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Abstract

This paper discusses the problem of depth estimation in computer vision and proposes
a new approach to improve the accuracy of depth estimation for moving objects.
The proposed method, called MonoRec++, builds upon the MonoRec approach and
incorporates a new scene flow module to provide additional information about the
moving objects. The resulting cost volume is used to estimate the depth of both
static and dynamic objects. A multi-stage training process is also proposed for better
integration of the different modules. Experimental results on the KITTI tracking dataset
show that MonoRec++ outperforms MonoRec in depth estimation of both dynamic and
static objects, particularly for the depth estimation of dynamic objects. The proposed
method offers a promising solution for the depth estimation problem in computer
vision and has potential applications in various fields, such as autonomous driving and
3D reconstruction.
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Zusammenfassung

In diesem Papier wird das Problem der Tiefenschiatzung in der Computer Vision disku-
tiert und ein neuer Ansatz vorgestellt, um die Genauigkeit der Tiefenschdtzung fiir sich
bewegende Objekte zu verbessern. Die vorgeschlagene Methode, namens MonoRec++,
baut auf dem MonoRec-Ansatz auf und integriert ein neues Szenenflussmodul, um
zusétzliche Informationen tiber die bewegten Objekte bereitzustellen. Das resultierende
Kosten-Volumen wird verwendet, um die Tiefe von sowohl statischen als auch dy-
namischen Objekten zu schitzen. Es wird auch ein mehrstufiger Schulungsprozess
vorgeschlagen, um eine bessere Integration der verschiedenen Module zu erreichen.
Experimentelle Ergebnisse auf dem KITTI-Tracking-Datensatz zeigen, dass MonoRec++
MonoRec in der Tiefenschiatzung von sowohl dynamischen als auch statischen Ob-
jekten {tibertrifft, insbesondere bei der Tiefenschdtzung von dynamischen Objekten.
Die vorgeschlagene Methode bietet eine vielversprechende Losung fiir das Tiefen-
schitzungsproblem in der Computer Vision und hat potenzielle Anwendungen in
verschiedenen Bereichen wie autonomes Fahren und 3D-Rekonstruktion.
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1 Introduction

Although the study of understanding 3D scenes from 2D images has a long history, it
has always been a difficult research area for Computer Vision (CV) due to its ambiguity.
With the rapid development of CV and Deep Learning (DL), understanding 3D scenes
from 2D images is increasingly an important part of it. Among them, depth estimation
is a very critical task, which is related to the downstream scene understanding tasks, 3D
object detection tasks and segmentation tasks, as well as autonomous driving [GLU12],
3D reconstruction [Iza+11] and other application scenarios. Although the current
LIDAR or depth sensors can measure depth directly by Time of Flight (ToF) and other
principles. But they are limited by the higher price of other sensors or multi-sensor
synchronization problems. How to maximize the scene understanding and estimate
the depth is still a problem worth investigating.

1.1 Problem Statement

Depth estimation for dynamic scenes is a challenging problem in computer vision.
The accurate estimation of depth in such scenes is crucial for a variety of applications,
including autonomous driving, robotics, and augmented reality. In dynamic scenes,
the presence of moving objects makes it difficult to estimate depth accurately since
the scene’s structure changes over time. This problem is compounded by the fact that
traditional depth estimation algorithms are designed to work on static scenes and may
not be able to handle the complexities of dynamic scenes. Therefore, the development
of effective and efficient depth estimation methods that can handle dynamic scenes is a
critical area of research in computer vision.

To solve the depth estimation problem, there are various approaches taken in research.
The first one is simply monocular depth estimation, which estimates the depth of a
given image. The other one is Multi-view Stereo (MVS), which estimates the depth
from the perspective of reconstructing 3D scenes from images. In addition, depth
estimation also appears as a subtask in Visual Odometry (VO) [Yan+18; Yan+20], scene
flow estimation [HR20] or motion segmentation [YR21]. Although these methods are
flourishing in their fields, they all have some limitations. Monocular depth estimation
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methods are more accurate for depth perception of moving objects because they rely
only on a single image to estimate depth. However, they do not contain temporal infor-
mation, so the depth estimation for images is scene dependent and lacks generalization
capability. And the VO, scene flow, etc. that treat depth estimation as a subtask are
more concerned with their main task, that is, estimating camera pose and scene flow
estimation, lacking further exploration of the depth estimation task. While the MVS
method aggregates information from multiple images, which is beneficial to obtain
higher accuracy, however, it adopts the static assumption and performs poorly for
depth estimation of moving objects.

Due to the assumption of static environment and geometric consistencies, MVS-based
depth methods struggle with dynamic scenes. And among them, MonoRec[Wim+21]
filters the cost volume of moving objects by the mask module prediction to predict
the depth of moving objects more accurately. But it lacks specific information about
moving objects, such as the direction and distance of movement.

1.2 Contribution

To improve the depth estimation of MonoRec for dynamic scenes, we propose MonoRec++,
an extension to MonoRec with the following additions:

¢ We add a new scene flow module. The object moving flow provided by the scene
flow module is used as an additional input to build the cost volume together with
the original images. This cost volume contains information about the moving
direction and distance of the moving object.

® The original MonoRec mask module for estimating moving objects is also replaced
with a simpler and more accessible semantic segmentation mask to eliminate
incorrect object moving flows.

* A reasonable corresponding multi-stage training process is designed for better
integration of multiple modules.

¢ We also evaluate the metrics of MonoRec++ and the current mainstream depth
estimation models for the depth estimation and downstream 3D object detection
task, giving our analysis and results. On the KITTI tracking dataset [GLU12],
our MonoRec++ outperforms MonoRec in depth estimation of both dynamic and
static objects and especially demonstrates superior performance estimating the
depth of dynamic objects.
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1.3 Outline

The structure of the thesis can be divided into four sections, as described below:
Chapter 2 describes work in related areas, including monocular depth estimation, MVS
and scene flow estimation.

Chapter 3 explains our method, from the fundamentals to the structure of our proposed
model, the loss function, the training process and the related settings.

Chapter 4 illustrates the dataset we used and the qualitative and quantitative results
of our model in terms of depth estimation and downstream 3D object detection task,
giving our analysis.

Chapter 5 concludes with a summary of our results and gives possible future directions
for continued research.




2 Related Work

Understanding the 3D world from 2D images is a hot and challenging topic in computer
vision. In this chapter, we will introduce the work related to depth estimation and
scene flow estimation.

We will also introduce the work of 3D object detection based on point clouds as a
downstream task of depth estimation.

2.1 Depth Estimation

2.1.1 Monocular Depth Estimation

Monocular depth estimation, also known as single-view depth estimation, has the goal
of estimating the depth of a given individual image. Supervised monocular depth
estimation requires the ground truth depth of the image, e.g., [Fu+18; EPF14]. [EPF14] is
the first CNN-based depth estimation method that leverages a coarse-grained network
for global depth prediction and a fine-grained network for local optimization of depth.
[Fu+18] discretizes the continuous depth values as a classification problem of depth
and solves the depth estimation problem from another perspective. But obtaining the
ground truth depth of the image is very challenging and relies on manual annotation
or LIDAR sensors.

Unsupervised monocular depth estimation, on the other hand, does not rely on the
ground truth depth. Instead of learning the depth directly, [GMB17] learns the disparity
of left and right images by Left-Right Consistency to get the depth. [PTM18] proposes a
geometric constraint that exploits the trinocular consistency to train the neural network
and estimate the disparity using stereo images. [Zho+17] proposes a self-supervised
method for depth estimation and ego-motion estimation via sequential images from a
monocular camera. And additionally, an explainability prediction network is trained
for solving the cases of illegal reprojection errors in the view, such as non-Lambertian
surfaces, occlusions, and moving objects. [God+19], on the other hand, proposes
to use minimum reprojection loss to solve the occlusion problem, multi-scale depth
prediction to reduce artifacts, and auto-masking loss to solve the reprojection error in
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stationary camera scenes. [Gui+20] designs novel packing and unpacking blocks by 3D
convolution, preserving the details of the predicted depth. And the scale inconsistency
of monocular depth estimation is solved by the proposed velocity loss.

