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Abstract

The use of structural information in 3D scanning is be-
coming more and more popular. However, most approaches
exploit this structural information either in the form of ge-
ometric primitives (mostly planes) or known rigid bodies,
but not both. We overcome this limitation and propose
an object representation that combines primitive and non-
primitive objects using one unified formulation that is based
on signed distance fields. Object pose manifolds are in-
troduced to represent the rigid movement of primitives and
non-primitives in a natural way. We show that different
components of volumetric scanning, such as global trajec-
tory optimization or geometry completion and denoising,
benefit from our formulation.

1. Introduction
Simultaneous localization and mapping (SLAM) has

been a central topic in computer vision research for years.
Depth sensors such as the Kinect allow for fast creation
of dense 3D scene models, independent of lighting con-
ditions. Low-cost depth sensors are primarily used in in-
door environments, which are usually man-made and thus
highly structured; many parts of a room can be described
by planes (walls, floor, etc.) and rotationally symmetric or
cylindric objects (trash cans, vases, etc.). Other rigid bodies
appear repeatedly or can be reduced to one common class
of shapes. Many approaches take advantage of this structure
in indoor environments, e.g. by modeling planar patches ex-
plicitly or by estimating the 6D pose of known rigid bodies
and integrating it into a SLAM routine. Ideally, one would
like to exploit all types of structural information jointly and
use it to aid tracking, ensure global map consistency, and
improve reconstruction quality. The problem is that dif-
ferent types of objects have parameter spaces of different
dimensionality and their parameters are determined differ-
ently (SVD for planes, ICP for rigid bodies, etc.). Simply
treating planes and other geometric primitives as 6D rigid
bodies will lead to degeneracies in the pose estimation.

In this work, we propose an object representation that

−1 −0.5 0 0.5 1

−0.4

−0.2

0

unit: m

ground truth
estimated

−1 −0.5 0 0.5 1

−0.4

−0.2

0

unit: m

ground truth
estimated

Figure 1. Applications of our object representation: we use object
poses for global trajectory optimization (top right). After scan-
ning, we fill in missing data in the reconstruction and denoise the
resulting mesh using the objects (bottom right). The proposed
structural knowledge not only improves the tracking precision,
but it also provides a more complete geometry, most of which
is grouped into known objects and geometric primitives such as
planes and cylinders (colored). Left column is the reference imple-
mentation without object information (data: ICL-NUIM lr2 [14]).

combines geometric primitives, i.e. simple objects such as
planes that can be described in closed form and usually have
a lot of symmetries, and rigid bodies into one formulation.
We decompose the object parameters into a shape and a
pose part and define a signed distance field (SDF) as a func-
tion of these. This formulation can be used for joint ob-
ject tracking, global trajectory optimization, and geometry
completion and refinement. The object poses are manifold
elements, which we explicitly take into account in the op-
timization to avoid degeneracies. When we use our model
for tracking objects, the SDF-based representation provides
an easy way to model sensor noise appropriately in the pose
estimation process. Estimated object poses are used for “ob-
ject bundle adjustment” to get a globally consistent camera
trajectory. Finally, we propose ways to complete and refine
scanning geometry. Examples are shown in Figure 1.
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1.1. Related work

The foundation of 3D scanning with depth sensors was
laid by Curless and Levoy [5], who introduced SDF voxel
grids, and Rusinkiewicz et al. [28]. The KinectFusion sys-
tem by Newcombe et al. [23] stores geometry as an SDF
and tracks new frames against rendered depth maps using
ICP. Bylow et al. [2] perform tracking directly against the
SDF volume. Voxel hashing [25] and octrees [35] improve
memory usage for these approaches to facilitate large scale
volumetric scanning.

There is a lot of work on planar SLAM, e.g. [9, 22, 37,
38]. All of these use RGB-D input. The dense planar SLAM
system for depth images by Salas-Moreno et al. [31] uses
a surfel representation of the scene and compresses data
by jointly storing information for surfels belonging to the
same plane. Planes are not used to enforce global consis-
tency, and no other structural information is used for the
non-planar surfels. Dzitsiuk et al. [10] use plane priors to
complete and denoise the final reconstruction, but not for
camera tracking. For RGB-D scans, Huang et al. [16] de-
noise and simplify meshes using planes.

