Robust Depth Regularization in Gaussian Splatting

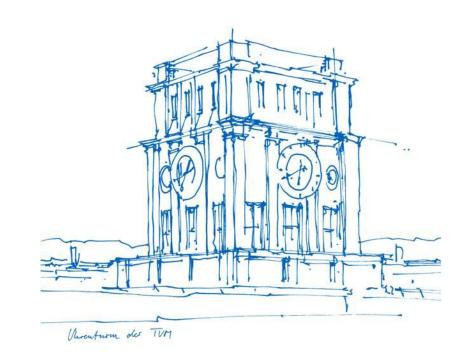
Pierre Reboud

Technichal University of Munich

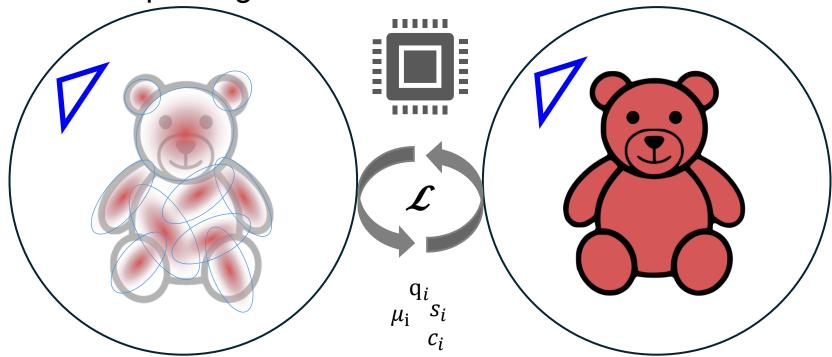
TUM School of Engineering

Computer Vision Group

Munich, 16th of July 2025



Gaussian Splatting - Introduction

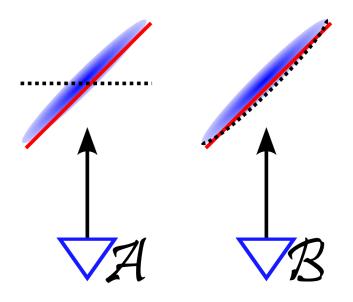


Depth Formulation - Challenges

Challenges of current SOTA depth priors:

- Inability to represent locally curved surfaces.
- Inability to represent slanted surfaces with respect to a camera.

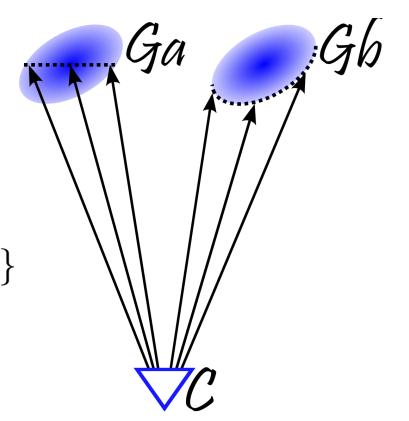
Use the Gaussian's curvature to increase its depth field expressiveness.



Depth Formulation - Derivation

Ellipsoidal iso-surface definition:

$$S_k = \{ x \in \mathbb{R}^3 | ||x - \mu||_{\Sigma^{-1}} = k \}$$



Depth Formulation - Ellipsoidal Iso-Surface

Defining the ellipsoidal iso-surface as an extension of Yu et al 2024

Where:

- v is the pixel aligned bearing vector
- μo is the camera coordinate mean vector
- Σ is the Gaussian's covariance matrix

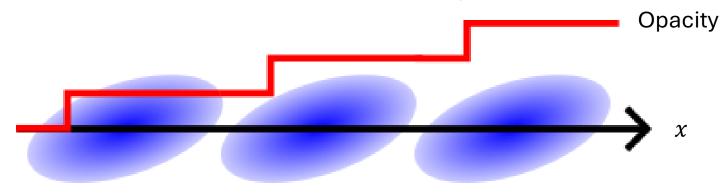
$$\alpha = \|v\|_{\Sigma^{-1}}^{2}$$

$$\beta = \langle v, (o - \mu) \rangle_{\Sigma^{-1}}$$

$$\gamma = \|o - \mu\|_{\Sigma^{-1}}^{2}$$

$$\star(v) = \frac{\beta - \sqrt{\beta^{2} - \alpha(\gamma - k^{2})}}{\alpha}$$

Depth Formulation - Alpha-Compositing Depth



$$t_{\text{alpha-composed}}^{\star}(v) = \sum_{i=0}^{N} \frac{\alpha_i \prod_{j=0}^{i} (1 - \alpha_j)}{1 - \alpha_i} t_i^{\star}(v)$$

Depth Formulation - Ellipsoidal Iso-Surface Gradients

Steps:

- Decompose the depth into subterms $\alpha, \beta, d1, d2$.
- 2. Recursively apply the chain rule.

