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Abstract

“Where was this image taken?” is an intriguing question that has been posed in the literature
and is of interest for many applications, from localization of smartphone images to automatic
geo-tagging on an online photo platform.

Traditional content-based image retrieval (CBIR) systems typically localize images with
a pipeline based on hand-crafted feature descriptors such as SIFT. Convolutional neural
networks (CNNs), on the other hand, can be trained end-to-end to learn appropriate features
from training data. CNNs have been very successful on many computer vision tasks such
as image classification, optical flow prediction, and image superresolution. Recent neural
network models such as PoseNet and PlaNet have considered localization of images as
regression or classification tasks.

In this thesis, we investigate two different approaches for image-based localization. In the
first approach, we improve upon PoseNet’s idea of performing pose regression in a specific
localization area. In particular, we introduce a neural network model based on PoseNet and
LSTMs for single-image regression, and extend this approach to regression from sequences of
images. In a second approach, we train a Siamese network on pairs of images that have been
taken at nearby locations. The resulting network has the advantage that it is not limited to a
specific localization area.

We evaluate our models on the Cambridge Landmarks datasets, an indoor dataset from
Deutsches Museum, and the well-known Dubrovnik dataset. We obtain at least competitive,
but often outperforming results on most datasets.
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1. Introduction

The widespread use of smartphones equipped with receivers for global navigation satellite
systems (GNSS) has enabled a wide range of applications in industry, logistics, sports, and
many other fields. Smartphone apps allow users to easily find their way in cities and remote
areas alike.

However, life does not only take place outdoors. In the case of navigation, an ideal system
would not only find a way to the outside of a building, but to the actual target location of the
user, which is often inside the building. For example, while users can find their way to an
airport with a GNSS-equipped smartphone, they have to rely on other means of navigation
once inside. This is because GNSS systems require line of sight to several satellites and
therefore in general cannot operate in indoor environments [54, p. 1].

As smartphones are typically equipped with WiFi and Bluetooth connectivity, it is possible
to perform indoor localization based on the signals from WiFi access points or Bluetooth
beacons, provided the origins of the signals are known. Especially for large buildings, this
requires the setup and maintenance of a significant number of transmitting devices.

Humans mostly rely on visual clues to pinpoint their location. They obtain these clues
from e. g. distinctive building façades, logos, or vegetation, but also from infrastructure built
explicitly to facilitate human orientation and navigation, such as street- or door signs.

Modern smartphones are also equipped with high-quality cameras. Image-based localization,
which describes the task of predicting where an image has been taken, can therefore be
applied for indoor localization. In contrast to the previous approaches, this does not require
the setup and continuous maintenance of infrastructure, but only the creation of a database
of georeferenced images.

Devices for the creation of such databases have been described in the literature [24], but a
wide range of commercial solutions are also available. This makes it feasible to create such a
database even for buildings of tens of thousands of square meters.

Image-based localization also has its use in outdoor environments, as GNSS-based localiza-
tion is often inaccurate in dense urban environments [54, p. 1].

Using a system that extracts clues, or features, from a given image, images containing
similar features can be looked up from the georeferenced database. From these, possible
locations of the input image can be deduced.

It is important to note that not all features depicted in an image are useful for localization.
For example, company logos on a wall typically do not change often, and are therefore
distinctive of a certain location. On the other hand, content such as advertisement posters
might be removed in the future and thus cannot be reliably used for localization. A feature
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1. Introduction

extraction system should thus be able to work even if only a subset of features is still present.
This is the basic idea of content-based image retrieval (CBIR). To find features, we can

use hand-crafted feature extractors such as SIFT [38], or use machine learning to train an
appropriate model that extracts features from raw image pixels.

Instead of using a lookup database of reference images, position and/or orientation of
an input image can be predicted as continuous values, which constitutes pose regression.
Alternatively, a classification approach can localize an image by finding the most probable out
of a number of discrete locations.

Artificial neural networks refer to a class of machine learning tools that have recently
become increasingly popular and are considered state-of-the-art for a multitude of tasks,
ranging from speech processing to image classification.

Convolutional neural networks (CNNs) [10, 34] are used to classify the content of images
into one of multiple categories [33, 57, 61, 17, 60], finding the position of items depicted in
an image [17], and many other tasks related to computer vision.

Convolutional neural networks owe their success to their property of end-to-end learning of
hierarchical features from data, where features of a certain level build upon features of a lower
level [29]. For example, simple features like the existence of lines of certain orientations in
an image are combined into intermediate features describing simple shapes, which in turn are
used to build complex features that detect faces. This is in contrast to hand-crafted feature
extractors such as SIFT [38], which compute features directly from an input image.

Deep learning refers to neural networks with a large number of such levels, or layers. The
term is not well-defined [52], but recent neural network architectures such as [33, 61, 17]
can all be considered “deep” [17].

Recurrent neural networks (RNNs) [48] are typically used to work with sequential data
such as speech or text. However, they can also be used on sequences of images [67] or on
single images by processing them as sequences of pixels [65].

The main contributions of this work are as follows:

• We improve the existing PoseNet [31]model for location regression from a single image
by processing extracted features with recurrent neural networks.

• We extend location regression from single images to image sequences.

• We perform Siamese training to obtain neural networks to extract similarity-based
features. We use these features in localization based on content-based image retrieval
on an indoor dataset.

The remainder of this work is organized as follows. In chapter 2, some background on
artificial neural networks is presented. Chapter 3 gives a more detailed motivation for
our work and introduces the primary use case we consider for image-based localization.
In chapter 4, the concepts of the previous chapters are combined to discuss how to apply
neural networks on the task of image-based localization, and introduces several neural
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1. Introduction

network models. Experiments on these models are discussed in chapter 5, with chapter 6
following up with a discussion of the results. Finally, chapter 7 presents the conclusion
and gives an outlook on possible future work. In appendix A, we give some notes on our
implementation.
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2. Artificial Neural Networks

This chapter presents the theoretical background on artificial neural networks required for the
proposed method. Section 2.1 introduces the concepts of individual neurons and arranging
them into basic layers to form feedforward neural networks. Other types of layers used
to construct networks for processing spatial data, i. e. convolutional neural networks, and
sequential data, i. e. recurrent neural networks, are presented in section 2.2 and section 2.3.
After section 2.4 discusses supervised training, some important regularization techniques to
improve the performance of neural networks are discussed in section 2.5.

Building on all of these concepts, two neural network models originally designed for image
classification are presented in section 2.6. Variants of these models adapted for image-based
localization are introduced in chapter 4.

2.1. Feedforward Neural Networks

Artificial neurons are loosely inspired by biological neurons, i. e. brain cells, in that they
receive input signals on multiple connections and only produce an output signal if a weighted
sum of the inputs reaches a certain threshold [29].

Mathematically, a single artificial neuron with K input values represents a nonlinear function
g : RK 7→ R, parametrized by a weight vector w , a bias b, and a non-linear activation function

σ [29]:

g(x ) = σ

�

K
∑

k=0

wk xk + b

�

= σ(w T x + b) (2.1)

Figure 2.1 shows an illustration of an artificial neuron.
A set of neurons with a common activation function σ can be arranged into a layer.

Each neuron of a layer l feeds its outputs only into neurons of layer l + 1, constituting the
feedforward property. A network of multiple consecutive layers connected in this way is called
a feedforward neural network. The number of neurons in each layer determines the width of
each layer, while the number of layers determines the depth of the network [12, pp. 168–169].

Note that due to the feedforward property, the outputs of all neurons of a layer l can be
computed in parallel [12, p. 169]. A layer l with K(l) neurons operating on an input vector

x (l−1) thus represents a non-linear function f (l) : RK(l−1) 7→ RK(l) , producing an output vector
x (l):

4



2. Artificial Neural Networks

∑

k

wk xk + b σ
g(x )

x
0

x1

x 2

Figure 2.1.: Artificial neuron. As described in eq. (2.1), the neuron computes the weighted
sum of an input vector x = (x0, x1, x2)

T , adds a bias value, applies an activation
function σ, and outputs the resulting scalar value. Image based on [29].

x (l) = f (l)(x (l−1)) (2.2)

The layer function is defined as:

f (l)(x ) = σ(l)(W (l)x + b(l)) (2.3)

The weight matrix W (l) and the bias vector b(l) of a layer are constructed from the weight
vectors w and bias values b of the individual neurons comprising the layer.

For a network of L consecutive layers, the overall network parameters θ are given by the
individual layer weights W (l) and biases b(l). Explicitly specifying the parameters θ , the
network thus represents a function y = f (x ;θ ) and can be written as a composition of its

layers as f : RK(0) 7→ RK(L) [12, p. 168]:

f (x ;θ ) = ( f (L) ∗ f (L−1) ∗ . . . ∗ f (1))(x ) (2.4)

The output of the last layer of a network, x (L) = f (L)(x (L−1)), is equivalent to the output
of the whole network y = f (x ;θ ). This layer is thus called the output layer [12, p. 169].
Because these output values are used e. g. for regression or as class scores for classification,
usually no activation function σ is applied in the output layer [29]. The network input x ,
equivalent to the first layer’s input x (0), can be represented as a separate input layer [29].
The intermediate neural layers are called hidden layers [12, p. 169].

Figure 2.2 shows an example of a feedforward neural network with two hidden layers,
represented as a directed acyclic graph.

5



2. Artificial Neural Networks

x
(0)
1

x
(0)
2

x
(0)
3

Input
layer

x
(1)
1

x
(1)
2

x
(1)
3

x
(1)
4

Hidden
layer

x
(2)
1

x
(2)
2

x
(2)
3

x
(2)
4

Hidden
layer

y1

y2

Output
layer

Figure 2.2.: Feedforward neural network. This example network consists of an input layer
x (0), two hidden layers of width 4, and an output layer y of width 2. Bias values
are not shown. Note how neurons of each layer l − 1 are only connected to
neurons of the subsequent layer l, resulting in the feedforward property. As
described in eq. (2.4), the network function f : R3 → R2 can be written as a
composition of its layer function as f (x ) = f (3)( f (2)( f (1)(x ))). Image based
on [29].
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(a) ReLU activation function.
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(b) tanh activation function.

Figure 2.3.: Examples of activation functions used in artificial neural networks. The
rectified linear unit (ReLU) is typically used by convolutional neural networks [12,
p. 174], while tanh is typically used in recurrent neural networks [14, 49].

2.2. Convolutional Neural Networks

The feedforward networks described so far operate on vectors x ∈ RK . In convolutional

neural networks, the input is instead a three-dimensional volume x ∈ Rx ×Ry ×Rd , i. e. of
certain width× height× depth. Convolutional neural networks are thus especially suited for
processing images [29]. For example, an RGB image of 28× 28 pixels can be represented as
a volume of size 28× 28× 3.

In the following sections, different types of layers used in convolutional neural networks
are described. An overview is shown in table 2.1.

Table 2.1.: Overview of basic CNN layers. Based on [29]. Input size: x × y × d.