In the field of semantic scanning and reconstruction, the
SLAM++ system by Salas-Moreno et al. [32] achieves high
data compression in repetitive scenes. Poses of objects in
a database are refined using ICP after detection and then
used for global graph optimization. The semantic bundle
adjustment by Fioraio et al. [13] runs on RGB sequences.
They use 2D image features in addition to the 6D semantic
features, which makes their approach more generally ap-
plicable than the SLAM++ system. We are not aware of
any work combining semantic and primitive-based scanning
consistently.

Zhang et al. [39] use planes and rigid bodies to describe
a scene. The rigid bodies are reconstructed on-the-fly, and
incoming data is labeled as either plane or object. However,
plane and object pose parameters are not used for tracking,
and no geometric primitives other than planes are part of
their model description.

The g2o framework by Kümmerle et al. [18] is a generic
graph optimization system, which allows for different types
of graph vertices, i.e. objects. Hertzberg et al. [15] have pre-
sented a sensor fusion framework based on manifold formu-
lations. The object pose part of our formulation is similar,
but we additionally have an explicit SDF-based geometry
description which allows for applications on the reconstruc-
tion side of a SLAM algorithm.

1.2. Contributions

We propose to unify the description of geometric prim-
itives and non-primitive rigid objects for 3D tracking and
mapping tasks. The main contributions of our work are:

- We present a new formulation based on SDFs that al-
lows us to represent all types of objects (including, but

not limited to planes and 6D rigid bodies) jointly, irre-
spective of their dimensionality.

- We define object pose manifolds and provide a thor-
ough analysis of the most relevant ones.

- We show how our joint object representation can be
integrated into different stages of a volumetric depth
SLAM system to improve tracking and mapping and
reduce the memory footprint.

2. Object representation
To represent a rigid body in space, we need two things:

its pose (R, t), i.e. its rotation and translation w.r.t. a ref-
erence coordinate system, and its shape. The shape can be
described explicitly – e.g. by a triangulation – or implicitly
– as an occupancy grid or a signed distance field (SDF).

We generalize this concept of pose and shape parame-
ters to arbitrary object types: each object is described by a
set of pose parameters p = (p1, ..., pm) that change when
the object moves w.r.t. the camera frame and a set of shape
parameters s = (s1, ..., sn) that are fixed for one particular
instance of an object. The pose parameters uniquely repre-
sent elements p of the object pose manifoldM. The space
of shape parameters S does not need to admit a manifold
structure. Knowing p ∈ M, represented by the parameter
vector p, and s ∈ S, we define a signed distance field

ψo : R3 → R (1)

that returns for any point x ∈ R3 the signed Euclidean dis-
tance to the surface of the object o := (p, s) [26, Chap-
ter I.2]. For geometric primitives, ψo can be stated in closed
form. We define ψo(x) > 0 for x inside an object, and
ψo(x) < 0 for a point x outside the object.

2.1. Object pose manifolds

By optimizing directly on the manifold, we prevent
parameterization-induced singularities in the optimization.
For the general definition of a manifold, we refer to any
textbook on differential geometry, e.g. [27]. To implement
manifold elements as simple Vector objects, we require:

1. An injective map P : M → Rm that assigns each
manifold element p its parameter vector p. Once P is
defined, p is identified with p to not clutter notation.

In order to perform on-manifold optimization in a consistent
way, we need (see [1]):

2. For every point p ∈ M a retraction rp : TpM → M
that maps tangent vectors in TpM back toM.

3. An on-manifold gradient ∇M.
For an object pose manifold, we require in particular:

4. A (semi-)metric d : M×M → R≥0 for which d2 is
a weighted sum of the squared Euclidean norms of a
translational and an angular distance vector:

d(p1, p2)2 = ωt‖rt(p1, p2)‖2+ωr‖rr(p1, p2)‖2 . (2)



Figure 2. The five object types that we analyze: plane and sphere poses have three degrees of freedom (DoF), cylinder poses four. The vase
is an example of a solid of revolution (5 DoF), and the bunny is an example of a rigid body. Its pose has the maximum of 6 DoF.