However, unsupervised methods also suffer from poor depth estimation for weakly tex-
tured, non-Lambertian objects. And the depth estimates obtained by the unsupervised
method still have scale problems when compared to the ground truth depth when
trained using only monocular images.

Depth Estimation
Network

Input Single Image

Depth map

- -

Figure 2.1: Monocular depth estimation pipeline[Li+18].

2.1.2 Multi-view Stereo

The original goal of the MVS method is to perform dense reconstruction of a static
indoor 3D scene using the given disordered images and the corresponding poses, as
in [SD99; Cam+08; LQO5; KS00], and Figure 2.2 shows a general pipeline of MVS.
Traditional MVS-based work treats 3D reconstruction as an optimization problem,
defining an energy function and optimizing that function to find the optimal solution.

However, more and more work is now using cost volume based Convolutional Neural
Network (CNN), which has led to a substantial improvement in reconstruction accuracy.
[Hua+18] proposes the first MVS method based on deep learning and cost volume,
which computes a set of cost volumes from neighboring and reference images and uses
CNN to predict the depth map. [Yao+18] extracts the feature maps of multiple temporal
images by a shared feature extractor and constructs a single cost volume by variance,
which can be applied to 3D convolution to obtain depth maps. [Yao+19] saves memory
by using Gate Recurrent Unit (GRU) instead of 3D convolution on top of [Yao+18].
[Dai+19] enables self-supervised training of the cost volume based model through
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the consistency between depth maps of multiple views and makes the model more
robust by the learned occlusion maps. [Xue+19] achieves end-to-end depth estimation
using Conditional Random Field (CRF) via Recurrent Neural Network (RNN) after cost
volume regularization. [Gu+20] uses a multi-level pyramid to achieve cost volume and
depth estimation from coarse to fine. While [ZUB18] leverages cost volume based fix
band module and narrow band module to achieve coarse to fine depth estimation.

In addition to traditional indoor scene reconstruction work, there is now also work
applying MVS theory to depth estimation of outdoor scenes. [Wim+21; Wat+21] uses
cost volume to aggregate information from multiple frames to improve depth estimation
of autonomous driving scenes.

Figure 2.2: A general pipeline of MVS [FH+15].

2.1.3 Depth Estimation in Dynamic Environment

The handling of moving objects has always been a difficult problem in 3D vision. For
example, many depth estimation methods do not explore information about moving
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objects, and numerous MVS methods are based on static scene assumptions.

A lot of work has also been published on depth estimation for handling dynamic
scenes. [Ran+19] uses the proposed competitive collaboration mechanism to introduce
moving object segmentation and dynamic and static optical flow using a multi-task
joint training approach. [Zha+21b] implements a test-time training framework us-
ing Multilayer Perceptron (MLP) to generate scene flow to model the movement of
objects and to supervise the model with precomputed optical flow for temporal consis-
tency of depth estimation. While [Kli+20] and [Lee+21] propose the use of semantic
segmentation models to solve the problem of dynamic objects violating static scene
assumptions. [Kli+20] addresses the dynamic object problem by introducing a new
semantically-masked photometric loss and also proposes a method for identifying mov-
ing objects. With this method, the moving objects can be excluded from the training
loss computation, while the non-moving objects continue to contribute to the overall
loss. [Lee+21] proposes a method that incorporates instance-aware view synthesis and
unified projection consistency into the training loss. The method first decomposes the
image into background and object regions using a predicted instance mask and then
warps each region to compute photometric consistency. For moving people, the model
of [Li+19] learns the human pose and shape prior directly, bypassing the triangulation
problem of moving objects. [Ran+16] and [RYA14] use motion segmentation to improve
depth estimation. [Ran+16] proposes an approach that involves two stages. Firstly, the
approach segments the dynamic scene into a set of motion models using a novel motion
segmentation algorithm. Secondly, the approach assembles the scene by considering the
different components and their location relative to the camera. [Li+21] decomposes the
translation of the object in the image as the sum of its 3D translation and the translation
of the camera. And the movement of the objects is constrained by regularization. Based
on the monocular depth estimation framework, [Cas+19] proposes to estimate the
movement of objects in images using separate models and adapt the models to unseen
scenes by online refinement. [Wat+21] uses dynamic masks and a separate monocular
depth estimation network to help learn the depth estimation of dynamic objects during
the training phase.

Figure 2.3: Dynamic environment from KITTI tracking dataset.
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2.1.4 MonoRec

MonoRec is a depth estimation model based on MVS, as shown in Figure 2.4.

Cost Volume weighted (X

Construction

MaskModule

:t:
2(d, I I D,
%¢ ! . ‘BN

Max Pool

Reprojections ResNet-18 Image features for Iy |

Figure 2.4: The architecture of MonoRec[Wim+21]: MonoRec aggregates multiple
frames of images and generates a cost volume, and then uses the cost
volume and image information as input to estimate the mask of moving
objects in the mask module. The cost volume is filtered using the mask of
moving objects, and the value of the cost volume with moving objects is
set to 0. The masked cost volume and image information are used as input
to estimate the depth of the image in the depth module. The masked cost
volume can avoid estimating the depth error of the cost volume with static
scene priors.

DepthModule

|tanh|

Nevertheless, MonoRec is able to filter the depth of moving objects in the reconstruction
task to obtain more accurate static scene reconstruction results. However, for moving
object depth estimation, MonoRec needs to use the trained mask module to detect
moving objects and filter the cost volume of moving objects, forcing the value of cost
volume with moving objects to 0, and only using image information and semantic
segmentation information to estimate the depth of moving objects. It is not wise to
introduce the moving object prior in this way, which changes the original calculation
result of cost volume without introducing specific information about the moving object,
such as the direction and distance of the object. In general, real-world data contains
many dynamic objects that are not explicitly represented.

2.2 Scene Flow Estimation

Optical flow is a 2D moving field in the image plane, while scene flow is a 3D version
of optical flow for describing the moving field of points in 3D space and was first
proposed by [Ved+99].
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2.2.1 Point Cloud Based Scene Flow Estimation

Scene flow estimation based on point clouds has attracted significant attention in recent
years due to its potential applications in autonomous driving, robotics, and virtual
reality. The point cloud-based scene flow estimation task is to estimate the relative
motion vector of each point between different frames in the 3D point cloud, as shown
in Figure 2.5. [LQG19] proposes a novel network structure FlowNet3D for estimating
scene flows in two consecutive frames of point clouds. And two new learning layers
are introduced on the point clouds: flow embedding layer is used to associate two
point clouds to give flow embedding features. set upconv layer extends the feature
vector from one set of points to another set of points. [Wan+20b] adds geometric
feature supervision to FlowNet3D to improve the performance of scene flow estimation.
Specifically, it utilizes point-to-plane distance and cosine distance to supervise the
scene flow. Similarly, [Beh+19] exploits geometric relationships in the deep network
and is able to jointly predict the 3D scene flow of the point cloud as well as the 3D
bounding box and rigid body motion of objects in the scene through multiple decoders.
[Wu+19a] proposed a new learnable cost volume layer that is capable of performing
convolution on the cost volume without generating a dense 4D tensor. Utilizing this
new layer, a new model called PointPWC-Net was introduced for estimating scene
flow from two consecutive point clouds in a coarse-to-fine manner. Additionally, the
paper introduced self-supervised losses which are capable of training PointPWC-Net
without the requirement of ground truth labels. [Wei+21] presents a new approach
called point-voxel correlation fields, which combines the benefits of point-based and
voxel-based correlations for scene flow estimation of point clouds. To achieve this, they
use K-Nearest Neighbor search to find neighboring points for point-based correlations
and voxelization for multi-scale pyramid correlation voxels for voxel-based correlations.
By leveraging the geometry of rigid scene flow, [Goj+21] introduces an inductive bias
into the network to learn from weak supervision signals like background masks and
ego-motion. The method breaks down the scene into objects that move rigidly, enabling
reasoning on the object level rather than at the point level.

