REPRESENTATION, PROCESSING,

ANALYSIS AND UNDERSTANDING OF IMAGES

Automatic Generation of Image Analysis Programs!-2
M. Herrmann, C. Mayer, and B. Radig

Image Understanding and Knowledge- Based Systems, Technische Universitdt Miinchen, Boltzmannstrasse 3,
Garching, D-85748, Germany

e-mail: {herrmmic, mayerc, radig}@in.tum.de

Abstract—In this paper, we introduce a system that generates computer vision programs for a given task,
which is specified by regions of interest in a collection of example images. The system relies on a database of
operators, which are combined by an automated planning approach in order to create executable programs.
We present an early proof—of—concept implementation that relies on a limited database to solve simple tasks,
such as finding players in a soccer video or cups on a table. Our experimental evaluation shows that the basic
approach is working on relative simple scenarios. Future work will focus on integrating more complex prob-
lem descriptions, which require more sophisticated planning strategies in order to compensate for rapidly

increasing search spaces.

Keywords: automatic programming, inductive programming, generate—and—search, machine learning, com-

puter vision, image analysis, object detection
DOI: 10.1134/S1054661814030079

1. INTRODUCTION

Traditionally, program code is manually designed
and written by programmers, who select operators and
parameter values and combine them to create an exe-
cutable program. For that purpose, the programmers
rely on their experience and knowledge and on the
technical documentation of operators. After the pro-
gram is composed, the programmer executes it on
sample data to inspect its behavior and to ensure that
its output matches the task specification. Finding an
appropriate parameterization often requires many
iterations. Especially for image analysis programs,
alteration of parameters may change the complete
behavior of a program, and determining the optimal
parameter values is a crucial and time-consuming
task.

In this paper, we propose a different approach,
which creates the program code automatically given a
set of annotated images with positive examples. This
takes into account that providing the desired output is
much more intuitive and less error prone than writing
the complete program code and specifying parameter
values. Our systematic approach is based on a database
containing technical information about all available
operators and how these operators may be combined.
The system uses this database to create a large number

! The article is published in the original.

2 This paper uses the materials of the report submitted at the 11th
International Conference “Pattern Recognition and Image
Analysis: New Information Technologies,” Samara, The Rus-
sian Federation, September 23—28, 2013.

Received February 28, 2014

of executable programs by exploring suitable combi-
nations of operators and parameter values. The output
of these programs is compared to the given specifica-
tion. Currently, an early version of our system exists as
a proof-of-concept implementation that includes a
limited number of operators and therefore solves only
basic computer vision tasks. So far, two sample appli-
cations have been inspected: the detection of players in
a soccer match and the detection of cups on a table.
However, these experiments show that the basic
approach is successful.

2. RELATED WORK

Regarding automatic program synthesis, we distin-
guish between semi-automatic approaches and fully
automatic approaches. Semi-automatic approaches
create programs based on the user’s specification of
the program structure. Mostly easy-to-use program-
ming interfaces are proposed, which assist the user in
composing a complex system using primitive modules.
The user interface provides the user with graphical
representations of modules, which can be combined in
the user interface to form a program. Afterwards, real
program code in a programming language is created
from these specifications. The advantage of this
approach is that its method of programming is much
more intuitive than the traditional one and that the
transformation of the graphical program representa-
tion to the textual representation is usually fast.

In contrast, fully automatic approaches do not rely
on any specification of the program structure, but
work on specifications of desired program properties,
such as given input-output pairs or sample data. This
is also referred to as inductive programming. The

ISSN 1054-6618, Pattern Recognition and Image Analysis, 2014, Vol. 24, No. 3, pp. 400—408. © Pleiades Publishing, Ltd., 2014.

AUTOMATIC GENERATION OF IMAGE ANALYSIS PROGRAMS 401

advantage of these approaches is that the person pro-
viding the test data doesn’t have to be a programmer.
On the other hand, creating the program is often com-
putationally expensive. Kitzelmann distinguishes two
major approaches for automated program construc-
tion [12]: Firstly, analytical approaches construct pro-
grams directly from the given input-output examples
according to a set of fixed rules. Secondly, search-
based approaches conduct a search in the program
space and derive a fitness function from the examples.
The latter methods rely on finding the program with
the best fitness value. The advantage of search-based
approaches is their flexibility, but they do not guaran-
tee determining the optimal program. Kitzelmann
provides a broad, yet very theoretical review of fully
automatic program synthesis [12]. A program is
abstracted as a function that delivers specified output
to specified input. The task of inductive program syn-
thesis is to find a program that generalizes from some
example input-output pairs. Another survey is pro-
vided by Hoffmann et al. [7]. They evaluate seven sys-
tems for inductive programming using eleven different
challenges. They demonstrate that the execution time
varies greatly depending on the system and the task
chosen and that it is, all in all, not possible to nominate
the fastest approach. They conclude that still much
remains to do in the area of automatic programming.