This is important for optimization methods that require
(weighted) sums of squared residuals, such as Gauss-
Newton or Levenberg-Marquardt.

5. An SE(3) Lie group action φ : SE(3) ×M → M,
(T, p) 7→ T · p. It describes how p, seen from a cam-
era, changes if object or camera are moved rigidly. We
define · implicitly through

ψ(T ·p,s)(T · x) = ψ(p,s)(x) , (3)

i.e. ψo(x) must not change if x and p move rigidly in
the same way.

4. and 5. distinguish our manifold specifications from those
of Hertzberg et al. [15]: our (semi-)metric has an actual
geometric interpretation, and the SE(3) action only makes
sense for manifolds whose elements represent object poses.

2.2. Examples of object spaces

In the following, we briefly describe the object pose
manifolds of five common object types. M (including rt
and rr) as well as shape spaces S and their SDFs are sum-
marized in Figure 2 and Table 1. A more in-depth analysis
containing details on the used retractions, metrics and semi-
metrics can be found in the Appendix.

Oriented planes are fully described by a normal vector
n and a distance d. They do not have any shape parameter.

To characterize a sphere, we need its center point c and
the radius r. c changes when the coordinate system is
moved rigidly, while the radius r is a shape parameter and
thus remains fixed.

Cylinders are described by the cylinder axis (pose) and
the radius r (shape). The axis is a one-dimensional affine
subspace of R3. Thus, M = Graff1(R3), the Grass-
mannian manifold of affine 1D subspaces of R3. Follow-
ing [17], we parameterize Graff1(R3) by a direction vector
n ∈ S2 ⊂ R3 and an offset d ⊥ n in R3.

The pose of a solid of revolution, i.e. a rotationally sym-
metric rigid body, is a position d in 3D space together with
an axis direction n. Its shape space is the space of all plane
curves, but can in practice be limited to a finite number of
parameters that encode a certain class of shapes, e.g. by per-
forming PCA on a set of curves. We can deduce the 3D SDF
ψo of a solid of revolution from the 2D SDF ψ2D

s of the cor-
responding plane curve.

All mentioned objects are rigid bodies, with symmetries
reducing the dimensionalities of their pose manifolds. In
this work, we use the term rigid body exclusively for ob-
jects, the pose manifold of which is the space SE(3) of rigid
body motions. This most general type of object has no con-
tinuous symmetries. As for the solid of revolution, its shape
can be parameterized by some low-dimensional representa-
tion of a class of shapes, using e.g. PCA to approximate the
SDFs of a set of sample shapes [4, 11, 19]. The rigid body
pose T is an element of the Lie group SE(3). A useful lo-
cal parameterization is given by the Lie algebra se(3). We
compute the rigid body SDF ψo from the SDF ψ0

s of a given
object instance.

2.3. Collections of objects

A scene that consists of N objects is the union of all
these objects. We define a scene distance function (DF) Ψ
as the pointwise minimum of all absolute values of object
SDFs:

Ψ :

N∏
j=1

(Mj × Sj)× R3 → R≥0 ,

Ψ(o1, ..., oN ,x) := min
j=1,...,N

|ψoj (x)| .
(4)

The argmin provides an intrinsic labeling of R3: let

j0(x) = argmin
j=1,...,N

|ψoj (x)| , (5)

then object j0 is the object closest to point x. Note that
even though Ψ is not differentiable in Ψ(·,x) = 0, Ψ2 is
and thus, ∇Ψ2(·,x) is well-defined. An illustrative exam-
ple for a 2D scene is shown in Figure 3. The possibility of
representing the scene with one combined DF allows us to
jointly estimate all object poses at once.

The following sections show exemplary applications of
our scene DF representation for object pose tracking, global
optimization, and geometry extraction of volumetric scan-
ning algorithms.

