Computer Vision Group TUM Department of Informatics Technical University of Munich

Automatically Differentiable Dense Visual Dynamic SLAM for RGB-D Cameras

Master's Thesis – Final Presentation

Jingkun Feng, January 18th, 2024, Munich Supervisor: Prof. Dr. Daniel Cremers Advisor: M.Sc. Mariia Gladkova

Outline

- Introduction
- Related Works
- Proposed Solution
- Evaluation
- Discussion and Future Work
- **Summary**

Introduction

□ ∇SLAM^[1] provides insights into automatically differentiable SLAM

- Express SLAM as a differentiable function
- Enables end-to-end learning in conjunction with downstream tasks
- Realistic applications are in a dynamic world, but most SLAM systems assume a static environment

Figure 1. AR application

Figure 2. Robot manipulation

This project **aims** to propose a new **differentiable RGB-D SLAM** framework for dynamic environments

[1] K. M. Jatavallabhula, S. Saryazdi, G. Iyer, and L. Paull, "gradSLAM: Automagically differentiable SLAM."

4

Related Work

□ ∇SLAM ^[1]

- Proposed differentiable alternatives for non-differentiable components
- ✓ Fully differentiable
- No trainable parameters
- Performance bounded by conventional counterparts
- Direct method applying feature-metric representation
 - GN-Net ^[2] and "Deep Probabilistic Feature-metric Tracking" ^[3]
 - Enlarger convergence basin
- DirectTracker ^[4]
 - 3D multi-object tracking using Direct Image Alignment (DIA)
- □ MaskFusion ^[5]
 - Combining Mask R-CNN ^[6] and geometric segmentation
 - Inspired the proposed moving object segmentation method

Proposed Solution System Overview

Proposed Solution – Visual Odometry From ICP to Direct Image Alignment

□ ∇SLAM employs ICP

- Frame-to-model registration is computationally costly
- Fully relies on depth input
- Easily fails at repetitive or symmetric geometric features
- Direct Image Alignment
 - Frame-to-frame alignment is fast and yet accurate
 - Can be extended by combining intensity and depth errors

$$E_{track} = \min_{\substack{\xi_{ij} \in se(3)}} (E_{photo} + \omega E_{geo})$$

$$r_I = \mathbf{I}_i(\mathbf{x}') - \mathbf{I}_j(\mathbf{x})$$

$$r_D = \mathbf{D}_i(\mathbf{x}') - [\mathbf{T}_{ij} \cdot \Pi^{-1}(\mathbf{x}_j)]_Z$$

Figure. Failure of ICP

Figure. Reconstruction using DIA

Proposed Solution – Visual Odometry From convention DIA to probabilistic feature-metric DIA

- Probabilistic feature-metric performs over features learned by a CNN
- □ At each pyramid level *l*, CNN extracts
 - a D_l -dimensional feature map $\mathbf{F}^l \in \mathbb{R}^{W_l \times H_l \times D_l}$
 - a pixel-wise uncertainty map $\boldsymbol{\sigma}^l \in \mathbb{R}^{W_l \times H_l}$
- □ Formulate an uncertainty-normalized feature difference following [3]

$$\mathbf{r}_F = \mathbf{F}_i(\mathbf{x}') - \mathbf{F}_j(\mathbf{x})$$

$$\mathbf{r}_{PF} = \frac{\mathbf{r}_F}{\sigma_F} = \frac{\mathbf{F}_i(\mathbf{x}') - \mathbf{F}_j(\mathbf{x})}{\sqrt{\sigma_i^2(\mathbf{x}') + \sigma_j^2(\mathbf{x})}}$$

Provides larger and smoother convergence basin for DIA

8

Proposed Solution – Visual Odometry Deep M-Estimator

M-Estimator is more robust to outliers than trivial least squares

 $\underset{\mathbf{T}_{ij}\in\mathcal{SE}(3)}{\operatorname{arg\,min}}\mathbf{r}^{T}\mathbf{W}\mathbf{r}$