2.2.2 Image Based Scene Flow Estimation

Similar to MVS, the early scene flow estimation [HD07; VRS14; VSR13; VSR15] uses the
traditional optimization paradigm. The energy function is defined and the scene flow
is estimated using optimization methods to minimize the energy function, but only
limited performance is achieved.

The current popular CNN breaks the original scene flow estimation paradigm, and
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11”7\7

point cloud 1: n,; X3
point cloud 2: n,X3

scene flow: nyX3

Figure 2.5: Point cloud based scene flow estimation [LQG19].

CNN-based scene flow estimation methods significantly improve the accuracy of
estimation. [Ilg+18] focuses on the occlusion problem of scene flow. [Jia+19] proposes
a shareable encoder for multi-task learning, which often occurs in scene flow, saving
computational resources. The [Ma+19a] treats the scene flow as the motion of multiple
actors, estimates the optical flow, disparity and instance segmentation separately
minimizing the energy function with Gaussian Newton algorithm. The [Lv+18] divides
the image into rigid and non-rigid regions and synthesizes the scene flow by ego
motion in the rigid region and optical flow in the non-rigid region. [Luo+19] estimate
the optical flow, depth and camera motion using three sub-networks respectively and
send them to holistic 3D motion parser to calculate the motion of background and
moving objects by geometric relationship to get the scene flow. [Liu+19] contains a
depth estimation network and an optical flow estimation network to estimate scene
flows by joint training and geometric relationships between multiple tasks. [Lee+19]
contains an estimated self-motion network, a depth estimation network, and a residual
flow network. The ego motion and object motions are decoupled by stereo-based
depth estimation, and the optical flow is synthesized using the residual flow and
rigid flow. [HR20] leverages only one encoder to learn the disparity and estimate
the scene flow directly. Based on the method of solving optical flow [TD20], [TD21]
uses Rigid-Motion Embeddings to group pixels as moving rigid objects and iteratively
update the predicted scene flow.

3D scene flow estimation based on 2D images is essentially an ill-pose problem, there-
fore, much work has been done to estimate scene flow leveraging depth estimation,
optical flow or motion and segmentation of moving objects.

10
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(b)

Figure 2.6: Image based scene flow estimation [Sch+18].

2.3 Point Cloud Based 3D Object Detection

2.3.1 LIDAR Based 3D Object Detection

Nowadays, the model of LIDAR-based point cloud has been a hot research topic in
3D object detection tasks because of its ability to obtain the ground truth depth of the
scene and directly represent the 3D information in space. However, due to its sparse,
irregular and other characteristics, several methods of processing point cloud data
have emerged. [ZT18] represents the sparse point cloud as voxels in space and uses
3D convolution to extract point features. The main problem of [ZT18] is that the data
representation is relatively inefficient and the 3D convolution in the middle layer is
too computationally intensive, resulting in its slow running speed. [YML18] proposes
sparse convolution, which avoids inefficient computation, improves the running speed,
and reduces memory. [SWL19] is the first two-stage 3D object detection method using
only the raw point cloud. [SWL19] utilizes the detection box of the foreground point
to reduce the search scope of the detection box and proposes a refinement of the
canonical coordinates and bin-based loss. [Lan+19] represents the sparse point cloud as
pillars, and replaces the 3D convolution operation with 2D convolution, reducing the
computational effort of the convolution operation. And [Qi+18] is based on [Qi+17a]
and [Qi+17b], adding the image-based 2D object detection bounding boxes. [Che+17]
projects the point cloud as the Bird-eye View (BEV) and foreground image, and fuse
the 2D RGB image as well.

2.3.2 Pseudo-LIDAR Based 3D Object Detection

As an important sensor in self-driving cars and robots, LIDAR is able to directly sense
3D information of the environment. However, LIDAR systems can be expensive and
may not always be suitable for certain scenarios due to their sensitivity to some weather

11
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conditions. Pseudo-LIDAR offers a more cost-effective and powerful alternative as it
requires only one or a few cheap cameras. The principle is to use a camera and a depth
or disparity estimation algorithm to estimate the depth of the scene and create a 3D
point cloud similar to a LIDAR scan and easily used with a collection of LIDAR-based
algorithms for downstream tasks such as 3D object detection, localization and mapping.
A general pseudo-LIDAR based object detection pipeline, as shown in Figure 2.7.

[Wan+19] first proposed to perform object detection using the pseudo-LIDAR of depth
estimation model as an input to existing point cloud based object detection models.
And [You+19] builds on [Wan+19] by estimating the depth using stereo images and
correcting the pseudo point cloud using the sparse LIDAR point cloud. [Sun+20], on
the other hand, applies stereo images to estimate the depth and obtains the pseudo
point cloud of each instance using instance segmentation for object detection. [Ma+19b]
selectively fuses depth information and RGB image information using attentional
mechanisms. [WK19] performs end-to-end pseudo-LIDAR based object detection with
a monocular depth estimation model and an instance segmentation model, proposing
and attempting to solve the local misalignment and long tail problems of pseudo-point
clouds. [Ma+20] mentions that coordinate transformations are more useful in object
detection than pseudo point cloud representations and proposes a more generalized
model PatchNet.

In contrast, [Par+21] proposes an end-to-end 3D object detection model based on deep
pre-training and states that the generalization ability of pseudo LIDAR is weak and
pseudo LIDAR requires in-domain deep fine tuning to generate satisfactory object
detection results. [VAL19] points out that the point cloud density of pseudo-LIDAR is
much higher than that of 64-line real LIDAR. In particular, more background point cloud
data will cause more false positives and increase the computational effort. Therefore,
the paper proposes a method to sparse the structure of point cloud data and points
out that the performance gap between pseudo-LIDAR and ground truth LIDAR lies
in its inaccurate depth estimation. [Wan+20a] argues that not all pixels are equal and
that the depth of foreground objects is important in object detection, and proposes
and leverages different optimization objectives and models to estimate foreground and
background depths, respectively.

12
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Stereo/Mono images  Depth estimation Depth map Pseudo LiDAR 3D object detection  Predicted 3D boxes
e | 4
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= depth o detecti

Figure 2.7: A general pseudo-LIDAR based object detection pipeline [Wan+19].
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Assuming we are given a set of consecutive frames and their corresponding camera
poses, MonoRec++ is able to predict a dense depth map of the keyframe. MonoRec++
includes a depth module and a scene flow module. The scene flow module is used to
provide the moving 3D vectors of moving objects. The depth module predicts the depth
map from the cost volume guided by the scene flow. In this section, we first explain
the relevant fundamentals and then describe the different modules of the architecture.
Finally, the multi-stage training process and the implementation details are discussed.

3.1 Cost Volumes for Dynamic Scenes

3.1.1 Multi-view Geometry

In order to synthesize the current keyframe I; from other frames Iy, suppose we have
the depth D; of I, the intrinsics K of the camera, the relative camera pose Ty _,; from I;
to Iy and the moving flow F,_,y of the moving object from I; to Iy. Then the synthesized
frames from Iy to I; can be represented as:

Iy = Iy (proj (Dy, Ty, K, Fiypr)) (3.1)

Here () is the differential sampling operation. With

proj (Dt, Ty—p, K, Fip) = N[K(Rt—thKflxt + bty + Foyy)] (3.2)

R, .y /
Ty = [ 6? tf? } €SE;  SE;:={R,t|R€S0O;te R} (3.3)

xt € R = (u,0, 1)T represents the homogeneous vector of 2D pixel coordinate of I;,
which corresponds to D;. The function 71() is used to project and dehomogenise the
points p € R®> = (x,y,z) " in 3D space to the 2D plane p € R?> = (x/z,y/z)".

14
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The proj() function we introduce contains a priori for object movement, allowing for
better modeling of moving objects. When F;_,; = 0, the proj() function degenerates to
a purely static scene of the proj() function as MonoRec.