3. Frame-to-frame joint object tracking
Given a set of object parameters in one depth image, we

want to track the objects, i.e. estimate their poses in the sub-
sequent one. This avoids the problem of data association of



Object M dimM rt(p1, p2) rr(p1, p2) S ψ(p,s)(x)

Plane S2 × R 3 d1 − d2 n1 − n2 ∅ n>x + d

Sphere R3 3 c1 − c2 0 R≥0 r − ‖x− c‖
Cylinder Graff1(R3) 4 mm>(d1 − d2) n1 − sgn(n>1 n2)n2 R≥0 r −

√
‖x− d‖2 − (n>x)2

m = n1×n2

‖n1×n2‖

Solid of rev. S2 × R3 5 d1 − d2 n1 − n2 - interpolate(ψ2D
s , (ρ, h))

h(x) = n>(x− d)

ρ(x) =
√
‖x− d‖2 − h(x)2

Rigid body SE(3) 6 log(T1
−1T2)1:3 log(T1

−1T2)4:6 - interpolate(ψ0
s , T

−1 · x)

Table 1. Object pose manifolds with metric residuals, shape spaces and SDFs for five common object types. For solids of revolution and
rigid bodies, no concrete shape space is defined, since there are multiple ways to define one. The cylinder residual rt is d1−d2 if n1 ‖ n2.

0 max line
circle
apple

Figure 3. 2D example of a scene consisting of a set of differ-
ent types of objects: shown are min (left) and argmin (right) of
|ψj(x)|, i.e. scene distance function and intrinsic labeling. Cir-
cle and line SDF can be written in closed form, while the apple is
a rigid body lacking a closed form SDF. We store such SDFs of
non-primitives using pixel (2D) or voxel (3D) grids.

detection-based approaches. The manifold formulation en-
sures non-degenerate solutions. We assume a rigid setting,
i.e. shape parameters are known and fixed during tracking.

3.1. Probabilistic object pose estimation

For the given depth data, we assume two things: the
noise on the data points is Gaussian, and it is symmetric
w.r.t. the z-axis. This is justified by analyses on Kinect
noise characteristics, see e.g. [24]. z-symmetric noise im-
plies a diagonal covariance matrix Σ with σx = σy =: σxy .
The probability for a data point x if the true (closest) point
on the scene surface is x0 is

p(x|x0) =
1√

(2π)3 det(Σ)
exp

(
−1

2
‖x− x0‖2Σ

)
. (6)

We can rewrite x−x0 in terms of the scene DF Ψ, exploiting
the distance field property (see Appendix):

x− x0 = ∇Ψ2(·,x) . (7)

Using ‖∇Ψ(·,x)‖ = 1 ∀ x, the Malahanobis distance in
Eq. (6) becomes (see Appendix)

‖x− x0‖2Σ = w(x,∇Ψ(·,x))Ψ(·,x)2 with

w(x,∇Ψ(·,x)) =
1

σ2
xy

+ (∂zΨ(·,x))2

(
1

σ2
z

− 1

σ2
xy

)
.

(8)
To obtain p(x|Sk), where Sk is shorthand notation for all
observed objects in the scene in frame k, we have to inte-
grate p(x|x̄) over all x̄ that lie on the surface of Sk. Since
p(x|x̄) cannot be expressed as a function of Ψ, we approx-
imate p(x|Sk) ≈ p(x|x0). Using Bayes’ theorem and as-
suming a uniform prior on the scene geometry and indepen-
dence of data points yields

p(Sk|{xi}i) ∝ p({xi}i|Sk) ≈
∏
i

p(xi|x0,i) , (9)

see the Appendix for a derivation. Thus, we can define a
cost function as the negative log likelihood

Etrack(Sk) := − log p(Sk|{xi}i)

≈ 1

2

∑
i

w(xi,∇Ψ(Sk,xi))Ψ(Sk,xi)
2 + const . (10)

3.2. Optimization

To minimize the objective from Eq. (10) (and thus maxi-
mize the likelihood for a scene configuration Sk), we inter-
pret it as an iteratively re-weighted least squares problem by
fixing the weights w(xi,∇Ψ(Sk,xi)) during each iteration
and updating them before the next one.

