Robust Depth Regularization in Gaussian Splatting Pierre Reboud Technichal University of Munich TUM School of Engineering **Computer Vision Group** Munich, 16th of July 2025 # Gaussian Splatting - Introduction # Depth Formulation - Challenges Challenges of current SOTA depth priors: - Inability to represent locally curved surfaces. - Inability to represent slanted surfaces with respect to a camera. Use the Gaussian's curvature to increase its depth field expressiveness. # Depth Formulation - Derivation Ellipsoidal iso-surface definition: $$S_k = \{ x \in \mathbb{R}^3 | ||x - \mu||_{\Sigma^{-1}} = k \}$$ # Depth Formulation - Ellipsoidal Iso-Surface Defining the ellipsoidal iso-surface as an extension of Yu et al 2024 #### Where: - v is the pixel aligned bearing vector - μo is the camera coordinate mean vector - Σ is the Gaussian's covariance matrix $$\alpha = \|v\|_{\Sigma^{-1}}^{2}$$ $$\beta = \langle v, (o - \mu) \rangle_{\Sigma^{-1}}$$ $$\gamma = \|o - \mu\|_{\Sigma^{-1}}^{2}$$ $$\star(v) = \frac{\beta - \sqrt{\beta^{2} - \alpha(\gamma - k^{2})}}{\alpha}$$ # Depth Formulation - Alpha-Compositing Depth $$t_{\text{alpha-composed}}^{\star}(v) = \sum_{i=0}^{N} \frac{\alpha_i \prod_{j=0}^{i} (1 - \alpha_j)}{1 - \alpha_i} t_i^{\star}(v)$$ # Depth Formulation - Ellipsoidal Iso-Surface Gradients ### Steps: - Decompose the depth into subterms $\alpha, \beta, d1, d2$. - 2. Recursively apply the chain rule. ### Pitfalls for computing gradients on *H*: - Consider H's double cover property of SO(3). - Use the 4D Euclidean dot product criterion to resolve the incumbent/target rotation's representation ambiguity. $$J_{t^*,\mu} = J_{t^*,\alpha}(J_{\alpha,d_1}J_{d_1,\mu} + J_{\alpha,d_2}J_{d_2,\mu})$$ $$+ J_{t^*,\beta}(J_{\beta,d_1}J_{d_1,\mu} + J_{\beta,d_2}J_{d_2,\mu})$$ $$+ J_{t^*,\gamma}(J_{\gamma,d_1}J_{d_1,\mu} + J_{\gamma,d_2}J_{d_2,\mu})$$ $$J_{t^*,s} = J_{t^*,\alpha}(J_{\alpha,d_1}J_{d_1,s} + J_{\alpha,d_2}J_{d_2,s})$$ $$+ J_{t^*,\beta}(J_{\beta,d_1}J_{d_1,s} + J_{\beta,d_2}J_{d_2,s})$$ $$+ J_{t^*,\gamma}(J_{\gamma,d_1}J_{d_1,s} + J_{\gamma,d_2}J_{d_2,s})$$ $$J_{t^*,q} = J_{t^*,\alpha}(J_{\alpha,d_1}J_{d_1,q} + J_{\alpha,d_2}J_{d_2,q})$$ $$+ J_{t^*,\beta}(J_{\beta,d_1}J_{d_1,q} + J_{\beta,d_2}J_{d_2,q})$$ $$+ J_{t^*,\gamma}(J_{\gamma,d_1}J_{d_1,q} + J_{\gamma,d_2}J_{d_2,q})$$ $$+ J_{t^*,\gamma}(J_{\gamma,d_1}J_{d_1,q} + J_{\gamma,d_2}J_{d_2,q})$$ ## Depth Formulation - Comparison ### Possible depth formulations: - RGB+D: k = 0 + depth scale normalization - RGB+ED: k = 0 + alpha composition - 3. $P0: k \ge 0$ - P1: $k \ge 0$ + alpha composition - 5. Further: k ∝ opacity ## **Training Losses** #### Depth regularization: - Gather the sparse SfM points. - 2. Project them onto the dense estimated disparity map. - Retrieve the error terms and back-propagate the loss function. $$\mathcal{L} := \lambda_1 \mathcal{L}_{L_1} + \lambda_2 \mathcal{L}_{depth} + \lambda_3 \mathcal{L}_{SSIM} + \lambda_4 \mathcal{L}_{oflow}$$ Choose a factor ω in line with the scene's scale, where D_i is the i^{th} image's depth map. $$\mathcal{L}_{\text{depth}} := \sum_{i}^{N} \omega |\frac{1}{\hat{\mathcal{D}}_{i}} - \frac{1}{\mathcal{D}_{i}}|$$ ## Slanted Square