Lyt static = Iy (proj (D, Ti—y, K, 0)) (3.4)

3.1.2 Cost Volume

Cost volume is essentially a general term for a method of aggregating information
from multiple frames. Like MonoRec, MonoRec++ uses Structural Similarity Index
Measure (SSIM) and temporal images to build the cost volume. The temporal images
Iy are projected to the current keyframe I; through a set sequence of discrete depth
values and relative poses, and the photometric error between the temporal images and
the keyframe is calculated. But unlike MonoRec, MonoRec++ uses the moving flow
Fi_,p to build the cost volume during the synthesis of Iy/_,;. The photometric error pe is
defined by the following equation:

1 — SSIM (Iy_y+(x,d), I:(x))
2

per—i(x,d) = (3.5)

The patch size of SSIM is defined as 3 x 3. The error is limited from 0 to 1. While
MonoRec uses the basic cost volume, that is, Iy_; ¢a1ic is used instead of Iy_,; as the
synthesized frame. The basic cost volume is not limited to the number of temporal
images Iy (t' € {1,---,N}\t). However, since our method requires the moving flow
Fi_,p for each temporal frame and keyframe by the scene flow module, we limit the
number of temporal images to 2, t' € {t —1,t + 1}.

we(x) =1 3= Y exp (—a (peri(xd) — persi (x,d7))°) (3.6)

And we also define the matching confidence wy (x) for the pe of a pixel and apply
it to the pe with d € {d; | dmin + ﬁ + (dmin — dmax) }. wy(x) will approach 1 if there
exists a clear and unique minimum pe with depth d, wy(x) will approach 0 if there
exists multiple depth values d such that pe(d) is close to the minimum pe with d}; =

argming pey (X, d).

Finally, the cost volume is aggregated by the multiple frames in the following equation:

LY e d)eon () -

C(x,d)=1-2- Vo
tl
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The range of cost volume is from -1 to 1, representing the confidence that d is the
correct depth from the perspective of photometric consistency for pixel p.

3.1.3 Moving Flow

For each pixel in image I;, the goal of scene flow estimation is to estimate its 3D
movement vector V to frame I.. If the estimated scene flow is projected onto the image
plane, we can obtain the corresponding optical flow. Thus in order to reconstruct the
moving flow we mentioned above from the scene flow, we need to obtain the relative
pose T;_,y and the depth map of the image I;.

Assuming that we have the depth D; of frame I;, the relative pose T;_,y and semantic
segmentation mask M;, the moving flow F,_,y can be obtained by the following
equations. First,

Fitrreat = (DeK % + Stspr) — (Resw DeK ™ Ixe + ) (3.8)

Ideally, the perfect moving flow can describe the movement of moving objects without
any post-processing. But under realistic conditions, the moving flow provided by the
scene flow module is not perfect. Therefore, we need masks that can classify moving
objects to filter the moving flow of moving objects, while the original MonoRec needs
to train the mask module, we can directly use the simple and accessible semantic
segmentation mask of potential moving objects, such as pedestrians, cars, etc. Semantic
segmentation masks of potentially moving objects were generated using Detectron2 pre-
trained on the COCO dataset, which includes person, bicycle, car, motorcycle, airplane,
bus, train and truck. Finally, the moving flow can be obtained by the following equation.

Fp = Mseg,tFt%t’,real (3'9)

3.2 Network Architecture

As shown in Figure 3.1, the Monorec++ network architecture consists of two submod-
ules, the depth module and the scene flow module.

3.2.1 Scene Flow Module

The goal of the scene flow module is to provide information about moving objects for
the input of the depth module, i.e., cost volume. Inspired by [HR20], we use its model
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scene flow module

Figure 3.1: The architecture of MonoRec++: The scene flow module(Subsection 3.2.1)
first predicts the scene flow and disparity between frames, then with the
relative pose predicted by VO and the semantic segmentation mask, we
can obtain the moving flow of potential moving objects. The depth mod-
ule(Subsection 3.2.2) can use the moving flow and multiple frames to con-
struct the cost volume(Section 3.1) to predict the depth map of the keyframe.

depth module —

and training approach, which is able to obtain the scene flow of monocular videos and
the disparity of stereo images in the inference phase by using only stereo images in
the training phase in a self-supervised manner. Although we can estimate the depth
through the disparity of the scene flow module, its depth estimation is not accurate.
Therefore, we also need the depth module for more accurate depth estimation. And
since the scene flow module only provides the scene flow with ego-motion, we also
need to compensate the ego-motion with the given pose so that we can obtain the
moving flow with only the information of moving objects.

3.2.2 Depth Module

We use the same structure as MonoRec for the depth module, whose purpose is to
output the corresponding depth map given the cost volume and the image. However,
unlike MonoRec, we do not use mask and cost volume to do pixel-level multiplication,
eliminating the strong preference of cost volume for static scenes. Instead, we provide
masked moving flow to the cost volume as a priori information about moving objects
to assist the encoding of the cost volume.

3.3 Training Procedures

In this section, a multi-stage network training process is presented as shown in Fig-
ure 3.2. Specifically, the pretraining phase and the refinement phase are executed
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sequentially. In the pretraining phase, all modules are trained separately. In the refine-
ment phase, the scene flow module and depth module will be refined. The input image
size for all modules is 256 x 832.

refinement

pretraining .
pretraining

depth modie }ﬁ'-

scene flow module

=  E— cost volume
\ : ‘ -

frozen/unfrozen moving flow

Figure 3.2: The multi-stage network training process.

3.3.1 Pretraining

Depth Module In the depth module, the input of the module is a simple concatenation
of the image and cost volume. Despite the power of the neural network, we find that
the depth module has difficulty in mining both image and cost volume information
simultaneously. Inspired by the authors of [Wim+21], we propose a simple pretraining
strategy. In the pretraining phase, we only use the image as input and do not use
cost volume,i.e., set the cost volume to 0, as shown in Figure 3.3. Such a pretraining
strategy allows the depth module to incrementally learn image data and cost volume.
In the pretraining phase, the moving flow F is set to 0 and does not participate in
the depth module pretraining. We use a simple self-supervised loss, and the depth
module degenerates into a monocular depth estimation module. More specifically, the
depth module takes cost volume C(x,d) without F as input and predicts the depth D;.
The supervision of the depth module is defined as a multi-scale self-supervised loss,
similar to [Wim+21]. It combines a self-supervised photometric loss and an edge-aware
smoothness term.

3
Ldepth = Z Lself,s + “Lsmooth,s (3.10)
5=0
Lseifs = t*erf’lLiJ?tS} (Esetf,photo (Ir—t, 1)) (3.11)
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1-SSIM (L4, I
Eself,photo (11112) = (/\ 5 ( ! 2) + (1 - A) ||I1 — 12”1> (3.12)

with A is 0.85, & = 1073/(2%), t' € {t — 1,t + 1}, I;s is the stereo frame of I;.

H[ depth modle —

Figure 3.3: The pretraining of the depth module: We use 0 padding instead of cost
volume as input to the depth module.

In the pretraining phase of the depth module, the depth module is pretrained for 70
epochs. The learning rate of the first 65 epochs is 1le~%, and the learning rate of the last
5 epochs is le ™.

Scene Flow Module We follow [HR20], the training of the scene flow module consists
of two balanced loss functions, which are disparity loss L;; and scene flow loss Ly .

Lsf totat,t—t = AaLas + AspLsprsp (3.13)

With Lmax == maX(Ld’t, Lsf,t*)t/), /\d = Ld,t/)\max, /\sf == Lsf’t*)t//Lmax and t/ G {t + 1}.

Similar to [GMB17], the goal of disparity loss L, is to learn the disparity of the stereo
image and thus to obtain the depth of the image and recover the 3D information of
the image. It is composed of 2 parts, photometric loss L;_pj +—,r and smoothness loss

Ld_sm,t .