2. 1. Semi-Automatic Approaches

A well-known example for this type of code gener-
ation is Simulink [23], an extension of MATLAB [22].
It provides the user with a graphical user interface to
construct programs and creates MATLAB code after a
compilation step. Another example is Reo, a system
that creates a web service by combining other web ser-
vices [10]. The developers are presented with a graph-
ical user interface, in which they compose various
web-based services and model the information flow.
Afterwards, executable code is generated from these
specifications. Rodrigues et al. present a similar sys-
tem: a UML diagram is transformed in multiple steps
and finally executable code is created [20]. The soft-
ware HALCON, distributed by the company MVTec
Software GmbH, provides helpful tools for image
acquisition, camera calibration, and other computer
vision tasks, which create code snippets to use in larger
programs [6]. Although these systems provide auto-
matic code generation on a certain level, they still
require a lot of human expertise. Specifically, a human
programmer still has to declare the program structure
by “writing” the program in the graphical user inter-
face. However, a graphical user interface is not always
used to define the program structure. Reyes et al.
present a code—to—code compiler that is used to gen-
erate highly parallelized code [19]. The user writes
code in a C—like language and their system creates
code to be executed on GPUs.

PATTERN RECOGNITION AND IMAGE ANALYSIS

Vol. 24

2.2. Analytical Approaches

An example for direct-derivative program synthesis
is presented by Hofmann with his IGOR II system [8].
It is implemented in Haskell and derives a program
from a list of functions partially specifying input-out-
put examples. Remarkable about IGOR 11 is, that it is
able to create recursive programs, as well. Crossley
et al. propose to combine analytical and search-based
strategies [2]. They utilize IGOR II to create seeds for
a search with the ADATE system (see section 2.3).
An evaluation using 5 sample programs provides
promising results. In this area only a very few
approaches exist, and they are mainly evaluated using
rather theoretical challenges, such as developing a
sorting algorithm or reversing a list of elements.
According to the best of our knowledge, no algorithm
exists in this area that has been applied to computer
vision tasks.

2.3. Search-Based Approaches

This category includes not only search-based
approaches, but also evolutionary programming. Evo-
lutionary programming is inspired by the principles of
Darwinism, where the population consists of program
candidates and a fitness function defines which indi-
viduals are selected for reproduction to form the basis
for the next generation. In an iterative procedure, a
new generation of programs is created by modifying or
merging the most suitable programs of the former gen-
eration, which are evaluated by a fitness function. An
exhaustive overview is presented by Koza et al. [13].

An example for an evolutionary approach is pre-
sented by Vu et al. with their system ADATE, which
was developed several years ago and has been applied
to various challenges [24]. Recently, they demon-
strated an application to graph-based image segmen-
tation, a well-known image analysis procedure.
Although, their work improved the basic approach
dramatically, the computational cost needed to find
this improved algorithm was also very high: the com-
putation took 24 hours on 192 cores. Another example
is presented by Mohrmann et al. [14]. Their system
generates image analysis software by training classifi-
ers with manually annotated training data. Demmel et
al. consider linear algebra applications, like multiply-
ing two matrices, and create the algorithms by search-
ing in the program space for the most suitable program
with respect to computational efficiency [3]. The rea-
son for this time-consuming approach is that the opti-
mal implementation depends on many factors, such as
the available hardware. Olague et al. present an evolu-
tionary programming-based approach for interest
point detection [16]. They use approximately 20 oper-
ators and model programs as trees. Modification of the
program therefore becomes modification of a subtree.
Furthermore, they provide a broad introduction to
evolutionary programming. Katayama proposes the
MagicHaskeller system that conducts an exhaustive

No. 3 2014

402 HERRMANN et al.
(@)
1: original
gauss()
Q@
(a) @

1: original

(®)

=l
=]
B
15
@ S
T <)
I: original § I: original
I: threshold < v I: threshold
()

I: original
I: threshold

__ thresh(60, original)

<

gauss(3, original)

-«
<

1: original
I: threshold
1: difference]

I: original
I: threshold
1: difference]

I: original
I: threshold
1: difference]

Fig. 1. The planner creates programs by combining single operators and instantiating the input parameters.

search in the space of Haskell programs and deter-
mines the fitness of a program using given input-out-
put pairs [11]. A library of a Haskell-implementation
of the system is publicly available and has been tested
by other scientists doing research in the same field, as
well. An early version of the system conducts an
exhaustive search without any search heuristics, but
recently heuristics have been added to speed-up the
process.