The domain of Etrack is the cross-product manifold∏
jMj . We use on-manifold Gauss-Newton optimization

as described in [1] to solve for the observed object poses
Sk = (p̄k,0, ..., p̄k,N−1). The pointwise minimum in Ψ



leads to a block-diagonal structure of the Hessian; and, thus,
the problem reduces to N subproblems of low dimension-
ality in each iteration, while still optimizing for all object
poses jointly. Just like Gauss-Newton in Euclidean space,
this procedure needs good initialization to converge. We
use the scene configuration Sk−1 as the initial estimate for
Sk. To initialize S0 or detect previously unseen objects, any
(primitive) object detection method for point cloud data can
be used.

4. Consistency of object and camera poses

If we assume that the scene is static, we expect consis-
tency between frames: the observed pose p̄kj of object j in
frame k should be the object pose in the coordinate system
of camera Ck ∈ SE(3): p̄kj = C−1

k · pj .

4.1. Enforcing consistency

This consistency constraint can be imposed by directly
minimizing a joint energy over all frames. However, this
would remove the possibility of running the optimization
online, while new frames come in.

We thus follow another line of reasoning: having com-
puted p̄kj independently for the first K frames, we achieve
consistency by projection of {p̄kj}k,j to the space of con-
sistent object poses, i.e. those that can be written as C−1

k pj .
The projection is updated each time a new frame is tracked.
We minimize the squared on-manifold distance d2 between
p̄kj and C−1

k pj for all k > 0 and j jointly:

Epr({Ck}k>0, {pj}j) :=
∑
k,j

wkjdj(p̄kj , C
−1
k pj)

2 , (11)

with weights wkj that take into account size and visibility
of the object. We propose a choice of weights in the results
section.

4.2. Relation to bundle adjustment

This projection energy has the same structure as the stan-
dard multi-view bundle adjustment (BA) reprojection error.
Thus, we can apply algorithms developed for classical BA
and combine them with optimization methods for manifolds
to do the projection step.

Specifically, we adapt the algorithm proposed by Engels
et al. [12] to work with manifold input of different dimen-
sionalities. It performs Levenberg-Marquardt minimization
on the BA energy and uses the Schur complement to reduce
complexity from O((K +N)3) for a naive implementation
to O(K2N). We swap K and N in our implementation to
get a complexity of O(KN2), since N is typically smaller
than K in our case. We use robust Cauchy weights as sug-
gested in [12] and represent the camera poses Ck by twist
coordinates in se(3).

x x

Figure 4. Limitations of primitive-based models: while the 6D
camera motion is clearly constrained in both scenes, a model that
only detects planes will not be able to determine the x-component
of the camera motion, since none of the plane normals have non-
zero x-component.

4.3. Regularization

Similarly to the BA problem, where at least five non-
coplanar points are needed for a unique solution, there will
not always be a unique minimizer for Eq. (11). In particular,
since planes and cylinders extend to infinity in our model,
e.g. edges of cubes will not necessarily provide enough in-
formation to constrain the camera pose. We give an example
of this in Figure 4.

To solve this problem, we regularize the object bundle
adjustment using information from a global frame-to-model
fitting. We use a coarse voxel grid to save an estimate of
the scene SDF volumetrically, following Bylow et al. [2].
When a new frame comes in, in addition to the object track-
ing, the camera pose C0

k that best aligns the SDF voxel grid
with the depth data is estimated. We constrain the object
BA by adding a regularization term

Ereg({Ck}k) =
∑
k

w̄kdSE(3)(C
0
k , Ck)2 (12)

to the energy Epr in Eq. (11). This term ensures that the
camera pose Ck stays close to that estimated from the low
resolution SDF grid. The weights w̄k are specified in the
results section. This does not change the complexity of our
BA implementation.

Note that the resolution of the voxel grid can be low
compared to [2], since we mainly use it to regularize our
method. We have closed form SDFs for the geometric prim-
itives. Thus, assuming most parts of the scene are decribed
by the scene DF, fine-scale geometry need not be stored ex-
plicitly.