Pitfalls for computing gradients on *H*:

- Consider H's double cover property of SO(3).
- Use the 4D Euclidean dot product criterion to resolve the incumbent/target rotation's representation ambiguity.

$$J_{t^*,\mu} = J_{t^*,\alpha}(J_{\alpha,d_1}J_{d_1,\mu} + J_{\alpha,d_2}J_{d_2,\mu})$$

$$+ J_{t^*,\beta}(J_{\beta,d_1}J_{d_1,\mu} + J_{\beta,d_2}J_{d_2,\mu})$$

$$+ J_{t^*,\gamma}(J_{\gamma,d_1}J_{d_1,\mu} + J_{\gamma,d_2}J_{d_2,\mu})$$

$$J_{t^*,s} = J_{t^*,\alpha}(J_{\alpha,d_1}J_{d_1,s} + J_{\alpha,d_2}J_{d_2,s})$$

$$+ J_{t^*,\beta}(J_{\beta,d_1}J_{d_1,s} + J_{\beta,d_2}J_{d_2,s})$$

$$+ J_{t^*,\gamma}(J_{\gamma,d_1}J_{d_1,s} + J_{\gamma,d_2}J_{d_2,s})$$

$$J_{t^*,q} = J_{t^*,\alpha}(J_{\alpha,d_1}J_{d_1,q} + J_{\alpha,d_2}J_{d_2,q})$$

$$+ J_{t^*,\beta}(J_{\beta,d_1}J_{d_1,q} + J_{\beta,d_2}J_{d_2,q})$$

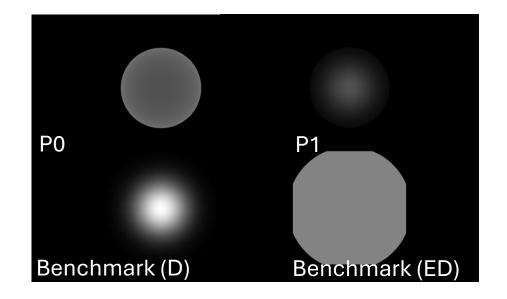
$$+ J_{t^*,\gamma}(J_{\gamma,d_1}J_{d_1,q} + J_{\gamma,d_2}J_{d_2,q})$$

$$+ J_{t^*,\gamma}(J_{\gamma,d_1}J_{d_1,q} + J_{\gamma,d_2}J_{d_2,q})$$

Depth Formulation - Comparison

Possible depth formulations:

- RGB+D: k = 0 + depth scale normalization
- RGB+ED: k = 0 + alpha composition
- 3. $P0: k \ge 0$
- P1: $k \ge 0$ + alpha composition
- 5. Further: k ∝ opacity



Training Losses

Depth regularization:

- Gather the sparse SfM points.
- 2. Project them onto the dense estimated disparity map.
- Retrieve the error terms and back-propagate the loss function.

$$\mathcal{L} := \lambda_1 \mathcal{L}_{L_1} + \lambda_2 \mathcal{L}_{depth} + \lambda_3 \mathcal{L}_{SSIM} + \lambda_4 \mathcal{L}_{oflow}$$

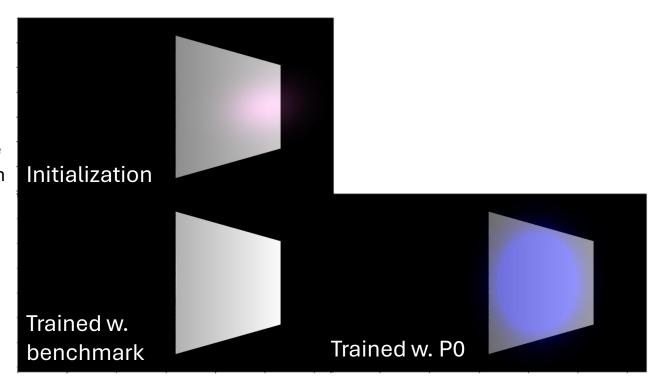
Choose a factor ω in line with the scene's scale, where D_i is the i^{th} image's depth map.

