
Approaches to
Probabilistic Model Learning
for Mobile Manipulation Robots
Jürgen Sturm

Technische Fakultät
Albert-Ludwigs-Universität Freiburg im Breisgau

Dissertation zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

Betreuer: Wolfram Burgard

Juli 2011

Approaches to
Probabilistic Model Learning
for Mobile Manipulation Robots
Jürgen Sturm

Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften
Technische Fakultät, Albert-Ludwigs-Universität Freiburg im Breisgau

Dekan: Prof. Dr. Bernd Becker
Erstgutachter: Prof. Dr. Wolfram Burgard
Zweitgutachter: Prof. Kurt Konolige, PhD
Tag der Disputation: 30.05.2011

Abstract
Mobile manipulation robots are envisioned to provide many useful services both in do-
mestic environments as well as in the industrial context. Examples include domestic
service robots, that implement large parts of the housework, and versatile industrial as-
sistants, that provide automation, transportation, inspection, and monitoring services.
The challenge in these applications is that the robots have to function under changing,
real-world conditions, be able to deal with considerable amounts of noise and uncer-
tainty, and operate without the supervision of an expert. To meet these challenges,
current robotic systems are typically custom-tailored to specific applications in well-
defined environments, and therefore cannot deal robustly with changes in the situation.
This thesis presents novel learning techniques that enable mobile manipulation robots,
i.e., mobile platforms with one or more robotic manipulators, to autonomously adapt to
new or changing situations. The developed approaches in this thesis cover the following
four topics: (1) learning the robot’s kinematic structure and properties using actuation
and visual feedback, (2) learning about articulated objects in the environment in which
the robot is operating, (3) using tactile feedback to augment the visual perception, and
(4) learning novel manipulation tasks from human demonstrations.

In the first part of this thesis, we present innovative approaches to learning a robot’s
own body schema from scratch using visual self-observation. This allows manipulation
robots to calibrate themselves automatically and to adapt their body schemata au-
tonomously, for example after hardware failures or during tool use. In the second part,
we extend the developed framework to learning about articulated objects – such as
doors and drawers – with which service robots often need to interact. The presented al-
gorithms enable robots to learn accurate kinematic models of articulated objects, which
in turn allow them to interact with the objects robustly. In the third part, we provide
approaches that allow manipulation robots to make use of tactile perception – an ability
that is known to play an important role in human object manipulation skills. The main
contributions in this part are approaches to identifying objects and to perceiving aspects
of their internal states. With this, a manipulation robot can verify that it has grasped
the correct object and, for example, discriminate full from empty bottles. Finally, we
present an integrated system that allows human operators to intuitively teach a robot
novel manipulation tasks by demonstration.

All techniques developed in the thesis are based on probabilistic learning and infer-
ence. They have been implemented and evaluated on real robots as well as in simulation.
Extensive experiments have been conducted to analyze and validate the properties of
the developed algorithms and to demonstrate a significant increase in robustness, adapt-
ability, and utility of mobile manipulation robots in everyday life.

Zusammenfassung

Dass Assistenzroboter künftig auch anspruchsvolle, hochkomplexe Aufgaben in ihnen
zunächst unbekannten Umgebungen übernehmen sollen, würde in technischer, wirt-
schaftlicher, aber auch gesellschaftlicher Hinsicht einen großen Durchbruch bedeuten.
So könnten mobile Manipulationsroboter, mit einem oder mehreren Greifarmen aus-
gestattet, in privaten Haushalten viele nützliche Dienste wie z.B. putzen, kochen oder
aufräumen leisten. Des Weiteren wären Senioren und Personen mit Mobilitätseinschrän-
kung weniger auf die Hilfe von externem Betreuungspersonal angewiesen und könnten
länger autonom und selbstbestimmt leben. Kleine und mittelständische Betriebe könn-
ten Assistenzroboter flexibel für verschiedene Aufgaben in der Fertigung einsetzen und
damit ihre Wettbewerbsfähigkeit enorm steigern. Das Ziel dieser Arbeit ist es, innova-
tive Lösungsansätze zu entwickeln, die den Einsatz von mobilen Manipulationsrobotern
sowohl im Unternehmens- als auch im privaten Alltag ermöglichen. Die Herausforderung
in diesen Anwendungsgebieten liegt vor allem darin, dass mobile Manipulationsroboter
auf wenig Vorwissen über sich und ihre Umgebung zurückgreifen können und daher in
der Lage sein müssen, selbstständig geeignete probabilistische Modelle aus ihren Sensor-
wahrnehmungen zu erlernen, um damit zuverlässig ihre Aufgaben zu erfüllen.

Stationäre Manipulationsroboter im industriellen Umfeld werden bereits seit Jahr-
zehnten mit großem Erfolg in der Massenproduktion eingesetzt. Die hierfür entwickelten
Lösungen sind jedoch immer für eine spezielle Aufgabe des Roboters maßgeschneidert,
der Arbeitsbereich und der Bewegungsablauf eines Roboterarms sind genau vorspezifi-
ziert. Nachträgliche Änderungen der Manipulationsaufgabe sind schwierig und oft mit
aufwändigen manuellen Modifikationen in der Programmierung und am Roboterarm ver-
bunden, so dass sich der Einsatz von Industrierobotern in der Produktion aus Kosten-
gründen nur für hohe Stückzahlen lohnt. Damit Manipulationsroboter auch in unstruk-
turierten, d.h. in weniger spezifizierten Umgebungen wie etwa zuhause oder in klein- bis
mittelständischen Unternehmen sinnvoll eingesetzt werden können, müssen Manipulati-
onsroboter mobil und somit deutlich flexibler, robuster und anpassungsfähiger werden
als ihre stationären Vorgänger.

Die speziellen Herausforderungen, die sich aus dem Einsatz von mobilen Manipula-
tionsrobotern in unstrukturierten Umgebungen ergeben, lassen sich am besten anhand
einiger Beispiele erläutern. So ist es vorteilhaft, wenn ein Roboter, der ohne die Hilfe
eines Experten in Betrieb genommen wird, durch Selbstwahrnehmung sein eigenes Kör-
permodell lernen kann. Wird ein solcher Roboter über längere Zeit hinweg eingesetzt,
so ist er mechanischer Abnutzung und Verschleiß ausgesetzt, wodurch seine Positionie-
rungsgenauigkeit abnimmt, wenn er nicht kontinuierlich nachjustiert wird. Ein Mani-
pulationsroboter sollte also in der Lage sein, sein internes kinematisches Modell durch
Selbstwahrnehmung laufend zu überprüfen und gegebenenfalls korrigieren zu können.

