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1. Proof of Theorem on Page 3.
Theorem: Given a shape S without holes, for any point
pair (p, q) ∈ S, the path R which corresponds to the inner
distance between p and q is also the path which can mini-
mize maxf maxt∈R gf (t) as defined in Eqn.7 on page 3.

Proof: Let R′ be the shortest path with respect to the
inner distance for (p, q) and R∗. If R′ cannot minimize
maxf maxt∈R gf (t) as defined in Eqn.7 on page 3, there
must be a path R∗ which can minimize the concavity for
(p, q), i.e.,

R∗ = argminR max
f

max
t∈R

gf (t). (1)

Therefore R′ 6= R∗. Then there is the length of R′ is shorter
than R∗, L(R′) < L(R∗). Let Morse function

f∗ = argmaxf max
t∈R∗

gf (t)

which means that f∗ maximizes the perpendicular distance
between projected points of R∗ and (p, q) according to this
Morse function. Let Dir(f∗) denote its direction. Simi-
larly, let

f ′ = argmaxf max
t∈R′

gf (t)

which means that f ′ maximizes the perpendicular distance
between projected points of R′ and (p, q) according to this
Morse function. Let Dir(f ′) denote its direction. Then we
have the following inequality:

max
t∈R′

gf ′(t) > max
t∈R∗

gf∗(t) > max
t∈R∗

gf ′(t). (2)

The first sign of inequality holds because R∗ is the path
which minimizes maxf maxt∈R gf (t). The second sign of
inequality holds because f∗ maximizes maxt∈R∗ gf (t).

Let t′ denote the point which maximizes the perpendic-
ular distances between projected R′ points and (p, q) on di-
rection Dir(f ′).

t′ = argmaxt∈R′ gf ′(t). (3)

Dir(f’)

p

q

t’

t1 t2

R’

R
*

Figure 1. Illustration of relative positions of p, q, t′, t1, t2, the di-
rection of Morse function f and the two paths R′, R∗.

By Eqn. 2 and Eqn. 3, we can infer that ∀t ∈ R∗, gf ′(t) <
gf ′(t

′). Without loss of generalization, let f ′(t′) > f ′(p) >
f ′(q). Figure 1 shows the relationship between the points
p, q, t′ and the paths R′, R∗.

Because there is no hole in S, there must be intersections
between R′ and R∗. Let t1 be the closest intersection point
to t′ between p and t′. Let t2 be the closest intersection
point to t′ between q and t′. Since there is no hole in S,
t1 and t2 are on the same side of pq as Figure 1 shows.
Then we have f ′(t1), f ′(t2) < f ′(t′) and any point t on R∗

between t1 and t2 satisfies: f ′(t) < f ′(t′). Therefore, the
subpath between t1 and t2 on path R′, denoted as R′(t1  
t′  t2) must be outside of the subpath R∗(t1  t′  t2).
So there must be a shorter path connecting t1 and t2 than
R′(t1  t′  t2) and we can form a new path R′′ which is
shorter than R′. This contradicts with the fact that R′ is the
shortest path.]
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A B C D A B C D

Figure 2. Examples of decomposition results for 20 categories of MPEG-7. There are four results for each shape. From left to right:
Column A is the human decomposition result, Column B is Gopalan’s result( [1]), Column C is Liu’s Result( [2]) and Column D is our
result.

2



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

CVPR
#1204

CVPR
#1204

CVPR 2012 Submission #1204. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

2. More Examples of Decomposition Results
Figure 2 shows more examples of the decomposition re-

sults from experiments. For each category of the MPEG-7
dataset, we choose one example shape and display the hu-
man decomposition result, Gopalan’s result [1], Liu’s re-
sult [2] and our result. It can seen that for most categories,
our decomposition results are closer to human results ex-
cept chicken, fork and ray (left side of the last row). More
comprehensive statistical data of comparison results are re-
ported in the main paper, please see Figure 8 and 9.
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