Convolutional Pooling Fully connected

Hyperparameters filter size x f , y f filter size x f , y f number of filters n

stride sx , sy stride sx , sy

padding px , py

number of filters n

# of train. params. (x f · y f · d + 1) · n none (x · y · d + 1) · n

Output size x → x−x f +2px

sx
+ 1 x → x−x f

sx
+ 1 x → 1

y → y−y f +2py

sy
+ 1 y → y−y f

sy
+ 1 y → 1

d → n d → d d → n

As noted in section 2.1, an activation function is used to introduce nonlinearity in neural

7



2. Artificial Neural Networks

networks. The rectified linear unit (ReLU, [43]) is currently the default choice for the activation
function σ in convolutional neural networks [12, p. 174], although alternatives have been
proposed [11, 18]. ReLU is defined as:

ReLU(x) =max(0, x) (2.5)

The ReLU function is visualized in fig. 2.3a.

2.2.1. Convolutional Layers

A convolutional layer operates on an input volume of size x × y × d. It applies a filter of size
x f × y f ×d, where x f ≤ x , y f ≤ y , on each spatial position (x ′, y ′) to yield an output volume
xo × yo × 1. Two hyperparameters sx and sy , called stride, determine the spacing in width
and height between the positions (x ′, y ′). If sx = sy = 1, the filter is applied on each spatial
position of the input volume [29]. An illustration is shown in fig. 2.4.

Conv(·)

Figure 2.4.: Example of a convolutional layer. The layer consists of a single convolutional
filter (i. e. n = 1) of size 3× 3× 5, applied with stride 1 and no padding on a
4× 4× 5 input volume. The convolutional filter (in green) operates across the
whole depth of the input volume at all four possible spatial positions (x ′, y ′),
denoted by circles, resulting in an output volume of size 2× 2× 1.

As shown in the illustration, due to the size of the filter, the output volume’s spatial size
can be smaller than the in input volume, i. e. xo ≤ x , yo ≤ y . In particular, xo < x if x f > 1.
Padding of size px , py can be used on the input volume to increase its spatial size x , y before
applying the filter, thus again increasing the output volume’s size xo, yo. Typically, padding is
performed with values of zero [29].

In summary, the spatial size of the output is computed as [29]:

8



2. Artificial Neural Networks

xo =
x − x f + 2px

sx

+ 1 (2.6)

yo =
y − y f + 2py

sy

+ 1 (2.7)

Typically, a convolutional layer consists of not only one, but multiple filters. Applying n of
these filters and stacking their outputs along the depth dimension results in outputs of shape
xo× yo×n. An example of a convolutional layer with multiple three filters is shown in fig. 2.5.
This allows to learn d different features from an input volume by applying a convolutional
layer. For example, if the input to a convolutional layer is an RGB image, an entry at spatial
position (x , y) at depth d in the output volume indicates if a feature like a corner or a blob of
a certain color has been detected in the original image at position (x , y) [29]. In chapter 5,
we will see what kind of features are detected by convolutional layers in neural networks for
image-based localization.

d d
d

d

∗

3

=

Figure 2.5.: Example of a convolutional layer with three filters. As each filter is applied
on the whole depth d of the input volume, the output volume has a depth of 3.

Denoting the layer weights and biases as W resp. b, the output of a convolutional layer is:

f (x ; W , b) = ReLU(Conv(x ; W , b)) (2.8)

2.2.2. Pooling

Pooling layers are used to reduce the dimensions of an input volume by applying a reduction
operation on a small spatial neighborhood. This is done independently for all depth slices

9



2. Artificial Neural Networks

of the input volume. Typical examples are max pooling and average pooling, both of which
operate on a rectangular neighborhood [12, pp. 339–342]. Figure 2.6 illustrates a pooling
layer on a 2× 2 neighborhood.

Applying pooling introduces an invariance to small translations into the network, i. e. the
output of the pooling layer does not change if the input values are spatially shifted by a small
amount. It also reduces the computational complexity of the network, as subsequent layers
operate on smaller input volumes [12, p. 342].

d

x

y

d

x
x s

y
ys

Pool(·)

Figure 2.6.: Pooling layer with stride 2 on a 2× 2 window. Each of the d depth slices of
the input volume is spatially reduced by applying a pooling operation on the
elements inside the window. The pooling operation can for example compute a
composite value such as the average from the window’s values, or select a value,
e. g. by applying the maximum. As pooling is applied separately on each depth
slice, the output volume has the same depth as the input volume.

Contrary to a convolutional layer, a pooling layer is only defined by its hyperparameters
and does not contain any network parameters θ . The output of a pooling layer is:

f (x ) = Pool(x ) (2.9)

While pooling layers are used in many neural network architectures [61, 17], it has
been proposed to not use pooling layers in convolutional neural networks and instead use
convolutional layers with larger stride [58].

2.2.3. Fully Connected Layers

Fully connected layers are an extension of the concepts of section 2.1 to multiple dimensions.
In a fully connected layer, each neuron is connected to all x× y×d entries of an input volume,

10



2. Artificial Neural Networks

resulting in an output of [29]:

f (x ; W , b) = ReLU(W x + b) (2.10)

2.3. Recurrent Neural Networks

The networks presented so far produce a deterministic output for each input they receive,
independent from previous inputs or outputs. Recurrent neural networks (RNNs, [48]) are a
form of neural networks adapted to work with sequential data such as text or videos, and
keep an internal state that is updated for each input. This allows RNNs to retain context
when processing a sequence of data [12, chapter 10].

Explicit parameters depending on the position of an input in a sequence would mean that
only sequences of specific lengths could be supported. Most RNNs support variable-length
sequences by sharing the parameters used for processing each input in a sequence [12, chapter
10].

Following [12, chapter 10], sequences of length τ are denoted as x (1), . . . , x (τ). The updates
to the recurrent neural network’s internal state can then be described by [12, eq. (10.5)]:

h(t) = f (h(t−1), x (t);θ ) (2.11)

h(t) is the hidden state of the recurrent neural network after processing input x (t). f is a
transition function. The shared parameters θ are used by the network to process each input
at a position t in a sequence.

The formulation in eq. (2.11) defines not only feedforward connections, e. g. between an
input x (t) and a hidden state h(t), but also connections between different time steps t − 1
and t. These are called recurrent connections [12, p. 407].

With this formulation, the network continuously updates its hidden state while processing
a sequence, but does not produce any output. Output could for example be produced once
per sequence or for each input [12, p. 379].

For recurrent neural networks, the tanh activation function is typically used [14, 49]:

tanh(x) =
ex − e−x

ex + e−x
(2.12)

The tanh function is visualized in fig. 2.3b.
Instead of only processing the sequence from start to end, it can be beneficial to additionally

go into the opposite direction as well. This is called a bidirectional RNN [12, sec. 10.3].

2.3.1. Long Short-Term Memory

Long short-term memory (LSTM, [21]) is a type of recurrent neural network designed to be
able to learn to accumulate and forget relevant context in its hidden state [12, p. 409].
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2. Artificial Neural Networks

Compared to the basic RNN formulation, an LSTM introduces gates with learnable parame-
ters that decide which values are passed through. Each value hi of the hidden state h of an
LSTM is updated as [12, pp. 410–411]:

h
(t)

i
= f

(t)

i
h
(t−1)
i

+ g
(t)

i
li(x

(t), y (t−1)) (2.13)

The forget gate f (t) is multiplied on the previous hidden state h(t−1) to decide which values
should be removed. Similarly, the input gate g (t) is multiplied on some function l of the
current input x (t) and the output of the previous step y (t−1) to decide which values should
be used to update the internal state [12, pp. 410-411].

Finally, an output gate q (t) is applied to the internal state h(t) to decide which values should
be used for producing the output y (t) of the LSTM for each input [12, p. 411]:
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i
(2.14)

For more details on how f (t), g (t), q (t), and l are defined, see [12, sec. 10.10.1]. Together,
the weights and bias parameters of the gates comprise the LSTM network parameters θ .

2.4. Supervised Training of Neural Networks

So far, the structures of various neural network variants have been described. All of them
calculate an output y from an input x given network parameters θ . In this section, we will
answer the question of how to obtain θ from a dataset of labeled examples by supervised

learning.
In supervised learning for neural networks, the goal is to learn a function y∗ = f ∗(x )

by approximating it with a neural network y = f (x ;θ ) [12, p. 168]. Crucially, the true
function f ∗ is unknown; in the setting of supervised learning, only some example data x and
corresponding desired outputs y∗, called labels, are known [12, p. 105].

The labeled data is divided into a training and a testing set. During training, the network
predicts y for inputs x from the training set. The predictions y are compared to their
corresponding labels y∗ to calculate a training error, or loss [29] J(θ ), of the network under
its current parameters θ . By adjusting the network parameters to minimize the loss, we
indirectly try to approximate f ∗ with the network function f [12, p. 275].

To verify if this goal has been achieved, the network is evaluated on the testing set after
training has finished to calculate a testing error [29]. It is crucial that training and testing sets
are disjoint to verify that the network indeed generalizes to previously unseen instances [12,
p. 110].

If the loss is low during training, but high during evaluation, this is an indication that the
model overfits [12, p. 111]. An example is when the model just remembers all the training
data and its corresponding labels, which would lead to zero loss during training, but not
produce any meaningful predictions on previously unseen testing data.
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2. Artificial Neural Networks

To optimally update the network’s parameters during training, it would be necessary to
calculate the training error from the predictions of all training examples x . Usually, this is
not possible due to the large amount of examples compared to available computing resources
(e. g. GPU memory). Instead, a random subset of all data, a minibatch, is used to compute
the updates to the network parameters θ [12, p. 278].

Trying to minimize the loss, the network parameters are updated by using backpropagation

([48]. For recurrent neural networks, a similar technique called backpropagation through

time (BPTT) can be employed [12, sec. 10.2.2].

2.5. Regularization for Neural Networks

Regularization is used to improve the generalization properties of neural networks, i. e.
avoiding overfitting and helping them perform well on previously unseen data [12, p. 228].
In this section, a few basic regularization strategies are presented. In later sections, these
strategies, together with the basic building blocks of the previous sections, are used to build
neural network models.

2.5.1. Weight Decay

Weight decay or L2 regularization is a basic regularization technique also employed for non-
neural-network machine learning models. It limits the capacity of a model by adding a penalty
on the values of the network parameters θ [12, p. 230], thereby reducing its potential to
overfit [12, p. 112]. Adding a penalty term results in the loss function [12, eq. (7.1)]:

Jdecay(θ ) = J(θ ) +λ‖θ‖2
2 (2.15)

λ > 0 is a hyperparameter that controls the regularization strength.

2.5.2. Dropout

Dropout [59] is a technique to combat overfitting during training by randomly disabling a
neuron and its connections. This can be done by setting the respective network weights
to zero. Intuitively, disabling neurons prevents layers from relying on specific inputs too
much, thus requiring them to better generalize by utilizing more of its inputs. Each neuron
is independently disabled with a probability p ∈ (0,1] [12, sec. 7.12]. Figure 2.7 shows a
visualization of dropout applied on a small neural network.

Dropout is a computationally cheap way to perform regularization that performs better
than other simple regularization techniques such as weight decay [12, p. 265].