Inspired by "Taking a Deeper Look at the Inverse Compositional Algorithm" ^[7], the diagonal weight matrix is learned using a fully convolutional network

$$\mathbf{W}_{\theta} = \phi_M \big(\mathbf{F}_i(\mathbf{x}_k'), \, \mathbf{F}_j(\mathbf{x}), \, \mathbf{r}_k \big)$$

□ Solved using the Levenberg-Marquardt (LM) algorithm

$$(\mathbf{J}^T \mathbf{W} \mathbf{J} + \lambda \operatorname{diag}(\mathbf{J}^T \mathbf{W} \mathbf{J}))^{-1} \Delta \xi = \mathbf{J}^T \mathbf{W} \mathbf{r}$$

 \Box W_{θ} serves as the prior for our uncertainty-based segmentation approach

Proposed Solution – Visual Odometry Differentiable LM Algorithm

Original LM algorithm is non-differentiable

□ Following previous works [7] [8], we predict the damping factor λ_{θ}

$$\lambda_{\theta} = \phi_{LM} (\mathbf{J}^T \mathbf{W} \mathbf{J}, \mathbf{J}^T \mathbf{W} \mathbf{r})$$

□ And fix the number of update steps

Jingkun Feng | Automatically Differentiable Dense Visual Dynamic SLAM for RGB-D Cameras | January 18th, 2024

Proposed Solution – Moving Object Segmentation Mask R-CNN ^[6] refined by Geometric Segmentation

- □ Inspired by MaskFusion ^[5]
- Use Mask R-CNN to predict the prior segmentation
 - Focus on selected classes, such as humans, animals, and cars
- □ Refine using geometric segmentation
 - Investigate the depth discontinuity ϕ_d

$$\phi_d = \max_{i \in \mathcal{N}} |(\mathbf{v}_i - \mathbf{v}) \cdot \mathbf{n}|$$

• and object surface concavity ϕ_c

$$\phi_c = \max_{i \in \mathcal{N}} \begin{cases} 0 & \text{if } (\mathbf{v}_i - \mathbf{v}) \cdot \mathbf{n} < 0 \\ 1 - (\mathbf{n}_i \cdot \mathbf{n}) & \text{otherwise} \end{cases}$$

- Compute an edge map using $\phi_d + \kappa \phi_c > \theta$
- Generate over-segmentation results by applying connected-components analysis (CCA) on edge map

Proposed Solution – Moving Object Segmentation Uncertainty-based Segmentation using FastSAM^[9]

- □ The first segmentation method does not distinguish instances
- Uncertainty map encodes dynamic pixels
- □ FastSAM ^{II} can produce segmentation using prompt inputs

Generate prompts based on uncertainty maps to segment moving objects using FastSAM

Proposed Solution – Moving Object Segmentation Uncertainty-based Segmentation using FastSAM^[9]

- □ Train the model in two stages
 - Stage 1: using only static scenes to train uncertainty caused by illumination changes and sensor noise
 - Stage 2: using only dynamic scenes to train uncertainty solely caused by moving objects
- Generate prompt points by performing MaxPool and AvgPool on the uncertainty map
- Control the number of points within a limited set. For each point, generate a segmentation
- Merge segmentations that share large overlaps

Figure 5. Segmentation results of images from the Co-Fusion ^[] dataset

Proposed Solution – 2D Association

- Conventional Hungarian Algorithm is non-differentiable
- Adapt the Hungarian Network (Hnet) proposed in [10]
- Hnet estimates the association matrix given the distance matrix

Figure 5. Illustration of Hnet [10]

[10] Adavanne, S. et al. Differentiable Tracking-Based Training of Deep Learning Sound Source Localizers. Jingkun Feng | Automatically Differentiable Dense Visual Dynamic SLAM for RGB-D Cameras | January 18th, 2024

Proposed Solution – Moving Object Tracking

□ Formulate DIA only considering the pixels within the associated segmentation mask

$$E_{O_i}(\boldsymbol{\xi}_{O_rO_l}^{C_r}) = \sum_{\mathbf{x}\in\mathcal{S}_i} \left(\mathbf{r}_{PF}^T \mathbf{W}_{PF} \mathbf{r}_{PF} + \mathbf{r}_D^T \mathbf{W}_D \mathbf{r}_D \right)$$

