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Abstract

The aim of this work is to decompose shapes into parts
which are consistent to human perception. We propose a
novel shape decomposition method which utilizes the three
perception rules suggested by psychology study: the Min-
ima rule, the Short-cut rule and the convexity rule. Unlike
the previous work, we focus on improving the convexity of
the decomposed parts while minimizing the cut length as
much as possible. The problem is formulated as a combi-
natorial optimization problem and solved by quadratic pro-
gramming method. We test our approach on the MPEG-7
shape dataset, and the comparison results to previous work
show that the proposed method can improve the part con-
vexity while keeping the cuts short, and the decomposition
is more consistent with human perception.

1. Introduction
Part-based shape representation is a popular representa-

tion for objects in the community of computer vision [2].
Cognitive and psychological researches [1, 4, 15] have
shown that there are several advantages of the part-based
shape representation. First of all, once a whole shape is
factorized into conditional independent components, it is
computationally more flexible to account for shape defor-
mation and articulation. Second, as occlusion is a common
phenomenon, whereas decomposing an object into parts in-
creases the chance of reliably detecting and recognizing the
object if some of its “characteristic” parts are not occluded.
Therefore, the part-based shape representation has received
increasing attention.

In order to obtain a part-based shape model, the first
question to answer is how to generate the shape parts. Most
previous work on generating shape parts can be classified
into two strategies: one is “bottom up” strategy which is
grouping small shape elements into large shape parts [11],
and the other is “top down” strategy which is shape de-
composition. For the former strategy, people use bottom-up
grouping method to learn parts as hierarchical shape vocab-
ulary for object representation using shape fragments from

(a) (b) (c) (d)

Figure 1. Given the original shapes (a), comparison of our decom-
position results (d) to the previous work [9] (b) and [3] (c).

a large number of shape instances, e.g. [11, 18]. This type
of approaches consider the joint statistics between the ob-
ject and curve fragments at different levels of hierarchies,
whereas ignore shape perceptual properties such as convex-
ity and cut length at all. As for the latter strategy, many
people have studied the problem of shape decomposition
which is partitioning one single shape into several parts un-
der some generic constraints, such as the Minima Rule [4],
the Short-cut Rule [16] and the Convexity [6,17]. With dif-
ferent constraints, the same shape can have different parti-
tions. The Minima Rule considers the curvature of the shape
boundary curve or surface, and enforces that the shape is di-
vided at places where the curvature is local minimum. It re-
flects a local constraint for shape decomposition. The Short-
cut rule takes the cut length as a constraint and optimizes
the decomposition by minimizing the total cut length. This
is motivated by that human vision prefers to use the short-
est possible cuts to parse shapes. Besides these two rules,
convexity is also an important perceptual clue to determine
visual parts [6]. These three rules share a common property
which is “simplicity”. Human perception can partition a
shape into parts very easily and quickly. Thus it must make
use of simple features and rules to make the quick deci-
sion. Based on these constraints, computer vision scientists
have developed various optimization algorithms for solving
the shape decomposition problem. For example, based on
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convexity, Gopalan et al. [3] proposed an algorithm to do
approximate convex decomposition. Liu et al. [9] consid-
ered both convexity and the Short-Cut Rule in order to opti-
mize the shape decomposition. Based on their work, Ren et
al. [12] further encoded the Minimum Rule as well as the
number of shape parts into the objective function during op-
timization and proposed a new optimization algorithm.

Besides these two classes, there are some previous work
using symmetry [14] and Relatability [10] to find shape
parts.

Although each method proposed its own objective func-
tion to optimize for shape decomposition, few of them can
justify their goals quantitatively by experimental results. In
other words, to our knowledge, there lacks of evaluation
methods for shape decomposition in the literature. Most of
these work just show the shape decomposition results by
partitioned objects and leave the judgment to the readers.
This fact makes the comparison of different methods diffi-
cult and therefore the claimed “improvement” is also sub-
jective and vague.