It is also possible to include a frame-to-frame regularizer
and solve the problem in a pose graph optimization manner,
e.g. using the g2o framework [18].

5. Geometry completion and denoising
When scanning a room, certain areas in the room might

not be observed at all or hardly be observed from any cam-
era position. This can lead to missing or very noisy data in
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Figure 5. Overview of a generic volumetric scanning workflow (blue) augmented with structural information about arbitrary object types
(red): object pose and shape information can be used at several stages of the scanning process to attain a globally consistent model.

the resulting mesh. The object information encoded in the
scene DF can be used to resolve this issue.

5.1. SDF completion

We fill in the missing data with our prior knowledge: we
have a volumetric SDF grid as in [2] with distances d and
weights w for each voxel. For each voxel v with weight
zero, we replace the distance with the SDF value of its clos-
est object j0(v). This way, we obtain an SDF volume with
data everywhere. Note that this SDF can differ from the true
one at the voxel positions with w = 0.

5.2. Mesh denoising

We extract a mesh from the completed SDF using
Marching Cubes [21]. Due to noise in depth data and esti-
mated camera poses, this mesh will be noisy. We use the ob-
ject information in the scene DF to smoothen it: in a scene
that is perfectly described by a set of known objects, the DF
property from Eq. (7) allows us to project each mesh vertex
x to its corresponding point on the surface proj(x):

proj(x) = x−∇Ψ2(·,x) . (13)

In a real world scenario, there will always be parts of the
scene that are not described by known objects. We thus
define a threshold t above which we do not project points:

projt(x) =

{
x−∇Ψ2(·,x) if Ψ(·,x) ≤ t
x else

(14)

This is equivalent to truncating Ψ at t.

5.3. Mesh subdivision

Optimally, a large part of our scene is described by prim-
itive or non-primitive known objects, and the resolution of
the regularization voxel grid can be quite low. This saves
memory. However, at the same time, the geometry of
smaller objects becomes inaccurate in the resulting mesh.
If these smaller objects are (partly) described by known ob-
jects or primitives (e.g., a Coke can by a cylinder), we can

restore finer geometry by mesh subdivision [20]: we divide
each triangle in the mesh into four smaller triangles by con-
necting the midpoints of the three edges. These midpoints
are then re-projected to the scene surface using Eq. (14).
Since we refine geometry only after mesh extraction, the
memory required for the voxel grid does not increase.

6. Experiments and results
6.1. Implementation

We implemented two abstract base classes, sdf_unit and
manifold in C++, from which we derived the explicit ex-
amples of object types and pose manifolds. The scene is
represented by a vector of sdf_units.

For the regularization grid, we implemented the method
of Bylow et al. [2]. The same implementation is used as
reference implementation for pure volumetric scanning.

Primitives are detected with the method by Schnabel et
al. [33]. Rigid bodies and solids of revolution are detected
using FPFH features [29]. We use Point Cloud Library [30]
for 3D point processing (e.g. normal computation for ob-
ject detection). New objects are detected every 30th frame.
Object BA is done with a window size of five frames while
scanning, and one global BA using all information is per-
formed after scanning. To not lose tracking of objects, poses
of objects that are not visible are updated using the esti-
mated camera pose.

6.2. Parameters and setting

For speed reasons, we evaluate our approach on depth
images with QVGA resolution, 320×240. Since primitives
only need very few data points to be fully characterized,
we believe that the reduced resolution does not deteriorate
results much. We take the depth channel of RGB-D data
and downsample it by a factor of two in each dimension.

Usually, not every part of the scene belongs to a geo-
metric primitive or known object, so we need some outlier
handling in our tracking. The most widely used technique to
handle outliers in SDF-based fitting is to truncate the SDF:



ΨT = max(min(Ψ, T ),−T ) for some T ∈ R. We choose
a data-dependent truncation value T = 2σz(x). Note that
the T here and t from Eq. (14) are not necessarily related.
σz and σxy are chosen depending on the sensor. For

Kinect data, we use the model proposed by Nguyen et
al. [24] and simplify it using polynomials. For the synthetic
ICL-NUIM data, we use the noise model described in [14].
Details can be found in the Appendix.