Dropout can also be applied during evaluation [30], which is described in more detail
in section 4.1.2. In Recurrent neural networks, dropout is typically only applied on the
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Figure 2.7.: Visualization of dropout. In this example, dropout is applied on four hidden
layers of an artificial neural network. Applying dropout randomly sets some of
the neuron’s weights to zero, effectively causing the respective connections to
and from these neurons to be disabled. Image based on [59, fig. 1].

feedforward part (i. e. on the connections to the network input or output), not on the
recurrent connections between the hidden state for each time step [45, 71].

2.5.3. Local Response Normalization

Local response normalization (LRN) has been introduced in [33, sec. 3.3], where it is applied
directly after ReLU nonlinearities and has been found to improve generalization of the network.
For an input h of some spatial size and depth d, each value hi

x ,y at spatial position (x , y) and

depth i ∈ {0, . . . , d − 1} is normalized by ηi
x ,y , defined as [33, sec. 3.3]:

ηi
x ,y =



k+α

min(d−1,i+ n
2 )∑

j=max(0,i− n
2 )

(h j
x ,y)

2





β

(2.16)

k, α, and β are scalar hyperparameters. n ∈ N is a hyperparameter determining the number
of depth-wise adjacent values that are used for normalization at each spatial position (x , y).

2.5.4. Batch Normalization

When training a neural network, parameter updates for each layer are computed under the
assumption that the parameters of all other layers are constant. However, in practice, all
layers are updated at the same time, which can lead to unexpected results [12, p. 317].
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2. Artificial Neural Networks

Batch normalization [25] is a regularization technique that can be applied to the outputs
of any layer in a neural network and helps to reduce this problem [12, p. 318].

For a batch of m outputs of a layer, each value hi is normalized to y ′
i

as [12, eq. (8.35)]:

y ′i =
hi −µ
σ

(2.17)

During training, µ and σ are vectors of the mean and standard deviation computed
element-wise for each value hi across the batch as [12, eq. (8.36), eq. (8.37)]:

µ =
1

m

m
∑

i=1

hi (2.18)

σ =

√

√

√

δ+
1

m

m
∑

i=1

(hi −µ)2 (2.19)

δ > 0 is a small scalar to avoid
p

0.
During evaluation, µ and σ are replaced by their average values during training [12, p.

319].
This normalization prevents a layer from updating its parameters merely to increase mean

or standard deviation of the outputs. However, it can also reduce the network’s expressive
power [12, pp. 319]. Therefore, the final batch-normalized value y i = BN(hi;γ,β) of each
entry in a batch is computed as [12, p. 320]:

y i = γy ′i + β (2.20)

γ and β are learned during training [12, p. 320] and scale resp. shift the normalized values
to restore the original expressive power of the network [25, p. 3]. Instead of producing a
specific mean value based on the layers before h, the mean only depends on β , making it
easier for the network to learn [12, p. 320].

2.6. Neural Network Models

In this section, we discuss the well-known Inception and ResNet architectures and the
GoogLeNet and ResNet-50 models based on these architectures.

Both models were originally introduced for classification problems such as ImageNet [7].
However, it has been shown that models that do well on one task, e. g. image classification,
can be successfully applied to other tasks such as regression by using transfer learning, where
model parameters are initialized with the results of training on another dataset [8, 69, 31].
We utilize transfer learning in later sections, where variations of GoogLeNet and ResNet-50
are used for image-based localization.
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2. Artificial Neural Networks

2.6.1. GoogLeNet

The GoogLeNet model has been proposed in [61]. It is one incarnation of the so-called
Inception architecture, named after the Inception building blocks introduced in the same
paper. The Inception blocks and the overall Inception network architecture have been
improved in subsequent publications [62, 60].

The original Inception blocks are a combination of multiple convolution and pooling
operations executed on the same input volumes. The output of all of these operations is
concatenated depthwise to form a single output volume. Figure 2.8 shows an illustration of
an Inception block.

layer input

Conv1×1

Conv3×3

Conv1×1

Conv1×1

Conv5×5

MaxPool3×3

Conv1×1

depthwise concat

layer output

Figure 2.8.: Inception block. The input is independently processed by four different
pipelines, all of which create an output of the same spatial dimensions. The
output of the Inception layer is created from depthwise concatenation of the
pipeline outputs. Image based on [61, fig. 2b].

Including the output layer, GoogLeNet consists of 22 layers with trainable network parame-
ters. Each branch of the network outputs classification scores, which are abstracted away as
“output” blocks in the GoogLeNet visualization in fig. 2.9. Dropout is applied for each branch
immediately before these output blocks.

GoogLeNet is unusual in that it has three distinct output branches that all contribute to the
network’s loss during training. In addition to the final output at the end of the network, two
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2. Artificial Neural Networks

auxiliary outputs branch off the main path at intermediate stages. During evaluation, these
auxiliary branches are discarded.

Including an additional regularization term on the network parameters θ , the overall loss
of GoogLeNet is:

JGoogLeNet(θ ) = J(θ ) + γJ (1)aux(θ ) + γJ (2)aux(θ ) +λ‖θ‖ (2.21)

γ > 0 is a hyperparameter to weigh the losses of the auxiliary outputs against the final
output.

2.6.2. ResNet-50

Residual neural networks, or ResNets for short, have been introduced in [17] and improved
in subsequent publications [19, 70, 60]. Their basic building blocks are sequences of con-
volutions bypassed by skip connections, causing the model to learn residual values in the
convolutional layers. A basic ResNet block with input x and output y can be expressed as:

y = ReLU( f (x ) + x ) (2.22)

f (x ) = Conv3×3(ReLU(Conv3×3(x ))) (2.23)

Figure 2.10 shows an illustration of a basic ResNet block. The basic block is further
improved into a so-called “bottleneck” block with three convolutions:

y = ReLU( f (x ) + x ) (2.24)

f (x ) = Conv1×1(ReLU(Conv3×3(ReLU(Conv1×1(x ))))) (2.25)

In a bottlenet block, the 1× 1 convolutions are used for reducing and restoring the depth
dimension, resulting in a smaller input depth for the 3× 3 convolution, therefore reducing
complexity. Due to this design, inputs to the bottleneck block can have larger depths than
inputs to a basic block of similar time complexity [17, p. 6].

The ResNet-50 model, also introduced in [17], consists of 16 bottleneck blocks. Including
a convolutional layer after the input layer and a fully connected output layer, the overall
model contains 50 layers with trainable parameters.

ResNet-50 also makes heavy use of batch normalization, but does not use dropout. Follow-
up work suggests that while applying dropout to the skip connections is harmful [19], applying
dropout in between convolutional layers could be beneficial [70].

Contrary to GoogLeNet, ResNet-50 has only one output, leading to the weight-decayed
loss function:

JResNet-50(θ ) = J(θ ) +λ‖θ‖ (2.26)
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Figure 2.9.: GoogLeNet model. This illustration shows all layers of the GoogLeNet model.
Inception blocks are shown in more detail in fig. 2.8. The output blocks of the
network are only depicted as placeholders, as they are used for classification in
the original model, but will be adapted for image-based localization in chapter 4.
The auxiliary outputs, denoted by dashed lines, are only used during training
and discarded during evaluation. Dropout is applied before each output block.
Image based on [61, fig. 3].
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input

3x3 conv

ReLU

3x3 conv

+f (x ) + x
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output

x

Figure 2.10.: Basic ResNet block. The skip connection bypasses the two convolutional layers
and causes them to learn a residual f (x ) added to x . Rectified linear units
(ReLUs) are depicted separately, as they are not applied after every convolutional
layer. Image based on [17, fig. 5].
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3. Image-Based Localization

This chapter presents some background on the goal of the proposed method. In section 3.1,
we describe the primary use case we consider for an image-based localization system. Based
on the use case, section 3.2 introduces the localization task and relates it to similar problems
posed in the literature. Finally, section 3.3 discusses three machine-learning-based approaches
to solve the localization task and examines existing methods in this context. Neural networks
for localization based on these approaches are introduced in chapter 4.

3.1. Primary Use Case

In this work, we consider a localization system that performs online localization from smart-
phone images. Localization should take place within a well-defined search area, for example
a university campus. We consider both outdoor and indoor environments and aim for street-
resp. room-level localization accuracy. While applications for e. g. augmented reality or
robotic object manipulation often require sub-meter accuracy, we already consider a location
prediction within a radius of multiple meters of the true position suitable for our use case,
as humans are able to correct for errors within this margin [20]. The use case is illustrated
in fig. 3.1.

We do not perform continuous visual localization, but only consider sparsely captured im-
ages. This removes the need to continuously record the environment, improving smartphone
battery life and making the system more convenient to use.

We assume an existing network connection, so the localization process is not required to
run exclusively on the smartphone, but can utilize e. g. GPUs on a server system. Although
we are interested in the prediction of both orientation and position, an accurate position is
more important. The prediction of a yaw angle resp. compass direction would be enough for
the use case, as illustrated in fig. 3.1b.

The only inputs we consider are RGB images; in particular, no depth information must be
required for performing a prediction, as current smartphones are not commonly equipped
with RGB-D sensors.

We assume that the localization system has access to a sparse database of georeferenced
images, obtained for example from a Structure from Motion (SfM) system [36, 1] or an
indoor mapping device [24].

Query images to the localization system are expected to not depict completely new scenes,
but rather show a previously seen location under different viewing conditions. Depending
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3. Image-Based Localization

(a) RGB image. (b) Associated camera pose.

Figure 3.1.: Illustration of the localization use case. The goal of localization is to predict
the position and orientation (right) of a single RGB image (left) in a well-known
indoor or outdoor environment. Position errors up to multiple meters are ac-
ceptable, as humans can still successfully use such a system for localization [20].
Images by NavVis GmbH. Contains maps based on map data copyrighted by
OpenStreetMap contributors, available from http://www.openstreetmap.org.

on whether scenes are indoors or outdoors, this can include [24, 2]: varying lighting and
weather conditions; changing seasons and vegetation; occlusions due to pedestrians, vehicles,
furniture, or other objects; smaller environment changes such as opened or closed doors,
replaced posters or banners, or moved objects; and using different cameras to capture images.

3.2. The Localization Task

Working towards this use case, we define the localization task as determining the location of
an image in an arbitrary coordinate frame. More specifically, we want to predict the camera

pose of an image. This is also known as camera relocalization [31].
In the basic localization task, each input image x ∈ I is processed independently to predict

a location y = f (x ). How this location is represented depends on the used approach and is
detailed in section 3.3.

We also consider an extended task, where sequences of t RGB images x (1), . . . , x (t) taken
in short temporal succession are localized jointly as y (1), . . . , y (t) = f (x (0), . . . , x (t)).

3.2.1. Related Research Areas

The localization task is related to Visual Place Recognition, which talks about a system con-
cerned with the question of whether an “image is of a place it has already seen” and, if so,
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which of a number of known places the image depicts. A Visual Place Recognition system
can work purely by retrieving similar images of already seen places without having to know
their positions [39], and is therefore a too general concept for the localization task, where
we need to obtain the explicit location of an image.