Scene - Setup ### Initial setting: - A red Gaussian located at the right-hand side of a blue slanted square embedded in a 3D scene. - The Gaussian is trained to approximate the square as accurately as possible. # Slanted Square Scene – Parameter Optimization Trajectory # Slanted Square Scene – Loss Curves & Gradient Step Sizes # Mip-NeRF 360 - Bicycle Scene Renderings and Depth Maps ## Mip-NeRF 360 - Training Metrics & Loss Curves | | | | 1 | | | |------------|-------------------|-------------|----------|----------|-----------| | depth loss | optical flow loss | render mode | SSIM | LPIPS | PSNR | | False | False | RGB | 0.820719 | 0.147808 | 27.625149 | | | True | P0 | 0.325942 | 0.644561 | 14.398811 | | | | P1 | 0.321939 | 0.626977 | 14.721218 | | | | RGB+D | 0.813236 | 0.156236 | 27.045279 | | | | RGB+ED | 0.807660 | 0.164491 | 26.743068 | | True | False | P0 | 0.330259 | 0.630369 | 14.575312 | | | | P1 | 0.347030 | 0.592160 | 15.034364 | | | | RGB+D | 0.820411 | 0.149342 | 27.695976 | | | | RGB+ED | 0.820637 | 0.148114 | 27.687360 | | | True | P0 | 0.330666 | 0.632180 | 14.462277 | | | | P1 | 0.324824 | 0.581280 | 15.094447 | | | | RGB+D | 0.816056 | 0.154421 | 27.339291 | | | | RGB+ED | 0.811594 | 0.159039 | 27.065453 | ### Mip-NeRF 360 - Further Evaluations Ablations on the regularization strength differentiated by depth formulation. SSIM vs Depth Lambda PSNR vs Depth Lambda LPIPS vs Depth Lambda RGB-D PD PD PD RGB-D RGB- Metrics vs Depth Lambda by Render Mode (Bicycle Dataset, Step=29999) Depth regularized fine-tuning on a scene fully trained without regularization. ### Conclusion #### Slanted square scene: - 1. The ellipsoidal iso-surface is more expressive than planar depth priors in certain settings. - This formulation can be less prone to parameter collapse. - It is also more compute intensive and can lead to instabilities when using a projected SGD aproach. #### Mip-NeRF 360: - Training with our depth regularization through sparse SfM supervision fails decisively. - 2. Spurious floating Gaussians plague the reconstructed trained scene. #### Future work: - Use monocular depth estimation to leverage dense depth map supervision. - ² Use Riemannian SGD algorithms to increase optimization trajectory stability and outcome reliability. # Appendix – Riemannian Adam (Bécigneul et al 2019) 1. Gradient in $$\mathcal{T}_{q_k}S^3$$: $g_k = \nabla_q \mathcal{L}(q_k) - \langle \nabla_q \mathcal{L}(q_k), q_k \rangle q_k$ (7.1) 2. Moment Updates: $$m_{k+1} = \beta_1 \tilde{m}_k + (1 - \beta_1)g_k$$ (7.2) $$v_{k+1} = \beta_2 \tilde{v}_k + (1 - \beta_2) g_k \odot g_k \tag{7.3}$$ 3. Bias Correction: $$m'_{k+1} = \frac{m_{k+1}}{1 - \beta_1^{k+1}}, \quad v'_{k+1} = \frac{v_{k+1}}{1 - \beta_2^{k+1}}$$ (7.4) 4. Tangent Update Vector: $$u_{k+1} = -r \frac{m'_{k+1}}{\sqrt{v'_{k+1}} + \epsilon}$$ (7.5) 5. Exponential Map Retraction Update: $$q_{k+1} = \exp|_{q_k}(u_{k+1}) = \cos(\|u_{k+1}\|)q_k + \sin(\|u_{k+1}\|)\frac{u_{k+1}}{\|u_{k+1}\|}$$ (7.6) $$\textbf{6. Parallel Transport of Moments:} \quad \tilde{m}_{k+1} = \mathsf{PT}_{q_k \to q_{k+1}}(m_{k+1}), \quad \tilde{v}_{k+1} = \mathsf{PT}_{q_k \to q_{k+1}}(v_{k+1}) \qquad \textbf{(7.7)}$$