides, there are no
trainable parameters in this framework. Hence, we categorize it as one of the non-learning
approaches.

In the case of non-learning and static approaches, in addition to ∇SLAM, an RGB-D VO
method [78] that minimizes the photometric consistency of aligned images is considered in
comparing camera motion estimation. In the assessment, we also include the evaluation of
ColorICP [79], a deviation of the above methods, which implements geometric constraint
in addition to photo consistency. Comparing our approach to these methods is expected to
highlight the advantages of learning-based visual odometry, particularly in terms of a broader
convergence basin, which helps avoid being trapped in local minima (related discussion is
presented in Section 6.2.1) and, therefore, enhances accuracy.

As learning-based approaches, we refer to SLAM systems that involve deep learning meth-
ods for either segmentation or visual odometry. In evaluation, we provide comparisons with
DROID-SLAM [6], DynaSLAM (DS)[48], and MaskFusion (MF)[45]. DynaSLAM and Mask-
Fusion rely on deep neural networks to obtain prior knowledge of possible moving objects,
followed by refinement using a geometric approach. The main difference between them in
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segmentation lies in using different geometric methods. Moreover, DynaSLAM uses feature-
based visual odometry to track the camera, while MaskFusion and ReFusion estimate camera
motions in a direct fashion. MaskFusion minimizes photometric and geometric errors to track
the camera and moving objects in the environment. DROID-SLAM does not come with a dy-
namic object segmentation module and estimates solely camera motion. However, it has a
novel learning-based visual odometry pipeline. It shows state-of-the-art performance on a
broad range of data, including the most challenging TartanAir Dataset [42]. This dataset
contains a considerable amount of dynamic sequences. Despite that, DROID-SLAM can still
achieve promising performance, which makes it an interesting approach to include in our
comparison.

Additionally, our method is compared to ReFusion (RF)[74] in dynamic sequences, which
represents the non-leaning-based, dynamic methods. ReFusion optimizes the error function
defined with TSDF and tracks the camera solely. It exploits residuals after the initial pose
estimation to identify moving entities. It does not employ deep-learning methods to segment
objects in the scene and can not track objects. However, its residual-based method for filtering
dynamic objects significantly improves the accuracy of camera motion estimation.

We’ve used a large portion of the TUM RGB-D and Bonn RGB-D Dynamic datasets to train
our visual odometry (see Table 4.1). Comparing our system’s performance to others on the
train sequences might not be objective. Thus, we identify the test sequences with "*" in the
quantitative results on the TUM RGB-D and the Bonn RGB-D Dynamic datasets.

5.4 Moving Camera in Static Environment

The assumption that the camera is the only moving object in the environment has been the
foundation of primary classic visual SLAM systems. In this experiment, we selected sequences
from synthetic and real datasets that fulfil this configuration. Since no moving instances exist
in the selected sequences, we deactivate the segmentation module in our pipeline and eval-
uate solely the learning-based visual odometry. We compare our method with non-learning
and learning-based, static approaches to validate our approach’s effectiveness in terms of
camera tracking accuracy.

ColorICP[79] RGB-D VO[78] ∇SLAM[1] Ours DROID[6]

living_room_traj0 0.2802 0.3603 0.0954 0.1281 0.6369
living_room_traj1 0.0171 0.5951 0.0284 0.0926 0.2954
living_room_traj2 0.1327 0.2931 0.0334 0.1008 0.8094
living_room_traj3 0.8168 0.8524 0.3784 0.4532 0.6545

office_traj0 0.2047 0.1710 0.0446 0.0191 0.5958
office_traj1 0.4062 0.5366 0.9921 0.1360 0.4122
office_traj2 0.2827 0.2289 0.0339 0.0473 1.0089
office_traj3 0.0572 0.2289 0.9553 0.1084 0.7044

Mean 0.2747 0.4083 0.3202 0.1357 0.6397

Table 5.1: Absolute Trajectory Error (RMS) on the ICL-NUIM dataset. ATE is presented with the unit [m].
The second-best results are underlined, and the bests are shown in bold. Compared to the other methods, ours
achieves the best performance on some sequences while performing reasonably compared to the best methods
on the rest.

Table 5.1 shows the evaluation results on the ICL-NUIM dataset [76], while several qual-
itative results of our approach are shown in Figure 5.5. Despite DROID-SLAM’s surprisingly
large errors, compared to other methods, we observed no distinct performance gaps. Our
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.5: Reconstruction results of sequences from ICL-NUIM dataset. For better observation, we reconstruct
the scene using the noise-free depth data and the camera poses are estimated using noisy depth input. Figure (a)-
(d) shows the reconstruction of the living-room sequences from different viewpoints, while the reminder illustrates
the results of the office sequences.

method achieves the best performance over all scenarios. Besides, we cannot spot clear mis-
alignment in the reconstruction. The main reason is that these sequences themselves are
relatively simple. The relative displacement between frames is smooth, and the ego-camera
has no rapid pose changes. However, based on the results, we can still conclude that, in these
sequences, the performance of our method is comparable to the baseline methods, which
preliminarily verifies the feasibility of our method.
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Table 5.2 and Table 5.3 present the quantitative results on static environment sequences
of the TUM RGB-D dataset [73]. Compared to classic methods, including ColorICP, RGB-
D VO, and ∇SLAM, our method tracks camera motions with lower average ATE and RPE
across almost all trajectories. On the other hand, compared to the learning-based method,
DROID-SLAM, which has the lowest ATE in general, our method exhibits enhanced accuracy
in estimating relative poses. we presume that the bundle adjustment optimization invoked in
DROID-SLAM contributes the most to this performance gap in the ATE.

Non-leanring-based Learning-based
ColorICP [79] RGB-D VO [78] ∇SLAM [1] Ours DROID [6]

fr1_360* 0.1457 0.1994 0.1812 0.1010 0.0669
fr1_desk* 0.1375 0.0909 0.2636 0.0792 0.0177
fr1_desk2 0.2077 0.9024 0.3630 0.0796 0.0268
fr1_floor 0.3673 0.7517 0.7136 0.2248 0.0222
fr1_room 0.2894 0.9392 0.4849 0.1573 0.0429
fr1_xyz 0.0603 0.1056 0.1614 0.0820 0.0101
fr1_rpy 0.0453 0.0607 0.0487 0.0430 0.0233

fr1_plant 0.1631 0.6992 0.4090 0.0824 0.0166
fr1_teddy 0.1390 0.8626 0.5138 0.1669 0.0358
fr2_desk* 0.5571 1.3994 1.4237 0.9178 0.0105

fr2_360_hemisphere x 0.9366 0.9460 0.3655 0.8712
fr2_large_no_loop 1.7268 1.6488 1.9762 1.1007 0.9495

fr2_large_with_loop x 1.4734 1.4123 1.2061 1.1131
fr2_pioneer_360* 1.7701 1.6859 1.6656 0.2534 1.7422
fr2_pioneer_slam 1.7795 1.7762 1.8406 0.5549 0.1837

fr2_pioneer_slam2 1.0337 1.6338 1.2648 0.6217 1.0060
fr2_pioneer_slam3 1.0338 1.8659 1.5458 0.8649 1.1698

fr2_xyz 0.3086 0.3607 0.2719 0.1150 0.0046
fr2_rpy 0.0606 0.0765 0.0715 0.0564 0.0120

fr2_dishes 0.2750 0.8369 0.7549 0.2410 0.0146
fr2_360_kidnap x 1.5388 1.4253 0.8922 1.3397

fr2_desk_with_person 0.4700 1.5465 0.9499 0.1725 0.0170
fr3_teddy x 0.7603 0.7505 0.2491 0.0107

fr3_long_office_household 0.2853 0.5797 1.7370 0.5498 0.0284

Average 0.5428 0.9471 0.8823 0.3824 0.3640

Table 5.2: Absolute Trajectory Error (RMS) on static environment sequences of TUM RGB-D dataset. This
table summarizes the ATE [m] evaluated on the TUM RGB-D static sequences. We compare our method to the
RGB-D VO, ColorICP, ∇SLAM, and DROID-SLAM. The sequences not involved in the training are marked with
"∗". Fail estimations are denoted by "x". The best results are stressed in bold, while the second-best results are
shown with underlines.