Darüber hinaus setzen viele nützliche Anwendungen von Servicerobotern in häuslichen
Umgebungen voraus, dass der Roboter zwischen mehreren Räumen navigieren kann, was
einen sicheren Umgang mit Türen verlangt. Da viele der Gegenstände, die ein Roboter
zur Erfüllung seiner Dienstleistungen benötigt, in Schränken aufbewahrt werden, sollte
es einem Roboter zudem möglich sein, Schränke selbstständig zu erkennen sowie zuver-
lässig öffnen und schließen zu können. Außerdem müssen Manipulationsroboter mit einer
großen Anzahl verschiedener Objekte hantieren, um z.B. Geschirr in die Spülmaschine
zu räumen oder leere Verpackungen wegzuwerfen. Taktile Sensoren könnten hier helfen,
zerbrechliche Objekte vorsichtiger zu greifen, optisch ähnliche Objekte zu unterscheiden
und ihren Inhalt zu erfühlen. Schließlich könnten nach einiger Zeit neue Manipulations-
aufgaben notwendig werden, die nicht in der ursprünglichen Programmierung enthalten
waren. Es wäre daher wünschenswert, dass auch Normalbenutzer einem Roboter intui-
tiv und einfach neue Aufgaben beibringen können. Dies könnte z.B. dadurch geschehen,
dass der Roboter neue Aufgaben aus Benutzerdemonstrationen lernt.

In unstrukturierten Umgebungen ist es dabei besonders wichtig, dass ein Roboter über
die aktuelle Situation genau informiert ist. Dazu ist es vorteilhaft, wenn er alle Informa-
tionen, die er zur Erfüllung seiner Aufgaben benötigt, aus seinen eigenen Sensorwahr-
nehmungen gewinnen kann. Da Sensorwahrnehmungen allerdings immer unvollständig
und fehlerbehaftet sind, muss ein Roboter in der Lage sein, die ihm zur Verfügung ste-
henden Daten sinnvoll zu interpretieren und in ein internes Weltmodell zu integrieren.
Ein Roboter kann mit diesen Zustandsschätzungen dann zum Beispiel Aktionssequenzen
planen oder den Erfolg seiner Handlungen überprüfen.

Um flexibel agieren zu können, sollte ein Roboter also in der Lage sein, aus seinen
eigenen Sensordaten passende Modelle über die Welt zu lernen und diese fortlaufend
an die aktuellen Gegebenheiten anpassen zu können. In dieser Arbeit werden daher
innovative probabilistische Lerntechniken vorgestellt, die es einem Manipulationsroboter
erlauben,

• das Körpermodell seines Greifarms mittels Selbstwahrnehmung von Grund auf zu
lernen und kontinuierlich anzupassen, um ihn z.B. auch nach Hardwarefehlern und
Materialverformungen präzise positionieren zu können,

• kinematische Modelle von verschiedenen artikulierten Objekten aus eigener Beob-
achtung zu lernen, um z.B. zuverlässig mit Türen und Schubladen umgehen zu
können,

• taktile Objektmodelle zu lernen, um die Identität und den Zustand von gegriffenen
Objekten zu ermitteln, und

• aus menschlichen Demonstrationen neue Aufgabenbeschreibungen zu lernen und
diese in ähnlichen Situation reproduzieren zu können.

Die vorliegende Arbeit ist wie folgt strukturiert. In Kapitel 1 wird anhand eines Bei-
spiels anschaulich die Thematik eingeführt und die wissenschaftlichen Fragestellungen
erarbeitet. Kapitel 2 gibt einen kurzen Überblick über die in dieser Arbeit eingesetzten
Lernverfahren und statistischen Modellierungstechniken.

Aus diesen Verfahren wird in Kapitel 3 ein neuer Ansatz entwickelt, der es einem Ma-
nipulationsroboter ermöglicht, das Körpermodell seines Greifarms durch visuelle Selbst-
wahrnehmung zu lernen. Im Gegensatz zu existierenden Ansätzen werden dabei sowohl
die kinematische Struktur als auch die kinematischen Eigenschaften des Roboterarms
bestimmt. Einzelne Gelenke des Roboters werden als Gauß’sche Prozesse modelliert und
daraus ein Bayes’sches Netz zusammengesetzt, das die Kinematik des gesamten Arms
beschreibt. Dank der expliziten Darstellung der kinematischen Struktur ist es möglich,
Abweichungen zwischen Modell und Greifarm in einzelnen Komponenten des Modells
zu lokalisieren und diese Komponenten gezielt anzupassen. Dies liefert eine flexible, pro-
babilistische Repräsentation kinematischer Modelle, die es einem Manipulationsroboter
erlaubt, sich selbst bei auftretenden Hardwareproblemen oder Materialverformungen
präzise positionieren zu können. Roboter, die diesen Ansatz verwenden, müssen daher
weniger gewartet werden und können deutlich länger ohne die Aufsicht eines Menschen
eingesetzt werden.

Für eine Vielzahl von Manipulationsaufgaben in häuslichen Umgebungen ist es wich-
tig, dass Serviceroboter selbstständig Schranktüren und -schubladen öffnen können, um
dort Gegenstände abzulegen oder herauszuholen. In Kapitel 4 wird gezeigt, wie sich der
in Kapitel 3 vorgestellte Ansatz zur kinematischen Modellierung von Roboterarmen auf
artikulierte Objekte verallgemeinern lässt. Eine Erweiterung um parametrische Modelle
sorgt dafür, die Robustheit und Effizienz der Modellschätzung zu steigern, während die
hohe Flexibilität von nichtparametrischen Modellen wie den Gauß’schen Prozessen erhal-
ten bleibt. Im Vergleich zu vorangegangenen Arbeiten ist der vorgestellte Ansatz für eine
deutlich größere Klasse artikulierter Objekte anwendbar und kann sowohl ihre Freiheits-
grade ermitteln, als auch Schleifen in ihrer kinematischen Struktur entdecken. Insgesamt
ermöglicht es dieser Ansatz Manipulationsrobotern, akkurate kinematische Modelle von
Schubladen, Türen, Kühlschränken und Spülmaschinentüren zu lernen, um diese Ge-
genstände robust bedienen zu können. Ergänzend hierzu wird in Kapitel 5 gezeigt, wie
ein Manipulationsroboter Schranktüren- und schubladen selbstständig in Tiefenbildern
wahrnehmen kann, ohne hierfür künstliche Markierungen zu benötigen.