Visual Place Recognition is related to Simultaneous Localization and Mapping (SLAM) [39],
which estimates a model of the environment and the state of a robot in this environment
at the same time [4]. The localization task considered here is distinct from SLAM because
SLAM systems usually perform continuous tracking and have problems to cope with large
viewpoint changes between successive images [30, p. 1]. This makes them unsuitable for
processing sparsely captured images as in our use case.

Another related area is object pose prediction, which is the inverse of camera pose predic-
tion [9, p. 2]. [3] is an example of a Random-Forest-based system that can be used for both
object and camera pose prediction, but has only been evaluated on fine-grained localization
tasks, for example for augmented reality.

Interesting work has also been performed trying to understand how neural networks learn
from images: in [40], images of locations are reconstructed from features extracted by a
convolutional neural network.

3.2.2. Related Use Cases

Our setting is similar to [31], where pose regression is performed on outdoor datasets of at
least a few hundred square meters of spatial extent. The resulting predictions are accurate
up to a few meters, which is sufficient for our use case.

A lot of recent work on camera pose prediction [63, 3, 42] has only been tested in very small
environments, such as rooms of a few square meters size, and achieve position accuracies of
a few centimeters. In contrast to the outdoor datasets of [31], these datasets also have a very
high image density. For example, the widely used 7 Scenes dataset [55] contains hundreds of
images per square meter of floor space, whereas the images used in [31] have been recorded
approximately every 1 m [31, p. 4].

Other related work [16, 28, 35, 67] performs localization on a global scale, i. e. geolocation.
Due to the larger spatial extent of the used datasets, performance decreases proportionately,
and the accuracies achieved by such systems are generally not useful for our use case. For
example, [67] achieves street-level accuracy for only 3.6 % of input images [67, p. 4]. [35]
performs global 6-DOF pose regression by matching 2D image features to 3D points in a
globally aligned point cloud, which can be time-consuming: at the time of publication, the
matching process took a few seconds for each image.
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3.3. Approaches to Localization

In this section, three machine-learning-based approaches to the localization task used in recent
work [67, 31, 2] are presented. All of them aim to predict the location y of an input image
x ∈ I , but differ not only in how y is obtained, but also in how much information y can convey.
We denote the models as functions f (x ;θ ) with parameters θ . For a machine-learning-based
model, parameters θ are obtained by minimizing a loss function J(θ ).

In the approach presented in section 3.3.1, localization is seen as a classification problem,
i. e. finding the location of an image is seen as equivalent to assigning the most probable out
of a fixed number of classes to an image. In the second approach, presented in section 3.3.2,
localization is seen as a regression problem, where a continuous pose in an arbitrary coordinate
frame is predicted from an input image.

Both of these approaches can be implemented end-to-end, meaning that models can be
directly trained to optimize a loss function comparing expected and actual location prediction.
Additionally, the prediction performance and storage requirements of an end-to-end-trainable
system do not depend on the number of images, but are constant after training.

Localization can also be approached as a content-based image retrieval (CBIR) problem,
where a query image is matched against a georeferenced database created from reference
images. A CBIR system computes possible locations for a query image by finding similar-
looking images in the database [24, sec. 1]. The performance characteristics of this approach,
which is presented in section 3.3.3, thus depend on the size and quality of the reference
database. However, computing image similarities in itself can be performed independently of
the search area, and can even be agnostic to the localization problem. Furthermore, other
location-related information such measured WiFi signals can easily be introduced into the
system, as described in e. g. [47].

3.3.1. Localization as Classification Problem

By dividing the search area into fixed number of N non-overlapping cells of arbitrary size, the
localization task can be treated as a classification problem. Consequently, the best possible
absolute accuracy of the system is bounded by the spatial extent of the cells. With this basic
approach, only a position, but no orientation is predicted.

A classification model f : I → RN on an input image x ∈ I computes a class score vector
s ∈ RN , which can be interpreted as a discrete probability distribution over the considered
search area [67, p. 2]. The most probable location y ∈ {1, . . . , N} is corresponding to the
entry with the highest class score in s :

y = arg max
i
(si) (3.1)

The individual scores si can also be used to obtain model confidence: class scores can be
normalized to form a probability distribution, thus corresponding to the model confidence
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about the input image having been taken at a certain location [67, p. 3].
Given an image x ∈ I with location label ŷ ∈ {1, . . . , N}, an end-to-end network for

classification can be trained by minimizing the cross-entropy loss, defined as [29]:

J(θ ) = − log

�

exp(s ŷ)
∑

j exp(s j)

�

(3.2)

PlaNet [67] is an example for a geolocation system using the classification approach. It
divides earth’s surface into cells of variable size and utilizes a convolutional neural network
to predict the class scores. The orientation of images as well as different height levels at the
same position are not considered. The basic CNN-based model has been extended with an
LSTM to more accurately predict locations from sets of multiple images taken from photo
albums [67, sec. 4].

3.3.2. Localization as Regression Problem

Localization can be treated as a regression problem, where the output y of a model on
an input image x directly describes the location in some reference coordinate frame, i. e.
y = f (x ).

In contrast to previously presented the classification approach, y can not only contain
the location, but also the orientation of an image: y = {p,q}, where p ∈ R3 and q ∈
SO(3). Learning position and orientation at the same time can improve the performance of a
model [31, sec. 5.2].

Given location labels ŷ = {p̂, q̂}, a loss function for end-to-end training can be defined as:

J(θ ) = dp(p, p̂) + βdq(q , q̂) (3.3)

In this equation, dq and dp are distance functions between angular resp. positional predic-
tions and labels. β is a weighting factor between angular and positional errors.

In general, no indication of the confidence of the model can be inferred from a regression
model: it is forced to output a pose and has no way of expressing uncertainty about this
prediction [67, p. 3]. This is a disadvantage compared to the classification-based approach
described in section 3.3.1. However, for particular models, this problem can be remedied:
[30] is a regression-based localization system that predicts multiple locations from a single
input image. An uncertainty measure is then calculated from the variance of the location
predictions. This idea is further explained in section 4.1.2.

Regression-based systems can in general produce arbitrarily fine predictions, while ap-
proaches based on classification are limited by the spatial extent defined for each of their
classes. Similarly, the performance of systems based on content-based image retrieval is
bounded by the minimum distance between the entries of the lookup database. Pose regression
has been shown to be able to perform better than a classifier in [31, fig. 6].
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[31] uses a convolutional neural network based on the Inception architecture [61] to regress
a 6-DOF pose. The network model is explained in more detail in section 4.1.1. Leveraging
the idea of transfer learning, the layers of the regression network are initialized with weights
obtained by training Inception models on the large ImageNet [7] and Places [73] datasets.
This reduces training time and prediction performance [31, sec. 5.2] and allows to train on
small training datasets without overfitting [31, p. 1].

3.3.3. Content-Based Image Retrieval for Localization

The usual [67, p. 1] approach to the localization problem is to use content-based image
retrieval. In this method, a model is used to transform an input image x into some repre-
sentation z, the feature vector, as z = f (x ). Using a reference database containing pairs of
feature vectors and location labels (z′, y ′), the nearest neighbor of z can be found as:

z∗ = arg min
z′
(‖z′ − z‖) (3.4)

The location y∗ associated with the found nearest neighbor z∗ can then be used as location
prediction y for the input image x .

Feature vectors can be extracted by a handcrafted algorithm such as Scale-Invariant Feature
Transform (SIFT, [38]), or a machine-learning based approach, where appropriate features
are learned during training. Examples of previous work on content-based image retrieval for
localization on smartphones with handcrafted features include [54, 64].

Machine-learning-based approaches can be distinguished based on the used training dataset.
A model can be pre-trained for a different task on a large dataset and then used to extract
features [2]. It is also possible to train for a classification or regression objective on the target
dataset, and use the outputs of an intermediate layer as feature vector [37]. Siamese networks,
which consist of two weight-sharing networks running on two input images in parallel, can
be used to train on pairs of images labeled as similar or dissimilar. This approach can be used
with a contrastive loss [15] to minimize the distance between similar resp. maximize distance
between dissimilar images in feature space. This is explained in more detail in section 4.3.2.

The Siamese network approach has been extended as triplet networks, where an image
is given into the network together with one similar and one dissimilar image during each
training step [66, 22, 13]. Recently, hybrid Siamese/triplet [68] and Siamese/regression
approaches [9] to extract image features for 3D pose estimation have been proposed.

Instead of using just the output of a single layer as feature vector, outputs of multiple
layers can be combined. [2] is a very recent approach to image-based localization that uses
convolutional neural networks to extract binary features from RGB images. The used network
model contains five convolutional layers and is initialized from ImageNet [7] weights. The
outputs of the convolutional layers at different depths of the network are combined into a
single, high-dimensional feature vector. The size of the feature vector is reduced by a selecting
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a randomized subset while ensuring that features from all different depths of the network
are included.

26



4. Deep Learning for Image-Based

Localization

In this chapter, we describe how we apply deep neural networks as introduced in chapter 2
to the image-based localization task defined in chapter 3. In particular, we consider neural
networks that perform pose regression as described in section 3.3.2 and neural networks
that extract features to use in content-based image retrieval for localization, as described
in section 3.3.3.

We do not consider a classification approach, because [31, sec. 3.1] suggests that trying
to learn position without simultaneously distinguishing different orientations can hinder
prediction performance. Intuitively, this could be because images taken at the same location,
but facing different directions, can be very dissimilar (e. g. depicting completely different
landmarks). Despite these visual dissimilarities, the model is expected to predict the same
position for both input images. Conversely, images taken further apart from each other, but
facing the same direction, might show the same landmarks.

We consider regression networks and feature extraction networks because they both have
unique characteristics: regression networks are end-to-end trainable, but need to be tuned
for each dataset; a CBIR-based approach needs a database to perform predictions, but can be
trained independently of the localization area it should be deployed for.

In section 4.1, we introduce pose regression from a single image. Section 4.2 extends this
approach to sequences of images. Section 4.3 discusses Siamese neural networks for feature
extraction.

We introduce neural network models based on GoogLeNet [61] and ResNet-50 [17], both
of which have been presented in section 2.6. These models are based on the following
assumptions:

1. The training and testing images are either in landscape or portrait format, but not both
formats within the same dataset.

2. The training data does not contain large outliers w. r. t. the pose labels.

3. The training data is labeled with 3-D position vectors and normalized quaternions for
orientation.

4. Images given to the network have the same field of view.
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4.1. Pose Regression from a Single Image

In this section, we introduce neural network models based on GoogLeNet and ResNet-50 to
perform pose regression on a single RGB image.

4.1.1. PoseNet

PoseNet [31] is based on the GoogLeNet [61] model introduced in section 2.6.1. Instead of a
classification vector, it outputs a 6-DOF pose y = {p,q} relative to an arbitrary coordinate
frame, consisting of a position vector p ∈ R3 and an orientation quaternion q ∈ R4.

Compared to the original GoogLeNet, the network is modified as follows [31, sec. 3.2]:

• The three classification output blocks as shown in fig. 2.9 are removed.

• For the final output branch, a fully connected “feature” layer of width 2048 is added.
For the two auxiliary outputs, the existing fully connected layers of width 1024 are
kept. Dropout is applied after each of the fully connected layers.