In this paper, we focus on studying shape decomposi-
tion using generic rules. Each of the three rules captures
certain aspects of part decomposition. The Minima rule re-
flects the local “salient” feature of the part junctions, the
Short-cut rule indeed corresponds to the “compactness” of
the desired part-based representation and convexity is easy
to extract and identify for shape perception [5]. Consider-
ing these aspects, we propose a novel shape decomposition
method by jointly considering the three generic rules to find
an optimal shape decomposition. The way we formulate the
problem is different from previous work, including [3,9,12].
Both [9] and [3] only applied one or two rules. Although
Ren et al. [12] also considered all three rules, their focus is
to minimize the number of parts which has overlap with the
Short-Cut Rule and optimize the “visual naturalness” which
is different from our goal. In addition, they did not provide
a rigorous way to define and evaluate the “visual natural-
ness”. Compared to previous work, we focus on improving
the convexity of shape parts. Meanwhile, we also consider
the Minima Rule and the Short-cut Rule. Specifically, we
encode the contribution of each candidate cut to improving
the part convexity into the objective function to optimize
instead of requiring each part’s convexity above a threshold
as [9, 12] did.

Another contribution of the paper is that we propose a
quantitative evaluation method to compare the decomposi-
tion results from different methods and therefore make the
judgment clear. Specifically, we use the inner distance to
measure the convexity and design a metric to measure the
contribution of each candidate cut to improving the part
convexity.

The rest of the paper is organized as follows. In Sec-
tion 2, the shape decomposition problem is formulated as

an optimization problem. Section 3 reviews the preliminary
work which is related to our method. Section 4 introduces
our approach and Section 5 shows the experimental results.
Finally, Section 6 concludes the paper.

2. Problem Formulation
Given a planar shape S, a partition of S is defined as

S =
⋃
i

Pi, s.t.,∀Pi, Pi ∈ S;∀i, j, Pi

⋂
Pj = ∅, (1)

which means that S is composed of several parts {Pi} and
these parts do not overlap each other. On the other hand,
a partition of S is associated with a set of cuts {Cj} =
{pj1pj2} where each cut is a line segment pj1pj2 and both
points pj1 and pj2 lie on the boundary of S. These cuts are
expected not to intersect each other. The boundary of each
part Pi is composed of the boundary of S and a subset of
{Cj}.

Based on the above notations, we can explain the three
rules as follows:

• The Minima Rule [4] suggests that the cut points
{pj1, pj2} are located at the points where the curva-
ture is local minimum.

• The Short-cut Rule [16] suggests to minimize the total
length of the cuts, i.e, min

∑
j L(Cj) where L(Cj) de-

notes the length of cut Cj which is usually computed
as the Euclidean distance between points pj1 and pj2.

• The Convexity Rule [6, 17] suggests to maximize the
convexity of parts or minimize the concavity of parts.
Based on this rule, Rosin [13] proposed a weighted av-
erage convexity to evaluate the decomposition quality
as follows,

Convexity({Pi}) =
∑
i

Ai

A
Convexity(Pi). (2)

where Ai denotes the area of Pi and A is the area of
shape S or A =

∑
iAi.

Considering the three rules, the goal of shape decompo-
sition can be formulated as

min(
∑
j

L(Cj) +
∑
i

Ai

A
Concavity(Pi)), (3)

s.t.{pj1, pj2} have local minimal curvatures
and cuts do not intersect each other.

3. Preliminary Work
Given the above problem formulation, the remaining

questions include : (i) how to measure Concavity(Pi)? (2)
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how to encourage the cut points {pj1, pj2} to have the lo-
cal minimal curvatures? (3) how to optimize the objective
function based on the measurements? We will introduce the
preliminary work related to these questions in the following
sections.

3.1. Convexity/Concavity Measurement

There are several choices for the measurement of con-
vexity. One classical definition of convexity is the ratio of
the area of the part to the area of its convex hull [13]. But
this convexity measure is criticized due to its insensitivity
to deep (but thin) protrusions of the boundary because it is
area-based.

3.1.1 Inner Distance

Recently, the inner distance (ID) is becoming a popular
measure for convexity [3, 8] because it is not sensitive the
deep protrusions. Therefore, we define the convexity of a
part Pi as the minimal ratio of the ED over ID of a pair of
points within this part, i.e.,

Convexity(Pi) = minp,q∈PiED(p, q)/ID(p, q). (4)

If Pi is a convex, then given any point pair p and q, the inner
distance is always equal to the Euclidean distance. There-
fore, Convexity(Pi) = 1. On the other hand, if Pi is not
convex, there must be a pair of points p and q such that their
ED is less than ID. Therefore, Convexity(Pi) < 1. With
this convexity measure, we can define the concavity mea-
sure as

Concavity(Pi) = 1− Convexity(Pi). (5)