Verfügt ein Manipulationsroboter über taktile Sensoren in seinem Greifer, so kann er
diese verwenden, um zusätzliche Information über die gegriffenen Objekte zu erhalten.
In Kapitel 6 und 7 werden zu diesem Zweck zwei neue Ansätze vorgestellt, die es Ro-
botern ermöglichen, taktile Objektmodelle zu lernen. Mit dem ersten Ansatz kann ein
Roboter aus Tastwahrnehmungen ein taktiles Vokabular erzeugen und dies dazu ver-
wenden, verschiedene Objekte zu beschreiben und voneinander zu unterscheiden. Damit
kann ein Manipulationsroboter mit seinen Tastsensoren überprüfen, ob er das richtige

Objekt gegriffen hat. Der zweite Ansatz ermöglicht es, aus der zeitlichen Entwicklung
der taktilen Signale darauf zu schließen, ob eine Flasche sicher verschlossen ist und ob
sie noch Flüssigkeit enthält. Diese Fähigkeit ist z.B. für einen Haushaltsroboter wichtig,
der einen Tisch abräumt und entscheiden muss, ob eine Milchpackung voll oder leer ist
und sie daher aufbewahrt oder weggeworfen werden soll.

In Kapitel 8 wird beschrieben, wie ein Roboter neue Manipulationsaufgaben lernen
kann, indem er einen Menschen bei der wiederholten Ausführung dieser Aufgaben be-
obachtet. Aus diesen Vorführungen extrahiert der Roboter Ausführungsinvarianzen, aus
denen er eine verallgemeinerte Aufgabenbeschreibung ableitet. Dies ermöglicht es dem
Roboter, die gelernte Manipulationsaufgabe auch in anderen Situationen robust zu re-
produzieren. Der vorgestellte Ansatz formuliert Imitationslernen als probabilistisches
Schätzproblem in einem dynamischen Bayes’schen Netz, das die Aufgabenbeschreibung
mittels zeitlicher und örtlicher Objektrelationen kodiert. Im Gegensatz zu existieren-
den Ansätzen erlaubt diese faktorielle Darstellung, dynamisch neue Nebenbedingungen
einzufügen, um z.B. Hindernisse während der Reproduktion zu vermeiden oder eine be-
stimmte Körperhaltung zu bevorzugen. Dieser Ansatz ermöglicht es insbesondere auch
Laien, die Programmierung eines Manipulationsroboters auf einfache Weise um neue
Aufgaben zu ergänzen, was eine wichtige Grundvoraussetzung für den Einsatz im Alltag
darstellt.

Schließlich werden in Kapitel 9 die Ergebnisse dieser Arbeit diskutiert und ein Aus-
blick auf zukünftige Forschungsfragen gegeben. Zusammengefasst liegt der Hauptbeitrag
dieser Arbeit in der Entwicklung, Evaluation und Analyse innovativer Techniken, die da-
zu beitragen, dass Manipulationsroboter zukünftig leichter in unstrukturierten Umge-
bungen eingesetzt werden können. Hierzu werden aus aktuellen probabilistischen Lern-
verfahren, wie z.B. Gauß’schen Prozessen, Stichprobenkonsensmethoden und grafischen
Modellen neue Ansätze entwickelt, die zur Lösung mehrerer relevanter Probleme in der
Robotik beitragen. Die probabilistische Formulierung dieser Ansätze ermöglicht es ei-
nem Roboter, Unsicherheiten, die durch Ungenauigkeiten in den Sensorwahrnehmungen
oder der Aktionsausführung entstehen, in den gelernten Modellen adäquat abzubilden
und in seiner Handlungsplanung entsprechend zu berücksichtigen. Diese Arbeit zeigt
in ausführlichen Experimenten, die sowohl in Simulation wie auch auf verschiedenen
Roboterplattformen ausgeführt wurden, dass sich mit den vorgestellten Lösungsansät-
zen die Abhängigkeit zu starren Modellen und strukturierten Umgebungen signifikant
reduzieren lässt. Gleichzeitig wird in diesen Experimenten demonstriert, dass die hier
vorgestellten Lösungsansätze die Flexibilität, Anpassungsfähigkeit und Robustheit von
Manipulationsrobotern maßgeblich steigern. Dadurch leistet diese Arbeit einen Beitrag
zu der Erschließung von natürlichen Umgebungen für mobile Manipulationsroboter.

Acknowledgments

I would like to thank all the wonderful people in our lab at the University of Freiburg.
This thesis would never have been possible without the inspiration and continuous sup-
port of my advisor Wolfram Burgard, who provided me with the right balance of encour-
agement, practical guidance, and opportunities, and granted me an exceptional degree of
freedom in pursuing my own ideas. I thank my co-advisor Kurt Konolige for strengthen-
ing my view on real-world perception problems in robotics and making my research stay
at Willow Garage possible. After my advisors, my sincere thank goes to Cyrill Stachniss
and Christian Plagemann for the excellent conversations we had over the years. Both
supported me countless times with good advice and contributed valuable ideas to this
work.

Next, I thank my co-authors for the insightful discussions, fruitful collaborations,
and late-night paper writing sessions. In particular, I would like to thank Advait Jain,
Charlie Kemp, and Vijay Pradeep for our joint works on articulated objects; Sachin
Chitta, Matthew Piccoli, Alexander Schneider, Marco Reisert, and Hans Burkhardt for
our initiatives on tactile perception; and Clemens Eppner and Maren Bennewitz for our
work on imitation learning. It was a pleasure for me to work with all of them.

Furthermore, I would like to thank the people at Willow Garage and all contributors
to the robot middleware ROS – I am convinced that these efforts have significantly
brought the robotics community forward. Additionally, I want to thank Michael Beetz
and Dejan Pangercic for giving me the opportunity to present my work at the ROS Fall
School in Munich. This motivated me to polish my software and documentation, and to
make it available to a larger audience. Thanks also to Kevin O’Regan who elucidated
me on the philosophical and psychological aspects of self-perception and body schema
learning. I thank Armin Hornung, Andreas Karwath, Axel Rottmann, Barbara Frank,
Christoph Sprunk, Daniel Meyer-Delius, Daniela Sturm, Dominik Joho, Felix Endres,
Henrik Kretzschmar, Julia Frankenberger, Jürgen Hess, Kai Wurm, Lionel Ott, Marit
van Dijk, and Maximilian Beinhofer for proof-reading earlier versions of this document.
Also, I would like to thank Susanne Bourjaillat, Kris Haberer, and Michael Keser for
their administrative and technical support during my time in Freiburg.

My deepest gratitude goes to my family for the support and love they gave me in
every period of my life. Finally, I thank Julia for her love during all these years.

This work has partly been supported by the German Research Foundation (DFG) through the Leibniz
program, the intern program of Willow Garage, the European Commission under grant agreement num-
bers FP6-IST-004250-COSY and FP6-IST-045388-INDIGO, and by the German Ministry for Education
and Research (BMBF) through the DESIRE project.