• For each of the three output branches, fully connected pose prediction layers for position
vector and orientation quaternion are added after the respective feature layers. This is
illustrated in fig. 4.1.

feature vector

FC3 FC4

p = (x y z)T q = (w p q r)T

Figure 4.1.: Pose prediction layers. The 6-DOF pose output of a pose regression network
is produced by two separate fully connected pose prediction layers, which are
attached to each output branch of a network.

Each output’s pose loss for a pose prediction y = {p,q} under network parameters θ and a
corresponding label y∗ = {p∗,q∗} is defined as [31, eq. (2)]:

Jpose(θ ) = ‖p − p∗‖2 + β













q

‖q‖2
− q∗












2

(4.1)

The scalar hyperparameter β ∈ R determines the relative weight of orientation errors to
positional errors and depends on the training dataset. As the network is not guaranteed to
output a valid unit quaternion, it is necessary to normalize q .
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The loss of the overall network JPoseNet(θ ) is a weighted sum of the losses of each output
and an additional regularization term, as defined in eq. (2.21).

PoseNet predicts both position and orientation for an image from the fully-connected feature
layer. This has been found to be more effective than either training two completely separate
networks or branching a single network into separate paths for position and orientation
regression, which has been attributed to the network not being able to separate positional
and orientation information from each other without having been trained jointly on both [31,
sec. 3.1].

4.1.2. Probabilistic PoseNet

Similar to the original GoogLeNet, PoseNet uses dropout to reduce overfitting during training.
In the Probabilistic PoseNet [30], dropout is also used during evaluation to gain insight into the
uncertainty of the network about its predictions. For example, there could be multiple equally
probable poses where a highly ambiguous image could have been taken. However, the basic
PoseNet as described in section 4.1.1 can only produce a single deterministic output for an
input image. In the Probabilistic PoseNet approach, the network is repeatedly evaluated with
a fraction of its neurons randomly disabled, resulting in multiple different pose predictions
for one single input image [30, sec. 4]. An uncertainty measure can then be obtained from
the variance of the pose predictions [30, sec. 4.1].

The evaluation of a Probabilistic PoseNet is described in algorithm 4.1.

Algorithm 4.1 Evaluation of a Probabilistic PoseNet (taken from [30, sec. 4])

1: function PREDICT POSE(image x , learned network parameters θ ∗, number of samples N)
2: samples← new List
3: for n← 1 to N do

4: network parameters θ ← θ ∗
5: for network parameter in θ do ⊲ apply dropout
6: with probability p set neuron activation to zero
7: end for

8: x ← evaluate network
9: samples.append(x)

10: end for

11: pose prediction← average of samples
12: uncertainty← COMPUTE UNCERTAINTY(samples) ⊲ Details in [30, sec. 4.A]
13: return pose prediction, uncertainty
14: end function
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4.1.3. PoseResNet

As ResNets [17] improve the performance on classification datasets such as ImageNet [7]
compared to GoogLeNet, we introduce the PoseResNet model to investigate how better
classification performance translates to our localization task.

PoseResNet is based on the ResNet-50 model, described in detail in section 2.6.2. Similar
to the GoogLeNet modifications described in section 4.1.1 that resulted in PoseNet, ResNet-50
is modified for PoseResNet by replacing the classification output layer with a fully connected
feature layer. The output of the feature layer is used by pose prediction layers as illustrated
in fig. 4.1 to compute a 6-DOF pose.

The loss of the network JPoseResNet(θ ) is the same as the ResNet-50 loss as described
in eq. (2.26), but substituting the pose loss Jpose(θ ) described in eq. (4.1) for J(θ ).

4.1.4. Directional PoseNet

We introduce the Directional PoseNet as a modification of the original PoseNet model. In this
model, LSTMs are put before the pose prediction layers and thus take some intermediate
outputs from either convolutional or fully connected layers as inputs and produce a new
feature vector, which is then used for pose prediction with pose prediction layers.

LSTMs work on sequences of inputs, each of which can be a vector. By reshaping an
intermediate feature vector into 2-D, we obtain a matrix that can be processed by an LSTM
along multiple directions. This is explained in fig. 4.2.

There are multiple way to integrate an LSTM block with the PoseNet architecture. We
consider the following modifications to PoseNet, with the specified layers applied after the
1× 1× 1024 output of the average pooling layer of the final output branch:

Directional PoseNet A reshape as 32× 32→ LSTM→ dropout→ pose prediction layers

Directional PoseNet B fully connected layer of width 2304→ reshape as 48× 48→ LSTM
→ dropout→ pose prediction layers

Directional PoseNet C fully connected layer of width 2048→ reshape as 32× 64→ LSTM
→ dropout→ pose prediction layers

Directional PoseNet D fully connected layer of width 1024→ reshape as 32× 32→ LSTM
→ dropout→ pose prediction layers

The two auxiliary branches are handled as variant D for all models.
For each model variant, we can distinguish between two-way processing (column- and

row-wise) and four-way processing (column- and row-wise, forward and backwards) in the
LSTM block, illustrated in fig. 4.3.

This approach is inspired by [65], where recurrent neural networks are applied to images
and replace convolutional layers in a classification model. In the RNN-based layers proposed
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


...



Feature vector ∈ R12

Reshape

∈ R3×4

∈ R4

t = 3 R
3 ∋

t = 4

Figure 4.2.: LSTMs on feature vectors. To process a feature vector with an LSTM, the vector
is reshaped into a matrix, which can then be processed column- or row-wise. In
this example, a feature vector in R12 is reshaped as a 3×4 matrix. To process the
matrix in y-direction (row-wise), we can see it as a sequence of 4-dimensional
vectors of length 3 (left). Similarly, to process it in x-direction (column-wise),
we can see the matrix as a sequence of 3-dimensional vectors (right).
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(a) Two-way processing. (b) Four-way processing.

intermediate feature matrix

LSTMleftLSTMright LSTMdown LSTMup

concat

feature vector

(c) Construction of the final feature vector by four-way LSTM processing of intermediate features.

Figure 4.3.: Multi-way processing of a feature vector. After reshaping a feature vector into
a matrix, LSTMs can be applied in multiple ways. In two-way processing (left),
two LSTMs are applied to a column- and a row-wise sequence. In four-way
processing (right) two LSTMs are applied to column- and row-wise sequences
each. As the resulting feature vector is a concatenation of the final states of each
LSTM (bottom), four-way processing results in a feature vector of twice the size
of two-way processing.
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there, an input image is divided into non-overlapping patches. Patches can be processed
column- or row-wise; additionally, each column or row can be processed from start to end or
vice versa. This leads to four possible axes along which an RNN can process an input image.

Bringing these ideas of “where to place the LSTM block” and “how to apply an LSTM on a
feature vector” together, fig. 4.4 shows a DirectionalPoseNet-D-2, i. e. variant D with two-way
processing.




...





z′ ∈ R1024 Z ′ ∈ R32×32









z ∈ R2h

p ∈ R3

q ∈ R4

reshape
LSTMs

FC

FC

PoseNet

Figure 4.4.: Directional PoseNet D-2 model. The 1024-dimensional output of the fully
connected feature layer of PoseNet, denoted as z′, is reshaped into a matrix Z ′ of
32×32 elements. Two LSTMs are used to process the matrix in x- and y-direction,
i. e. take 32 sequences of vectors in R32 as inputs. This is illustrated in more
detail in fig. 4.2. The final states h(32)

x , h(32)
y ∈ Rh of both LSTMs after processing

the 32 sequences are concatenated into a feature vector z of size 2h and used as
input for the pose prediction layers, which are illustrated in fig. 4.1.

4.2. Pose Regression from Image Sequences

The pose regression models presented in section 4.1 process a single image at a time. However,
when processing successively captured images or images originating from videos, it should be
possible to use this information to improve the localization prediction. For example, PlaNet
uses LSTMs to predict the locations of multiple pictures from a photo album [67, sec. 4].

In this section, we introduce neural networks to process sequences of images for pose
regression. All of these consist of two components: a convolutional neural network to extract
a feature vector independently from each image of an image sequence, and an LSTM that
predicts a 6-DOF pose from each feature vector in a sequence. This basic architecture is
illustrated in fig. 4.5.

4.2.1. Training LSTMs on Feature Sequences

A database of images and 6-DOF poses, such as one used for training single-image pose
regression as described in section 4.1, can easily be transformed into a pose-labeled feature

database by running a feature extractor on the images. If the images resp. features are sorted
in a meaningful way, sequences of these features can be used as inputs to an LSTM network
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(A) CNN

··
·

Feature vector (B) LSTM

··
·

Pose

Pose

Figure 4.5.: Pose regression for image sequences. For each RGB image in an image se-
quence, the CNN (A) extracts a feature vector. Each feature vector is given into
the LSTM (B) in sequence, resulting in a 6-DOF pose prediction for each input
image. Example images from King’s College dataset [31].
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that predicts a pose for each input. Due to the split into two distinct stages, feature extraction
(stage A in fig. 4.5) and pose prediction (stage B in fig. 4.5), the system is not end-to-end
trainable.

A simple model for pose regression from feature vectors, termed Feat-LSTM, is shown
in fig. 4.6.

Inputs LSTM Predictions

z(t)

z(t+1)

z(t+2)

h(t)

h(t+1)

h(t+2)

FC3

FC4

p(t)

q (t)

FC3

FC4

p(t+1)

q (t+1)

FC3

FC4

p(t+2)

q (t+2)

Figure 4.6.: Feat-LSTM model. Feat-LSTM regresses 6-DOF poses {p,q} from sequences of
input features z. In this example, poses are predicted for a sequence of length 3.

4.2.2. Training LSTMs on Image Sequences

A natural extension of Feat-LSTM is to train end-to-end from sequences of images instead
of distinguishing between the feature extraction and the pose prediction stages, as shown
in fig. 4.5. We introduce two models based on this approach:

For the PoseNet-LSTM model, we run a PoseNet on each input image and use the output
of its feature layer as input for an LSTM. For the second model, the PoseNet used to extract
features from each single image is replaced by a Directional PoseNet. As the Directional
PoseNet internally uses an LSTM, this model is named Stacked LSTM.

For both models, we use bidirectional processing, i. e. image sequences are simultaneously
processed by two LSTMs, one operating from start to end and the other one in the opposite
direction. Dropout is applied on the outputs of both LSTMs, which are then concatenated
and used by pose prediction layers as depicted in fig. 4.1 to output position and orientation
for each image in the sequence.
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4.3. Feature Extraction with Siamese Neural Networks

In this section, we discuss the use of Siamese networks for feature extraction, with the goal
of performing content-based image retrieval for localization.

For this approach, the only training data we consider are pairs of images labeled as similar or
dissimilar. In contrast to many other approaches, e. g. the previously presented pose regression
approach, the resulting feature extraction network is independent of the localization area and
can also be deployed for areas without a common coordinate system. Images from different
datasets can be used to train a single network, the only prerequisite being that they are
correctly labeled as similar or dissimilar.