3.1.2 Morse Function

Besides the above concavity measure, Liu et al. proposed a
new measure [9] which is defined as follows:

concave(Pi) = max
p,q∈Pi

concave(p, q), (6)

concave(p, q) = min
R∈R(p,q)

max
f

max
t∈R

gf (t), (7)

where p and q are both points within part Pi, R denotes a
path connecting p and q, R(p, q) denotes all paths connect-
ing p and q, f denotes a Morse function corresponding to
a projection function where the part Pi is projected, t de-
notes a point on the path R, and gf (t) represents a distance
function between t and (p, q). Suppose f(p) ≥ f(q), it is
defined as follows:

gf (t) =

 f(t)− f(p), f(t) > f(p);
0, f(p) ≥ f(t) ≥ f(q);
f(q)− f(t), f(t) < f(q).

(8)

B

f p
1 p

2 p
3

εε

A

Figure 2. Illustration of a mutex pair of regions (A and B) and a
candidate cut (red line). f is the Morse function.

By this measure, for each point pair (p, q), the concavity
is defined by a path which can minimize the maximal per-
pendicular distance between the line passing (p, q) and the
projected contour points between p and q w.r.t. all Morse
functions. Although this definition is different from Eqn. 7,
we can prove that the two definitions are inherently consis-
tent for shapes without holes:

Theorem : Given a shape S without holes, for any point
pair (p, q) ∈ S, the path R which corresponds to the inner
distance between p and q is also the path which can mini-
mize maxf maxt∈R gf (t) as defined in Eqn. 7.
The proof is provided in the supplemental material.

3.2. Mutex Pair and Candidate Cuts

The shape decomposition problem can be also viewed as
a selection problem. Since there are infinite cuts inside a
shape, the goal is to select a subset of cuts which can opti-
mize an objective function. How to propose qualified can-
didate cuts is a challenging problem. Liu et al. [9] proposed
a way to generate candidate cuts. The idea is to find pairs
of components which cannot be kept together otherwise the
concavity of the part containing both components will be
high. Each pair of such components is defined as a “mutex
pair” of regions. Specifically, it is a pair of regions A and B
with

m(A,B) = min
p∈A,q∈B

concave(p, q) (9)

above a threshold ε (See Figure 2). Given a fixed thresh-
old ε, let MP denote all the mutex pairs to be separated
and |MP | = nmp. The motivation of generating candi-
date cuts is to separate these mutex pairs of regions. Fig-
ure 3 (a) shows an example of generated candidate cuts by
this method. Due to the limited number of Morse functions
being sampled (16 directions here), the “best” cut which can
separate the left piece is missing.

3



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

CVPR
#1204

CVPR
#1204

CVPR 2012 Submission #1204. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

0 100 200 300 400

0

50

100

150

200

250

300

350

400

450 

 

(a) Candidate cuts by [9]. (b) New candidate cuts.

(c) Shape decomposition by [9]. (d) Our result.

Figure 3. Comparisons of the candidate cuts by previous work and
our new cuts as well as the resulted shape decompositions.

4. Our Approach

4.1. New Candidate Cuts

In Liu et al. [9]’s work, they only consider the Convex-
ity Rule to propose a set of candidate cuts CL. However,
the Minima Rule can also help to propose useful candidate
cuts. We add a new set of candidate cuts CM such that
both cut points of each new cut have local minimum cur-
vatures. Figure 3 (b) shows a set of new cuts generated by
this rule. By combing these two sets of proposed candidate
cuts CL and CM , it can be seen that the set of candidate
cuts Cp = CP ∪CM is more comprehensive and complete
which will improve the final solution (See Figure 3 (c) and
(d)).

4.2. Cut Income

If the length of a cut is thought as the cost we pay for
choosing this cut, the contribution of a cut can make for
reducing the concavity of parts can be viewed as the “in-
come” of a cut. For each mutex pair mp and each cut C, let
I(mp,C) denotes the income of C for mp. For example, in
Figure 4, without the red cut, the concavity of A and B is
f(ps)− f(pA) by definition of Eqn. 6. With the red cut, the

B
p

A

f

f(p
A
)

f(p
s
)

f(p
cut

) p
cut

p
s

ACut Income

Figure 4. Illustration of the income of a cut (red line) for a mutex
pair (A and B). Point ps is the saddle point which corresponds to
the mutex pair. pcut is the cut point. pA is the lowest point in part
A w.r.t. the direction of Morese function f . The income of the red
cut for mutex pair A and B is f(pcut)− f(pA).