5.5 Moving Camera in Dynamic Environment

The camera moves occasionally in real-world scenarios, and objects in the environment can
also be dynamic. The performance of our approach in handling this complexity is evalu-
ated in this particular configuration. Among all the datasets we used, we have four of them
that contain representative sequences of this setting, including TUM RGB-D, Bonn RGB-D Dy-
namic, and Co-Fusion datasets.

Table 5.5 and 5.5 summarize the evaluation results on the dynamic sequences or the
TUM RGB-D dataset. The evaluation results on the Bonn RGB-D Dynamic dataset are shown
in Table 5.6 and Table 5.7. Compared to non-learning-based methods without a segmenta-
tion module, including RGB-D VO, ColorICP and ∇SLAM, our methods show improvement
in estimating camera motions. On the other hand, although DROID-SLAM does not have
a segmentation module, it is found to be more accurate than our methods on the dynamic



5.5 Moving Camera in Dynamic Environment 43

Non-leanring-based Learning-based
ColorICP RGB-D VO SLAM Ours DROID

RPEt rans RPErot RPEt rans RPErot RPEt rans RPErot RPEt rans RPErot RPEt rans RPErot

fr1_360* 0.0045 0.6803 0.0087 15.6504 0.0053 0.6315 0.0037 0.6637 0.0295 5.5272
fr1_desk* 0.0125 0.8644 0.0096 0.6639 0.0092 0.5252 0.0080 0.5961 0.0565 4.6464
fr1_desk2 0.0135 0.9941 0.0437 11.0466 0.0357 1.4220 0.0089 0.7120 0.0647 5.8853
fr1_floor 0.0222 0.9752 0.0345 6.5636 0.0235 0.9125 0.0211 1.0183 0.0411 3.5380
fr1_room 0.0069 0.4688 0.0316 16.5310 0.0115 0.6135 0.0064 0.4634 0.0447 4.7038
fr1_xyz 0.0052 0.3388 0.0052 0.4196 0.0045 0.2909 0.0035 0.3400 0.0382 2.1248
fr1_rpy 0.0020 1.0294 0.0028 11.4244 0.0018 0.8466 0.0020 0.9494 0.0143 5.7986

fr1_plant 0.0072 0.5651 0.0193 16.6459 0.0066 0.5114 0.0062 0.6295 0.0566 4.4496
fr1_teddy 0.0092 0.5769 0.0215 14.1236 0.0095 0.5453 0.0079 0.7149 0.0582 5.5342
fr2_desk* 0.0158 0.5089 0.0240 2.1736 0.0140 0.4634 0.0132 0.4713 0.0901 2.5560

fr2_360_hemisphere x x 0.0432 50.3544 0.0443 5.6602 0.0147 0.3680 0.0537 2.9343
fr2_large_no_loop 0.0817 2.1908 0.0904 27.8773 0.0827 2.2240 0.0760 2.1980 0.3296 7.1936

fr2_large_with_loop x x 0.0576 28.7691 0.0585 1.7831 0.0516 1.5377 0.1660 7.2342
fr2_pioneer_360* 0.0120 0.9577 0.0288 21.1785 0.0257 0.7716 0.0105 0.7302 0.0272 3.6863
fr2_pioneer_slam 0.0310 1.7811 0.0485 46.4098 0.0316 1.8302 0.0263 1.6878 0.0252 4.5299

fr2_pioneer_slam2 0.0466 2.3164 0.1169 42.4740 0.0482 2.4569 0.0391 2.3567 0.0594 4.4346
fr2_pioneer_slam3 0.0432 2.0008 0.0608 34.8880 0.0362 1.9307 0.0199 1.7581 0.0241 4.7357

fr2_xyz 0.0019 0.2197 0.0030 6.2224 0.0026 0.2247 0.0018 0.2320 0.0063 0.4738
fr2_rpy 0.0008 0.1897 0.0013 11.0813 0.0008 0.2248 0.0008 0.1926 0.0029 0.7726

fr2_dishes 0.0112 0.7381 0.0269 35.9551 0.0103 0.5893 0.0029 0.2897 0.0201 1.5152
fr2_360_kidnap x x 0.0209 26.6967 0.0058 0.3120 0.0068 0.3129 0.1330 3.0609

fr2_desk_with_person 0.0080 0.3430 0.0305 5.4565 0.0102 0.3919 0.0068 0.3577 0.0327 1.4022
fr3_teddy x x 0.0092 18.7393 0.0058 1.5902 0.0039 0.5394 0.0357 3.2697

fr3_long_office_household 0.0046 0.2541 0.0077 0.3892 0.0044 0.2704 0.0035 0.2936 0.0312 1.7115
Average 0.0170 0.8997 0.0311 18.8223 0.0204 1.1259 0.0144 0.8089 0.0600 3.8216

Table 5.3: Relative Pose Error (RMS) on static environment sequences of TUM RGB-D dataset. We compare
our method to the RGB-D VO, ColorICP,∇SLAM, and DROID-SLAM. In this table, the test sequences are marked
with "∗" for a fair comparison. Fail estimations are denoted by "x". The best results are stressed in bold, while the
second-best results are shown with underlines.

sequences from TUM RGB-D in terms of the ATE. It achieves even comparable results to the
dynamic SLAM methods. DROID-SLAM’s robust and superior performance is attributed to
its state-of-the-art learning-based visual odometry and a large amount of challenging train
data. Additionally, DynaSLAM, as the only method that tracks the camera using sparse fea-
ture points, exhibits the best outcomes in ATE and RPEt rans in the TUM RGB-D dynamic se-
quences. However, our methods exhibit competitive performance in relative pose estimation,
in general. Despite the absence of the RPErots of the last three methods, ours consistently
yields the best outcomes in RPE on the Bonn RGB-D Dynamic dataset, which is, in general,
much more challenging than the TUM RGB-D dataset. From this, we can presume that our
methods’ better performance benefits from the uncertainty-based tracking algorithm.

Moreover, among the two segmentation approaches we introduced, the pipeline inte-
grated with the uncertainty-based segmentation approach (see Section 4.7.2) can track ego-
motion more accurately than the other using geometric segmentation. Nonetheless, generally,
compared to all state-of-the-art methods, the proposed approaches lagged slightly behind in
tracking the camera within dynamic environments.

When evaluating our method on the Co-Fusion dataset, we compare with Co-Fusion [49]
instead of MaskFusion because we cannot generate reasonable results using the public im-
plementation of MaskFusion, especially for moving objects. Co-Fusion is also a visual SLAM
system that separates and maintains multiple object models by motion. Conventional non-
dynamic SLAM/VO systems are not designed to effectively track camera motion in dynamic
environments. For this reason, in this experiment, we limit non-dynamic and non-learning
approaches to our baseline ∇SLAM. This approach is chosen specifically to demonstrate how
moving objects affect the accuracy of camera motion estimation.