Ld,t = Ld_ph,t + /\d_sde_sm,t (3-14)
where the value of A; ¢, is 0.1. To supervise the disparity produced by the model,
L4 pn,s is used as a loss function to evaluate the photometric error between the left
image I} and the reconstructed left image If’d.

1,di
Ld_ph,t = Ot ZspEself,phofo (If, Ifl’d) (315)

19



3 Method

with Itl’d = I/(Disp!) is the reconstructed left image from the right image and the
disparity map of the left image. And this loss function penalizes only the unoccluded

pixels. The occlusion map Oi’diSp is obtained from the disparity map of the right image
Disp;. And for local smoothness of disparity, as in [HR20], edge-aware 2nd-order
smoothing loss L; g, ; is used.

In addition to the disparity loss L, the scene flow loss Lgf ;¢ is also needed. scene
flow loss consists of 3 components, namely the photometric loss of the scene flow
Lsf_pn,t—t, the reconstruction loss of the 3D space Lgf sy, and the smoothing loss of
the scene flow Lgf sy ¢

Lsf,t%t’ = Lsfﬁph,tﬁt/ + Asfﬁpthffpt,t%t’ + /\sffsmLsffsm,t%t/ (3-16)

with regularization parameters Ag¢ s is 0.2 and Agf gy is 200.

In 3D space, we can reconstruct the spatial relationships by the disparity of the current
frame and the next frame and the estimated scene flow.

b is the baseline for stereo images, fx = focal_length * sx, focal_length is the focal
length of the camera and sx is the horizontal scale factor, Disp; is the disparity of the
current frame.

pr=DK'xe  pr=pi+Sisr Py =Dy K ' [Kps] (3.18)

Furthermore, we supervise the consistency between the 3D points p;_, and py between
the current frame and the next frame. Again, this loss function penalizes only the pixels
that are not occluded.

1,
Lot ptise = Of [prse — poll, (3.19)

The purpose of Lsf py,s is to penalize the photometric error between the current frame
I! and the frame If’sf .

I, L,
Lsf_ph,tﬁt’ = Ot SfEself,photo (Ig/ It Sf) (3-20)

with
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I = Iy (m[Kpioy]) (3.21)

Again, this loss function penalizes only the pixels that are not occluded. Oi’sf is the
occlusion map of the scene flow calculated from the backward scene flow Sy_,;. And
for local smoothness of scene flow, edge-aware 2nd-order smoothing 10ss Lsf gy ¢t is
used.
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(a) Photometric loss (b) 3D point reconstruction loss

Figure 3.4: Visualization of scene flow loss [HR20].

The scene flow module is pretrained for 70 epochs, the initial learning rate is 2¢~#, and
then the learning rate is halved to 1e~* at the 46th epoch.

3.3.2 Refinement

In order to optimize the moving flow generated by the scene flow, and also to make
the cost volume contain information about moving objects, we propose the refinement
phase. We first jointly train the depth module and the scene flow module for 10 epochs,

the learning rate is le 4.

The loss function of the joint training is as follows.
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Lioint = Laeptn + Y_, (Asf totar Lsf otat—t + AmpLimf it (3.22)
t/

with

Linf s = | (1 = Maeg.) Fise 5 (323)

s At pota 18 0.01, Ay g is 0.001 and t' € {t — 1, +1}.

Here we optimize the scene flow by supervising the moving flow. The semantic
segmentation mask M.+ we used contains all potential moving objects. In other
words, the pixels that are not masked are static, and the pixels that are masked may be
static or moving. Therefore, we use square L2 loss to penalize the moving flow that is
not masked. Because the moving flow of the static scene should be 0.

However, joint training makes the convergence speed of the depth module slow or just
falls into a local optimum. Because the moving flow, which is part of the cost volume
and the reprojection error, is constantly changing during training. Therefore, based on
the joint training, we freeze the scene flow module and train the depth module for 20
epochs, the learning rate is le~*. The loss function is as Laepth-
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4 Experiments and Results

4.1 Dataset

For depth estimation, Eigen split [EF15] of KITTI is one of the most commonly used
approaches to divide the KITTI depth estimation dataset. However, Eigen split is only
used for monocular depth estimation tasks. And Eigen split also does not provide
the real mask of moving objects and cannot evaluate the depth estimation of moving
objects. The KITTI tracking dataset is used because the KITTI tracking dataset can
provide the track of the objects and the bounding box of the moving objects to help
us identify the moving objects. The KITTI tracking dataset also provides LIDAR point
cloud data for depth evaluation.

However, the track of moving objects and their bounding box from the KITTI tracking
dataset are not sufficient for identifying specific pixels of moving objects. To determine
the specific moving pixels, Detectron2 [Wu+19b] is also used to provide alternative
moving masks. This is done as follows:

1. For all objects of the track, we calculate the L2 distance between their positions
in 2 consecutive frames. If the class is pedestrian and the L2 distance is more
than 0.1m, then we identify the object in these 2 frames as a moving object. If the
category is car, bicyclist, truck, etc. and the L2 distance is more than 0.2m, then
we consider the object in these 2 frames as a moving object.

2. Semantic segmentation masks of potentially moving objects were generated using
Detectron2 pretrained on the COCO dataset, which includes person, bicycle, car,
motorcycle, airplane, bus, train and truck.

3. We use the Hungarian algorithm [Kuh55] to assign the alternative mask for each
bounding box of the moving object.

The generated moving object masks are shown in Figure 4.3.

The KITTI tracking dataset has a total of 21 sequences. We follow the [Voi+19] data split,
using all 12 sequences of the [Voi+19] training dataset as our model training dataset, 4
sequences of the [Voi+19] validation dataset as our validation dataset, and 5 sequences
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(e) sequence 0016, frame 12 (f) sequence 0020, frame 42

Figure 4.1: Examples of 2D tracking bounding boxes of moving objects.

as our test dataset. And the sequences of the validation and test sets are balanced to
ensure that the training and test sets contain similar distributions of moving objects.
Finally, we choose sequences 0002, 0007, 0016, and 0018 as the validation set of the
model and sequences 0006, 0008, 0010, 0013, and 0014 as the test set of the model.

For the pose, we use the transformations provided by the trained visual odometry
system DF-VO [Zha+21a] on the KITTI tracking dataset split as described above. And
to solve the scale ambiguity problem of the pose, DF-VO uses stereo images for
training. In the inference phase, DF-VO only needs monocular images, which meets
our requirements.

4.2 Depth Estimation

4.2.1 Metrics

For depth, we follow the previous work [EPF14]. Seven indicators were used to evaluate.
They are:
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(a) sequence 0001, frame 386 (b) sequence 0002, frame 112

(c) sequence 0004, frame 21 ) sequence 0009, frame 266
m

(e) sequence 0016, frame 12 (f) sequence 0020, frame 42

Figure 4.2: Examples of potential moving objects from Detectron2 semantic segmenta-
tion masks.
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(e) sequence 0016, frame 12 (f) sequence 0020, frame 42

Figure 4.3: Examples of generated moving masks.

Absolute Relative Difference (Abs Rel): %ZZ Wd%dp ;
p

a2
Squared Relative difference (Sq Rel): 1y L%,
p

N2
Root Mean Squared Error (RMSE): \/ % p <dp — dp> ;

7

RMSE (10810): %Z}? ‘logm (dp) —log,, (dAP)

* Threshold Accuracy (6;) : % of d, s.t. max (Zf, d;) =0<1.25
4

* Threshold Accuracy (¢;) : % of d, s.t. max <dA, d’;) = < 1.25°
P

e Threshold Accuracy (¢;) : % of d, s.t. max (;’3, ji) =6<125°
4

where d, is the ground truth depth of a pixel in the depth image D, d}, is the predicted
depth of the model for a pixel in the depth image D. p € {static, moving,all} and n
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is the total number of pixels in different masks. static, moving, and all mean pixels of
non-moving objects, pixels of moving objects, and all pixels, respectively. Therefore,
the depth estimates of different objects can be evaluated. We use the point cloud of the
KITTI tracking dataset as the ground truth, i.e., the point cloud is reprojected onto the
image to obtain the sparse ground truth depth D.