As weights in the object BA, we choose wkj =

N2
kj/
∑

i ψoj (x
(k)
i )2, where Nkj is the number of points

belonging to object j in frame k, and the sum is over all
these points. This choice takes into account both the visi-
bility of the object and the distance of the points from the
object surface. More elaborate choices, e.g. related to the
Fisher information, have not proven advantageous but have
a higher computational cost. The regularization weights w̄k

are chosen accordingly as the ratio of the number of points
Nk in frame k and their mean squared distance from the low
resolution scene surface.

6.3. Synthetic scenes

We run our implementation on two living room se-
quences of the ICL-NUIM benchmark [14]. This is a good
example for a scene where the proposed approach is use-
ful, since it contains different sorts of objects: floor, ceiling,
walls and parts of the sofas are planar; the lamp shades are
cylindrical; the vase is a solid of revolution; and the chairs
are rigid bodies without continuous symmetries. One of the
advantages of our approach compared to SLAM++ is that
not all objects need to be known, so we assume that we
only know the geometry of the vase but not of the chairs. To
compare to other methods, we compute statistics of the ab-
solute trajectory error (ATE) of the estimated camera poses
as suggested by Sturm et al. [36]. We report the ATE for the
lr1 and lr2 sequences compared to [31] and [3] in Table 2.
In summary, we obtain results comparable to the reference
approaches. Additionally, our model is able to recognize
not only planar parts but also e.g. the cylindric structure of
the lamp shades, which can help to refine geometry.

In Figure 6, we show that using object information,
the ATE remains reasonably low even for coarse voxel
grids: while the mean ATE for a voxel size of (8 cm)3 is
6.00 cm using volumetric SDF scanning only, it goes down
to 2.71 cm when using object poses, which is more than
twice as accurate. However, erroneous object detection can
have a negative impact on tracking and thus lead to high
ATEs. Better object detection might improve the object-
assisted scanning, especially w.r.t. robustness.

A reconstruction of the living room with a completed
and denoised geometry is given in Figure 1. Despite some
wrong geometry predictions in unobserved areas similar
to [10], overall the reconstruction improves when the ob-
ject information is used.

Dataset ICL-NUIM lr1 ICL-NUIM lr2
Method [31] (a) (b) [3] (a) (b)

RMSE 1.69 2.32 2.14 3.3 4.89 1.90
Mean 1.50 1.99 1.73 - 4.45 1.77
Median 1.64 1.84 1.28 - 3.64 1.70
Std. 0.78 1.19 1.27 - 2.03 0.70
Min. 0.22 0.11 0.17 - 1.73 0.37
Max. 2.84 6.55 5.48 - 10.19 3.71

Table 2. ATE statistics [cm] for two living room sequences of the
ICL-NUIM dataset [14]: [31] is dense planar SLAM method us-
ing surfels; [3] is robust reconstruction by Choi et al. (result taken
from [6]). (a) denotes volumetric scanning with a linear voxel size
of 4 cm; (b) is the same augmented by object pose information.
Despite the big voxel size and QVGA input, we obtain trajectory
errors comparable to other depth-only methods. In particular, vol-
umetric scanning benefits greatly from the structural information.
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Figure 6. Mean absolute trajectory errors for a naive implementa-
tion of SDF-based tracking and mapping (blue) [2] and the same
model augmented with the (primitive) object tracking and bundle
adjustment (red): except for some outliers (e.g. at 5 cm) which are
due to wrong object detections, the use of structural information
almost halves the mean ATE, i.e. improves the trajectory a lot.

6.4. Real Kinect data

We use the Kinect bunny handheld sequence from the
3D Printed dataset [34] as an example for real depth sensor
data, because the dataset provides a ground truth model of
the bunny. Except for the bunny, it has two planes that can
be used for tracking. To model Kinect sensor noise, we em-
ploy the model from [24]. The natural method to compare
to is the SDF2SDF method from the dataset paper, which is
also a depth-only method. Following their work, we report
translational and rotational parts of the absolute pose error
(APE) instead of the ATE. The APE is similar to the ATE,
but uses a different method to align the two trajectories. Re-
sults are shown in Table 3. In summary, we improve on the
baseline despite a much coarser resolution.