$$\mathcal{L}_{\text{depth}} := \sum_{i}^{N} \omega |\frac{1}{\hat{\mathcal{D}}_{i}} - \frac{1}{\mathcal{D}_{i}}|$$

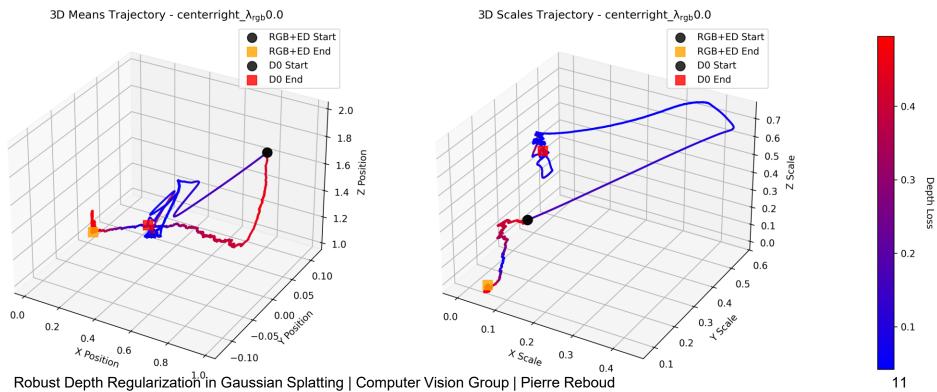
Slanted Square Scene - Setup

Initial setting:

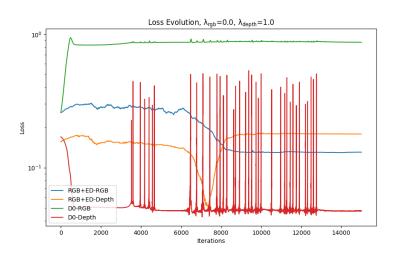
- A red Gaussian located at the right-hand side of a blue slanted square embedded in a 3D scene.
- The Gaussian is trained to approximate the square as accurately as possible.