The quantitative evaluation results on the Co-Fusion dataset are shown in Table 5.8. Com-
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NL + NM L + NM L + M NL + M

ColorICP [79] RGB-D VO [78] ∇SLAM [1] DROID [6] Ours+GS Ours+US DS [48] RF [74] MF [45]

Slightly dynamic

fr3_s_static 0.0293 0.0224 0.0151 0.0067 0.0164 0.0095 0.0064 0.0110 0.0154

fr3_s_xyz 0.2995 0.1718 0.1586 0.0288 0.1306 0.0963 0.0146 0.0315 0.0614

fr3_s_rpy 0.0504 0.0581 0.0489 0.0158 0.0450 0.0482 0.0673 0.1996 0.0924

fr3_s_halfsphere 0.2562 0.3808 0.2391 0.0217 0.1953 0.0676 0.0196 0.0387 0.0606

Highly dynamics

fr3_w_static* 0.0222 0.0223 0.0226 0.0169 0.0215 0.0226 0.0067 0.0170 0.5021

fr3_w_xyz* 0.2839 0.2887 0.2806 0.0191 0.2736 0.2084 0.0161 0.0809 0.3457

fr3_w_rpy 0.1553 0.1675 0.1628 0.0601 0.1566 0.0941 0.0393 0.2660 0.6605

fr3_w_halfsphere 0.3817 0.4340 0.3834 0.0309 0.3601 0.2739 0.0278 0.0584 0.3906

Average 0.1848 0.1932 0.1639 0.0250 0.1499 0.1026 0.0247 0.0879 0.2661

Table 5.4: Absolute Trajectory Error (RMS) on TUM RGB-D dataset dynamic environment sequences. The
sequences are categorized into two groups depending on the degree of dynamics presented and compare our
method to the RGB-D VO, ColorICP, ∇SLAM, DROID-SLAM, DynaSLAM (DS), ReFusion (RF), and MaskFusion
(MF). Note that we only include RPEt rans of the last three methods, which are excerpted from [80]. We identify the
two segmentation approaches introduced in this thesis using GS for the one described in Section 6.5 and US for
the other in Section 6.5, respectively. We also marked the test sequences with "∗". Fail estimations are denoted
by "x". The best results are stressed in bold, while the second-best results are shown with underlines.

NL + NM L + NM L + M NL + M

ColorICP[79] RGB-D VO[19] ∇SLAM[1] DROID[6] Ours+GS Ours+US DS[48] RF[74] MF[45]

Setting Seq. RPEt rans RPErot RPEt rans RPErot RPEt rans RPErot RPEt rans RPEt rans RPEt rans RPErot RPEt rans RPErot RPEt rans RPEt rans RPEt rans

Slightly dynamic

fr3_s_static 0.248 0.145 1.262 0.372 0.184 0.177 0.584 0.665 0.078 0.066 0.072 0.033 0.012 0.036 0.045

fr3_s_xyz 0.422 0.299 1.554 0.465 0.337 0.371 1.072 3.220 0.330 0.201 0.187 0.165 0.020 0.047 0.054

fr3_s_rpy 0.672 0.450 x x 0.694 0.555 2.076 1.104 0.345 0.239 0.170 0.198 0.131 0.650 0.357

fr3_s_halfsphere 0.583 0.461 1.008 0.426 0.437 0.528 2.953 3.161 0.341 0.248 0.177 0.208 0.043 0.048 0.084

Highly dynamics

fr3_w_static* 0.879 0.265 2.884 0.682 0.818 0.275 0.357 0.567 0.563 0.107 0.374 0.084 0.010 0.040 0.601

fr3_w_xyz* 1.888 0.480 3.325 0.761 1.654 0.510 3.129 1.567 0.906 0.254 0.729 0.220 0.023 0.094 0.318

fr3_w_rpy 1.910 0.563 24.767 2.959 1.773 0.652 2.667 3.417 1.061 0.313 0.926 0.279 0.059 0.280 0.570

fr3_w_halfsphere 1.666 0.574 2.644 0.666 1.454 0.661 3.832 2.973 0.848 0.286 0.749 0.257 0.039 0.056 0.391

Average 1.033 0.405 5.349 0.904 0.919 0.466 2.084 2.084 0.559 0.214 0.423 0.180 0.042 0.156 0.302

Table 5.5: Relative Pose Error (RMS) on TUM RGB-D dataset dynamic environment sequences. We catego-
rize the sequences into two groups depending on the degree of dynamics presented. We compare our method to
the RGB-D VO, ColorICP, ∇SLAM, DROID-SLAM, DynaSLAM (DS), ReFusion (RF), and MaskFusion (MF). We
only include RPEt rans of the last three methods, excerpted from [80]. We distinguish the two segmentation ap-
proaches introduced in this thesis using GS for the one described in Section 4.7.1 and US for the other in Section
4.7.2, respectively. Test sequences are marked with "∗". Fail estimations are denoted by "x". The best results are
stressed in bold, while the second-best results are shown with underlines.

pared to our development baseline, ∇SLAM, the proposed method performs more accurate
camera tracking. Additionally, our method tracks the objects in the environment with satis-
factory accuracy. This is mainly attributed to the moving object segmentation in our pipeline.
Nevertheless, despite the strengths in our segmentation method, Co-Fusion surpasses the
proposed method with a large performance gap. Reasons for this could be multiple.

On the one hand, Co-Fusion has a well-engineered pipeline. It performs frame-to-model
tracking, estimating directly the global object poses. Although it relies on classic, i.e., non-
learning residuals, which combine photometric colour error and point-to-plane ICP registra-
tion error, it shows superior performance in tracking.

On the other hand, our visual odometry system relies on frame-to-frame image alignment.
We estimated the object poses in the local camera coordinate and computed the global object
poses by transforming, which accumulated the error from both camera and object tracking.
This could be the reason for our system’s poorer accuracy in object tracking compared to Co-
Fusion. Furthermore, our visual odometry operates on feature maps extracted from colour
images. The car4 sequence is a large number of homogeneous surfaces, which are mostly
of identical colour values. We do not particularly include sequences with similar properties
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NL + NM L + M NL+ M
Sequence ColorICP RGB-D VO SLAM Ours+GS Ours+US DS RF MF

balloon 0.128 0.207 0.137 0.091 0.071 0.030 0.175 0.0912
balloon2 0.134 0.191 0.122 0.085 0.065 0.029 0.254 0.0312

balloon_tracking 0.262 0.388 0.253 0.229 0.209 0.049 0.302 0.1442
balloon_tracking2 0.174 0.301 0.280 0.228 0.208 0.035 0.322 0.0847

crowd x 0.073 0.071 0.013 0.033 0.016 0.204 -
crowd2 0.074 0.080 0.073 0.011 0.031 0.031 0.155 -
crowd3 0.062 0.060 0.059 0.012 0.032 0.038 0.137 0.1548

kidnap_box 0.233 0.550 0.350 0.224 0.204 0.029 0.148 -
kidnap_box2 0.165 0.487 0.250 0.275 0.255 0.035 0.161 0.1298

mov_nonObs_box 0.171 0.281 0.207 0.219 0.199 0.232 0.071 -
mov_nonObs_box2 0.259 0.478 0.248 0.331 0.311 0.039 0.179 0.121

mov_obs_box 0.178 0.219 0.261 0.122 0.102 0.044 0.343 -
mov_obs_box2 0.220 0.260 0.259 0.172 0.132 0.263 0.528 0.170
person_tracking 0.264 0.625 0.268 0.345 0.325 0.061 0.289 0.216

person_tracking2 0.258 0.346 0.241 0.489 0.469 0.078 0.463 -
placing_nonObs_box 0.174 0.136 0.185 0.1789 0.118 0.575 0.106 0.214

placing_nonObs_box2 0.123 0.156 0.124 0.079 0.059 0.021 0.141 -
placing_nonObs_box3 0.191 0.205 0.157 0.134 0.114 0.058 0.174 -

placing_obs_box 0.123 0.306 0.227 0.113 0.093 0.255 0.571 0.349
removing_nonObs_box 0.108 0.130 0.110 0.062 0.042 0.016 0.041 0.051

removing_nonObs_box2 0.083 0.173 0.137 0.109 0.089 0.021 0.111 -
removing_obs_box 0.150 0.155 0.174 0.114 0.094 0.291 0.222 -

synchronous 0.006 0.004 0.006 0.004 0.003 0.015 0.441 -
synchronous2 0.023 0.025 0.022 0.018 0.018 0.009 0.022 -