A
1

C

f

B
1

f

A
2

B
2

C
Figure 5. One cut can satisfy two mutex pairs of regions. The left
figure shows mutex pair A1 and B1, the right figure shows mutex
pair A2 and B2. Both can be satisfied by the red cut.

B

C1 C
2

A
p

A

f
f
1

f
2

f(p
A
)

I
1 I

2

Figure 6. One mutex pair of regions A and B can be separated by
two different cuts C1 and C2 with income I1 and I2 respectively.

concavity of the left part becomes f(ps) − f(pcut). So the
reduction of the concavity is f(pcut) − f(pA) which is the
income of this cut for mutext pair A and B.

A cut can satisfy multiple mutex pairs (Figure 5) and a

4
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mutex pair can also be satisfied by multiple cuts(Figure 6).
Let mp denote a mutex pair and C(mp) denote the set of
candidate cuts which can satisfy mp. Let M(C) denote
the set of mutex pairs which can be satisfied by C. So the
real income of a candidate cut is determined by the mu-
tex pairs it satisfies in the final shape decomposition. How-
ever, which mutex pairs it can really satisfy is unknown be-
fore the decomposition is finalized. If multiple cuts satis-
fying mp are chosen in the final solution, only the cut C∗

which maximizes I(mp,C) can get its income I(mp,C∗)
and other cuts have no income. For example, in Figure 6,
both cutsC1 andC2 can satisfy mutex pairA andB, but the
income of C1 is larger. Thus if both cuts are chosen, only
C1 makes income for this mutex pair.

We estimate the expected income of each candidate cut
by stochastic analysis. Assume that the probability that
each candidate cut being chosen is equal to 1/2. For each
mutex pair, we rank C(mp) by I(mp,C) and get a se-
quence of candidate cuts as Cmp

1 , Cmp
2 , . . . , Cmp

k such that
I(mp,Cmp

1 ) ≥ I(mp,Cmp
2 ) ≥ . . . ≥ I(mp,Cmp

k ). Let
r(mp,C) be the ranking of the cut C w.r.t. mp. For exam-
ple, r(mp,Cmp

1 ) = 1. If a subset of C(mp) is chosen in the
final solution, only the cut with maximum I(mp,C) counts,
the others do not make any income for this mutex pair. The
probability for cut C being counted for mutex pair mp de-
pends on its ranking r(mp,C). If r(mp,C) = 1, the prob-
ability for C being counted for mp is 1/2. Because once C
is chosen, it will be counted for mp no matter whether any
other cut is chosen. The probability of chosing C is 1/2.
In general, it is easy to show the probability for C being
counted for mp is

Prob(C is counted for mp)
= Prob(C is the 1st chosen in ranked C(mp))

=
1

2r(mp,C)
(10)

Based on this observation, we can estimate the expected in-
come of a cut C as follows:

I(C) =
∑

mp∈M(C)

1

2r(mp,C)
I(mp,C). (11)

4.3. Optimization

Assume that there are n candidate cuts in the proposed
candidate cut set Cp = {Cj}nj=1, the final decomposition
chooses a subset of Cp, denoted by C∗. With the expected
income for each candidate cut, we can reformulate Eqn. 3
as follows:

min
C∗
{

∑
Cj∈C∗

[L(Cj)− I(Cj)]} (12)

because minimization of the concavity of parts is equivalent
to maximization of the reduction of concavity by the chosen
cuts, i.e., the expected income of chosen cuts.

Figure 7. Example shapes of 20 categories from MPEG-7 shape
dataset.

Design a binary vector x such that:

xj = 1 ⇐⇒ Cj ∈ C∗. (13)

Let vector L represent the cut length of Cp such that Lj =
L(Cj). Let vector I represent the expected income of Cp

such that Ij = I(Cj). Design a penalty matrix Hn×n such
that if Cj and Ck intersects H(j, k) = +∞. Therefore,
Eqn. 12 can be rewritten as

min
x

LTx− aITx+ xTHx

s.t. Ax ≥ 1,x ∈ {0, 1}n, (14)

where A is a matrix of size nmp × n. It denotes the rela-
tionship between the mutex pairs MP = {mpk}

nmp

k=1 and
the candidate cuts Cp. If a mutex pair mpk can be satis-
fied by cut Cj , then A(k, j) = 1, otherwise it is zero. a is
parameter to adjust the impact of cuts’ income.