□ For objects of small size or at a further distance

- Trivial coarse-to-fine Optimization leads to inaccurate estimates or failure
- Inspired by DirectTracker^[4], scaling levels are adapted based on the size of objects

Proposed Solution System Overview

Proposed Solution Implementation Details

- □ Full system is implemented in Python by extending ∇SLAM^[1]
- Differentiability is guaranteed by using PyTorch
- □ 16M learnable parameters in our implementation
- □ Trained using RGB data from TUM RGB-D and Bonn Dynamic RGB-D datasets
- Supervised through 3D End-Point-Error:

$$L = \frac{1}{|\mathcal{P}|} \sum_{i \in \mathcal{L}} \sum_{\mathbf{p}_j \in \mathcal{P}} \|\exp(\hat{\xi_{ij}})\mathbf{p}_j - \exp(\xi_{ij})\mathbf{p}_B\|^2$$

Evaluation Datasets and Metrics

- Evaluation is conducted on synthetic and real datasets, including
 - ICL-NUIM ^[11]
 - TUM RGD-D ^[12]
 - Bonn Dynamic RGB-D^[13]
 - Co-Fusion ^[14]

Object tracking is evaluated only on the Co-Fusion dataset

- □ The performance is assessed using
 - absolute trajectory error (*ATE*)
 - relative pose error $(RPE_{trans} \text{ and } RPE_{rot})$
 - Intersection over union (*IoU*) on the Co-Fusion sequences

Evaluation Evaluation Results – Static Environment (ICL-NUIM)

	ColorICP[79]	RGB-D VO[78]	∇ SLAM[1]	Ours	DROID[6]
living_room_traj0	0.2802	0.3603	0.0954	0.1281	0.6369
living_room_traj1	0.0171	0.5951	0.0284	0.0926	0.2954
living_room_traj2	0.1327	0.2931	0.0334	0.1008	0.8094
living_room_traj3	0.8168	0.8524	0.3784	0.4532	0.6545
office_traj0	0.2047	0.1710	0.0446	0.0191	0.5958
office_traj1	0.4062	0.5366	0.9921	0.1360	0.4122
office_traj2	0.2827	0.2289	0.0339	0.0473	1.0089
office_traj3	0.0572	0.2289	0.9553	0.1084	0.7044
Mean	0.2747	0.4083	0.3202	0.1357	0.6397

Table 1: Absolute Trajectory Error (RMS) on the ICL-NUIM dataset

Ours delivers the best average result over all sequences.

Evaluation Evaluation Results – Static Environment (TUM RGB-D)

	N	on-leanring-based		Learning-based		
	ColorICP [79]	RGB-D VO [78]	∇ SLAM [1]	Ours	DROID [6]	
Average	0.5428	0.9471	0.8823	0.3824	0.3640	

Table 2: Absolute Trajectory Error (RMS) on the static sequences of the TUM RGB-D dataset

			Non-lean	ring-based			Learnin	g-based		
	Colo	rICP	RGB-	D VO	M	Ou	rs	DROID		
	RPE _{trans}	RPE _{rot}								
Average	0.0170	0.8997	0.0311	18.8223	1.1259	0.0144	0.8089	0.0600	3.8216	

Table 3: Relative Pose Error (RMS) on the static sequences of the TUM RGB-D dataset

Ours outperforms conventional methods with a distinct advantage, while DROID performs slightly better than ours.

Evaluation Evaluation Results – Dynamic Environment (TUM RGB-D)