Average 0.155 0.243 0.176 0.147 0.134 0.0946 0.2317 0.1464

Table 5.6: Absolute Trajectory Error (RMS) on the dynamic scenes of the Bonn RGB-D Dynamic dataset.
Here, we evaluate our deep-learning-based methods (L) equipped with two different segmentation approaches
(M), i.e., geometric-refined segmentation using Mask R-CNN (GS) and uncertainty-based segmentation using
FastSAM (US). The listed methods are divided in groups. The first group employs non-learning-based visual
odometry (NL) and does not apply motion segmentation (NM), which includes the ColorICP, RGB-D VO, and
∇SLAM. The second group consists of DynaSLAM (DS), ReFusion (RF), and MaskFusion (MF). These methods
employ non-learning-based tracking (NL) and has the capability to identify moving objects (M). Failures are marked
with "x". Since results of DS, RF, and MF are cited from [80] and [81], some results are not available, which are
noted with "-". Additionally, we stress that the best and second-best results are denoted using bold fonts and
underlines.

in training, which might be the main reason for the poor performance in this particular
sequence. On the other hand, the airship in the room4 sequence is split into two instances by
Co-Fusion. In contrast, thanks to the superior performance of FastSAM, our system segments
it as one, which is the potential reason for its better performance in tracking this particular
object.

Table 5.9 presents the average IoU between the predicted masks and the ground truth
labels across all frames in which instance masks are predicted. Our first segmentation highly
relies on the prior information provided by Mask R-CNN, which, however, cannot segment the
moving instances in these sequences correctly. In contrast, our second segmentation method
can generate prompt points with less noise from the predicted dynamic-aware uncertainties.
In general, with accurate prompts, FastSAM can produce fine segmentation masks. Thus, our
segmentation method achieves an overall higher average IoU than Co-Fusion.
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NL + NM L + M NL + M

ColorICP RGB-D VO ∇SLAM Ours + GS Ours + US DS RF MF

RPEt rans RPErot RPEt rans RPErot RPEt rans RPErot RPEt rans RPErot RPEt rans RPErot RPEt rans RPEt rans RPEt rans

balloon 0.041 2.342 0.041 15.333 0.040 1.748 0.031 2.356 0.028 2.056 0.435 0.277 1.043

balloon2* 0.029 3.165 0.037 29.039 0.026 2.662 0.027 3.032 0.024 2.782 0.512 1.600 1.599

balloon_tracking 0.071 5.589 0.049 21.448 0.073 4.799 0.045 5.602 0.042 5.452 0.925 0.935 0.826

balloon_tracking2* 0.105 6.809 0.076 11.000 0.083 5.471 0.059 8.113 0.056 7.763 0.886 0.772 1.298

crowd x x 0.010 22.882 0.010 1.920 0.011 2.363 0.010 2.063 - - -

crowd2 0.013 2.817 0.013 28.365 0.014 2.513 0.014 4.163 0.013 3.813 - - -

crowd3* 0.009 3.006 0.009 29.412 0.009 2.030 0.009 2.589 0.009 2.429 0.253 0.310 0.230

kidnapping_box 0.074 4.380 0.050 6.406 0.076 3.836 0.066 3.728 0.063 3.428 - - -

kidnapping_box2 0.064 3.026 0.045 7.916 0.070 2.517 0.047 2.826 0.044 2.606 0.977 1.230 1.101

moving_nonobstructing_box 0.031 1.412 0.030 1.532 0.037 1.156 0.019 0.933 0.016 0.663 - - -

moving_nonobstructing_box2 0.071 3.821 0.047 8.331 0.079 3.046 0.054 3.529 0.051 3.389 1.179 1.429 1.260

moving_obstructing_box 0.061 4.725 0.080 10.559 0.059 3.810 0.042 4.345 0.039 4.045 - - -

moving_obstructing_box2 0.040 2.186 0.057 6.345 0.050 1.825 0.031 1.926 0.028 1.626 1.003 0.765 0.577

person_tracking 0.069 8.147 0.073 9.156 0.076 7.259 0.075 7.967 0.072 8.217 1.038 1.226 1.545

person_tracking2* 0.061 6.289 0.082 11.387 0.066 5.097 0.054 5.862 0.051 5.992 - - -

placing_nonobstructing_box* 0.016 2.398 0.021 3.419 0.016 2.120 0.008 2.118 0.005 1.998 0.442 0.111 0.373

placing_nonobstructing_box2 0.019 2.162 0.018 6.871 0.021 1.814 0.008 1.749 0.005 1.449 - - -

placing_nonobstructing_box3 0.020 2.145 0.018 40.581 0.029 1.751 0.010 1.912 0.007 1.972 - - -

placing_obstructing_box 0.027 2.203 0.030 7.859 0.034 1.984 0.015 1.981 0.012 1.681 0.632 0.675 0.643

removing_nonobstructing_box 0.017 0.985 0.016 7.153 0.017 0.879 0.006 0.715 0.003 0.395 0.325 0.440 0.424

removing_nonobstructing_box2 0.027 2.517 0.019 12.761 0.026 2.098 0.016 2.471 0.013 2.521 - - -

removing_obstructing_box 0.016 2.257 0.028 6.495 0.018 1.842 0.004 1.971 0.001 1.911 - - -

synchronous 0.001 0.495 0.002 2.050 0.001 0.355 0.001 0.919 0.001 0.879 - - -

synchronous2 0.003 0.717 0.005 21.154 0.003 0.488 0.003 1.463 0.003 1.293 - - -

Average 0.038 3.200 0.036 13.644 0.039 2.626 0.027 3.110 0.025 2.934 0.717 0.814 0.847

Table 5.7: Relative Pose Error (RMS) on dynamic sequences of the Bonn RBG-D Dynamic dataset. In this
evaluation, our method is compared to the RGB-D VO, ColorICP, ∇SLAM, DynaSLAM (DS), ReFusion (RF), and
MaskFusion (MF). Note that we only include RPEt rans of the last three methods, which are excerpted from [80].
We identify the two segmentation approaches introduced in this thesis using GS for the one described in Section
4.7.1 and US for the other in Section 4.7.2, respectively. Test sequences are marked with "∗". Fail estimations are
denoted by "x". The best results are stressed in bold, while the second-best results are shown with underlines.

∇SLAM [1] Ours CoFusion [49]
ATE RPEt rans RPErot ATE RPEt rans RPErot ATE RPEt rans RPErot

room4

cam 0.3839 0.0211 0.8467 0.0267 0.0048 0.0977 0.0141 0.0006 0.0003
ship - - - 0.0096 0.1328 0.0150 0.0298 / 0.0217 0.0170 / 0.0092 0.0255 / 0.0061

horse - - - 1.0266 0.1949 3.6004 0.0612 0.0061 0.6729
car - - - 0.0687 0.0437 0.0620 0.0032 0.0091 0.0009

car4
cam x x x 0.3737 0.0083 0.0210 0.0273 0.0011 0.0009

truck1 - - - 0.2249 0.0106 0.7793 0.0103 0.0010 0.0045
car2 - - - 0.1269 0.0281 0.4560 0.0070 0.0033 0.0059

Table 5.8: Evaluation results on the Co-Fusion Dataset. We compare the proposed method with our devel-
opment baseline ∇SLAM and Co-Fusion [49]. Ours outperforms the baseline, achieving better results in camera
tracking and providing object tracking. However, compared to Co-Fusion, there is still a distinct bias between our
method and this state-of-the-art method. The best results are shown in bold.