Our approach also falls into this category. It has
many similarities to automatic planning, which con-
siders the creation of plans as a combination of actions
with preconditions and postconditions. Preconditions
have to be true before the action can be executed and
postconditions model the influence of the actions on
the world model [18]. In relation to our system,
actions correspond to operators, preconditions corre-
spond to the input variables for operators, and post-
conditions correspond to the output variables of oper-
ators. Often a heuristic is included, which controls the
search tree expansion and prevents unsuitable combi-
nations from being inspected [21].

3. SYSTEM DESCRIPTION

The basic idea of our approach is to create combi-
nations of parameterized operators with the help of a
heuristic search strategy and to apply them to manu-
ally annotated images. A fitness function determines
to what degree their results match the annotations.
Therefore, the system consists of several components:

—A database of available operators. For each
operator, the database contains the types of variables
that the input operator requires for execution and also
the types of output variables that are created by the
operator.

PATTERN RECOGNITION AND IMAGE ANALYSIS

—A planner, which creates a search tree with pro-
grams in its nodes.

—A system, which checks a single program against
the manually specified test data.

—A set of manually annotated sample images.

The core component of this approach is the plan-
ner. Therefore, it will be presented in greater detail.

3.1. The Planning of Programs

The planner recursively creates a search tree whose
nodes are programs. Programs contain global variables
(either specified as the input of the program or created
by operators) and a sequence of the applied, parame-
terized operators. The planning process starts with the
empty program, which contains only the original
input image in the global variable list and an empty
operator list. In a recursive procedure, the planner
inspects all available operators and checks whether
they are applicable, in other words, whether all input
parameters can be assigned by already existent vari-
ables of the same type in the variable list of the current
recursion path. Here, different types of operator
parameters are handled in two ways. Iconic parameters
(images or image regions) have to be present in the
global variable list, whereas control parameters
(numerical values, strings, etc.) are instantiated on—
the—{fly, dependent on some sampling strategy and the
specification of the operator. For each combination of
operator and parameterization, a new branch in the
search tree is created.

An example is given in Fig. 1. In the first step (a),
only the original image is in the global variable list and
only operators that work on a single image are applica-
ble. For instance, a threshold operator is applicable,
since it requires only a single image and a numerical
No. 3

Vol. 24 2014

AUTOMATIC GENERATION OF IMAGE ANALYSIS PROGRAMS

10

() oo
T T

AN
T

#Valid programs (x10°)

#Checked programs (x 1_09)

[\
T

0 20 40 60 80
#Possible values

Fig. 2. The number of syntactic correct programs (black)
and the number of valid programs (according to section
3.2, gray) are plotted against the number of possible con-
trol values in our cup examples (see Tables 2 and 1) with a
maximum program length of four operators. Note the
reduction of the search space by a factor of 2 x 10% due to
the heuristic rules of section 3.2.

value, which is created on-the-fly. In this example the
numerical parameter is sampled by three values,
namely 30, 60 and 90. The planner then creates a tree
node for each of these operators and attaches them to
the father node (in this example the root). The search
tree in step (b) consists of several nodes, each with the
original image and a threshold image in the image list.
As displayed in step (c), these nodes may now be
expanded further with operators that use two images (the
original image and the threshold image) or again with a
single image operator, which now may choose between
the original image and the threshold image. This proce-
dure continues until a predefined depth of the tree is
reached. Now each node and each leaf contains a pro-
gram candidate that will be evaluated with the help of a
fitness function (see section 3.3). Furthermore, this
requires the programs to be compiled and executed with
the manually annotated image data as input.

3.2. Heuristics for Search-Space Reduction

The programs created by the planning algorithm in
section 3.1 are syntactically correct. That is, every
assignment to an input parameter has the appropriate
data type. However, each program will be evaluated
with the help of a fitness function (see section 3.3) and
there is an enormous amount of syntactically correct
programs. To reduce the computational cost during
the assessment of the programs, we apply a set of rules
to identify programs that are not considered for evalu-
ation. Although it is a simple heuristic method, the

PATTERN RECOGNITION AND IMAGE ANALYSIS

Vol. 24

403

search space is reduced by several orders of magnitude
as depicted in Fig. 2.