			NL + NM		L + NM	L +	- M		NL + M	
		ColorICP [79]	RGB-D VO [78]	∇SLAM [1]	DROID [6]	Ours+GS	Ours+US	DS [48]	RF [74]	MF [45]
	fr3_s_static	0.0293	0.0224	0.0151	0.0067	0.0164	0.0095	0.0064	0.0110	0.0154
Clightly dynamia	fr3_s_xyz	0.2995	0.1718	0.1586	0.0288	0.1306	0.0963	0.0146	0.0315	0.0614
Sugnity dynamic	fr3_s_rpy	0.0504	0.0581	0.0489	0.0158	0.0450	0.0482	0.0673	0.1996	0.0924
	fr3_s_halfsphere	0.2562	0.3808	0.2391	0.0217	0.1953	0.0676	0.0196	0.0387	0.0606
	fr3_w_static*	0.0222	0.0223	0.0226	0.0169	0.0215	0.0226	0.0067	0.0170	0.5021
Lighly dynamics	fr3_w_xyz*	0.2839	0.2887	0.2806	0.0191	0.2736	0.2084	0.0161	0.0809	0.3457
Fightly dynamics	fr3_w_rpy	0.1553	0.1675	0.1628	0.0601	0.1566	0.0941	0.0393	0.2660	0.6605
	fr3_w_halfsphere	0.3817	0.4340	0.3834	0.0309	0.3601	0.2739	0.0278	0.0584	0.3906
	Average	0.1848	0.1932	0.1639	0.0250	0.1499	0.1026	0.0247	0.0879	0.2661

Table 4: Absolute Trajectory Error (RMS) on the dynamic sequences of the TUM RGB-D dataset

				NL +	NM			L +	NM		L +	M		NL + M		
		ColorICP[79] RGB-D VO[19]		∇SLAM[1]		DRO	[D[6]	Ours-	+ <mark>GS</mark>	Ours-	+US	DS[48]	RF[74]	MF[45]		
Setting	Seq.	RPE _{trans} RPE _{rot} RPE _{trans} RPE _{rot}		RPEtrans	RPErot	RPEtrans	RPEtrans	RPEtrans	RPErot	RPEtrans	RPErot	RPEtrans	RPEtrans	RPEtrans		
	fr3_s_static	0.248	0.145	1.262	0.372	0.184	0.177	0.584	0.665	0.078	0.066	0.072	0.033	0.012	0.036	0.045
Slightly dynamic	fr3_s_xyz	0.422	0.299	1.554	0.465	0.337	0.371	1.072	3.220	0.330	0.201	0.187	0.165	0.020	0.047	0.054
Sugnity dynamic	fr3_s_rpy	0.672	0.450	x	x	0.694	0.555	2.076	1.104	0.345	0.239	0.170	0.198	0.131	0.650	0.357
	fr3_s_halfsphere	0.583	0.461	1.008	0.426	0.437	0.528	2.953	3.161	0.341	0.248	0.177	0.208	0.043	0.048	0.084
	fr3_w_static*	0.879	0.265	2.884	0.682	0.818	0.275	0.357	0.567	0.563	0.107	0.374	0.084	0.010	0.040	0.601
Highly dynamics	fr3_w_xyz*	1.888	0.480	3.325	0.761	1.654	0.510	3.129	1.567	0.906	0.254	0.729	0.220	0.023	0.094	0.318
Theme uynamics	fr3_w_rpy 1.910 0.563		24.767	2.959	1.773	0.652	2.667	3.417	1.061	0.313	0.926	0.279	0.059	0.280	0.570	
	fr3_w_halfsphere	1.666	0.574	2.644	0.666	1.454	0.661	3.832	2.973	0.848	0.286	0.749	0.257	0.039	0.056	0.391
	Average	1.033	0.405	5.349	0.904	0.919	0.466	2.084	2.084	0.559	0.214	0.423	0.180	0.042	0.156	0.302

Table 5: Relative Pose Error (RMS) on the dynamic sequences of the TUM RGB-D dataset

Evaluation Evaluation Results – Dynamic Environment (TUM RGB-D)