Für Julia und meine Familie

Contents

1 Introduction 1
1.1 Key Contributions of this Thesis . 6
1.2 Publications . 7
1.3 Contributions to Open-Source Software in Robotics 9
1.4 Collaborations . 9
1.5 Symbols and Notation . 11

2 Basics 13
2.1 Model Learning . 13

2.1.1 Regression . 14
2.1.2 Classification . 16
2.1.3 Dimensionality Reduction . 19
2.1.4 Clustering . 22

2.2 Model Comparison and Model Selection 24
2.2.1 Root Mean Square Error . 25
2.2.2 Data Likelihood . 25
2.2.3 Cross-Validation . 26
2.2.4 Bayesian Model Comparison . 26

2.3 Graphical Models . 28
2.4 Summary . 31

3 Body Schema Learning 33
3.1 Kinematic Models for Manipulation Robots 35
3.2 A Bayesian Framework for Body Schema Learning 37

3.2.1 Local Models . 38
3.2.2 Learning a Factorized Full Body Model 41
3.2.3 Pose Prediction and End-effector Pose Control 46

3.3 Failure Awareness and Life-Long Adaptation 48
3.4 Experiments . 50

3.4.1 Evaluation of Model Accuracy . 51
3.4.2 Recovery from a Blocked Joint . 53
3.4.3 Tool Use . 55
3.4.4 Controlling a Deformed Robot . 57

ii Contents

3.5 Related Work . 58
3.6 Summary . 60

4 Learning Kinematic Models of Articulated Objects 61
4.1 Unified Framework for Learning Kinematic Models 63

4.1.1 Model Fitting . 69
4.1.2 Model Evaluation . 73
4.1.3 Model and Structure Selection . 74

4.2 Framework Extensions . 76
4.3 Perception and Control of Articulated Objects 82
4.4 Experiments . 85

4.4.1 Model Estimation and Model Selection 86
4.4.2 Operating Articulated Objects with a Mobile Manipulator 93
4.4.3 Detecting Kinematic Loops . 97
4.4.4 Robustness and Convergence Analysis 100

4.5 Related Work . 106
4.6 Summary . 108

5 Vision-based Perception of Articulated Objects 109
5.1 Marker-less Pose Estimation . 110

5.1.1 Fast Processing of Depth Images 111
5.1.2 Pose Estimation . 113
5.1.3 Pose Tracking . 114

5.2 Experiments . 115
5.2.1 Evaluation of Detection Rate and Pose Accuracy 116
5.2.2 Kinematic Model Learning . 117

5.3 Related Work . 119
5.4 Summary . 120

6 Object Recognition using Tactile Sensors 123
6.1 The Bag-of-Features Model . 124

6.1.1 Unsupervised Creation of a Tactile Vocabulary 127
6.1.2 Learning the Feature Histograms 128
6.1.3 Object Classification . 129

6.2 Selecting Observation Actions . 129
6.3 Experiments . 131

6.3.1 Vocabulary and Codebook Creation 132
6.3.2 Recognition Rates . 132
6.3.3 Active Perception . 135

6.4 Related Work . 136
6.5 Summary . 137

Contents 1

7 Object State Estimation using Tactile Sensors 139
7.1 Generic Tactile Features for State Estimation 140

7.1.1 Feature Extraction . 141
7.1.2 Decision Tree Classifier . 143
7.1.3 Experiments . 143

7.2 Comparative Human Study . 148
7.3 High-frequency Tactile Feature for State Estimation 150

7.3.1 Training Data . 152
7.3.2 Feature Extraction . 154
7.3.3 Experiments . 154

7.4 Related Work . 157
7.5 Summary . 158

8 Learning Manipulation Tasks by Demonstration 159
8.1 Modeling Manipulation Tasks . 160

8.1.1 Learning Task Descriptions from Human Demonstrations 163
8.1.2 Reproducing Tasks . 165

8.2 Experiments . 169
8.2.1 Imitating Human Actions . 169
8.2.2 Dealing with Obstacles during Imitation 171
8.2.3 Imitation by Planning . 172

8.3 Related Work . 174
8.4 Summary . 176

9 Conclusions 177
9.1 Future Work . 179

A The Laplace Approximation 183

B Derivation of the Bayesian Information Criterion 185

Chapter 1

Introduction

The development of flexible mobile manipulation robots is widely envisioned as a large
breakthrough in technology and is expected to have a significant impact on our economy
and society in the future. Mobile manipulation robots that are equipped with one or
more gripper arms could fulfill various useful services in private homes such as cleaning,
tidying up, or cooking, which would mean a significant time benefit to their owners. By
supporting elderly and mobility-impaired people in the activities of daily living, such
robots can reduce the dependency on external caregivers and support them to live a
self-determined and autonomous life. Small and medium-sized enterprises would profit
enormously from robotic co-workers that they can easily reconfigure to new production
tasks. This technology would significantly lower the production costs of smaller compa-
nies and thus provide them with a significant competitive advantage. The goal of this
thesis is to provide novel approaches that enable mobile manipulation robots to be flex-
ibly used in everyday life. The challenge in these applications is that robots operating
in unstructured environments have to cope with less prior knowledge about themselves
and their surroundings. Therefore, they need to be able to autonomously learn suitable
probabilistic models from their own sensor data to robustly fulfill their tasks.

For decades, stationary manipulation robots have successfully been used in industrial
mass production. In these applications strong assumptions about the physical setup and
a controlled environment allow the creation of efficient but highly engineered approaches.
These solutions are custom-tailored to specific applications which makes them difficult
to adapt: typically, changes in the application require the manual adaptation of the
robot’s control code, a new layout of its work cell, and possibly the reconfiguration of
its hardware. For this reason, industrial manipulators require the supervision of experts
on a regular basis, and are therefore only cost-effective for the mass production. In
contrast, the environment of mobile manipulators used for domestic service tasks or in
small series production is largely unstructured, i.e., it can neither be exactly specified

2 Chapter 1: Introduction

(a) body schema learning (b) articulated objects

Figure 1.1: Illustration of the four research questions addressed in this thesis. (a) Body schema
learning using visual self-observation. (b) Learning to operate articulated objects,
here: a fridge.

nor easily controlled. To deal with these uncertainties, mobile manipulation robots need
to be considerably more flexible, robust, and adaptive than their stationary predecessors.