We apply the following four rules (in the order of
verification during program creation):

—An operator whose inputs are outputs of the
same operator at a previous position in the program, is
considered redundant. Normally, the result of a
repeated execution of the same operator can be
achieved by a single execution with appropriate
parameterization. For example, instead of applying a
smoothing filter two times, one can apply the filter
once with an increased mask size. (SELFCALL, Hyc)

—An operator is considered redundant if the same
operator with exactly the same parameter assignment
is already present at a previous position in the pro-
gram. (DUPLICATE, Hpyp)

—A program whose last operator does not have the
same output type as the desired program output (e.g.
image region(s)) is not considered in the evaluation
step. (VALID_OUTPUTS, Hyo)

—An operator (except the last operator in the pro-
gram) is considered redundant if none of its outputs is
assigned to an input of an operator at a subsequent
position in the program. (NO_DEPENDENCIES,

HNODEP)

3.3. Assessment of Program Candidates

After generation and selection of appropriate pro-
gram candidates (as illustrated in sections 3.1 and 3.2),
the programs are assessed according to the task
description and a corresponding fitness function. The
program with the highest fitness is the final outcome of
the system.

In our example, the task is to detect objects of a
given class in images. The task description is given in
terms of a set of annotated sample images /,, ..., I,. For

each sample image [, a set Bf of k; axis-aligned rect-

ki
angular bounding boxes b,<I , ..., bi' is specified. Each

bounding box describes the visible area of an object
(e.g., a cup) in the image. Annotation is performed in
accordance with the guidelines of the PASCAL Visual
Object Class Challenge [25].

The foundation of our fitness function is the over-
lap ratio #(b,, b,) of two bounding boxes b, and b,
(see [5]):
area(b, N b,)

r(b,, b,) = 1
(b 52) area(b, U b,) M
The cover ratio c(b,, b,) is defined as
area(b, N b
(b, by) o= LD L) @

area(b,)

Note that the cover ratio is not symmetric and that
r(b,, b,) € [0; 1] and ¢(b,, b,) € [0; 1] hold. Given a

No. 3 2014

404

HERRMANN et al.

Fig. 4. Annotated images (top) and results of the best program (bottom) for the soccer example (image source: [4]).

set of predicted bounding boxes B, and a set of anno-
tated bounding boxes B,, we calculate the F1 score
f1(B,, B,) (which is the harmonic mean of precision

andrecall,i.e., f; (B,, B,) € [0; 1]) with respect to the

overlap of bounding boxes. In spite of some drawbacks
(see [17]), we use the F1 score because of its simplicity.
To calculate overlaps, an assignment between predicted
bounding boxes and annotated bounding boxes has to
be established. This is usually done using Munkres’s
algorithm [15]. For reasons of lower computational
cost, we perform a greedy assignment procedure similar
to [1]. Algorithm 1 offers a detailed description. We
choose 1= 0.4 (instead of 7 = 0.5 as suggested by [5]). A
lower threshold favors a higher detection rate at the cost
of a lower positional precision.

Each program P in the set of program candidates is
executed n times with each sample image /; as input,

respectively. It has a set of possible results Rp, which

consist of all outputs of its last operator that match the
data type of the annotation (in our example: image

region(s)). Every possible result R,f € R, provides a

set of image regions R ,/fl_ for each input image /;. In

order to determine the F1 score, the axis-aligned min-
imum bounding box rectangle is calculated for each

PATTERN RECOGNITION AND IMAGE ANALYSIS

region in R ,fi , resulting in the set of bounding boxes

B ,Ifi . The designated output of a program is the possible

result with the highest geometric mean of the F1 score
taken over all sample images. The program’s fitness
w(P) is set to this score, i.e.:

[1/(B5. B (3)

pli=1

w(P) := max

k
RPeR

4. EXPERIMENTAL EVALUATION

We demonstrate our proof—of—concept with the
help of two simple examples: the detection of cups on
a table and the detection of humans in soccer videos.
Each image dataset comprises four images scaled to a
size of 640 x 480 pixel (cups) and 640 x 360 pixel (soc-
cer). The annotated images of both examples can be
found in the top row of Fig. 3 and Fig. 4, respectively.