			NL + NM		L + NM	L +	- M		NL + M	
		ColorICP [79]	RGB-D VO [78]	∇SLAM [1]	DROID [6]	Ours+GS	Ours+US	DS [48]	RF [74]	MF [45]
	fr3_s_static	0.0293	0.0224	0.0151	0.0067	0.0164	0.0095	0.0064	0.0110	0.0154
Slightly dynamic	fr3_s_xyz	0.2995	0.1718	0.1586	0.0288	0.1306	0.0963	0.0146	0.0315	0.0614
Slightly dynamic	fr3_s_rpy	0.0504	0.0581	0.0489	0.0158	0.0450	0.0482	0.0673	0.1996	0.0924
	fr3_s_halfsphere	0.2562	0.3808	0.2391	0.0217	0.1953	0.0676	0.0196	0.0387	0.0606
	fr3_w_static*	0.0222	0.0223	0.0226	0.0169	0.0215	0.0226	0.0067	0.0170	0.5021
Highly dynamics	fr3_w_xyz*	0.2839	0.2887	0.2806	0.0191	0.2736	0.2084	0.0161	0.0809	0.3457
Highly dynamics	fr3_w_rpy	0.1553	0.1675	0.1628	0.0601	0.1566	0.0941	0.0393	0.2660	0.6605
	fr3_w_halfsphere	0.3817	0.4340	0.3834	0.0309	0.3601	0.2739	0.0278	0.0584	0.3906
	Average	0.1848	0.1932	0.1639	0.0250	0.1499	0.1026	0.0247	0.0879	0.2661

Though ours performs better than non-learning static SLAM methods, DROID SLAM and other state-of-the-art dynamic SLAM methods are generally superior to ours.

Sugnity dynamic	fr3_s_rpy	0.672	0.450	x	x	0.694	0.555	2.076	1.104	0.345	0.239	0.170	0.198	0.131	0.650	0.357
	fr3_s_halfsphere	0.583	0.461	1.008	0.426	0.437	0.528	2.953	3.161	0.341	0.248	0.177	0.208	0.043	<u>0.048</u>	0.084
	fr3_w_static*	0.879	0.265	2.884	0.682	0.818	0.275	0.357	0.567	0.563	0.107	0.374	0.084	0.010	0.040	0.601
Highly dynamics	fr3_w_xyz*	1.888	0.480	3.325	0.761	1.654	0.510	3.129	1.567	0.906	0.254	0.729	0.220	0.023	<u>0.094</u>	0.318
ringing dynamics	fr3_w_rpy	1.910	0.563	24.767	2.959	1.773	0.652	2.667	3.417	1.061	0.313	0.926	0.279	0.059	0.280	0.570
	fr3_w_halfsphere	1.666	0.574	2.644	0.666	1.454	0.661	3.832	2.973	0.848	0.286	0.749	0.257	0.039	0.056	0.391
	Average	1.033	0.405	5.349	0.904	0.919	0.466	2.084	2.084	0.559	0.214	0.423	0.180	0.042	0.156	0.302

Table 5: Relative Pose Error (RMS) on the dynamic sequences of the TUM RGB-D dataset

Evaluation Evaluation Results – Dynamic Environment (Bonn Dynamic RGB-D)

8	10	NL + NM		L +	- M		NL+ M	
nce	ColorICP	RGB-D VO	SLAM	Ours+GS	Ours+US	DS	RF	MF
Average	0.155	0.243	0.176	0.147	0.134	0.0946	0.2317	0.1464

Table 6: Absolute Trajectory Error (RMS) on the dynamic sequences of the Bonn Dynamic RGB-D dataset

				L +	M			NL + M					
	ColorICP RGB-D VO			∇SL	AM	Ours -	+ GS	Ours -	+ US	DS	RF	MF	
	RPEtrans	RPErot	RPEtrans	RPErot	RPEtrans	RPErot	RPEtrans	RPErot	RPEtrans	RPErot	RPE _{trans}	RPE _{trans}	RPEtrans
Average	0.038	3.200	0.036	13.644	0.039	2.626	0.027	3.110	0.025	<u>2.934</u>	0.717	0.814	0.847

Table 7: Relative Pose Error (RMS) on the dynamic sequences of the Bonn Dynamic RGB-D dataset

Different from the results on TUM RGB-D, on this dataset, our method ranks second, holding on to the best method.