The above formulation considers the cut length, the ex-
pected income of cuts, the intersection of cuts and the mutex
pairs to be separated. If we relax x to be linear, xi ∈ [0, 1],
this problem becomes a standard quadratic programming
problem as:

min
x

xTHx+ (LT − aIT )x

s.t. Ax ≥ 1,x ∈ [0, 1]n. (15)

By solving Eqn. 15, we can get a soft assignment of x and
then iteratively choose a cut set C∗ based on x as [9].

5. Experimental Results
To evaluate the proposed method on 2D shape decom-

position, we choose 20 categories from the MPEG-7 shape
dataset [7] as Figure 7 shows. For each category, we choose
20 shapes. In total, there are 20× 20 shapes for evaluation.

We propose two measures to evaluate the performance
of the decomposition result: cut length and convexity which
correspond to the first two items in the designed objective
function Eqn. 14. During the implementation, we choose
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16 Morse functions and set the threshold ε for generating
mutex pairs as 0.05D where D is the maximum distance
between points of the shape. These settings are same for
both our method and [9]. The parameter a in our method is
set as 0.1.

5.1. Shape Decomposition

In order to test the performance of our method, we im-
plement two shape decomposition methods of [9] and [3],
then compare them to our method. Figure 8 shows the com-
parison result in terms of the cut length and convexity. For
each shape, we first obtain the three different composition
results and then evaluate the cut length and the convexity
by the definition Eqn. 2 in Section 3. For each category, we
calculate the mean and standard variance of the cut length
across 20 instances for each method respectively. The re-
sult is shown in Figure 8 (a). Similarly, the convexity is
computed and shown in Figure 8 (b). It can be seen that
our cut length(red bar) is shorter than the other two meth-
ods (blue and green) in most cases while our convexity is
about same as those of other two methods. This proves that
our optimization method can achieve same convexity with
shorter cuts compared to previous work.

5.2. Human Perception

In order to verify whether the decomposition results are
consistent with human perception, we conduct an exper-
iment which asks people to decompose the shape exam-
ples. For each of the 20 categories from the MPEG-7 shape
dataset, we select 3 shapes for testing. And for each se-
lected shape, there are 3 people who decompose it manually.
The cuts provided by the participants are taken as the set of
“ground truth” cuts, called C+. To measure the discrepancy
between our decomposition result and the “ground truth”
cuts, we define the distance between two cuts C1 = p1p2
and C2 = p1p2 as follows:

D1(C1, C2) = min{ED(p1, p3) + ED(p2, p4),

ED(p1, p4) + ED(p2, p3)}. (16)

For each cut Ci from C∗, its distance to the ground truth is
defined as

D2(Ci,C
+) = min

C∈C+
D1(Ci, C). (17)

and the distance between the cut sets C∗ and C+ is defined
as

D(C∗,C+) =
1

|C∗|
∑

Ci∈C∗

D2(Ci,C
+). (18)

This is the average distance between the proposed cut and
the nearest cut in the ground truth and called as “cut dis-
tance”.
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Figure 9. Distances between the human cuts and the shape de-
composition results by the proposed method (red), [9](green) and
[3](blue) respectively for the MPEG-7 shape dataset.

Figure 9 shows the computed “cut distance” of our re-
sult as well as [9] and [3]. It can be seen that our result is
closer to the ground truth compared to these two previous
work for most categories. This shows that combining the
three generic rules is useful to learn perceptually meaning-
ful shape parts. From Figure 9, we can see that our method
performs best for “bird” and worst for “ray” (as shown in
the Figure 10).

6. Conclusion

We proposed a method to solve the shape decomposi-
tion problem for learning perceptually meaningful parts. By
jointly considering three generic rules: the Minima rule, the
Short-cut rule and convexity, we formulate the shape de-
composition problem as an optimization problem and de-
sign a new metric “cut income” to measure the contribution
of candidate cuts for improving the convexity of decom-
posed cuts. By using this metric, the original problem is
solved as a quadratic programming problem. The experi-
mental results show that our approach is promising to keep
a good tradeoff between cut length and convexity.
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denote the standard variance. (b) compares the convexity of the decomposed parts from [3](blue), [9](green) and our method(red)
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Figure 10. The first row (a)-(c) shows the examples of human decomposition results, (d) is the result of [3], (e) is the result of [9] and (f)
shows our result.
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