One crucial aspect of this approach is thus the way how images are determined to be similar.
In section 4.3.1, we describe how to obtain such image similarities from RGB-D data. We do
not consider how to extract image pairs from datasets where depth images are not available;
however, a similar algorithm could be applied to datasets with sparse 3-D points, such as
datasets reconstructed with Structure from Motion techniques. In section 4.3.2, we introduce
a feature extraction CNN that can be trained on such a database.

4.3.1. Selecting RGB-D Image Pairs for Training Siamese Networks

For localization, we only consider images taken at nearby positions and viewing many of the
same landmarks as similar. We extract these pairs from datasets of RGB-D images I , D with
known 6-DOF camera poses C as follows:

For each reference camera Ci ∈ C , all other cameras C j ∈ C \{Ci} within a maximum search
radius rsim > 0 around Ci are considered candidate cameras. To compute which candidate
cameras C j show a similar scene as the reference camera Ci, we first extract 3D reference
points p i,ref from Ci. For this, we compute n uniformly spaced points in pixel coordinates,
look up the associated depth values in the depth image D i, and project them into world
coordinates. See fig. 4.7 for an illustration. This is inspired by the algorithm described in [51,
sec. 6.1], but uses multiple reference points instead of calculating only a single characteristic
depth per camera.

Using the reference points obtained from Ci, we compute a similarity measure between
Ci and C j as described in algorithm 4.2. If the similarity is above a threshold ssim ∈ [0,1],
we store the RGB images I i and I j as a pair of similar images. The number of similar image
pairs is denoted as Nsimilar pairs.

Finding dissimilar image pairs closely resembles the algorithm for finding similar images,
except that candidate cameras are selected according to a minimum radius rdissim > 0 and
must have a similarity below a threshold sdissim ∈ [0, 1].

To prevent an unbalanced training database due to a large number of dissimilar image
pairs, only α · Nsimilar pairs for α < 1 dissimilar image pairs are randomly selected from all
possible dissimilar image pairs.
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(a) Selection of reference points.

Cirsim
C j

Pi,ref

(b) Selection of similar cameras.

Figure 4.7.: Finding similar cameras for a reference camera. For a reference camera Ci,
3-D reference points Pi,ref are extracted by selecting depth values at uniformly
spaced pixel coordinates (x , y) in the reference depth image D i (left). The
resulting 3-D points (x , y, D i(x , y)) are projected into world coordinates. A
candidate camera C j (in red) in a specified radius rsim around the reference
camera Ci (in blue) is considered similar if it sees more than some specified
fraction of all the reference points Pi,ref (right). Image inspired by [51, fig. 6.1].

Algorithm 4.2 Computing similarity of a candidate camera for given reference points.

1: function COMPUTE SIMILARITY(candidate camera C , candidate depth image X d , reference
points P)

2: seenPoints← 0
3: for p ← get next reference point from P do

4: x , y, z ← project p into coordinate system of candidate camera C

5: if x , y outside image dimensions or point behind camera (z < 0) then

6: continue

7: end if

8: depth← X d(x , y)

9: if |X d(x , y)− z|< threshold then

10: seenPoints← seenPoints + 1
11: end if

12: end for

13: return seenPoints
# reference points

14: end function

37



4. Deep Learning for Image-Based Localization

4.3.2. Siamese ResNet-50

For the Siamese ResNet-50, the model as described in section 2.6.2 is duplicated up to the
final output block. The layers of both Siamese branches share their weights, so the number
of overall network parameters does not change. For each Siamese branch, a fully connected
feature layer is added.

During training, the network is optimized to extract similar features from similar images.
This is achieved by applying a contrastive loss on the Siamese feature vectors z1 ∈ Rz and
z2 ∈ Rz extracted from the image pairs. The contrastive loss is defined as [15, eq. (4)]:

Jcontrastive(θ ) =
1

2
s(‖z1 − z2‖2)

2 +
1

2
(1− s)max(0, m− ‖z1 − z2‖2)

2 (4.2)

s ∈ {0, 1} denotes the similarity of the two training images; if s = 1, the images are similar.
m > 0 is a scalar hyperparameter describing the required minimum margin between the
feature vectors of two dissimilar images. Only if the Euclidean distance between z1 and z2

is smaller than m for a pair of dissimilar images, it contributes to the loss of the network.
Therefore, dissimilarity between feature vectors is not maximized infinitely, but only up to a
certain margin.

An illustration of a Siamese model is shown in fig. 4.8.
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x 1 ResNet-50
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
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Figure 4.8.: Siamese ResNet-50 training. The Siamese ResNet-50 is trained with contrastive
loss Jcontrastive(θ ), described in eq. (4.2). As input, the network requires pairs
of images (x 1, x 2) labeled with a similarity value s ∈ {0,1}. The contrastive
loss minimizes the distance between images with a similarity value of one and
maximizes the distance of feature vectors with a similarity of zero up to a certain
margin. Example images by NavVis GmbH.
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In section 5.1, the various datasets used in this work are introduced. Next, section 5.2 describes
common preprocessing and setup steps utilized for all experiments. In the remaining part
of the chapter, we report results for experiments on pose regression from single images
in section 5.3, for pose regression from image sequences in section 5.4, and for feature
extraction for CBIR in section 5.5.

5.1. Datasets

In this section, the three dataset collections used for the experiments are presented.
Cambridge Landmarks comprises multiple outdoor datasets obtained from smartphone

videos. It has been introduced in the original PoseNet publication [31] and is used here to
compare the performance of our models to PoseNet.

Deutsches Museum is an indoor dataset consisting of high-resolution camera images taken
at discrete locations and orientations. It also contains depth images, which makes it suitable
for testing a feature extraction approach based on the algorithm presented in section 4.3.1.

Dubrovnik [36] is a heterogeneous outdoor dataset consisting of images downloaded from
the Internet, which makes it a challenging dataset for pose regression.

5.1.1. Cambridge Landmarks

The Cambridge Landmarks datasets [31] comprise five outdoor datasets of RGB images and
associated 6-DOF poses of the city center of Cambridge, UK. Each dataset includes multiple
video sequences collected by a pedestrian with a smartphone, with each sequence used either
as training or testing data as a whole. RGB images were extracted from the video sequences
by sub-sampling at a frequency of 2 Hz, resulting in images spaced approximately 1 m from
each other. Structure from Motion was used to label each image with a 6-DOF pose, expressed
as a position vector x ∈ R3 and an orientation quaternion q ∈ R4 relative to some coordinate
frame [31]. Table 5.1 shows an overview of the five datasets. All images are in landscape
format and have a resolution of 1920× 1080 pixels. A number of example images are shown
in fig. 5.1.
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Table 5.1.: Cambridge Landmarks [31] datasets.

Dataset # training images # testing images

King’s College 1220 343
Street 3015 2923
St. Mary’s Church 1487 530
Shop Façade 231 103
Old Hospital 895 182

Figure 5.1.: Example images from King’s College [31]. The King’s College dataset, part
of Cambridge Landmarks, includes images with different weather conditions,
occlusions, and pedestrians.

5.1.2. Deutsches Museum

Deutsches Museum is a technical museum in Munich, Germany. RGB images of the interior
along with 6-DOF poses have been captured by NavVis GmbH with a mapping device similar
to the one presented in [24]. Due to the cameras used on this device, images are available
for five different orientations for each position, as illustrated in fig. 5.2. Depth images are
available as well.

Table 5.2 shows an overview of the two datasets from Deutsches Museum. All images are
in portrait format and have a resolution of 2304× 4095 pixels.

Table 5.2.: Deutsches Museum datasets. Image pair datasets are
used for Siamese training.

Dataset # training images # testing images

Ship Exhibition 2675 1610
Ship Exhibition (Pairs) 7035‡ n/a
Museum Subset (Pairs)† 72457‡ n/a

† Does not include the ship exhibition.
‡ Number of image pairs, not individual images.
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Figure 5.2.: Example images from Deutsches Museum. The images for Deutsches Museum
have been captured with an indoor mapping device similar to the one presented
in [24]. Due to the camera setup of this device, images are available in five
different orientations for each position, as shown here. Image by NavVis GmbH.

The Ship Exhibition and the Museum Subset dataset do not overlap, i. e. the two datasets
contain images captured at different locations inside the museum. This is evident from fig. 5.3,
where the camera positions of the captured images are visualized. Additionally, the rooms
captured in the Ship Exhibition dataset are not visible on images of the Museum Subset
dataset.

The Ship Exhibition training and testing datasets contain images captured inside the same
rooms, but taken nearly 6 months apart. Camera poses of the Ship Exhibition dataset are
visualized in fig. 5.4.

As noted in table 5.2, the Museum Subset dataset consists of pairs of images labeled as
either similar or dissimilar. These image pairs are selected according to the algorithm detailed
in section 4.3.1, using the parameters ssim = 0.6, sdissim = 0, rsim = 1 m, rdissim = 5m, and
α= 2. Figure 5.5 shows an example of similar and dissimilar image pairs.

5.1.3. Dubrovnik

The Dubrovnik dataset [36] contains 6 844 images of the city of Dubrovnik, Croatia. Camera
pose labels have been obtained by performing a reconstruction on all of these images. In a
later step, the images have been split into training and testing images.

In contrast to the previously presented datasets, the Dubrovnik dataset consists of images
downloaded from the Internet and is much more heterogeneous. Some example images are
shown in fig. 5.6. In particular, the dataset includes both portrait and landscape images.

The given camera pose labels on Dubrovnik violate the assumption specified in chapter 4
that images given to a model for training or testing have the same field of view. This is evident
from fig. 5.7, where two images with virtually the same camera position p are shown. From
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Figure 5.3.: Poses of the Deutsches Museum datasets. The Ship Exhibition training dataset
(in green) is shown in the context of the Museum Subset dataset (in blue). Note
that these datasets do not overlap. The datasets have been subsampled by a
factor of 10 for visualization.
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Figure 5.4.: Poses of the Ship Exhibition datasets of Deutsches Museum. This image
shows the Ship Exhibition training (in green) and test (in red) datasets. These
images have been taken at very similar positions on two floors, but approximately
6 months apart from each other.
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(a) Reference image. (b) Similar image. (c) Dissimilar image.

Figure 5.5.: Examples of similar and dissimilar images from Deutsches Museum. Al-
though all three images are visually similar, only the first two are similar from
a localization perspective. The third image is more than 5 m away from the
reference image, and does not see any of its reference points. Computing the
similarity of images for localization is described by algorithm 4.2. Images by
NavVis GmbH.

our point of view, such images therefore constitute outliers in the dataset.

5.1.4. Dataset Filtering

Due to the concern that cropping portrait and landscape images into a common format
removes too much spatial information, we only use the landscape pictures, of which there
is a larger number in the dataset. We also removed a number of rotated portrait pictures
incorrectly saved in landscape format. Finally, we manually removed a small number of
images with color effects, images with a large artificial border, composite images showing
multiple different locations, images taken with a fisheye lense, and images which were smaller
than 455× 256 pixels. We call the resulting dataset Dubrovnik Subset.

Even after these steps, training a neural network on this dataset is inhibited by outliers.
To remove a number of the worst outliers, we used a simple box filter to keep only images
within camera position boundaries of (−300< x < 300,−50< y < 50,−400< z < 400).