Additionally, the estimated trajectories compared to ground truth trajectories are visual-
ized in Figure 5.6 and Figure 5.7 illustrates reconstructions generated by our method. Al-
though the trajectory estimated by our system has a larger error than confusion, thanks to
our mapping method, we can maintain better object shape reconstruction when the errors
are in an acceptable range.
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Sequence Object Ours Co-Fusion

room4
Airship 0.85 0.43 / 0.62
Horse 0.78 0.48
Car 0.88 0.88

car4
Truck 0.81 0.79
Car 0.76 0.68

Table 5.9: Average IoU. We calculate the average IoU between the predicted masks and the ground truth labels
across all frames where the masks are predicted. We only compare the mask predicted by the uncertainty-
prompted moving instance segmentation approach introduced in Section. As Mask R-CNN cannot generate reli-
able masks for the instances in these sequences, our first segmentation approach fails to provide usable instance
masks.

(a) Camera trajectories (b) Color-coded ATE of ours

Figure 5.6: Visualization of estimated camera trajectories. Figure (a) shows the camera trajectories estimated
by ∇SLAM (gradSLAM), Co-Fusion, and our method. The trajectories of Co-Fusion almost perfectly overlap with
the ground truth. Our method’s estimate is slightly off the ground truth. ∇SLAM has relatively good tracking at the
beginning of the sequence, while it struggles to estimate the camera motion after moving objects enter the view.
Figure (b) visualizes the color-coded ATE on our estimation. The increasing errors near the end of the sequence
depict that our method cannot maintain its tracking performance when multiple objects are in view.
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(a) (b)

(c) (d) (e)

Figure 5.7: Reconstruction results of the room sequence from Co-Fusion dataset. Figures (a) and (b) show
the whole environment’s reconstruction, including moving entities. In particular, the airship in Figure (b) is erased
from the visualization as it moves out of the camera view. Figure (c)-(e) shows the reconstruction of individual
moving objects in detail. The misaligned texture of the airship shown in Figure (c) reflects an inaccurate tracking
at the first few frames when the object enters the scene.



Chapter 6

Ablation Studies and Discussion

While the effectiveness of each stage in our pipeline is interdependent on the performance
of the others - for instance, subpar segmentation could lead to inadequate reconstruction
- it remains beneficial to evaluate the distinct components individually. In this chapter, an
ablation study is presented to validate the contribution of each component in the pipeline.
After that, we discuss the pipeline’s limitations revealed in the experiments, followed by ideas
for improvement and directions for future research.

6.1 Ablation Studies

Here, we present a comprehensive ablation study to elucidate the impact of individual com-
ponents. We denote our system component, dense feature map, dense uncertainty map, deep
initial pose prediction, and motion segmentation as F, U, P, and M, respectively. In this study,
we conduct the following settings:

• F: In this variation, we perform the probabilistic feature-metric DIA, while the uncer-
tainty prediction is substituted with an identity uncertainty. Additionally, we deactivate
the pose initialization, assuming an identity motion and utilizing the prediction from
the previous optimization instead.

• F+P: We additionally initialize the pose using Pose Net for the coarsest optimisation
level, maintaining other aspects.

• F+U: This configuration disables the initial pose prediction, relying solely on the pro-
posed probabilistic feature-metric direct image alignment for motion estimation.

• F+P+U: This is a version of our method without the dynamic-aware uncertainties and
the associated motion segmentation.

• Ours: This represents the complete version of our dynamics-aware probabilistic feature-
metric tracking system, including all components (F+P+U+M).

These variations are applied in a coarse-to-fine optimization process, adhering to the same
number of iterations and pyramid levels outlined in our proposed method (see section 4.10.
Table 6.1 summarises evaluation results on test sequences of the TUM RGB-D [73] and Bonn
RGB-D Dynamic [74] datasets. Comparisons are exhibited by the Absolute Trajectory Error
(AT E) and the Relative Pose Error (RPEt rans and RPErot) described in Section 5.2. It can be
seen that the complete system achieves the best results overall across different sequences.
Additionally, it can be observed that the accuracy tends to increase when additional com-
ponents are integrated with the probabilistic feature-metric DIA, meaning every component
contributes to enhancing our system.
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F F + P F + U F + P + U Ours

Sequence ATE RPEt rans RPErot ATE RPEt rans RPErot ATE RPEt rans RPErot ATE RPEt rans RPErot ATE RPEt rans RPErot

fr1_360 0.1819 0.0094 1.1138 0.1568 0.0101 0.6711 0.1645 0.0046 0.6575 0.1010 0.0037 0.6637 0.1010 0.0037 0.6637

fr1_desk 0.7984 0.0200 0.5985 0.5145 0.0179 0.9084 0.1024 0.0082 0.5961 0.0792 0.0080 0.5961 0.0792 0.0080 0.5961

fr2_desk 1.6240 0.0392 1.2632 1.3240 0.0385 1.0680 0.9729 0.0133 0.4695 0.9178 0.0132 0.4713 0.9178 0.0132 0.4713

fr2_pioneer_360 1.7455 0.2534 2.0123 1.7684 0.0474 1.7020 0.7417 0.0272 0.7302 0.2534 0.0105 0.7302 0.2534 0.0105 0.7302

fr3_walking_static 0.0184 0.0005 0.1917 0.0236 0.0005 0.1817 0.0215 0.0006 0.1982 0.0235 0.7130 0.1566 0.0226 0.3736 0.0835

fr3_walking_xyz 0.2793 0.0049 0.4434 0.2853 0.0047 0.0047 0.2736 0.0045 0.4519 0.2684 1.0564 0.3036 0.2084 0.7294 0.2197

balloon2 0.1711 0.0274 2.5248 0.1665 0.0332 3.3890 0.1355 0.0401 3.6352 0.1448 0.0367 3.5318 0.0648 0.0280 2.0559

balloon_tracking2 0.2683 0.0759 6.6432 0.2885 0.0659 7.7445 0.2793 0.0780 8.5404 0.2877 0.0692 8.6126 0.2077 0.0562 7.7626

crowd3 0.0535 0.0123 2.8557 0.0676 0.0093 2.9696 0.0706 0.0090 3.1230 0.0723 0.0094 3.0891 0.0323 0.0094 2.4291

person_tracking2 0.6632 0.0617 4.7066 0.4305 0.0670 6.0333 0.4907 0.0664 6.4411 0.5492 0.0645 6.3616 0.4690 0.0515 5.9916

placing_nonobs_box 0.1736 0.0236 2.2067 0.1451 0.0167 2.4952 0.1758 0.0169 2.5557 0.1789 0.0177 2.4121 0.0989 0.0161 0.6630

Average 0.5434 0.0480 2.2327 0.4701 0.0283 2.4698 0.3117 0.0244 2.4908 0.2615 0.1820 2.4481 0.1577 0.1806 2.7436

Table 6.1: Ablation study results. We evaluate different combinations of the proposed components on the test
sequences using ATE [m], RPRt rans [m/f], and RPErot [Deg/f]. The best results are shown in bold. For the static
sequences in TUM RGB-D dataset, the full system has identical performance to the F+P+U version because we
deactivate the motion segmentation module for static scenes. In this table, it can be observed that we achieved
the best performance with our ultimate system after integrating the components one after one.

6.2 Discussion

6.2.1 Convergence Basin

We conducted an experiment visualising the cost landscape to analyze the impact of initial
pose prediction in our system, similar to [5]. Given that the pose is a six-dimensional vec-
tor, it’s not practically feasible to sample costs across all pose components, and visualizing a
6D cost landscape poses significant challenges. Thus, as suggested in [5], we fix 4 degrees
of freedom, keeping the rotation and z-translation components constant, and sample only
pose combinations at the x and y translations near the ground truth pose. The results of our
simulation are shown in Figure 6.1. It can be seen that the pose initialized by the pose net-
work is closer to the ground truth pose, shown as the global minimum in the cost landscape.
This reveals that our pose prediction network effectively guides the estimation toward the
convergence basin near the global minimum.