Our operator database contains a selection of six
basic image processing operators (see Table 1) and the
program length is limited to a maximum of four oper-
ators. The operators provided are two smoothing oper-
ators (gauss_image and median_sqgr), a color
space conversion from RGB to HSV (trans_rgb),a
Vol. 24

No. 3 2014

AUTOMATIC GENERATION OF IMAGE ANALYSIS PROGRAMS

Table 1. List of image processing operators. Legend: (I)—Input, (O)—Output

405

Operator Description Input/Output Data type

gauss_image Smooth image using discrete Gauss functions. (I) image color image
(I) size integer

(O) image _gauss| color image

median sqr Compute a median filter with a square mask. (I) image color image
(I) size integer

(0) img_median | color image

trans_rgb Transformation of an image from RGB color space to HSV | (I) image color image

goknspmm.Rcmﬂﬁngchanndsmeraunwdasmnghgnw (0) image_ H gray image

1mages. (0) image_S gray_ image

(0) image VvV gray_ image

dev_image Calculate for each color channel the standard deviation of | (I) image color image
gray values within a square window and take the maximum | ([) size integer

over all channels. (0) image dev gray image

threshold Segment an image using global threshold. (I) image gray_ image
(Dmin gray integer
(I)max_gray integer
(0) region region
holes max comp | Calculate connected components, take the holes of the big-| (I) region region
gest component (i.e. difference of convex hull and the (Dmin area integer
region itself) and filter holes according to the size of their (1) ma % area integer

axis-aligned minimum surrounding rectangles.

(O) holes

region array

Table 2. Control parameters with their domains for the cup example

Operator

Input/Output

Domain

gauss_image
median_ sqr
dev_image
threshold

(I) size
(I) size
(I) size
(I)min gray
(I)max_gray

holes max comp

(I)min_area
(I)max_area

(3,7, 11}
(3,7, 11}
(3,7, 11}
(0,5, 15,25, ..., 245}
{10, 20, ..., 250, 255}

{0, 1500, 3000, ..., 18000}
{70000}

deviation filter (dev_image), a threshold operator
(threshold), and a operator for region filtering
(holes max_comp).

The best configuration of the operators is deter-
mined automatically by our system without any fur-

kn+l_1
k-1
i=0

sibilities to compose a program of maximum length n
with k operators (in our case with n =4 and k = 6 there
are 1555 possibilities). However, the search space
explosion (see Fig. 2) is primarily induced by the
assignment of the parameters. First of all, for every
operator arrangement all possible assignments of
iconic input parameters (with respect to the correct
data type) are taken into consideration. Furthermore
the control parameters are instantiated on—the—fly, as
mentioned in section 3.1. We use a straightforward
approach, which is similar to grid search for hyperpa-

n

ther user interaction. There are Z k' = pos-

PATTERN RECOGNITION AND IMAGE ANALYSIS

Vol. 24

rameter optimization in machine learning applica-
tions (see e.g., [9]). The system considers every possi-
ble combination of input parameter instantiations.
The possible values for each input control parameter
are defined in the operator database and are depicted
in Table 2 and Table 3, respectively.

Note that implicit background knowledge is mod-
eled by the domains of the parameters. For example, the
possible values for the min area and max area
parameters of the holes max comp operator reflect
some assumptions about the object size in the images.

In both examples, the planner created about 9.8 x
10° programs. After the application of the rules in sec-
tion 3.2 only approximately 500.000 valid programs
remained for evaluation. The detailed effects of the dif-
ferent heuristic rules are depicted in Table 4. The most
useful filter by far is the rejection of programs with

unused operators (NO_DEPENDENCIES, Hyopep)-

No.3 2014

406 HERRMANN et al.

Table 3. Control parameters with their domains for the soccer example

Operator Input/Output Domain
gauss_image (I) size {3,7, 11}
median sqr (I) size {3,7, 11}
dev_image () size {3,7, 11}

threshold (I)min_gray
() max_gray
(IDmin_area

(I max_area

holes max comp

{0, 5, 15,25, ..., 245}
{10, 20, ..., 250, 255}
{0, 25, 50, ..., 300}
{1250}

Table 4. Statistics of the cup experiment for different maximum program lengths: the number of syntactically correct programs,
the number of valid programs and, the number of programs rejected by the different rules of section 3.2. All program counts have

the magnitude of 10°
Max. Length Programs Valid Hgo Hpyp Hyy Hyopep

3 5.691 0.081 0.001 0.017 0.039 5.553
4 9798.3 0.5 1.5 56.3 51.6 9688.4
5 >1600000 >1.6