Table 5.3 shows the number of training and testing images before and after the filtering
process. fig. 5.8 shows the camera poses in the dataset before and after filtering.
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Figure 5.6.: Example images from Dubrovnik [36]. These example images show the het-
erogenity of the dataset, including: images with color effects, landscape and
portrait formats, and fisheye images.

(a) Training image. (b) Testing image.

Figure 5.7.: Varying scales on the Dubrovnik [36] dataset. These images of the training
and testing datasets have been labeled with a camera pose within 0.5 m of each
other, but show a very different field of view. The red circle indicates where the
scene of the testing image is contained in the training image.

Table 5.3.: Dubrovnik datasets. “Subset” datasets are created from the full Dubrovnik
dataset according to the procedure described in section 5.1.4.

Dataset # training images # testing images

Dubrovnik [36] 6044 800
Dubrovnik Subset 4 221 560
Dubrovnik Subset (filtered) 4 116 548
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Figure 5.8.: Poses of the Dubrovnik datasets. The unfiltered dataset (blue) contains outliers
with pose labels of thousands of meters. The filtered dataset (green) is created
according to section 5.1.4 and removes these outliers. The datasets have been
subsampled by a factor of 10 for visualization.

5.2. Experimental Setup

The original images of each dataset are first cropped to preserve their aspect ratio and
then resized to the required dimensions of 455× 256 resp. 256× 455 pixels, depending on
whether they are originally in landscape or portrait format. The resized images are stored in
pose-labeled training resp. testing databases.

All networks take images of 224×224 pixels as input. We use random crops during training
and central crops during testing. A mean image computed separately for each training
database is subtracted from all images.

All experiments are performed on an NVIDIA Titan X and use the TensorFlow [41] frame-
work with Adam [32]. Random shuffling is performed for each batch, and regularization
is only applied to weights, not biases. An overview of training hyperparameters is given
in table 5.4.

The values β for weighing positional and angular error of the pose loss of eq. (4.1) for
each dataset are given in table 5.5.

During training, a snapshot of the network parameters θ is saved every five epochs. The
results are reported from the snapshot with the lowest positional error on the testing dataset.
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Table 5.4.: Overview of training hyperparameters.

PoseNet Dir. PoseNet PoseResNet

Regularization parameter λ† 0.0002 0.0002 0.0002
Auxiliary loss weights γ‡ 0.3 0.3 n/a
Dropout probability 0.5 0.5 n/a

Adam [32]
ε 0.1 1 1
β1 0.9 0.9 0.9
β2 0.999 0.999 0.999

† λ is defined in eq. (2.15).
‡ γ is defined in eq. (2.21).

Table 5.5.: Overview of loss parameters β , as defined in eq. (4.1). Values for the Cam-
bridge Landmarks datasets been taken from the PoseNet Caffe [27] implementation
(see appendix A).

Dataset β

King’s College 500
Street 2000
St. Mary’s Church 250
Shop Façade 100
Old Hospital 1000

Dubrovnik 2000

Deutsches Museum 500
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5.3. Pose Regression from Single Images

In this section, we examine different models for pose regression on the Cambridge Landmarks
and Dubrovnik datasets.

5.3.1. Reproducing PoseNet results

Training with Stochastic Gradient Descent and Momentum [46] of 0.9 and a learning rate of
1e−5 on batches of size 75 as specified in [31, sec. 3.2] was not successful, as the loss went
towards infinity after a few iterations when initializing PoseNet from weights of the Places
dataset [73].

Using Adam [32] with a base learning rate of 1e−3 and a batch size of 75, we were able
to achieve similar results as the ones in [31, fig. 6] for most datasets. The results are given
in table 5.6. Note that the angular errors reported for PoseNet are exactly twice as large
as the ones published in [31, fig. 6]. With this, we follow [30] by the same author, which
reports results in the same way.

Interestingly, while we achieve very similar results to [31] for most datasets, we report
much better results for King’s College. We can only speculate that the original author stopped
training too early.

Table 5.6.: Median localization results for PoseNet on Cambridge Landmarks. Our repro-
ductions achieve significantly better results on King’s College, but do not converge
to a competitive result for Street.

Dataset PoseNet [31] PoseNet (ours)

King’s College 1.92 m, 5.40◦ 1.25 m, 4.74◦

Street 3.67 m, 6.50◦ 14.19 m, 31.49◦

Old Hospital 2.31 m, 5.38◦ 2.28 m, 5.63◦

Shop Facade 1.46 m, 8.08◦ 1.43 m, 7.86◦

St Mary’s Church 2.65 m, 8.48◦ 2.33 m, 9.93◦

For the Street dataset, training was more challenging. The Street dataset is unique in that
the training database consists of four distinct video sequences, each filmed in a different
compass direction. This results in training images at similar positions, but with very different
orientations. The other Cambridge Landmarks datasets mostly contain images with only one
general orientation for each position. Using the same learning hyperparameters as for the
other datasets, training did not converge. We experimented with different base learning rates
for Adam [32] and gradient norm clipping [44], but could not achieve competitive results
despite a converging training loss. Extensive hyperparameter search was inhibited by the
large size of the dataset and the resulting long training time per epoch.
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5. Experimental Results

5.3.2. Visualizations

After the initial experiments, we performed some visualizations.
In fig. 5.9, an input image and a corresponding saliency map [56] is shown. In fig. 5.10, we

show an input image overlaid with a class activation map (CAM, [72]). For this visualization,
we attach global average pooling to an intermediate convolutional layer of PoseNet and
remove the remaining layers. This results in an input size of 14 × 14 to the CAM block.
Due to this small input size, this visualization is much coarser than the saliency map, but
similarly highlights how the model concentrates on distinctive elements of buildings to infer
the camera pose.

Finally, fig. 5.11 shows a visualization of the weights for each filter of the first convolutional
layer of PoseNet and PoseResNet.

Figure 5.9.: Saliency map. A saliency map (right) has been created for an input image (left)
from King’s College [31]. Bright spots indicate areas the network considers
important for pose regression. The visualization shows how the network focuses
on the building façade.

5.3.3. Directional PoseNet on Cambridge Landmarks

To test the model proposed in section 4.1.4, we performed a number of experiments on the
King’s College dataset. We trained all Directional PoseNet variants with two-way processing
with the hyperparameters given in table 5.4 for 800 epochs.

The results are given in table 5.7 and visualized in fig. 5.12. As the Directional PoseNet
variants A and C showed the most promising results, we additionally trained their four-way
variants.

Compared to both [31] and our reproductions in section 5.3.1, all Directional PoseNet
variants showed improved results of up to 80 cm.
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5. Experimental Results

Figure 5.10.: Class activation map. The class activation map (CAM) is overlaid on an input
image from King’s College [31] as a heat-map. Red areas indicate parts of the
image the network considers important for pose regression. The visualization
shows how the network focuses on distinctive building elements.

(a) PoseNet. (b) PoseResNet.

Figure 5.11.: Filter weights of the first convolutional layer of PoseNet resp. PoseResNet.

Both networks seem to learn similar features, in particular color blobs and
edge-like features.
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Figure 5.12.: Median localization results for Directional PoseNet variants on King’s Col-

lege. Numerical results are given in table 5.7.

Table 5.7.: Median localization results for Directional PoseNet variants on King’s Col-

lege. All Directional PoseNet variants perform better than PoseNet by more than
half a meter.

Model Median localization result

PoseNet [31] 1.92 m, 5.40◦

Directional PoseNet-A-2 1.10 m, 4.31◦

Directional PoseNet-B-2 1.25 m, 4.12◦

Directional PoseNet-C-2 1.20 m, 3.84◦

Directional PoseNet-D-2 1.21 m, 4.81◦

Directional PoseNet-A-4 1.20 m, 4.03◦

Directional PoseNet-C-4 1.12 m, 3.99◦
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5. Experimental Results

As the Directional PoseNet C-4 gave the most balanced results for positional and angular
error, we proceeded to run this model for 1200 epochs on all Cambridge Landmarks datasets.
The results are given in table 5.8 and visualized in fig. 5.13. The Directional PoseNet
consistently improves upon the original PoseNet architecture.

As in section 5.3.1, we could not obtain competitive results for the Street dataset, not
even when fine-tuning from weights of other datasets. However, the Directional PoseNet
still improved results on Street relative to the results of our own PoseNet training reported
in table 5.6.

Kin
g’s

Col
leg

e

St
re

et

Old
Hos

pi
ta

l

Sh
op

Fa
ça

de

St
M

ar
y’s

Chu
rc

h
0

5

10

Po
si

ti
on

al
er

ro
r
[m
] PoseNet

Dir. PoseNet

(a) Positional error.

Kin
g’s

Col
leg

e

St
re

et

Old
Hos

pi
ta

l

Sh
op

Fa
ça

de

St
M

ar
y’s

Chu
rc

h
0

10

20

A
n

gu
la

r
er

ro
r
[◦
]

PoseNet
Dir. PoseNet

(b) Angular error.

Figure 5.13.: Directional PoseNet compared to PoseNet on Cambridge Landmarks. Nu-
meric results in table 5.8.

Table 5.8.: Median localization results for PoseNet variants on Cambridge Landmarks.

The Directional PoseNet consistently outperforms other variants by up to 1 m. It
did not converge to a competitive result for Street, but nevertheless outperforms
our PoseNet results in table 5.6.

Dataset PoseNet [31] Bayesian PoseNet [30] Dir. PoseNet C-4

King’s College 1.92 m, 5.40◦ 1.74 m, 4.06◦ 0.99 m, 3.65◦

Street 3.67 m, 6.50◦ 2.14 m, 4.96◦ 10.20 m, 22.71◦

Old Hospital 2.31 m, 5.38◦ 2.57 m, 5.14◦ 1.51 m, 4.29◦

Shop Façade 1.46 m, 8.08◦ 1.25 m, 7.54◦ 1.18 m, 7.44◦

St Mary’s Church 2.65 m, 8.48◦ 2.11 m, 8.38◦ 1.52 m, 6.68◦

52
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5.3.4. PoseResNet on King’s College

For comparison with Directional PoseNet, we trained the PoseResNet model described in sec-
tion 4.1.3 on King’s College. As no weights for the Places dataset [73] are readily available,
we initialized PoseResNet from ImageNet [7] weights. The results are given in table 5.9.
PoseResNet improves on the results of the Directional PoseNet by 15 cm, but takes more than
3 times longer to train in our implementation.

Table 5.9.: Median localization results for PoseResNet on King’s College. PoseResNet
outperforms the Directional PoseNet by 15 cm.

Model Median localization result

PoseNet 1.92 m, 5.40◦

Directional PoseNet C-4 0.99 m, 3.65◦

PoseResNet 0.84 m, 2.44◦

5.3.5. Pose Regression on Dubrovnik Subset

For our experiments on Dubrovnik, an unmodified PoseNet was trained for 1200 epochs with
a batch size of 75 and a base learning rate of 1e−2, applying gradient clipping [44] at a value
of 10. We also trained a Directional PoseNet with the same parameters. In table 5.10, the
results are compared with a recent method [50].

Table 5.10.: Results for Dubrovnik Subset. PoseNet and Directional PoseNet can not com-
pete with a state-of-the-art method.