4.2.2 Results

Before showing the quantitative results of depth estimation, we show the visualization
results of moving flow.

Figure 4.4, Figure 4.5 and Figure 4.6 shows the norm of the moving flow vector (The
color scale of the norm is shown in Figure 4.7.), which shows that the moving flow
vector without semantic segmentation mask is still noisy. Therefore, in the training
and inference phases, we need to filter the moving flow with semantic segmentation
mask to only use the moving flow of potential moving objects to aggregate information
and generate cost volume. The main reasons for the inaccuracy of the moving flow are
mainly in three aspects, the disparity and scene flow of the scene flow module, and the
pose obtained by visual odometry. The accuracy of these information will affect the
accuracy of the moving flow.

(a) image (b) semantic segmentation mask

- -
(c¢) unmasked moving flow (d) masked moving flow

Figure 4.4: Moving flow of sequence 0006, frame 48.

In order to evaluate the proposed MonoRec++, we compare MonoRec++ with other
depth estimation models [GMB17; God+19; Wat+21] in depth estimation task. All
models use the same training dataset and validation dataset. Since MonoRec++ requires
stereo images for training, all models are trained with stereo images for fairness of the
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(b) semantic segmentation mask

(c¢) unmasked moving flow (d) masked moving flow

Figure 4.5: Moving flow of sequence 0008, frame 95.

(a) image (b) semantic segmentation mask

(c¢) unmasked moving flow (d) masked moving flow

Figure 4.6: Moving flow of sequence 0010, frame 82.

0.0 02 04 06 0.8 10

Figure 4.7: Color scale of moving flow norm.
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comparison. In the testing phase, all the models use monocular images. The results are
shown in Table 4.1, Table 4.2 and Table 4.3, The top-ranking and runner-up outcomes
are highlighted in bold and underlined, respectively.

Table 4.1 shows the depth estimates of each model for moving objects MonoRec++ has
outperformed MonoRec in terms of depth estimation of moving objects. For moving
objects, moving flow provides more information about moving objects than simple zero
padding to describe moving objects. However, there is still a gap in its depth estimation
of moving objects compared to other depth estimation models, even compared to
Manydepth which also utilizes cost volume.

Table 4.1: Depth estimation Results on KITTI tracking dataset of moving object.

Model Training | Abs Rel SqRel RMSE RMSEj,, | 6 <125 <125 §<125°
Monodepth MS 0.195 3303 8.167 0.247 0.765 0.898 0.947
Monodepth2 MS 0.164 2241 7.628 0.234 0.781 0.916 0.958
Manydepth MS 0.157 1974 7.241 0.228 0.819 0.921 0.956
MonoRec(pretrained) MS 0296 4474 11254  0.388 0.520 0.747 0.877
MonoRec MS 0226 3316 9.788 0.330 0.667 0.822 0.893
MonoRec++ MS 0170 2241 7.739 0.264 0.772 0.895 0.949

We believe that this is due to imperfect scene flow estimation. Ideally, the accurate
moving flow can perfectly construct the dynamic scene, including the direction and
distance of object movement, transform the dynamic scene into a static scene after
moving and construct a cost volume without noise, and the result of depth estimation of
moving objects should be similar to that of static objects, as shown in Table 4.2. However,
due to the noise of moving flow, even if we leverage the semantic segmentation mask to
filter out potential moving objects, the representation of the 3D movement of potential
moving objects by moving flow is still not accurate enough, as shown in Figure 4.5 and
Figure 4.6. In theory, the moving flow of each semantic segmentation mask should be
consistent for rigid objects, and its norm should be consistent. In addition, our moving
flow also has a scale problem, the norm of the moving flow is too small. The color bar
of moving flow is shown in Figure 4.7, the value ranges from 0 to 1. From [GLU12], we
know that the camera in the KITTI dataset is set to work at 10 Hz. So the maximum
value of the moving flow norm in examples is 1 %3600/ (0.1 * 1000) = 36km /hr, which
is less than the true moving flow norm in examples.

As shown in Table 4.2, for the estimation of static scenes, MonoRec++ follows MonoRec
and its depth estimation outperforms all other models. From the strong performance
of MonoRec++ and MonoRec for static scenes, it can also be observed that the cost
volume based on temporal images has a very strong bias for static scenes. This also
proves our conclusion in the depth estimation of moving objects.
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Table 4.2: Depth estimation results on KITTI tracking dataset of static scene.

Model Training | Abs Rel SqRel RMSE RMSEj,, | 6 <125 <125 §<125
Monodepth MS 0.157 2139  7.812 0.263 0.782 0.904 0.960
Monodepth2 MS 0.126 1432 6457 0.222 0.834 0.941 0.974
Manydepth MS 0.128 1376 6.382 0.222 0.831 0.938 0.974
MonoRec(pretrained) MS 0.118 1311 5.879 0.220 0.868 0.935 0.966
MonoRec MS 0.111 1219 5.723 0.220 0.875 0.943 0.970
MonoRec++ MS 0.098 1.103 5.518 0.204 0.891 0.953 0.975

Table 4.3 reflects the overall depth estimate, without distinguishing between moving
or static scenes. Comparing Table 4.1, Table 4.2 and Table 4.3, it can be seen that the
metrics in Table 4.3 are closer to those in Table 4.2, indicating that even when evaluated
on the KITTI tracking dataset, which contains a relatively large number of moving
objects, the overall results are still closer to the static scene, with the moving objects
accounting for a very small percentage of pixels in the overall scene.

Table 4.3: Depth estimation results on KITTI tracking dataset overall.

Model Training | Abs Rel SqRel RMSE RMSEj,, | 6 <125 < 1.252 5 < 1.25°
Monodepth MS 0.160 2211  7.856 0.267 0.780 0.902 0.959
Monodepth2 MS 0.129 1458  6.499 0.227 0.831 0.939 0.973
Manydepth MS 0.130 1.394 6419 0.225 0.830 0.937 0.973
MonoRec(pretrained) MS 0.124 1.396  6.016 0.230 0.859 0.929 0.962
MonoRec MS 0.114 1.268 5.841 0.229 0.868 0.938 0.966
MonoRec++ MS 0.101 1.133 5.601 0.210 0.887 0.950 0.973

4.3 Scene Flow Estimation

In order to evaluate the impact of our method on the scene flow module, we need to
quantitatively evaluate the scene flow module on KITTI dataset.

4.3.1 Datasets

KITTI tracking dataset does not provide the ground truth of scene flow, while the KITTI
scene flow 2015 benchmark [MG15] provides the ground truth of scene flow. We will
evaluate the scene flow module on this benchmark. Since the KITTI tracking dataset
and KITTI scene flow 2015 have some identical samples, we removed all the KITTI
scene flow 2015 samples that exist in the KITTI tracking training dataset to prevent
data leakage.
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(a) Image (b) MonoRec++

(c) Monodepth (d) Monodepth2

(e) Manydepth (f) MonoRec

Figure 4.8: Qualitative results on KITTI tracking dataset(sequences 0006, frame 48):
This is a static scene containing 2 moving cars. Compared with MonoRec,
our depth estimation is more accurate on moving objects, but there is still
the problem of unsmooth depth estimation for moving objects compared to
other depth estimation models.
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(a) Image (b) MonoRec++

(c) Monodepth (d) Monodepth2
- -
(e) Manydepth (f) MonoRec

Figure 4.9: Qualitative results on KITTI tracking dataset(sequences 0008, frame 95):
This is a highway scene, there are cars in opposite directions. Compared
with MonoRec, our model still provides more accurate depth estimates in
moving objects, but our results do not show an advantage with other depth

estimation models. And there is still a gap compared to Manydepth, which
is also consistent with the quantitative results.
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(a) Image (b) MonoRec++

(c) Monodepth (d) Monodepth2

(e) Manydepth (f) MonoRec

Figure 4.10: Qualitative results on KITTI tracking dataset(sequences 0010, frame 82):
This is an common driving scenario where there are cars in the same and
opposite directions. In this scene, our model does not have an advantage

for depth estimation of moving objects (except for MonoRec), and its results
are poor compared to Manydepth.
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4.3.2 Metrics

D1-all: Percentage of stereo disparity outliers in the first frame.
D2-all: Percentage of stereo disparity outliers in the second frame.
EPE: Average end-point error of the optical flow.