Table 5. The best program for the cups example (fitness: 0.967)

Input: image _in

l:gauss_image (image in,3) —= (image gauss)

2:trans_rgb (image gauss) — (image H, image S, image V)

3:threshold(image H,95,190) —= (region)

3:holes max comp (region, 13500, 70000) —= (holes)

Output: holes

Table 6. The best program for the soccer example (fitness: 0.605)

Input: image in

I:median sqr (image in,
2:dev_image (image median,
3:threshold (image dev,0,20) — (region)

3:holes max comp (region, 250, 1250) —= (holes)

Output: holes

7) — (image median)
11) — (image_dev)

The generation and evaluation of the programs
took about 11 hours on a standard 3.0 GHz CPU with
our unoptimized implementation. The programs with
the best fitness can be seen in Table 5 and Table 6 and
their results in the bottom row of Fig. 3 and Fig. 4,
respectively.

Even in the more challenging real-world soccer
example, the result of our simple example is quite sat-
isfactory, with the fitness of the best program being
w=0.605. As can be seen in Table 7, the majority of
valid programs have zero evaluation fitness (w = 0).
Further investigation of these programs could lead to
appropriate semantic rules and an even more
restricted search space.

PATTERN RECOGNITION AND IMAGE ANALYSIS

5. FUTURE WORK

We have demonstrated a simple proof-of-concept
that worked on simple problem statements. In the
future, a more powerful operator database is necessary
to solve complex problems. As already mentioned, the
sampling strategy and the heuristics for the tree expan-
sion heavily influence the size of the search space and
thus the runtime. The high ratio between created pro-
grams and valid programs in the area of several deci-
mal powers shows that there is still much room for
improvement of the search function. Not enumerating
invalid programs would speed up the search process
dramatically. A further improvement of the search
strategy could be gained by including a semantical
search heuristic, which would require including back-
ground knowledge. This could be used to favor suitable

Vol. 24 No.3 2014

AUTOMATIC GENERATION OF IMAGE ANALYSIS PROGRAMS

Table 7. The distribution of valid programs according to the
fitness w for the cups example and the soccer example,
respectively.

Example w=0 0<w<0.5 0.5<w<1
Cups 390.608 58.362 21.526
Soccer 432.558 37.704 234

Algorithm 1: Calculation of F1 score with greedy data assign-
ment

Input: Set B, of predicted bounding boxes
Set B, of annotated bounding boxes
Overlap threshold ¢ € [0; 1];

Output: F1 score f1(B,, B,)

fi=—0,p=—0;/p<—0;fn <~—0;

foreach b, € B, do

// Get bounding box with best overlap.

peyy < AIE MAX, ¢ p Kby, b,)

if (b, .b,)>rthen

// Increment true positives, false positives
// and false negatives according to overlap.

tp <~—tp+c(b,, bpmz)
fo~—fo+(1—c(b, b))

i~ fa+ (1 =clby, b,)
// Remove assigned predicted bounding box.
B,<~— B)\b
else

fn<— fn + 1// Increment false negatives.

Ppest

// Increment false positives for every

// non-assigned predicted bounding box.
foreach b, € B,dofp <— fp + 1

// Calculate FI measure.
d=—2p+fp+fn

if d # 0 then f, <— 2tp/d

return f;

operators or to choose more suitable parameter values.
Furthermore, programs that have already been created
could be included in the search strategy, either as sin-
gle operators or as the starting point for a search. This
way, by inspecting a similar, formerly solved problem,
if it exists, the solution may be determined faster. Fur-
thermore, our current approach does not consider
control structures like if-clauses or loops. Finally, sim-
ple regions of interest are not capable of representing
the targets of many real-world vision applications.
Thus, a long-term goal is to incorporate more complex
target specifications. This is the most challenging
research opportunity, because it not only requires
adapting the task specification procedure and the

PATTERN RECOGNITION AND IMAGE ANALYSIS

Vol. 24

407

search heuristics, but also requires taking knowledge
about the task context into consideration.

CONCLUSION

We have presented a system that automatically cre-
ates and evaluates computer vision programs for a given
task. The combination of computer vision and auto-
matic programming is a relatively new approach. Most
fully automatic programming approaches are evaluated
on rather theoretical tasks. In our current, early version,
the task is specified by rectangular regions of interest in
sample images. Our system utilizes six operators with a
maximum program length of four instructions and a
total of seven control parameters. Our evaluation shows
that the basic approach is working, but capability and
performance have to be improved. Further improve-
ments will focus on defining a more efficient search
strategy and on reducing the search space.