Figure 6.1: Convergence basin. The input image pairs are on the left side, while the 2D and 3D landscapes
are on the right. The pose initialized with identity transformation (red), the pose initialized by the pose network
(purple), and the final estimation result (green) are projected on the 2D landscape contour shown in the middle.
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6.2.2 Limitations of Geometric Segmentation

The first segmentation approach introduced in this thesis is inspired by the geometric segmen-
tation applied in MaskFusion [45], which other researchers have widely used for segmenting
objects in RGB-D data [82][83][84][85]. The idea is to generate an edginess map and apply
connected-components analysis (CCA) on the edginess map to generate over-segmentation
results. The edge is determined by investigating the object’s concavity and depth discontinu-
ity.

Despite the quick determination of over-segmented results, we have found crucial limi-
tations of this approach. First, this approach struggles to distinguish physically connecting
objects. For instance, it is illustrated in Figure 6.2 that this approach fails to separate a walk-
ing person from the background. In this example, the camera captures the entire body of a
walking person. On the one hand, the person’s feet temporally touch the ground while he is
stepping on the floor, which contradicts the first assumption mentioned above. On the other
hand, his shoes show no clear concavity in the image due to the observation angle. These
properties hypothetically confuse the edginess determination schema (see Figure 6.2f).

The second limitation of this approach is the requirement of the vast engineering effort.
Mitigating the problem mentioned above requires careful adjustment of the weighting factor,
which balances the contribution of the concavity of objects and discontinuity of depth. How-
ever, tuning the coefficient is not trivial and is very case-sensitive. One certain value may
perform well in a sequence but fails in the others.

Considering these limitations, we experimented with enhancing the detected edges by
infusing an additional input φe in Equation (4.30):

φd +κcφc +κeφe > θ (6.1)

Here, φe is the edge map generated using the Sobel operator over the input colour image.
We also know that when we apply the Sobel convolutional kernels on an image, we obtain
the image gradients in the x and y directions. Thus, the edge map can be formulated using
the image gradient:

φe =
q

∇x I 2 +∇y I 2 (6.2)

As shown in Figure 6.3, the new term in the Equation allows us to obtain clearer edges.
However, the enhanced edges separate the motion initiator, the human, and the triggered
moving objects, the balloon. This separation violates our intention of merging the geometric
and semantic instance segmentation to maintain active and passive dynamic objects. More-
over, the additional edge extraction term and the associated coefficient complicate Equation
(4.30) further, making the parameter tuning more difficult.

6.2.3 Comparing Edge-based Segmentation to Geometric Segmentation

Inheriting the idea of studying the rich information of input data from [45], as the second
experiment, we directly employ a CNN model called DexiNed [86], allowing for robust edge
detection. It takes a colour image as input and generates fine and detailed edginess maps.
Compared to the geometric edges extraction used in MaskFusion [45], DexiNed produces
more consistent boundary detection, preventing parameter adjustment for various scenarios.
Likewise, analyzing the connected components of the edginess map allows us to over-segment
the images (see Figure 6.4). This is referred to as edge-based segmentation in the remainder
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(a) RGB input (b) Depth input (c) Normal map

(d) Depth discontinuity (e) Surface concavity

(f) Geometric edges (g) Geometric segmentation

Figure 6.2: Geometric segmentation results using methods introduced in MaskFusion [45]. (a) and (b) show the
RGB and depth input of the sequence person_tracking from the Bonn RGB-D Dynamic Dataset. Visualization of
the vertex map is the same as the input depth, while the normal map is shown in (C). Additionally, (d) and (e)
illustrate the depth discontinuity and surface concavity terms accordingly. The combined geometric edginess map
is depicted in (f), and (d) visualizes the final segmentation after applying CCA.

of this thesis.

Instead of studying the depth discontinuity and the surface concavity, we directly exploit
the object boundaries by leveraging a state-of-the-art edge detection deep learning method,
DexiNed [86]. Likewise, we apply the connected component analysis on the generated edges
to obtain an over-segmented image. The method we choose has better capability in handling
the aforementioned issue, succeeding in segmenting the person from the background. Results
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are shown in Figure 6.4

(a) Edges of depth image (b) Edges of color image

(c) Improved edges (d) Improved results

Figure 6.3: Improved segmentation results using augmented edges.

(a) Edges predicted by DexiNed
(b) Labeling edginess map using connected-component anal-
ysis

Figure 6.4: Segmentation results using the deep edges detector and connected-component analysis. (a)
illustrates the edges detected by DexiNed [86], while (d) visualizes the final over-segmented image by labelling
the connected components of the edginess map.

Disparate from the geometric segmentation method, using DexiNed is practical and easy
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to scale in various scenarios. The edges DexiNed extracted are less noisy than the augmented
approach, making it easier to obtain smooth results by applying CCA. More than that, using
neural networks helps maintain the pipeline’s differentiability, enabling learning more task-
specific weights by training for downstream tasks end-to-end.

Although edge-based segmentation combining DexiNed and CCA can achieve results com-
parable to augmented geometric segmentation, it suffers from individual limitations. Similar
to the augmented approach, the extracted edges by DexiNed split the active and passive mov-
ing objects. In this case, fusing this over-segmentation with the segmentation results of Mask
R-CNN can not generate a segmentation result that includes both the motion initiator and
moving objects triggered by them. As we use Mask R-CNN as a source of strong prior infor-
mation, applying the segmentation merge approach introduced in Section 4.7.1 can solely
obtain the instances identified by Mask R-CNN with finer boundaries. However, Results like
this cannot fulfil our intention, so we do not integrate this approach into the pipeline.

6.2.4 Benefits of Two-Stage Training

Uncertainty can result from different influence factors, including noisy sensory data, chal-
lenging illumination, and moving objects. We train our model using a two-stage schema to
decouple the uncertainty resulting from illumination and dynamic pixels. A control model
is also trained in one stage without separating static and dynamic scenario sequences. After
that, we visualized the uncertainties on a dynamic sequence predicted by these models indi-
vidually in Figure 6.5. As shown in Figure 6.5a, uncertainty maps generated by the model
trained using one-stage appear uncertain about regions under lighting changes and capturing
moving instances. On the other hand, the model trained with two stages concentrates more
on the dynamic regions after the second training stage using only dynamic sequences (see
6.5b).

(a) One-stage training

(b) Two-stage training (second stage)

Figure 6.5: Uncertainty maps. This figure visualizes the input colour image and the respective uncertainty maps
estimated by models trained differently. Regions that the model is more certain about are coloured more reddish.
Inversely, uncertain regions are more blueish.
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6.2.5 Limitation of Uncertainty-based Segmentation

The accuracy of the prompts fed to the FastSAM model [11] is significant for producing high-
quality segmentation masks. Besides, how we prompt the segmentation is crucial in precisely
identifying individual instances. The proposed uncertainty-based approach highly relies on
the sensitivity and accuracy of the motion-aware uncertainties. Ideally, it has to be agile
enough to detect every perturbation in residuals caused by dynamic factors and, meanwhile,
accurate enough to localize the dynamic pixels precisely with low uncertainties. However,
despite a considerable amount of train data, the uncertainty maps predicted by our model
often contain noises, leading to failure in motion segmentation as shown in Figure 6.6.

Figure 6.6: Failure case in uncertainty-based segmentation. As the dense uncertainty map is noisy for various
reasons, incorrect points remain in the prompt set, located outside the dynamic object, in this case, the moving
person. These points lead to the segmentation of the static background.

However, it is not trivial to pinpoint the elements that trigger false positives. Numerous
factors can result in uncertain information for image alignment, including appearance variety
due to seasonal or illumination changes, occlusion caused by moving objects in scenes, and
inherent noises of sensors. The uncertainty maps are trained on gradient flows propagated
from the 3D EPE, which means that their training constraints are not explicitly defined and
might include factors other than dynamic pixels. Although we can mitigate the effect of other
factors using a two-stage training schema, we cannot fully decouple the uncertainties caused
by the motion of third parties from all possible influences.