F1-all: Percentage of optical flow outliers.

SF1-all: Percentage of scene flow outliers(outliers in either D1-all, D2-all or F1-all).

The outliers are defined as the pixels whose error is larger than 3 pixels or 5% of its
true value[MG15].

4.3.3 Results

The results are shown in Table 4.4, The top-ranking and runner-up outcomes are
highlighted in bold and underlined, respectively.

KITTI raw dataset pretrained (KITTI split) The results of the scene flow module
from the original paper and trained on the KITTI raw dataset with the KITTI split.

KITTI raw dataset pretrained (KITTI split) + ours The result of the scene flow
module pretrained on the KITTI raw datasetwith the KITTI split and our proposed
method.

KITTI tracking dataset pretrained The results of the scene flow module pre-
trained on the KITTI tracking dataset.

KITTI tracking dataset pretrained more epochs The result of the scene flow
module pretrained on the KITTI tracking dataset for 130 epochs.

KITTI tracking dataset pretrained + ours The result of the scene flow module
pretrained on the KITTI tracking dataset with our proposed method.

From Table 4.4, we can see that even though the scene flow module is trained with more
epochs, its metrics do not improve significantly. In contrast, the scene flow module
trained by our proposed method has improved on top of the original pretraining. Our
method also improves the performance of the scene flow module pretrained on the raw
dataset.
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Table 4.4: Scene flow results on the KITTI scene flow dataset.

Method Dil-all D2-all Fl-all EPE SFl-all
KITTI raw dataset pretrained (KITTI split) 33.97 3835 2688 932 5171
KITTI raw dataset pretrained (KITTI split) + ours 29.00 3199 2861 10.19 46.23
KITTI tracking dataset pretrained 39.85 56.64 58.19 29.53 76.05
KITTI tracking dataset pretrained with more epochs 43.70 5522 5529 2450 76.05
KITTI tracking dataset pretrained + ours 41.08 4597 59.60 16.85 71.75

4.4 Ablation Study

In order to confirm the contribution of our model and the influence of each variable
on the model, we performed an ablation study and the results are shown in Table 4.5,
Table 4.6 and Table 4.7.

Table 4.5: Ablation study of depth estimation results on KITTI tracking dataset of
moving object.

Model AbsRel SqRel RMSE RMSEp, |6 <125 <125 §<125
MonoRec++ 0.170 2241 7739 0.264 0.772 0.895 0.949
GT moving mask 0.171 2292 7.750 0.264 0.774 0.894 0.948
ORB-SLAMS3 stereo mode pose 0.170 2252 7.746 0.263 0.777 0.896 0.950
without depth module pretraining 0.246 4342 9.725 0.328 0.659 0.821 0.911
without depth module 0.238 3.786  9.036 0.277 0.694 0.892 0.946
without scene flow module 0.231 3.409  9.063 0.335 0.652 0.814 0.904
MonoRec 0.226 3316 9.788 0.330 0.667 0.822 0.893
MonoRec with depth module pretraining 0.196 2931 8.814 0.292 0.726 0.856 0.917
pretrained depth module(cost volume = 0) 0.184 2426  8.031 0.257 0.759 0.904 0.953
pretrained depth module(cost volume = 1) 0.190 2.595  8.695 0.276 0.754 0.892 0.942
pretrained depth module(cost volume = -1) 0.187 2410 8.189 0.258 0.751 0.903 0.953
pretrained depth module(cost volume = uniform distribution) | 0.194 2.673  8.498 0.264 0.736 0.900 0.953

Pose Since both MonoRec and MonoRec++ are MVS-based depth estimation models,
the camera poses have a very important impact on the model as the key to constructing
the cost volume. For this reason, we investigate the effect of different poses on the
model. For the KITTI tracking dataset, we compared the poses obtained from the
stereo mode of ORB-SLAM3 [Cam+21], and since the stereo mode uses stereo images,
its estimation of the poses is more accurate compared to DF-VO. And indeed more
accurate pose estimation leads to more accurate depth estimation, especially in the
static scene part. We believe that more accurate pose estimation can produce a greater
improvement in the accuracy of depth estimation for the static scene assumption of the
basic cost volume, compared to moving objects.

Mask For the moving mask, we also compared the results of filtering moving flow
using the ground truth moving mask. The results of filtering moving flow using the
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4 Experiments and Results

Table 4.6: Ablation study of depth estimation results on KITTI tracking dataset of static

scene.
Model AbsRel SqRel RMSE RMSE,, [ 6 <125 <125 §<125°
MonoRec++ 0.098 1103  5.518 0.204 0.891 0.953 0.975
GT moving mask 0.097 1.100 5.522 0.204 0.892 0.953 0.975
ORB-SLAMS3 stereo mode pose 0.095 0964  5.068 0.199 0.901 0.956 0.976
without depth module pretraining 0.105 1.054 5416 0.211 0.877 0.944 0.972
without depth module 0.166 2215 7224 0.250 0.797 0.924 0.965
without scene flow module 0.100 1.129  5.667 0.210 0.889 0.949 0.973
MonoRec 0.111 1219 5723 0.220 0.875 0.943 0.970
MonoRec with depth module pretraining 0.101 1.147 5487 0.205 0.890 0.954 0.975
pretrained depth module(cost volume = 0) 0.169 2134 7.717 0.279 0.765 0.895 0.952
pretrained depth module(cost volume = 1) 0.175 2415 7.754 0.272 0.774 0.901 0.946
pretrained depth module(cost volume = -1) 0.168 2.097  7.862 0.287 0.761 0.890 0.949
pretrained depth module(cost volume = uniform distribution) | 0.176 2.362  8.054 0.291 0.756 0.886 0.947

Table 4.7: Ablation study of depth estimation results on KITTI tracking dataset overall.

Model AbsRel SqRel RMSE RMSEp, |6 <125 < 1252 § < 1.25°
MonoRec++ 0.101 1.133  5.601 0.210 0.887 0.950 0.973
GT moving mask 0.101 1.130  5.610 0.210 0.887 0.950 0.973
ORB-SLAMS3 stereo mode pose 0.098 1.021 5190 0.208 0.895 0.952 0.973
without depth module pretraining 0.110 1.138  5.553 0.220 0.871 0.939 0.969
without depth module 0172 2331 7.330 0.257 0.792 0.920 0.962
without scene flow module 0.105 1.205 5.818 0.222 0.880 0.942 0.968
MonoRec 0.114 1.268  5.841 0.229 0.868 0.938 0.966
MonoRec with depth module pretraining 0.105 1200 5.601 0.214 0.884 0.949 0.972
pretrained depth module(cost volume = 0) 0.171 2153  7.737 0.282 0.763 0.893 0.950
pretrained depth module(cost volume = 1) 0.177 2445 7.762 0.275 0.773 0.900 0.945
pretrained depth module(cost volume = -1) 0.170 2121 7.881 0.290 0.759 0.889 0.948
pretrained depth module(cost volume = uniform distribution) | 0.178 2.382  8.080 0.294 0.754 0.884 0.946
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ground truth moving mask are similar to the results of using the semantic segmentation
mask for depth estimation.

Without depth module pretraining If there is no pretraining of the depth module, the
depth estimation results of the model decrease. This proves that the pretraining of the
depth module has a great improvement in the effect of feature extraction.

Without depth module If there is no depth module, we use the disparity of the scene
flow module as the output of the pipeline to generate the depth map. As expected, the
depth estimation results based only on the disparity of the scene flow module are not
accurate. We still need the depth module to do a more accurate depth estimation.