REFERENCES

1. M. D. Breitenstein, E. Reichlin, B. Leibe, E. Koller-
Meier, and L. Van Gool, “Online multiperson tracking-
by-detection from a single, uncalibrated camera,”
IEEE Trans. Pattern Anal. Mach. Intellig. 33 (9),
1820—1833 (2011).

2. N. Crossley, E. Kitzelmann, M. Hofmann, and
U. Schmid, “Combining analytical and evolutionary
inductive programming,” in Proc. 2nd Conf. on Artificial
General Intelligence, AGI 2009 (Atlantis Press, Amster-
dam-Paris, 2009), pp. 19—24.

3. J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes,
A. Petitet, R. Vuduc, R. C. Whaley, and K. Yelick,
“Self-adapting linear algebra algorithms and software,”
Proc. IEEE 93 (2), 293—312 (2005).

4. T. D’Orazio, M. Leo, N. Mosca, P. Spagnolo, and
P. L. Mazzeo, “A semiautomatic system for ground
truth generation of soccer video sequences,” in Proc.
6th IEEF Int. Conf. on Advanced Video and Signal Based
Surveillance, AVSS ’09 (IEEE Computer Soc., Los
Alamitos, 2009), pp. 559—564.

5. M. Everingham, L. Van Gool, C. K. I. Williams,
J. Winn, and A. Zisserman, “The pascal visual object
classes (VOC) challenge,” Int. J. Comput. Vision 88
(2), 303—338 (2010).

6. MVTec Software GmbH. HALCON 11 (Munich, 2012).
http://www.halcon.com (Accessed Feb. 27, 2014).

7. M. Hoffmann, E. Kitzelmann, and U. Schmid,
“A unifiying framework for analysis and evaluation of
inductive programming systems,” in Proc. 2nd Conf. on
Artificial General Intelligence, AGI 2009 (Atlantis Press,
Amsterdam-Paris, 2009), pp. 55—60.

8. M. Hofmann, “IGOR2 — an analytical inductive func-
tional programming system: tool demo,” in Proc. 2010
ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation, PEPM’10 (ACM, New York,
2010), pp. 29-31.

9. C.-W. Hsu, C.-C. Chang, and C.-J. Lin, “A practical
guide to support vector classification,” Tech. Report
(Department of Computer Science, National Taiwan

No. 3 2014

408

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

HERRMANN et al.

Univ,, July 2003). http://www.csie.ntu.edu.tw/cjlin/
papers/guide/guide.pdf (Accessed Feb. 27, 2014).

S.-S. T. Q. Jongmans, E Santini, M. Sargolzaei,
F. Arbab, and H. Afsarmanesh, “Automatic code gener-
ation for the orchestration of web services with Reo,” in
Service-Oriented and Cloud Computing (Springer, Ber-
lin-Heidelberg, 2012), pp. 1-16.

S. Katayama, “Recent improvements of MagicHaskeller,”
in Approaches and Applications of Inductive Programming
(Springer, Berlin-Heidelberg, 2010), pp. 174—193.

E. Kitzelmann, “Inductive programming: a survey of
program synthesis techniques,” in Approaches and
Applications of Inductive Programming (Springer, Ber-
lin-Heidelberg, 2010), pp. 50—73.

J. R. Koza, Genetic Programming: on the Programming of
Computers by Means of Natural Selection (MIT Press,
Cambridge, 1992).

J. Mohrmann, G. Heidemann, O. Siemoneit,
C. Hubig, U.-P. Kaeppeler, and P. Levi. “Context gen-
eration with image based sensors: an interdisciplinary
enquiry on technical and social issues and their impli-
cations for system design,” Proc. World Acad. Sci.,
Eng. Technol. 74, 1191—1197 (2010).

J. Munkres, “Algorithms for the assignment and trans-
portation problems,” J. Soc. Industr. Appl. Math. 5 (1),
32-38 (1957).

G. Olague and L. Trujillo, “Evolutionary-computer-
assisted design of image operators that detect interest
points using genetic programming,” Image Vision
Comput. 29 (7), 484—498 (2011).

D. M. W. Powers, “Evaluation: from precision, recall and
f-measure to ROC, informedness, markedness & correla-
tion,” J. Mach. Learn. Technol. 2 (1), 37—63 (2011).