Method Mean [m] 25 % [m] 50 % [m] 75 % [m] 90 % [m] 95 % [m]

p6p [50] 30.70 0.50 1.30 5.00 19.20 55.30
PoseNet 42.31 5.21 9.78 24.94 91.60 246.19
PoseNet† 26.30 3.83 7.12 17.97 63.35 124.85
D. PoseNet C-4† 25.26 4.16 7.30 19.50 48.10 123.46

† Trained on Dubrovnik Subset (filtered).

The results show that PoseNet and Directional PoseNet can not compete with a state-of-
the-art method for the Dubrovnik dataset. In particular, some individual poses are predicted
very far from their labels. Investigating these input images revealed that they are instances
of the problem described in fig. 5.7, namely that their pose labels can be seen as outliers. In
this situation, the Directional PoseNet does not give an advantage over the original PoseNet
architecture.

53



5. Experimental Results

5.4. Pose Regression from Sequences of Images

For these experiments, LSTM-based models as described in section 4.2.2 are trained on
sequences of three images with a batch size of 50 for 800 epochs. We used a learning rate
of 1e−3 and gradient clipping [44] at a value of 10. The results are given in table 5.11. We
did not train on Street, as we could not get competitive results for this dataset even for
single-view regression.

Table 5.11.: Median localization results of PoseNet variants on Cambridge Landmarks

image sequences. While the use of sequences of images improves over PoseNet
on single images, results do not improve compared to Directional PoseNet. The
additional LSTM in the Stacked LSTM increases the error, indicating that the
architecture of the model is not ideal.

Dataset PoseNet-LSTM Stacked LSTM

King’s College 1.07 m, 3.28◦ 1.08 m, 4.42◦

Old Hospital 2.03 m, 4.22◦ 2.51 m, 5.24◦

Shop Façade 0.91 m, 6.68◦ 0.94 m, 6.68◦

St Mary’s Church 1.56 m, 6.01◦ 1.83 m, 6.83◦

5.5. Feature Extraction Networks on Deutsches Museum

A Siamese ResNet-50 model as described in section 4.3.2 was trained for 20 epochs on the
Deutsches Museum Subset dataset with a batch size of 50. A feature layer size of 2048 was
used. After training, one half of the Siamese ResNet-50 was used to extract features for the
Ship Exhibition training and testing datasets. It is important to use the same mean image
that was used to train the Siamese model when extracting these features.

Using the features of the training dataset as lookup database, positional errors when using
the best pose of the n nearest neighbors in feature space as prediction for a training image
are reported in table 5.12 for n ∈ {1, 3,5, 10,20}.

To measure the impact of fine-tuning on the target dataset, the Siamese network is fine-
tuned for another 20 epochs on the Ship Exhibition (Pairs) dataset. The results, given
in table 5.13, show that the median localization error improves by 8 m for the nearest neighbor
matching, despite the relatively short training time. In fig. 5.14, the cumulative errors for
training on Museum Subset and additional fine-tuning on Ship Exhibition is visualized.

For comparison, we also train a PoseResNet with a batch size of 50 and a base learning
rate of 1e− 3 on Ship Exhibition for 600 epochs. The results are shown in table 5.14.
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Table 5.12.: Results for Siamese-trained features on Ship Exhibition. Using
three nearest neighbors, results are good enough to be usable for the
localization use case.

# NN† Mean [m] 25 % [m] 50 % [m] 75 % [m] 90 % [m] 95 % [m]

1 13.69 3.30 11.77 20.80 30.28 37.31
3 6.66 0.55 3.69 10.19 17.51 21.91
5 4.59 0.37 1.79 6.62 13.14 16.83
10 2.71 0.30 0.78 3.72 7.58 10.70
20 1.47 0.25 0.45 1.58 4.26 5.81

† Number of nearest neighbors.

Table 5.13.: Results for fine-tuned Siamese features on Ship Exhibition. Fine-
tuning for 20 epochs improves the median localization error for
nearest-neighbor by 8 m over Siamese training on Museum Subset.

# NN† Mean [m] 25 % [m] 50 % [m] 75 % [m] 90 % [m] 95 % [m]

1 6.96 0.68 3.32 11.77 18.48 22.37
3 3.36 0.32 0.79 4.15 11.17 15.82
5 2.28 0.27 0.55 2.36 6.46 11.64
10 1.37 0.22 0.38 1.05 3.92 6.27
20 0.81 0.20 0.32 0.60 1.82 3.65

† Number of nearest neighbors.

Table 5.14.: Results for PoseResNet on Ship Exhibition. Pose regression with a
PoseResNet improves the median localization error by 1 m over fine-tuned
Siamese features.

Model Mean [m] 25 % [m] 50 % [m] 75 % [m] 90 % [m] 95 % [m]

PoseResNet 2.77 1.24 2.10 3.47 5.39 7.09
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Figure 5.14.: Cumulative error for Ship Exhibition. This graph shows the percentage of
testing images within a certain radius for nearest-neighbor and best-of-three-
nearest-neighbors feature matching. After fine-tuning on the Ship Exhibition
dataset for 20 epochs, nearest neighbor feature matching achieves the same
results as best-of-three nearest neighbor matching with the network only trained
on Museum Subset.
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6. Summary

In this work, two approaches to image-based localization with neural networks have been
evaluated: pose regression and content-based image retrieval.

For end-to-end pose regression, we extended the PoseNet model by applying LSTMs on a
feature vector, improving the median positional error on the Cambridge Landmarks datasets
by up to 1 m. We showed that the ResNet architecture, which has been successfully applied
to image classification, outperforms the Directional PoseNet by 15 cm on King’s College, but
is slower to train.

In addition to single-view processing, we also performed pose regression from image
sequences on the Cambridge Landmarks datasets. This improves the results by up to 1 m
over PoseNet, but does not improve over the single-view Directional PoseNet.

For content-based image retrieval, we evaluated a ResNet model trained solely on pairs of
images labeled as similar resp. dissimilar. Even without training on images of the localization
area, results were sufficient for the use case of smartphone-based localization. Fine-tuning on
images of the localization area greatly improved the results, lowering the nearest-neighbor
positional error by 8 m, even though training was performed for only 20 epochs.

During some initial experiments, we experimented with the pose loss of eq. (4.1) on
PoseNet, trying to replace the quaternion with an angle-axis representation or a single yaw
angle. We did not obtain competitive results, which could possibly be improved by more
extensive parameter tuning.

We also performed initial experiments with Feat-LSTM, described in section 4.2.1, on
PoseNet and PoseResNet feature databases. However, as this gave no improvements over
single-image regression, we abandoned this approach in favor of end-to-end regression from
image sequences.

6.1. Discussion

Pose outliers in training data are problematic for regression networks As the presented
neural network models are not scale-invariant [26], the heterogeneous Dubrovnik dataset
can not be handled by the proposed networks. Additionally, label outliers make it hard for
the networks to learn regression, as shown by comparing the results on the box-filtered and
the unfiltered Dubrovnik dataset.
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6. Summary

LSTMs can help to improve feature vectors Applying an LSTM on top of a PoseNet feature
vector results in improved pose regression results. As the rest of the model remains unchanged,
the LSTM seems to help the network to learn better features. Similar to how the LSTM-based
layers in [65] learn features in the context of the whole image, in contrast to convolutional
layers that learn only from local information, applying LSTMs on the feature vector learns
new features in the context of all other features.

A ResNet-based model performs better than PoseNet for pose prediction PoseResNet
performs better than PoseNet [31], also outperforming dense crops [31] and Probabilistic
PoseNet [30]. This was expected, as the underlying architecture ResNet-50 performs better
than PoseNet’s parent model, GoogLeNet, on image classification tasks, indicating that ResNets
are able to learn better features from input images than GoogLeNet.

Training from image sequences improves pose regression Following the results of [67],
where LSTMs on image sequences have been shown to improve results for location prediction
by classification, our experiments confirm that end-to-end training from image sequences is
beneficial for pose regression when compared to PoseNet. However, results do not improve
over single-image regression with an LSTM-based Directional PoseNet model, indicating that
either the architecture is not ideal or image sequences should be constructed differently, e. g.
by using larger spacing between images in a sequence.
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7. Conclusion

Pose regression from RGB images remains a challenging task for neural networks when
working with homogeneous datasets. As shown in our experiments with the Dubrovnik
dataset, careful labeling of the training database is necessary to ensure that models can learn.
Recent proposals towards scale-invariant neural network architectures such as [26] could
partially remedy this problem.

Siamese training based on image similarity is a valid approach for localization by content-
based image retrieval. Fine-tuning on a specific dataset for a small number of epochs gives
results comparable to a pose regression network fine-tuned from ImageNet [7] for a much
larger number of epochs.

7.1. Future Work

[30] describes a probabilistic approach to single-view pose regression that applies dropout
during evaluation, obtaining multiple pose predictions for a single image and a measure of
uncertainty of the network about its prediction. This could be applied to image sequences by
performing dropout for each image during evaluation.

Further research could investigate how to introduce additional prior information, such
as WiFi or cell signal measurements on a smartphone, into a regression network for image
localization.

For upcoming smartphones equipped with time-of-flight sensors, depth information is
available in addition to RGB images and could be used to improve indoor localization.

Supported by the observations regarding transfer learning in [31] and our own experiments,
we expect that neural network architectures that have been shown to improve performance
on large classification datasets such as ImageNet [7] will also result in improved localization
performance. Recently proposed neural network models for image classification include [60,
70, 23, 6, 5].

Triplet training [53], where triplets of an image, a similar image, and a dissimilar image are
given as inputs to the network, could further improve a Siamese feature extraction network.
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A. Resources and Notes on Training

In this section, we list the software used for our experiments and give some implementation
hints.

For initial experiments with PoseNet, we used the Caffe [27] code available at https://
github.com/alexgkendall/caffe-posenet. This PoseNet model is based on the GoogLeNet
implementation available at http://vision.princeton.edu/pvt/GoogLeNet. The same
website also provides GoogLeNet weights for Places [73]. Note that this model is not compat-
ible with the weights from http://places.csail.mit.edu.

For our own experiments, we used TensorFlow [41] 0.10rc0 on Python 3.4 and 3.5. We ran
training on a single NVIDIA Titan X, using CUDA 7.5 and cuDNN 4. We also set LD_PRELOAD to
use tcmalloc to avoid memory issues. We used software available at https://github.com/
ethereon/caffe-tensorflow to convert Caffe weights to a TensorFlow-compatible format.
It is important to note that Caffe works with BGR images, while TensorFlow expects RGB
images. When using converted Caffe-trained network parameters to TensorFlow, the depth
channel of input images to a network thus needs to be reversed.

For ResNet-50, we used the ImageNet [7] weights available from https://github.com/

KaimingHe/deep-residual-networks and converted them for use in TensorFlow.
The Cambridge Landmarks datasets, as well as pre-trained PoseNet weights for Caffe, are

available from http://mi.eng.cam.ac.uk/projects/relocalisation.
The Dubrovnik dataset [36] is available from http://www.cs.cornell.edu/projects/

p2f.
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