A potential solution could be training the uncertainty maps with annotated data, e.g.
ground truth motion segmentation. The ground truth segmentation can serve as prior uncer-
tainties as we can assign the static pixels with the highest certainty 1 and the dynamics with
0. This prior information can potentially guide the uncertainty encoder to concentrate on
the dynamic regions. Besides, substituting the predicted camera poses with the ground truth
poses would also be helpful. Using ground truth camera poses, we can expect the 3D EPE
to be around zero for all static pixels, while the errors for pixels capturing motion are much
higher. In this way, the uncertainty encoder can learn to dampen the impact of the dynamic
regions more effectively.

In addition, better approaches to generating prompts would be helpful in improving the
accuracy of the predicted dense uncertainties. The pooling strategy in the current approach
ensures the pipeline’s differentiability, but it is ineffective in many cases. For one thing, it
generates prompts for every local patch of the image plane, which is the main source of false
positives. Thresholding them with respect to their certainty values can mitigate the issue in
the inference time, as we show on the Co-Fusion datasets (Section 4.7.2). For another thing,
clustering the points using geometric cues can bring a significant performance boost in terms
of time and accuracy. In the current approach, prompt points of foreground objects are fed
individually to the segmentation model. The generated masks are merged by calculating the
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relative overlay of every possible combination of all candidates. Hence, applying clustering
can potentially improve our system’s performance. To preserve the pipeline’s differentiability,
differentiable clustering methods [87] can be exploited.

6.3 Other Limitations

Several other limitations remain except for the limitations discussed in the previous sections.
For instance, the moving object segmentation masks are hard-associated with pixels, resulting
in extremely sparse gradient flows in the computational graph of our pipeline. That said, our
pipeline is merely locally differentiable.

Additionally, the proposed uncertainty-based segmentation approach fully relies on Fast-
SAM [11]. Although FastSAM improves the inference speed by about 50 times faster than
SAM [11], we obtained an average inference time of around 480 ms per frame in our ex-
periments using the TUM RGB-D dataset. This long processing time limits the possibility of
deploying our system in real-time robotic tasks.

Furthermore, our approach encounter limitations that hinder it from achieving compara-
ble performance to the state-of-the-art dynamic SLAM methods. Though it is validated that
the feature-metric visual odometry in the pipeline has promising advantages in estimating
relative poses, it cannot overcome the accumulated drift over time, resulting in relatively
high ATE. One key reason is that our pipeline lacks back-end optimization, a crucial compo-
nent of SLAM’s superior performance. Another reason is that we prevented many engineering
factors that could boost the performance yet damage the pipeline’s differentiability.

6.4 Future Work

During the development and evaluation of the algorithm outlined in this thesis, we have
pinpointed multiple avenues for future research. These avenues encompass:

• Small or distant objects occupy only a few pixels. These objects offer limited geometric
and photometric information in image frames, affecting both the tracking and segmen-
tation modules. Tracking them can result in ignorance or errors in motion estimation.
Particularly, applying image alignment on them in a coarse-to-fine manner can hardly
succeed. Even for feature-based methods, which rely on the correspondence matching,
tracking visibly small objects in image sequences is also very challenging. Developing
more agile algorithms can potentially address these limitations.

• The two proposed alternative moving instance segmentation approaches showed indi-
vidual limitations in our experiment as discussed in Section 6.2. Neither shows satisfac-
tory stability and reliability in segmenting all moving entities in scenes. In this thesis,
we attempted to dive into the up-to-date unified segmentation models [52][53][11],
but our designed approach fails to provide temporal consistent segmentation, which
leads to inaccurate or failed object tracking. Revisiting the proposed moving instance
segmentation method opens up opportunities for future work. One improvement can
be achieved by studying dynamic-aware uncertainties, seeking a better way to formu-
late and train the deep uncertainty estimation [88][89][90]. Possible improvements
could be prompting FastSAM with segmentation masks predicted in the previous frame
to generate consistent segmentation across frames [52][11].
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• The differentiable mapping and map fusion component, namely ∇PointFusion, in our
pipeline is fully adopted from ∇SLAM [1]. However, this component is a differentiable
approximation of the original method [19], having no trainable parameters and inher-
iting limitations from its predecessor. In addition to previously widely used volumetric
or point-based representation in mapping, the implicit neural radian field (NeRF)[91]
shows its great potential in many recent works [38][39] [92][93]. More recently, [94]
have proposed 3D Gaussian Splatting (3DGS), showing improved properties compared
to NeRF. To the best of the author’s knowledge, [95] and [96] are the first works that
apply 3DGS for scene rendering and refining camera tracking in dense SLAM for monoc-
ular and RGB-D camera, achieving convincing results.

NeRF and 3DGS are intentionally introduced for differentiable rendering. Continuous
learning allows them to complete the object’s shape, predicting their backside without
seeing it. Their cutting-edge rendering performance and, more importantly, their dif-
ferentiability make them appealing research topics in the scope of differentiable visual
SLAM.

• The current implementation is a prototype built with high simplicity for testing and
experimenting. Thus, it still struggles to work in real time due to the computational
bottleneck in the optimization solver and the involved segmentation models. The for-
mer can be tackled using the CUDA accelerated implementation similar to MaskFusion
[45] and Co-Fusion [49]. However, the latter involves further research since the state-
of-the-art segmentation approach mostly trades computational time for accuracy, and
their inference time is incompatible with real-time applications.

Past works mitigate this issue by running deep-learning segmentation in a keyframe-
based manner and involving a frame-wise geometrical segmentation approach [45].
Nevertheless, the geometrical segmentation approach requires empirically hand-crafted
parameters to generate reasonable yet reliable segmentation. Reliable geometrical seg-
mentation approaches and more efficient neural networks for segmentation will be
researched.

• Further research in the dynamic visual odometry and dense, dynamic SLAM is funda-
mentally limited by a lack of suitable datasets. Although we comprehensively evaluated
the proposed systems by combining results from multiple datasets, we are bound when
training our systems. The datasets we use and other existing datasets have their own
limitations. For instance, the TartanAir dataset [42] covers a wide range of indoor and
outdoor scenes, yet it includes a limited amount of moving objects in its sequences. Al-
though the recent AirDOS Dataset [97] offers some improvements in this aspect, both
of these two synthetic datasets are too challenging. Their cameras attached to drones
undergo extremely dynamic, 6 DoF motions. In the case of the AirDOS dataset es-
pecially, the captured environments are highly dynamic and cluttered with articulated
objects - humans.

In addition to synthetic data, the urge for comprehensive real-world datasets for re-
searching dynamic dense SLAM cannot be ignored. Learning-based methods, particu-
larly those that involve supervised learning, are data-hungry. Generally, no satisfying
performance can be expected without a comparable amount of data fed at the learning
stage. Hence, the further elaboration of more real-world datasets and improved, closer-
to-reality synthetic datasets would allow for advancing the development of methods in
dense dynamic SLAM
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• Given the lack of available data for supervised training, self-supervised visual represen-
tation learning is gaining significant interest, particularly for its application in depth
and motion estimations. Some approaches define losses by manipulating the data with-
out explicit labels. These manipulations include techniques such as predicting spatial
transformations [98][99] and reconstructing input data [100][101][33] etc.

Our feature-metric direct image alignment component is data-driven like any other
learning-based method. Its performance heavily depends on the amount of data on
which it is trained. However, despite the increasing popularity of SLAM relative re-
search, we still encounter a tight availability of labelled data. An interesting research
direction is to develop the visual odometry component so that we can train it in a self-
supervised manner without concern for data shortage.