J. Rao and X. Su, “A survey of automated web service
composition methods,” in Semantic Web Services and
Web Process Composition (Springer, Berlin-Heidelberg,
2005), pp. 43—54.

R. Reyes and E de Sande, “Automatic code generation for
GPUsinllc,” J. Supercomput. 58 (3), 349—356 (2011).

A. W. O. Rodrigues, E Guyomarc’h, and J.-L. Dekey-
ser, “An MDE approach for automatic code generation
from UML/MARTE to OpenCL,” Comput. Sci. Eng.
15 (1), 46—55 (2013).

E Rossi, P. van Beek, and T. Walsh, Handbook of Con-
straint Programming (Elsevier, Amsterdam, 2006),
Vol. 2.

The MathWorks, Inc. MATLAB R2013b (Natick,
2013). http://www.mathworks.de/products/matlab
(Accessed Feb. 27, 2014).

The MathWorks, Inc. Simulink R2013b (Natick,
2013). http://www.mathworks.de/products/simulink/
(Accessed Feb. 27, 2014).

H. Vu and R. Olsson, “Automatic improvement of
graph based image segmentation,” in Advances in
Visual Computing (Springer, Berlin-Heidelberg, 2012),
pp. 578—587.

J. Winn and M. Everingham, The PASCAL visual object
classes challenge 2007 (VOC2007) annotation guidelines
(2007). http://pascallin.ecs.soton.ac.uk/challenges/
VOC/voc2007/guidelines.html (Accessed Feb. 27, 2014).

PATTERN RECOGNITION AND IMAGE ANALYSIS

Michael Herrmann, born 1980,
received his diploma degree in computer
science from the Julius—Maximilians—
Universitit Wiirzburg in 2007. From
2007 to 2012 he was a software engineer
for industrial computer vision systems in
private industry. Additionally, he was a
research assistant at the Hochschule
Rosenheim from 2010 to 2012. Since
2012 he is part of the research group
Image Understanding and Knowledge-
Based System at the Technische Univer-
sitdt Miinchen headed by Bernd Radig.
His research interests include computer vision, machine learn-
ing, and especially the detection and tracking of objects in videos.

Christoph Mayer studied Computer
Science at the Technische Universitét
Miinchen from 2000 to 2007 and
received his doctoral degree in 2012.
While he was working on his Ph.D, he
has been working in the German Cluster
of Excellence “Cognition for Technical
Systems” in the Intelligent Autonomous
Systems Group. His research interests
were in the field of face model fitting,
facial expression recognition and emo-
tion recognition. He has been first
author of the paper “Adjusted Pixel Fea-
tures for Facial Component Classification” that appeared in the
Vision and Image Computing Journal in 2009 and has been
awarded with the best paper award in 2009 for the paper “Facial
Expression Recognition with 3D Deformable Models” that has
been presented at the conference “Advances in Computer-
Human Interaction”. His current research interest is in the auto-
matic analysis of soccer games from optical camera data.

Bernd Radig received his diploma
degree in Physics in 1972 from the Uni-
versity of Bonn and the doctor degree in
Computer Science in 1978 from the
University of Hamburg. There he got his
venia legendi and finished his habilita-
tion dissertation in 1982. He was Assis-
tant and Associate Professor in Hamburg
(1982—1986) and full professor, chair of
Image Understanding and Knowledge
Based Systems, Fakultit fiir Informatik,
Technische Universitit Miinchen (1986-
2009). He is a member of the Emeriti of
Excellence programme. He was chairman and founder of the
Association of Bavarian Research Cooperations (1993—2007), a
unique network of scientists, specialising in challenging disci-
plines in accordance with Bavarian enterprises. 1988 he founded
the Bavarian Research Centre for Knowledge Based Systems
(FOR—WISS), an institute common to the three universities TU
Miinchen, Erlangen and Passau. He was general chairman of the
annual symposium of the German Association for Pattern Rec-
ognition in 1981, 1991, 2001 as well as of the European Confer-
ence on Artificial Intelligence (ECAI), 1988. He is active as orga-
nizer and programme committee member of the German-Rus-
sian Workshop on Pattern Recognition. He holds the German
Order of Merit (1992) and the award Pro Meritis Scientiae et Lit-
terarum of the State of Bavaria for outstanding contributions to
science and art (2002). His current research activities are in real-
time image sequence understanding for applications in robotics,
sports or driver assistance systems.

Vol. 24

No. 3 2014