Without scene flow module If there is no scene flow module, the moving flow does
not participate in the calculation of the cost volume. Its depth estimation results have a
clear decrease in moving objects, which proves that the scene flow module has a great
improvement in the depth estimation of moving objects.

MonoRec with depth module pretraining Since the depth module pretraining is also
applicable to MonoRec, we also compared the effect of pretraining the depth module
in MonoRec. We found that the pretrained depth module also improved the depth
estimation of MonoRec in all the metrics of moving objects and static scenes. The
pretraining of depth estimation based on images can help the model extract better
features of images and cost volumes.

Different depth module pretraining setups We compared the effect of different depth
module pretraining setups. That is, set the cost volume to 0, 1, -1, and uniform
distribution. We found that as long as the cost volume is set to a fixed value, the effect
of the pre-trained depth modules is similar. Even if the cost volume is set to a uniform
distribution, the effect of the pre-trained depth module is only slightly reduced. This
shows that in the pretraining stage, the depth module has a certain robustness to
meaningless cost volumes, and only learns meaningful image features.

4.5 3D Detection

In order to use a point cloud-based 3D object detection algorithm, similar to [You+19],
we preprocess the obtained depth map for sparsification and obtain the pseudo point
cloud simulating a 64-beams LIDAR. The pseudo point cloud is then used as the input
to a downstream 3D object detection model based on point cloud estimation. We use
[SWL19] as 3D object detection model.
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4.5.1 Metrics

In the KITTI 3D object detection task and BEV detection task, the difficulty of object
detection is classified into 3 classes, namely easy, moderate and hard:

Easy Min. bounding box height: 40 Px, Max. occlusion level: Fully visible, Max.
truncation: 15 %

Moderate Min. bounding box height: 25 Px, Max. occlusion level: Partly occluded,
Max. truncation: 30 %

Hard Min. bounding box height: 25 Px, Max. occlusion level: Difficult to see,
Max. truncation: 50 %

We used Average Precision (AP) as a metric to evaluate the 3D object detection task
and the BEV detection task. APy is used according to the suggestion of [Sim+19].
APy sampled 40 recall locations and is able to avoid bias, compared to AP;;, which
originally samples only 11 points. And the threshold of Intersection over Union (IoU) is
set to 0.5 and 0.7. Here we only show the results of the Car class in 3D object detection.

4.5.2 Results

As with the depth estimation, we compare the 3D object detection results of the pseudo
point cloud generated by the depth estimation models with the results of the real
velodyne point cloud, as shown in Table 4.8.

Table 4.8: 3D object detection results on the KITTI tracking dataset for class Car(BEV
detection / 3D detection).

IoU =0.5 IoU = 0.7
Detection algorithm | Input Easy Moderate Hard Easy Moderate Hard
Monodepth2 Mono | 46.64/38.78 | 29.26/23.66 | 26.96/21.62 | 15.50/6.09 | 10.26/4.41 | 9.28/4.00
MonoRec++ Mono | 41.75/34.74 | 25.48/20.51 | 22.49/18.70 | 12.62/5.69 | 8.70/3.95 7.99/3.74
LIDAR GT LIDAR | 99.83/99.82 | 92.74/92.45 | 92.38/92.05 | 92.42/75.22 | 84.25/57.90 | 82.13/57.53

In the 3D detection task, the 3D detection results of the pseudo LIDAR generated by all
the depth estimation models we evaluated are worse than those of other state-of-the-art
papers [You+19; Wan+19; Ma+20; Sun+20; Che+20] based on pseudo-LIDAR. Although
these state-of-the-art papers use the KITTI 3D detection dataset, we use the KITTI
tracking dataset, the difference between the datasets should not be large. But the results
have a significant gap in terms of the numerical values of the metrics. We believe there
are several reasons for this:
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Dynamic scenes As the Car in the tested sequence is dominated by moving Car, we
compare all the depth estimation models using monocular images, the depth estimation
of moving objects is more difficult than static objects.

No data leakage Although pseudo point cloud based object detection performs brightly
on the validation dataset proposed by [Che+15], it performs poorly on the benchmark
of the 3D object detection test dataset of the KITTI tracking dataset. [Sim+21] claims
that to generate the pseudo point cloud, [You+19; Wan+19; Ma+20] used Eigen split for
the training of the depth estimation model. However, 1226 /3769(32.5%) images in the
object detection validation dataset are included in the training dataset of Eigen split.

No optimization for 3D detection tasks Although the depth estimation of our MonoRec++
is improved compared to MonoRec. But compared with other pseudo point cloud
based detection models such as [You+19; Ma+20], MonoRec++ is not optimized for the
object detection task.

No stereo images at test phase Other detection models such as [Sun+20; Che+20] use
stereo images in both training and testing phases in order to obtain more accurate
depth estimates and pseudo point clouds.

And since the Car in the test dataset is dominated by moving Car, this explains why
MonoRec++ performs worse than other monocular depth estimation models in the 3D
target detection task, because of its poor performance in depth estimation of moving
objects.

4.6 Limitation

1. Slow training and inference Because the cost volume depends on the output of
the scene flow module, the two cannot be computed in parallel, so the speed is
also slower than MonoRec in the training and inference stages.

2. Non-Lambertian planes or poor texture scenes For non-Lambertian planes or
poor texture scenes, our proposed method cannot estimate the depth accurately,
which is still a difficulty in depth estimation based on photometric errors for all
related methods.

3. Coarse moving objects Although our method can partially improve the accuracy
of the scene flow module, we still use a disparity-based self-supervised method to
train the scene flow module, and we still cannot accurately model moving objects.
as shown in Figure 4.4, Figure 4.5 and Figure 4.6
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(a) sequence 0010, frame 218 (b) sequence 0010, frame 218

(c) sequence 0013, frame 307 (d) sequence 0013, frame 307

Figure 4.11: Failure case of non-Lambertian planes or poor texture scenes.
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5 Conclusion and Outlook

5.1 Conclusion

Based on MonoRec, we propose a deep learning model that estimates the accurate
scene depth using only consecutive images and the corresponding poses. In order to
estimate the depth of moving objects more accurately, we propose to supplement the
cost volume with scene flow information, which breaks the limitation of estimating
depth based on MVS for static scenes. First, we use the scene flow module and the
poses to estimate the moving flow. Then, we use semantic segmentation masks to
remove the inaccurate moving flow. The cost volume based on the moving flow can
obtain more information about moving objects. Moreover, we also propose a new joint
learning process and loss function. The modules can be combined more reasonably.

On the KITTI tracking dataset, MonoRec++ is able to make significant progress in
moving object depth estimation based on MonoRec. However, compared to other
monocular depth estimation models, MonoRec++ still has a gap in the depth estimation
of moving objects.

5.2 Future Work

Although MonoRec++ has been successful in depth estimation of moving objects
compared to MonoRec. But we still haven’t solved the non-Lambertian planes or poor
texture scenes problem of self-supervised learning for depth estimation. Another point
is the inference time, the cost volume needs to wait for the inference process of the
scene flow module. It is worth exploring to improve the inference speed by solving the
scene flow estimation and depth estimation based on MVS problems with the same
model. Inspired by Manydepth, using the feature maps generated by the deep learning
model and the feature scene flow to build the cost volume is also a possible direction.
Finally, there is a gap between the 3D detection results of pseudo point clouds based
on monocular depth estimation and point clouds. But how to better use the pseudo
point cloud as an expression form needs more thinking from related researchers.
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Abbreviations

VO Visual Odometry

BEV Bird-eye View

CNN Convolutional Neural Network
RNN Recurrent Neural Network
MVS Multi-view Stereo

SSIM Structural Similarity Index Measure
ToF Time of Flight

RMSE Root Mean Squared Error
Abs Rel Absolute Relative Difference
Sq Rel Squared Relative difference
AP Average Precision

loU Intersection over Union

GRU Gate Recurrent Unit

CRF Conditional Random Field
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Abbreviations

MLP Multilayer Perceptron
CV Computer Vision

DL Deep Learning
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