• The proposed differentiable SLAM framework benefits not only SLAM or related com-
puter vision tasks but also robotic tasks such as object manipulation and robot naviga-
tion. Our pipeline’s differentiability enables training downstream components end-to-
end, propagating the loss back to the input sensory data. Experiments to illustrate this
capability of our pipeline can solidify our idea and encourage follow-up work.
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Conclusion

In this master’s thesis, we have presented an automatically differentiable dense visual SLAM
pipeline for RGB-D image, capable of tracking and reconstructing moving objects in dy-
namic environments while maintaining robust camera trajectory estimation. Based on the
existing ∇SLAM [1] framework, the pipeline is designed by chaining multiple differentiable
components. For robust tracking, we have empowered DIA with deep learning, expand-
ing 3-dimensional image space to high-dimensional latent space, and proposed probabilistic
feature-metric DIA. The pose estimation is carried out by the differentiable LM-solver and
strengthened using the deep M-Estimator. Additionally, a pose network that operates on the
coarsest feature map is adopted to provide reliable pose initialization to the LM-solver.

Furthermore, we have provided two segmentation approaches. Both can generate reason-
able segmentation masks that can be applied to eliminate dynamic pixels. In particular, based
on the newly proposed FastSAM [11], we have proposed an uncertainty-based segmentation
approach, invoking the dynamic-aware uncertainties predicted by a CNN in the pipeline, is
capable to generate instance segmentation that is applicable for object tracking. To guar-
antee the differentiability of the whole pipeline, we further employed the Deep Hungarian
Network [67] to associate segmented objects. Last but not least, a 4D reconstruction of the
scene containing objects moving over time is generated by the differentiable PointFusion.

This pipeline, as the key contribution of this thesis, can be trained end-to-end. The mod-
ular design with easily replaceable components empowers the pipeline to be adapted and
used for training deep-learning models for various tasks, ranging from upstream tasks, such
as motion segmentation, to learning-based visual odometry. Moreover, the pipeline can be
integrated with other trainable models, such as networks designed for robot manipulation
and navigation. This key property of the pipeline is capable to enhance deep-learning-based
algorithmic development in the robotic applications.

The primary intention of this work is not to surpass any existing dynamic SLAM systems
but rather to offer another possibility for the development of visual SLAM in cooperation
with other robotic tasks by proposing an end-to-end pipeline. Therefore, the performance
bias compared to existing dynamic visual SLAM systems explained by the experiment re-
sults is within our expectations. The conducted experiments have shown the effectiveness of
pipelines in challenging dynamic environments and revealed the contribution of individual
components. Although the proposed approach conveys competitive performance in challeng-
ing dynamic environments, it still lags behind the state-of-the-art dynamic SLAM methods by
a significant gap.

Nevertheless, the modular design of our pipeline allows us to further experiment and
replace components with less effort, enabling future extension of our work. Within this the-
sis, the great advantage of an end-to-end differentiable pipeline, enabling gradients from
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ultimate loss to flow back to input images, has not been demonstrated. A comprehensive ver-
ification of the pipeline’s differentiability and adequate demonstration of its potential should
be the focus of the subsequent research.

In conclusion, this thesis demonstrates the possibility of estimating ego camera motion
and the motions of dynamic objects in scenes and reconstructing the observed environment
using RGB-D images in a fully differentiable system. We have used probabilistic feature-
metric direct image alignment for accurate and robust motion estimation. Concurrently, an
uncertainty-based motion segmentation approach has been proposed based on the uncer-
tainties in feature-metric visual odometry. Through experiments, we have demonstrated the
effectiveness of our method in tracking camera and dynamic object motion and reconstruct-
ing dynamic environments in representative scenarios. Ultimately, the crucial limitations in
the proposed approach has been pinpointed, highlighting vital areas for continued research.
Overall, we believe our work is an important stepping stone for investigating a fully differen-
tiable framework to address visual dynamic SLAM.
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method with our development baseline ∇SLAM and Co-Fusion [49]. Ours
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6.1 Ablation study results. We evaluate different combinations of the proposed
components on the test sequences using ATE [m], RPRt rans [m/f], and RPErot
[Deg/f]. The best results are shown in bold. For the static sequences in TUM
RGB-D dataset, the full system has identical performance to the F+P+U ver-
sion because we deactivate the motion segmentation module for static scenes.
In this table, it can be observed that we achieved the best performance with
our ultimate system after integrating the components one after one. . . . . . . 50
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Appendix A

Evaluation Metrics

A.1 Absolute Trajectory Error

Absolute Trajectory error [73] is an intuitive metric to evaluate the global consistency of
the estimated trajectory by measuring the root-mean-square error between predicted camera
poses and ground truth. We denote estimated, and the true camera poses as Q ∈ SE(3) and
P ∈ SE(3), respectively. Besides, the translation of a rigid body transformation matrix in
SE(3) is defined with an operation t rans(·), and the rotation part with rot(·). Because the
estimated and the ground-truth trajectory can be in arbitrary coordinate frames, we first need
to align them by using, for example, the Umeyama alignment method [102], which brings
out a transformation matrix S. Then, we define the absolute trajectory error matrix at time
step i as

Ei := Q−1
i SPi (A.1)

To ensure an objective evaluation of the system performance on various datasets and se-
quences, we compute the root mean square error (RMSE) over all time indices (n) of the
translational part

ATE :=

√

√

√1
n

n
∑

i=1

||t rans(Ei)||2 (A.2)

A.2 Relative Pose Error

To evaluate the local accuracy of the estimated trajectory, relative pose error (RPE) is in
particular useful [73]. It compares the reconstructed relative transformation between nearby
poses to the ground truth transformation. Assume Qi is the estimated pose of the current
frame and Qi+1 the next frame, given the respective ground-truth poses Pi and Pi+1, the RPE
matrix can be formulated as

Fi := (Q−1
i Qi+1)

−1(P−1
i Pi+1) (A.3)

Fi consists of a translation and a rotational error. For a clear distinction in evaluation, we
normally compute them separately. Similar to absolute trajectory error, we calculate the
RMSE of the translational component t rans(Fi) over all possible time intervals

RPEt rans :=

√

√

√ 1
m

m
∑

i=1

||t rans(Fi)||2 for i = 1, ..., n (A.4)
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where m= n−1. Similar to ATE and translational RPE, we compute RMSE over the rotational
relative errors of all paired estimated and ground truth poses:

RPErot :=

√

√

√ 1
m

m
∑

i=1

∥∠Fi∥2 for i = 1, ..., n (A.5)

where ∠Fi is defined as:

∠Fi := arccos
�

t r (rot(Fi))− 1
2

�

(A.6)

A.3 Intersection Over Union

Intersection over Union (IoU) is a metric used to evaluate the accuracy of an object detector
on a particular dataset. It’s often used in the context of evaluating models for tasks such as
object detection, segmentation, and computer vision problems where the prediction involves
determining the position and size of objects. Formally, it is calculated as the ratio of the area
of overlap between the predicted bounding box and the ground truth bounding box to the
area of the union of these two boxes.

In this thesis, we calculate the IoU differently. In image segmentation, a rectangular area
is not always the case since objects can come in regular or irregular shapes. Therefore, we
need a pixel-wise analysis. We do not generate bounding boxes for every segmentation.
Instead, we compute IoU using the coverage area of the segmentation. Given the area of two
regions denoted as A and B, we represent the IoU as:

IoU=
A∩ B
A∪ B

(A.7)

Although over-smooth segmentation often displays slightly different areas than the object
actually occupies, we see no obvious disadvantages of using mask area instead of bonding
box area to compute IoU. When we use bounding boxes to include irregular objects, a large
area that does not belong to the object is also considered. Compared to that area, the area
difference due to over-smooth segmentation has no adverse impact on the accuracy of the
evaluation.
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