Table 5: Relative Pose Error (RMS) on the dynamic sequences of the TUM RGB-D dataset

Evaluation Evaluation Results – Dynamic Environment (Co-Fusion)

		1	VSLAM [1]]		Ours			CoFusion [49]	
·		ATE	RPE _{trans}	RPE _{rot}	ATE	RPE _{trans}	RPE _{rot}	ATE	RPE _{trans}	RPE _{rot}
	cam	0.3839	0.0211	0.8467	0.0267	0.0048	0.0977	0.0141	0.0006	0.0003
room4	ship	-	-	-	0.0096	0.1328	0.0150	0.0298 / 0.0217	0.0170 / 0.0092	0.0255 / 0.0061
1001114	horse		-	-	1.0266	0.1949	3.6004	0.0612	0.0061	0.6729
	car	-		-	0.0687	0.0437	0.0620	0.0032	0.0091	0.0009
	cam	x	X	x	0.3737	0.0083	0.0210	0.0273	0.0011	0.0009
car4	truck1	-	-	-	0.2249	0.0106	0.7793	0.0103	0.0010	0.0045
	car2	-	-	-	0.1269	0.0281	0.4560	0.0070	0.0033	0.0059

Table 8: Evaluation results on the Co-Fusion dataset

Sequence	Object	Ours	Co-Fusion
	Airship	0.85	0.43 / 0.62
room4	Horse	0.78	0.48
	Car	0.88	0.88
cord	Truck	0.81	0.79
Cal4	Car	0.76	0.68

Table 9: Average IoU between the predicted masks and the ground truth labels

Evaluation Evaluation Results – Dynamic Environment (Co-Fusion)

			VSLAM [1]]		Ours			CoFusion [49]	
		ATE	RPE _{trans}	RPE _{rot}	ATE	RPE _{trans}	RPE _{rot}	ATE	RPE _{trans}	RPE _{rot}
	cam	0.3839	0.0211	0.8467	0.0267	0.0048	0.0977	0.0141	0.0006	0.0003
room4	ship	-	-	-	0.0096	0.1328	0.0150	0.0298 / 0.0217	0.0170 / 0.0092	0.0255 / 0.0061
1001114	horse	-	-	-	1.0266	0.1949	3.6004	0.0612	0.0061	0.6729
	car	-	-	-	0.0687	0.0437	0.0620	0.0032	0.0091	0.0009
	cam	x	X	x	0.3737	0.0083	0.0210	0.0273	0.0011	0.0009
car4	truck1	-	-	-	0.2249	0.0106	0.7793	0.0103	0.0010	0.0045
	car2	-	-	-	0.1269	0.0281	0.4560	0.0070	0.0033	0.0059

Table 9: Evoluction regults on the Co Eucien detect

The proposed method shows relativey mediocre accuracy in motion estimation compared to Co-Fusion. However, we have better and more consistent segmentation results.

	room4	Horse	0.78	0.48	
		Car	0.88	0.88	
	car/	Truck	0.81	0.79	
	Calt	Car	0.76	0.68	

Table 9: Average IoU between the predicted masks and the ground truth labels

Evaluation Evaluation Results – Dynamic Environment (Co-Fusion)