To illustrate the relevance of the topics presented in this thesis, we motivate our work
using a typical example task of a domestic service robot. We assume that the robot
is given the task to deliver a drink, which requires the robot to open the fridge, pick
up the right bottle, and pour its content into a glass. To be able to accurately use its
manipulator, the robot first needs to verify its body schema using visual self-observation
(Figure 1.1a). This enables the robot to compensate for mechanical inaccuracies and
detect potential hardware failures. Robots operating over extended periods of time
without regular inspection would otherwise become increasingly inaccurate – and fail
to accomplish their tasks. Once the robot established its body schema, it navigates to
the fridge to retrieve a drink (Figure 1.1b). To open the fridge, the robot identifies the
fridge door and generates a suitable trajectory for opening it. This, in turn, requires a
kinematic model of the fridge. The robot learns this model from its observations and uses
it subsequently to operate the door. Being able to learn kinematic models is fundamental
for versatile service robots, as there are too many different cabinet doors and drawers
in domestic environments to exclusively rely on predefined models. After the robot
has successfully opened the fridge, it picks up a bottle. By using its tactile sensors,
the robot can then detect whether the grasped bottle is full or empty (Figure 1.1c).
This additional source of information about the object being manipulated is important
because it enables a robot to verify that it has grasped the correct object and that
this object is in the expected state. The next step of the delivery task is to pour the

3

(c) tactile sensing (d) imitation learning

Figure 1.1: Continued. (c) Using tactile sensing to estimate the state of a container. (d) Imi-
tation learning to acquire novel manipulation skills.

drink into a glass (Figure 1.1d). This skill, however, might not be part of the robot’s
current programming. In this case, the user can teach the robot this novel manipulation
skill by demonstrating it to the robot. From this demonstration, the robot learns and
generalizes a description of the task that it can subsequently use to reliably reproduce it
– even for different positions of the glass and the bottle. Such an intuitive programming
interface is an essential prerequisite for the usability of service robots in everyday life.

This motivating example leads us to the four research questions that we investigate
in this thesis:

• How can a manipulation robot learn to accurately position its arm?

• How can a manipulation robot robustly operate doors and drawers?

• How can a manipulation robot infer the state of the objects it manipulates?

• How can a user intuitively teach novel manipulation tasks to a robot?

A robot that operates in unstructured environments with no or minimal human super-
vision needs to be able to perceive the world through its own sensors, and subsequently,
build from this data an internal, up-to-date representation of the world. As sensor data
is always noisy and potentially incomplete, a robot requires robust techniques to inter-
pret and integrate it intelligently into its own models of the world. A robot can then use
these models to estimate the state of objects in the world, simulate the consequences of
its actions, generate plans, and, finally, verify the success of its actions.

4 Chapter 1: Introduction

In sum, this thesis provides novel probabilistic learning techniques that enable a ma-
nipulation robot

• to learn the body schema of its arm from scratch using self-observation, and to
monitor and adapt this model over extended periods of time,

• to learn kinematic models of articulated objects from observation or interaction
to reliably operate doors and drawers,

• to learn tactile object models to estimate the identity and state of the objects
being manipulated, and

• to learn novel manipulation tasks from human demonstrations, and to reproduce
them robustly in similar situations.

This thesis is organized as follows. In Chapter 2, we provide the technical background
in machine learning and probabilistic modeling that we require in the remainder of this
thesis. In particular, we introduce regression and classification techniques for supervised
learning problems, and dimensionality reduction and clustering techniques for unsuper-
vised learning problems. We discuss Bayesian model evaluation and model selection to
choose between alternative models, and review graphical models as a tool to factorize
large learning problems into feasible components.

In Chapter 3, we present a novel approach that enables a robot to learn the body
schema of its manipulator from scratch using visual self-observation. In contrast to
previous approaches, we estimate both the kinematic structure and the kinematic prop-
erties of the robot arm. We model the observations of each link of the arm as a Gaussian
process and learn a Bayesian network that describes the kinematics of the whole system.
The explicit representation of the kinematic structure allows the robot to detect and
localize deviations between the model and the real arm to specific components of the
network. Hence, the robot can efficiently adapt the model by re-learning only the mis-
matching parts. Our approach provides a flexible, probabilistic representation of robot
kinematics and, furthermore, enables a manipulation robot to position its end effector
accurately even in the presence of hardware failures and deformations. As a result,
robots using our approach require less maintenance and can be used over longer periods
of time without human intervention.

For many manipulation tasks in domestic environments, service robots need to open
and close cabinets, for example, to stow or pick up objects. In Chapter 4, we show how
our approach on body schema learning can be generalized to such articulated objects.
We extend our approach by additional parametric models and use Bayesian model com-
parison to choose between the alternatives. This increases the robustness and efficiency
of our approach while we keep the high flexibility of the Gaussian process models. In

5

(a) Zora (b) Cody (c) Marvin

Figure 1.2: Three state-of-the-art mobile manipulation robots that we used for developing and
testing our approaches.

contrast to previous work, our approach applies to a significantly larger class of ar-
ticulated objects and provides more accurate kinematic models. Furthermore, we can
estimate the degrees of freedom of an articulated object and discover kinematic loops.
We demonstrate that manipulation robots using our approach can learn accurate kine-
matic models of various doors and drawers, and operate them reliably. Complimentary
to this, we demonstrate in Chapter 5 how a manipulation robot can recognize cabinet
doors and drawers on dense depth images without requiring visual markers.

If a robot has tactile sensors in its gripper, it can use them to obtain additional
information about the grasped objects. In Chapter 6 and 7, we present two novel
approaches that manipulation robots can use to learn tactile object models. The first
approach clusters the sensor data to create a tactile vocabulary. The robot uses this
vocabulary to train a classifier which it can subsequently use to verify whether it has
grasped the correct object. Our second approach is based on the temporal analysis of the
sensor signal and allows a robot to recognize whether a grasped container is properly
closed and whether it contains liquid. This ability is, for example, important for a
domestic service robot that tidies up a table and needs to decide whether a juice bottle
is full or empty and should be stored in the fridge or disposed in the trash can.

In Chapter 8, we show how a robot can learn novel manipulation tasks by observing a
human instructor that repeatedly demonstrates this task. From these demonstrations,
the robot extracts invariances in the execution of the task and infers from them a gen-
eralized task model. The robot can use this model to robustly reproduce the task even
under different conditions. We model imitation learning as a probabilistic learning prob-
lem of a dynamic Bayesian network that encodes the task model using temporal and
spatial object relations. In contrast to existing approaches, the factorized representa-
tion of the manipulation task as a dynamic Bayesian network allows us to dynamically

6 Chapter 1: Introduction

add new constraints, for example, to avoid obstacles during reproduction, or to prefer
a particular body posture. Our approach allows normal users to provide novel task de-
scriptions to a manipulation robot in an intuitive way, which we consider an important
prerequisite for the daily use of manipulation robots. Finally, we conclude this thesis
with a summary of our results in Chapter 9 and give an outlook to future work.

