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Gaussian Splatting - Introduction
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Depth Formulation - Challenges

Challenges of current SOTA depth priors:

● Inability to represent locally curved surfaces.

● Inability to represent slanted surfaces with 

respect to a camera.

Use the Gaussian‘s curvature to increase its depth 

field expressiveness.
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Depth Formulation - Derivation

Ellipsoidal iso-surface definition:
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Depth Formulation - Ellipsoidal Iso-Surface

Defining the ellipsoidal iso-surface as an 

extension of Yu et al 2024

Where:

● 𝑣 is the pixel aligned bearing vector

● 𝜇 − 𝑜 is the camera coordinate mean vector

● Σ is the Gaussian‘s covariance matrix



Depth Formulation - Alpha-Compositing Depth
Opacity
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Depth Formulation - Ellipsoidal Iso-Surface Gradients
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Steps:

1. Decompose the depth into subterms 

𝛼, 𝛽, 𝑑1, 𝑑2.

2. Recursively apply the chain rule.

Pitfalls for computing gradients on 𝐻:

1. Consider 𝐻‘s double cover property of 

SO(3).

2. Use the 4D Euclidean dot product criterion 

to resolve the incumbent/target rotation‘s 

representation ambiguity.



8

Possible depth formulations:

1. RGB+D: 𝑘 = 0 + depth scale normalization

2. RGB+ED: 𝑘 = 0 + alpha composition

3. P0: 𝑘 ≥ 0

4. P1: 𝑘 ≥ 0 + alpha composition

5. Further: 𝑘 ∝ opacity

Depth Formulation - Comparison

Benchmark (D)

P0

Benchmark (ED)

P1
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Training Losses

Depth regularization:

1. Gather the sparse SfM points.

2. Project them onto the dense estimated disparity map.

3. Retrieve the error terms and back-propagate the loss function.

Choose a factor 𝜔 in line with the scene‘s scale, where 𝐷𝑖 is the 𝑖𝑡ℎ image‘s depth map.



Slanted Square Scene - Setup

Initial setting:

● A red Gaussian located at 

the right-hand side of a blue 

slanted square embedded in 

a 3D scene. 

● The Gaussian is trained to 

approximate the square as 

accurately as possible.

Initialization

Trained w. 
benchmark Trained w. P0



Slanted Square Scene – Parameter Optimization Trajectory
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Slanted Square Scene – Loss Curves & Gradient Step Sizes
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Mip-NeRF 360 - Bicycle Scene Renderings and Depth Maps

RGB

P1-Depth

P1P0

P0 - Depth

Benchmark

Benchmark -
Depth
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Mip-NeRF 360 - Training Metrics & Loss Curves

Smoothed
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Ablations on the regularization strength 

differentiated by depth formulation.

Depth regularized fine-tuning on a scene 

fully trained without regularization.

Mip-NeRF 360 - Further Evaluations



Conclusion

Slanted square scene:

1. The ellipsoidal iso-surface is more expressive than planar depth priors in certain settings.

2. This formulation can be less prone to parameter collapse.

3. It is also more compute intensive and can lead to instabilities when using a projected SGD aproach.

Mip-NeRF 360:

1. Training with our depth regularization through sparse SfM supervision fails decisively.

2. Spurious floating Gaussians plague the reconstructed trained scene.

Future work:

1. Use monocular depth estimation to leverage dense depth map supervision.

2. Use Riemannian SGD algorithms to increase optimization trajectory stability and outcome reliability.



Appendix – Riemannian Adam (Bécigneul et al 2019)
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