Table 8: Qualitative results on the room sequence of the Co-Fusion dataset

Discussion and Future Work Ablation study

F			F + P		F + U		$\mathbf{F} + \mathbf{P} + \mathbf{U}$			Ours					
Sequence	ATE	RPE _{trans}	RPE _{rot}	ATE	RPEtrans	RPErot	ATE	RPEtrans	RPE _{rot}	ATE	RPEtrans	RPE _{rot}	ATE	RPE _{trans}	RPE _{rot}
fr1_360	0.1819	0.0094	1.1138	0.1568	0.0101	0.6711	0.1645	0.0046	0.6575	0.1010	0.0037	0.6637	0.1010	0.0037	0.6637
fr1_desk	0.7984	0.0200	0.5985	0.5145	0.0179	0.9084	0.1024	0.0082	0.5961	0.0792	0.0080	0.5961	0.0792	0.0080	0.5961
fr2_desk	1.6240	0.0392	1.2632	1.3240	0.0385	1.0680	0.9729	0.0133	0.4695	0.9178	0.0132	0.4713	0.9178	0.0132	0.4713
fr2_pioneer_360	1.7455	0.2534	2.0123	1.7684	0.0474	1.7020	0.7417	0.0272	0.7302	0.2534	0.0105	0.7302	0.2534	0.0105	0.7302
fr3_walking_static	0.0184	0.0005	0.1917	0.0236	0.0005	0.1817	0.0215	0.0006	0.1982	0.0235	0.7130	0.1566	0.0226	0.3736	0.0835
fr3_walking_xyz	0.2793	0.0049	0.4434	0.2853	0.0047	0.0047	0.2736	0.0045	0.4519	0.2684	1.0564	0.3036	0.2084	0.7294	0.2197
balloon2	0.1711	0.0274	2.5248	0.1665	0.0332	3.3890	0.1355	0.0401	3.6352	0.1448	0.0367	3.5318	0.0648	0.0280	2.0559
balloon_tracking2	0.2683	0.0759	6.6432	0.2885	0.0659	7.7445	0.2793	0.0780	8.5404	0.2877	0.0692	8.6126	0.2077	0.0562	7.7626
crowd3	0.0535	0.0123	2.8557	0.0676	0.0093	2.9696	0.0706	0.0090	3.1230	0.0723	0.0094	3.0891	0.0323	0.0094	2.4291
person_tracking2	0.6632	0.0617	4.7066	0.4305	0.0670	6.0333	0.4907	0.0664	6.4411	0.5492	0.0645	6.3616	0.4690	0.0515	5.9916
placing_nonobs_box	0.1736	0.0236	2.2067	0.1451	0.0167	2.4952	0.1758	0.0169	2.5557	0.1789	0.0177	2.4121	0.0989	0.0161	0.6630
Average	0.5434	0.0480	2.2327	0.4701	0.0283	2.4698	0.3117	0.0244	2.4908	0.2615	0.1820	2.4481	0.1577	0.1806	2.7436

Table 10: Ablation study results.

The Accuracy tends to increase when additional components are integrated with the probabilistic feature-metric DIA. **Every component contributes to enhancing our system.**

Discussion and Future Work Limitation of Proposed Segmentation Approaches (1)

Geometric segmentation struggles to separate temporally connected objects

Table 9:Geometric segmentation results on a selected image of the sequence person_tracking from the Bonn RGB-D Dynamic Dataset.

Experiments:

- Introduce an additional edge detection term
- Use deep neural network to generate the edge map

Segmentation results are improved but introduce new limitations

Discussion and Future Work Limitation of Proposed Segmentation Approaches (2)

- Generation of prompt points completely relies on the uncertainty map
- Uncertainty maps can be noise, which leads to false positive segmentation

Figure 10. Failure case in uncertainty-based segmentation due to noisy uncertainties

- The long inference time of FastSAM makes it unfeasible for real-time dynamic SLAM
 - ~ 480 ms per frame using TUM RGB-D data

Discussion and Future Work Other Limitations

- □ Moving object segmentations are hard-associated with pixels
 - \rightarrow sparse gradient flows

No back-end optimization

 \rightarrow cannot overcome accumulated drift over time

Discussion and Future Work Possible Extension and Future Research

- □ Improving the tracking accuracy
- □ Improving the system's efficiency by exploiting CUDA implementation
- □ More effective segmentation approaches
- Exploiting up-to-date map representation methods, such as NeRF and 3D Gaussian

Splatting

□ Illustrate the benefits of having a fully differentiable dynamic SLAM pipeline for training

downstream robotic tasks

Figure 5. Computational graph of Direct Image Alignment

Summary

- Proposed an automatically differentiable dense visual SLAM pipeline for RGB-D cameras by extending ∇SLAM ^[1]
- Proposed a novel uncertainty-based moving object segmentation method using FastSAM []
- Our system is capable of estimating camera and object motions and reconstructing the

dynamic environment

□ The proposed methods achieve promising results, but there are limitations

Computer Vision Group TUM Department of Informatics Technical University of Munich

Thank you!

Jingkun Feng | Automatically Differentiable Dense Visual Dynamic SLAM for RGB-D Cameras | January 18th, 2024 32

Computer Vision Group TUM Department of Informatics Technical University of Munich

Questions & & Discussion