To develop and test our approaches, we used different state-of-the-art mobile ma-
nipulators (see Figure 1.2): the first robot, Zora, is a B21R mobile base equipped with
Schunk Powercube modules and tactile sensor arrays in the finger tips produced by Weiss
robotics. The second robot, Cody, consists of a Segway mobile base, has two Meka arms,
and is located at the Georgia Institute of Technology. The third robot, Marvin, is a
PR2 robot from Willow Garage. It has a rich sensor suite including a tilting laser, two
pairs of stereo cameras, a texture projector, and a tactile sensor array from PPS. By
evaluating our approaches successfully on different experimental platforms, we ensure
that our approaches also generalize to other mobile manipulation robots.

All of our approaches are based on state-of-the-art Bayesian learning techniques such
as Gaussian processes, sample consensus methods, and graphical models. The proba-
bilistic formulation of our approaches allows a robot to deal with uncertainties in the
sensor observations and action execution and to consider them adequately during ac-
tion planning. In an exhaustive set of experiments on real robots and in simulation we
demonstrate that our approaches significantly reduce the dependency of manipulation
robots on hand-crafted models and structured environments. Furthermore, we show
that our approaches substantially increase the flexibility, adaptability and robustness of
manipulation robots. We hope that our work contributes a small step to the goal of
making natural environments accessible for mobile manipulation robots.

1.1 Key Contributions of this Thesis

The contributions of this thesis are innovative approaches that enable manipulation
robots to learn probabilistic models of their sensors, actuators, and other objects in the
world. We combine techniques from the fields of machine learning, artificial intelligence,
and robotics with the goal to make manipulation robots more flexible, adaptive, and
robust. In the following, we summarize our main contributions. We provide in this
thesis:

• an approach for learning the body schema of a manipulation robot from scratch
using visual self-observation, and a strategy to adapt it autonomously for tool use
and in the case of hardware failures (Chapter 3),

• a general framework for learning kinematic models of articulated objects that
allows robots to reliably operate doors and drawers (Chapter 4),

1.2 Publications 7

• a system to estimate such models from visual observation without requiring arti-
ficial markers (Chapter 5),

• a technique that enables a robot to use its tactile sensors to identify objects (Chap-
ter 6),

• a method to estimate the internal state of the object being manipulated using
tactile sensors (Chapter 7), and

• a solution to imitation learning with which a normal user can intuitively teach novel
manipulation tasks that a robot can reproduce accordingly even under different
conditions (Chapter 8).

1.2 Publications

Parts of this thesis have been published in international journals and presented at con-
ferences and workshops.

Journal Articles

• J. Sturm, C. Stachniss, and W. Burgard. Learning kinematic models for articu-
lated objects. Journal of Artificial Intelligence Research (JAIR). 41, July 2011.
In press.

• S. Chitta, J. Sturm, M. Piccoli, and W. Burgard. Tactile sensing for mobile
manipulation. IEEE Transactions on Robotics (T-RO). 27(3):558–568, June 2011.

• J. Sturm, C. Plagemann, and W. Burgard. Body schema learning for robotic ma-
nipulators from visual self-perception. Journal of Physiology-Paris, 103(3-5):220–
231, Sept. 2009.

Conferences and Workshops

• J. Hess, J. Sturm, W. Burgard. Learning the State Transition Model to Efficiently
Clean Surfaces with Mobile Manipulation Robots. In Proc. of the Workshop on
Mobile Manipulation under Uncertainty at the IEEE Intl. Conf. on Robotics and
Automation (ICRA), Shanghai, China, May 2011.

• J. Sturm, A. Jain, C. Stachniss, C.C. Kemp, and W. Burgard. Operating articu-
lated objects based on experience. In Proc. of the Intl. Conf. on Intelligent Robot
Systems (IROS), Taipei, Taiwan, Oct. 2010.

8 Chapter 1: Introduction

• J. Sturm, K. Konolige, C. Stachniss, and W. Burgard. 3D pose estimation, track-
ing and model learning of articulated objects from dense depth video using pro-
jected texture stereo. In Proc. of the Workshop on Advanced Reasoning with Depth
Cameras at the Robotics: Science and Systems Conf. (RSS), Zaragoza, Spain,
Jun. 2010.

• J. Sturm, K. Konolige, C. Stachniss, and W. Burgard. Vision-based detection for
learning articulation models of cabinet doors and drawers in household environ-
ments. In Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA),
Anchorage, AK, May 2010.

• D. Meyer-Delius, J. Sturm, and W. Burgard. Regression-based online situation
recognition for vehicular traffic scenarios. In Proc. of the Intl. Conf. on Intelligent
Robot Systems (IROS), St. Louis, MO, USA, Oct. 2009.

• A. Schneider, J. Sturm, C. Stachniss, M. Reisert, H. Burkhardt, and W. Bur-
gard. Object identification with tactile sensors using bag-of-features. In Proc. of
the Intl. Conference on Intelligent Robot Systems (IROS), St. Louis, MO, USA,
Oct. 2009.

• J. Sturm, V. Pradeep, C. Stachniss, C. Plagemann, K. Konolige, and W. Burgard.
Learning kinematic models for articulated objects. In Proc. of the Intl. Joint
Conf. on Artificial Intelligence (IJCAI), Pasadena, CA, USA, Jul. 2009.

• H. Schulz, L. Ott, J. Sturm, and W. Burgard. Learning kinematics from direct self-
observation using nearest-neighbor methods. In Proc. of the German Workshop
on Robotics, Braunschweig, Germany, Jun. 2009.

• J. Sturm, C. Stachniss, V. Pradeep, C. Plagemann, K. Konolige, and W. Burgard.
Towards understanding articulated objects. In Proc. of the Workshop on Robot
Manipulation at the Robotics: Science and Systems Conf. (RSS), Jun. 2009.

• C. Eppner, J. Sturm, M. Bennewitz, C. Stachniss, and W. Burgard. Imitation
learning with generalized task descriptions. In Proc. of the IEEE Intl. Conf. on
Robotics and Automation (ICRA), Kobe, Japan, May 2009.

• J. Sturm, C. Stachniss, V. Pradeep, C. Plagemann, K. Konolige, and W. Bur-
gard. Learning kinematic models for articulated objects. In Proc. of the Learning
Workshop (Snowbird), Clearwater, FL, USA, Apr. 2009.

• J. Sturm, C. Plagemann, and W. Burgard. Adaptive body scheme models for
robust robotic manipulation. In Robotics: Science and Systems Conf. (RSS),
Zurich, Switzerland, Jun. 2008.

1.3 Contributions to Open-Source Software in Robotics 9

• J. Sturm, C. Plagemann, and W. Burgard. Body scheme learning and life-long
adaptation for robotic manipulation. In Proc. of the Workshop on Robot Manip-
ulation at the Robotics: Science and Systems Conf. (RSS), Zurich, Switzerland,
Jun. 2008.