We also demonstrate geometry refinement using the
bunny as an example. Figure 7 shows that after mesh de-



Method SDF2SDF Scan only With objects
Metric trans rot trans rot trans rot

RMSE 4.10 - 4.93 6.31 1.69 1.92
Mean 3.76 4.58 4.53 5.79 1.54 1.75
Min. 0.12 0.00 0.23 0.34 0.12 0.11
Max. 7.81 7.79 8.98 12.68 3.52 6.30

Table 3. APE statistics [cm/deg] for the Kinect bunny handheld
sequence [34]: even with a (linear) voxel size eight times larger
than the reference method (2.0 cm vs. 2.5 mm) and QVGA input,
pose information for three objects (2 planes, 1 rigid body) helps to
reduce the absolute pose error significantly.

Figure 7. Geometry refinement for the Kinect bunny hand-
held [34]: pure volumetric scanning with voxel length 2.5 mm (top
left) blurs details such as the tail of the bunny and introduces ar-
tifacts (between the ears). Even for a coarser resolution (voxel
length 5.0 mm), these problems are resolved when we integrate
object knowledge to scan (top right), denoise geometry (bottom
left) and refine the mesh by subdivision (bottom right). Thus, we
are able to increase scan quality while reducing scan memory.

noising and subdivision, coarse scanning using object pose
and shape information is superior to fine-grained scanning
without object knowledge: it needs less memory, but still
produces scans with a higher level of detail. More evalua-
tion of this sequence is provided in the Appendix.

6.5. Runtime and memory

We used a standard desktop PC with an Intel Xeon CPU
at 3.5 GHz. For the sequences used in the results, joint ob-
ject tracking takes on average 55 ms per frame, i.e. 18 fps.
The bundle adjustment part, which can run in parallel to the
tracking, is at a similar rate of 17 fps for 880 frames. Object
detection runs considerably slower, on the order of 1.0 s.

To get an idea about memory requirements, we give an

Volumetric scanning only
2× 2563 voxels (double) 256 MB

Scanning with objects
coarse SDF: 2× 853 voxels (double) 9.37 MB
12 planes, 880 measurements each 1.46 MB
2 cylinders, 880 measurements each 429 kB
1 solid of revolution, 880 measurements 153 kB
SDF for solid of revolution, 98× 43 pixels 32.9 kB
total 11.4 MB

Table 4. For the ICL-NUIM lr2 sequence [14], we compare mem-
ory requirements of volumetric scanning with (2 cm)3 voxels to
coarse scanning with (6 cm)3 voxels augmented by 15 object
poses. Both have similar ATEs. For a volume of (5.12m)3,
the data compression rate is 22, i.e. between that of dense planar
SLAM and SLAM++ [31, 32].

example in Table 4. Since scan volume resolution can be
lower for scanning with structural information, less mem-
ory is needed. This is also true for memory-efficient meth-
ods like voxel hashing [25], because the low resolution scan
volume can be stored more efficiently as well. The com-
pression rate will be smaller in this case.

7. Conclusion
We have introduced a novel framework for representing

a 3D world containing different types of objects which can
facilitate object-assisted 3D scanning. This was achieved
by decomposing the parameter space of an object into an
object pose manifold and a shape space and defining all ob-
ject types consistently by signed distance fields. Only pose
parameters change when the object or coordinate system
moves rigidly. The manifold formulation avoids degenera-
cies in the pose estimation. Our representation is integrated
into an SDF-based tracking and mapping approach, where it
helps to improve the global trajectory. Moreover, the struc-
tural information is used to denoise and refine the recon-
structed geometry while keeping memory requirements low.

We believe that the proposed representation is very use-
ful for many tasks within the field of tracking and mapping
using depth data. In particular, it can complement deep
learning approaches for object-wise shape completion [7],
or the ScanComplete system [8]: while the network pre-
dicts meaningful geometry and semantics, our formulation
can constrain camera tracking and denoise the final geome-
try, taking into account the given semantics.
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