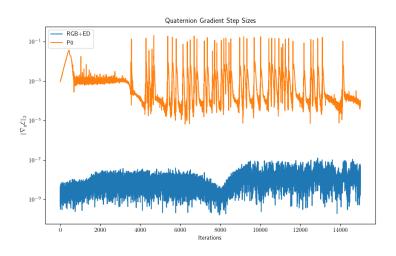


Slanted Square Scene – Parameter Optimization Trajectory

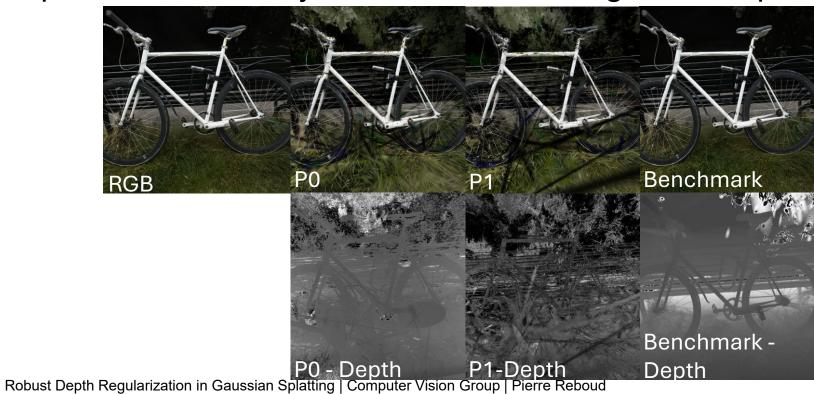


Slanted Square Scene – Loss Curves & Gradient Step Sizes



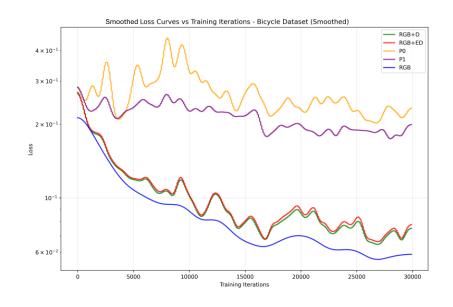


Mip-NeRF 360 - Bicycle Scene Renderings and Depth Maps



Mip-NeRF 360 - Training Metrics & Loss Curves

			1		
depth loss	optical flow loss	render mode	SSIM	LPIPS	PSNR
False	False	RGB	0.820719	0.147808	27.625149
	True	P0	0.325942	0.644561	14.398811
		P1	0.321939	0.626977	14.721218
		RGB+D	0.813236	0.156236	27.045279
		RGB+ED	0.807660	0.164491	26.743068
True	False	P0	0.330259	0.630369	14.575312
		P1	0.347030	0.592160	15.034364
		RGB+D	0.820411	0.149342	27.695976
		RGB+ED	0.820637	0.148114	27.687360
	True	P0	0.330666	0.632180	14.462277
		P1	0.324824	0.581280	15.094447
		RGB+D	0.816056	0.154421	27.339291
		RGB+ED	0.811594	0.159039	27.065453



Mip-NeRF 360 - Further Evaluations

Ablations on the regularization strength differentiated by depth formulation.

SSIM vs Depth Lambda

PSNR vs Depth Lambda

LPIPS vs Depth Lambda

RGB-D

PD

PD

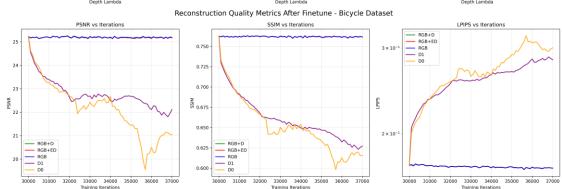
PD

RGB-D

RGB-

Metrics vs Depth Lambda by Render Mode (Bicycle Dataset, Step=29999)

Depth regularized fine-tuning on a scene fully trained without regularization.



Conclusion

Slanted square scene:

- 1. The ellipsoidal iso-surface is more expressive than planar depth priors in certain settings.
- This formulation can be less prone to parameter collapse.
- It is also more compute intensive and can lead to instabilities when using a projected SGD aproach.

Mip-NeRF 360:

- Training with our depth regularization through sparse SfM supervision fails decisively.
- 2. Spurious floating Gaussians plague the reconstructed trained scene.

Future work:

- Use monocular depth estimation to leverage dense depth map supervision.
- ² Use Riemannian SGD algorithms to increase optimization trajectory stability and outcome reliability.

Appendix – Riemannian Adam (Bécigneul et al 2019)

1. Gradient in
$$\mathcal{T}_{q_k}S^3$$
: $g_k = \nabla_q \mathcal{L}(q_k) - \langle \nabla_q \mathcal{L}(q_k), q_k \rangle q_k$ (7.1)

2. Moment Updates:
$$m_{k+1} = \beta_1 \tilde{m}_k + (1 - \beta_1)g_k$$
 (7.2)

$$v_{k+1} = \beta_2 \tilde{v}_k + (1 - \beta_2) g_k \odot g_k \tag{7.3}$$

3. Bias Correction:
$$m'_{k+1} = \frac{m_{k+1}}{1 - \beta_1^{k+1}}, \quad v'_{k+1} = \frac{v_{k+1}}{1 - \beta_2^{k+1}}$$
 (7.4)

4. Tangent Update Vector:
$$u_{k+1} = -r \frac{m'_{k+1}}{\sqrt{v'_{k+1}} + \epsilon}$$
 (7.5)

5. Exponential Map Retraction Update:
$$q_{k+1} = \exp|_{q_k}(u_{k+1}) = \cos(\|u_{k+1}\|)q_k + \sin(\|u_{k+1}\|)\frac{u_{k+1}}{\|u_{k+1}\|}$$
 (7.6)

$$\textbf{6. Parallel Transport of Moments:} \quad \tilde{m}_{k+1} = \mathsf{PT}_{q_k \to q_{k+1}}(m_{k+1}), \quad \tilde{v}_{k+1} = \mathsf{PT}_{q_k \to q_{k+1}}(v_{k+1}) \qquad \textbf{(7.7)}$$