• J. Sturm, C. Plagemann, and W. Burgard. Unsupervised body scheme learning
through self-perception. In Proc. of the IEEE Intl. Conf. on Robotics and Au-
tomation (ICRA), Pasadena, CA, USA, May 2008.

1.3 Contributions to Open-Source Software in
Robotics

We released parts of our software as open-source. This offers other researchers the
opportunity to verify our results, evaluate our approaches on different data, and use our
software in their research. In particular, we provide software implementing our body
schema learning approach and the complete framework for learning kinematic models of
articulated objects.

• The Zora framework1 implements our approach on body schema learning as de-
scribed in Chapter 3. It is freely available under the GPL license. Furthermore,
a detailed tutorial explains how to reproduce our results on various simulated
manipulators.

• The Articulation stack2 provides several software libraries for learning kine-
matic models of articulated objects as described in Chapter 4 and Chapter 5. We
released the software stack under the BSD license. Further, we provide several
tutorials that explain in detail how kinematic models of articulated objects can
be learned from observed trajectories and how the framework can be used with
Python and C++.

1.4 Collaborations

Parts of this thesis have been developed in collaboration with other people. During
my time as a PhD student, I supervised several master and bachelor projects. Chap-
ter 6 on tactile object recognition is an extension of the bachelor thesis of Alexander
Schneider (Schneider, 2009). Learning manipulation tasks from human demonstrations
in Chapter 8 was originally addressed by Clemens Eppner in his master thesis (Eppner,
2008).

1http://www.informatik.uni-freiburg.de/̃ sturm/zora.html
2http://www.ros.org/wiki/articulation

10 Chapter 1: Introduction

Furthermore, the approach on body schema learning as presented in Chapter 3 was
jointly developed with Christian Plagemann. The operation of articulated objects as
described in Chapter 4 was developed in close collaboration with Advait Jain and Charlie
Kemp from the Georgia Institute of Technology. Finally, I closely collaborated with
Sachin Chitta and Matthew Piccoli during my research stay at Willow Garage in 2009
during the development of our approach on tactile state recognition as described in
Chapter 7.

1.5 Symbols and Notation 11

1.5 Symbols and Notation

Symbol Meaning

x scalar
x column vector
x̂ estimated value of x

x∗ optimal value of x

A matrix
diag(x) matrix with x on diagonal
|A| determinant of A
{. . .} set
(. . .) vector
〈. . .〉 tuple (ordered set)
D training data
M model
M set of models
p(x) probability distribution of a random variable x

p(y | x) probability distribution of y conditioned on x

q(x) approximation of the probability distribution p(x)

U(S) uniform distribution over a set S
N (µ,Σ) normal distribution with mean µ and covariance Σ

N (x;µ,Σ) probability density at x of a normal distribution
E[x] expected value of a random variable x

∇f(x)
∣∣
x=x̂

gradient of f(x) evaluated at x̂
∂f/∂x partial derivative of f with respect to x

Chapter 2

Basics

The goal of this chapter is to provide the reader with an overview of the machine learning
techniques used in this thesis. A good introduction to the field of machine learning in
general can be found in the books of Bishop (2007) and MacKay (2003). This chapter
starts with a review of common machine learning techniques for regression, classification,
dimensionality reduction, and clustering problems. To compare and rank alternative
models, we present in Section 2.2 several measures to evaluate the quality of a model
and to select the best one. Finally, we introduce in Section 2.3 Bayesian networks as a
tool to factorize high-dimensional learning problems into independent components.

2.1 Model Learning

One of the primary goals in the field of machine learning is to find a model that describes
the dependency of one random variable from another one. In probability theory, this
dependency is defined by the conditional probability distribution

p(y | x,M) (2.1)

which refers to the probability distribution of the random variable y given the value of
the random variable x and a modelM. In the remainder of this chapter, we call x ∈ X
the input variable and y ∈ Y the target variable. Correspondingly, we refer to the space
of possible inputs as the input space X and to the space of possible targets as the target
space Y .

14 Chapter 2: Basics

2.1.1 Regression

If the target space Y is continuous, the problem of estimating the conditional density
function p(y | x) is called regression. If a deterministic relationship between input and
target space exists, the model can be specified using a regression function that defines
the functional mapping fM from input to target space, i.e.,

y = fM(x). (2.2)

In many practical problems, the observed targets are distorted by noise. This turns the
problem of estimating fM into a noisy regression problem. The relationship between
inputs and targets thus becomes

y = fM(x) + ε, (2.3)

where the regression function fM(x) is given by the mean of the conditional probability
distribution p(y | x) and the term ε refers to additive noise which is typically assumed to
be independent and identically distributed. The goal of regression is to estimate fM(x)

from a set of n observations D = {(xi,yi)}ni=1. This set is also called the training data
from which the model is estimated.

Parametric Regression

A parametric approach to regression is to express the unknown function with a function
fM,θ that is parametrized by a vector θ. A simple model is the so-called linear regression
model where the targets depend linearly on the inputs, i.e.,

y = θTx + ε. (2.4)

The goal is then to select the parameter vector θ that best fits the data, or equivalently,
that maximizes the posterior probability after having observed the training data D, i.e.,

θ̂ = arg max
θ

p(θ | D,M). (2.5)

By applying Bayes’ rule and neglecting the prior probability of the training data p(D)

as it is independent of the choice of the parameter vector θ, we can rewrite this equation
as

θ̂ = arg max
θ

p(D | θ,M) p(θ | M), (2.6)

where p(D | θ,M) is called the data likelihood and p(θ | M) is the prior over the pa-
rameter space. For linear regression models with normally distributed noise, Eq. (2.6)

2.1 Model Learning 15

can be solved in closed form as a least squares problem. In the general case where fM,θ

is any arbitrary function, no closed-form solution exists. In practice, often iterative min-
imization techniques such as Levenberg-Marquardt are employed to estimate θ. When
local maxima exist, re-starts of the minimization with random initializations can help
to find the global optimum.

If the parameter space is large, random search alone is not very effective. Sampling
consensus methods such as RANSAC, PROSAC, and MLESAC have been proven to
be useful to find good initializations (Fischler and Bolles, 1981; Torr and Zisserman,
2000; Chum and Matas, 2005). The general idea behind these methods is to iteratively
sample minimal subsets of observations from the training data and use them to estimate
an initial guess for the parameter vector. Finally, only the parameter vector with the
highest initial data likelihood is kept and optimized over the whole training data.

Parametric regression is probably the most widely used method of regression. In this
thesis, we use parametric models in combination with sampling consensus methods to
learn models for the motion of articulated objects from noisy observations in Chapter 4.

Gaussian Process Regression

A different class of regression techniques are so-called nonparametric methods. These
approaches do not require an explicit parametrization of the underlying function fM.
Instead, the regression function fM is implicitly defined by the training data. As a conse-
quence, nonparametric methods are not limited to a particular function form. However,
they require the whole training data for making predictions such that essentially all
training samples can be considered as parameters of the model.

The Gaussian process (GP) model assumes that the training samples in D are samples
of a joint Gaussian distribution (Rasmussen and Williams, 2006), i.e.,

y ∼ N (µ, K), (2.7)

where y = (y1, . . . , yn)T is the vector of the observed, one-dimensional target values.
Without loss of generality, we assume that the mean of this distribution is zero, i.e.,
µ = 0. In case that a different mean function m is desired, it can be subtracted from
the observations to create a zero-mean Gaussian process, i.e., by setting yi := yi−m(xi).

The interesting part of the GP model is the covariance matrix K. It is typically
specified using a covariance function k(xi,xj), i.e.,

Kij := cov(yi, yj) = k(xi,xj). (2.8)

This function defines the covariance between any two targets yi and yj given their input
vectors xi and xj as parameters. A popular choice is the squared exponential covariance

16 Chapter 2: Basics

0.2

0.25

0.3

-60 -40 -20 0 20 40 60

p
os
it
io
n
al
on

g
z-
ax

is
[m

]

joint configuration [deg]

noisy observations
estimated model

Figure 2.1: Example of a regression problem. Here, the robot learns a model of its arm kine-
matics from real data using a Gaussian process. The red line corresponds to the
mean prediction of the learned model, the shaded area to the standard deviation
of the predicted variance.

function,

kSE(x,x′;θ) = σ2
f exp

(
−1

2

D∑
i=1

(xi − x′i)2

l2i

)
+ σ2

nδij, (2.9)

where θ = (σf , σn, l1, . . . , lD) are the so-called hyper-parameters and D gives the number
of input dimensions. The amplitude σf defines the scale of the covariances between
data points, the process noise σn describes the amount of noise expected in the training
data, and the length-scale parameters l1, . . . , lD define the smoothness of the function
in each input dimension. Similar to parametric regression, these hyper-parameters can
be learned from training data by maximizing the marginal data likelihood.

Figure 2.1 shows an example of Gaussian process regression that was learned on real
observations from Chapter 3. Here, the robot observed the position of its end effector in
different joint configurations, and learned a GP model to the arm kinematics. We also
employ GPs in Chapter 4 for learning nonparametric link models of articulated objects,
for example to describe the motion of a garage door.

2.1.2 Classification

When the target space is finite, learning the conditional probability distribution p(y |
x,M) is called a classification problem. Classification is used to assign a novel input
vector x to one of k classes Y = {1, . . . , k} by assigning it to the most likely class, i.e.,

ŷ = arg max
y∈Y

p(y | x,M). (2.10)

2.1 Model Learning 17

In the following, we briefly review three classification techniques, called the naive Bayes
classifier, the bag-of-features approach, and decision tree learning.

Naive Bayes

The naive Bayes classifier (Duda et al., 1973) is a simple approach to classification. It
is based on the strong assumption that all input dimensions of x ∈ RD are mutually
independent of each other given the class label, i.e.,

p(x | y) =
D∏
i=1

p(xi | y), (2.11)

where x = (x1, . . . , xD)T is the D-dimensional input vector. With this, we can rewrite
the classification function of Eq. (2.10) using Bayes’ rule, i.e.,

ŷ = arg max
y∈Y

p(x | y)p(y) (2.12)

and apply the independence assumption which gives us

ŷ = arg max
y∈Y

(
D∏
i=1

p(xi | y)

)
p(y). (2.13)

This factorization simplifies the learning problem significantly: instead of having to learn
the joint probability distribution p(y | x), the individual classification models p(xi | y)

can be learned separately from the data. Depending on the underlying classification
models, these learning step can be implemented efficiently, for example, when histogram
models are being used. In spite of the strong independence assumptions between the
input dimensions, naive Bayes has been shown to perform quite well on a large number
of complex real-world problems.

Bag-of-features

The naive Bayes classifier forms the basis of the bag-of-features approach which was
originally developed for object classification tasks in computer vision (Lewis, 1998; Fei-
Fei and Perona, 2005). Instead of operating directly on the pixels of an image, the bag-of-
features approach extracts an intermediate set of features from the images and learns the
classification model only on these features. By counting how often a particular feature
x is present in an image I, one obtains histogram distributions p(x | I) of features in the
image. In the training phase, a codebook C of these histogram distributions p(x | y) is
learned that expresses the probabilistic relationship between features and object classes.
For classifying a novel image, the feature histogram can be computed and compared
to the stored histograms in the codebook. Popular histogram distance metrics include

18 Chapter 2: Basics

χ2, Kullback-Leibler divergence or histogram intersection. The bag-of-features classifier
then assigns the class to an object that maximizes the likelihood

ŷ = arg min
y∈Y

p

(
d
(
p(x | I), p (x | y, C)

))
p(y), (2.14)

where d(·, ·) refers to the chosen distance metric between histograms. The visual vocab-
ulary required to extract features from an image can automatically be constructed using
unsupervised clustering techniques such as k-means as discussed later in this chapter.
In this thesis, we apply the bag-of-features approach in Chapter 6 to recognize objects
in tactile sensor images.

Decision Tree Learning

Decision tree learning is an approach to infer a set of rules from the training data in
order to predict the target class. One algorithm for learning decision trees efficiently from
training data is the so-called C4.5 algorithm (Quinlan, 1993). The learning procedure
of C4.5 starts by selecting an attribute that most effectively splits the data in the target
classes based on entropy reduction. The entropy H of a training set D with respect to
the target classes is defined as

H(D) := −
∑
y∈Y

p(y | D) log p(y | D), (2.15)

where p(y | D) is the occurrence probability of the class y in the training data D. A
split s is defined by a split value svalue ∈ R in a particular input dimension (or attribute)
sattr ∈ {1, . . . , D}. A split divides the training data D into two subsets

D≤ := {(x,y) ∈ D | xsattr ≤ svalue} , (2.16)

D> := {(x,y) ∈ D | xsattr > svalue} . (2.17)

From all possible splits, C4.5 now selects the one with the highest information gain, i.e.,

s∗ = arg max
s

I (D; s), (2.18)

where the information gain is defined as the reduction in the entropy of the resulting
sets compared with the initial set:

I (D; s) := H(D)−H(D | s). (2.19)

2.1 Model Learning 19

0.02 0.04 0.06 0.08 0.1 0.12

tactile feature [N]

bottle with liquid
bottle without liquid
best split

Figure 2.2: Example of a binary classification problem where the robot learns a decision tree
to discriminate full from empty bottles using tactile sensing. The one-dimensional
tactile features are spread out on the y-axis to improve the readability of the plot.

The conditional entropy H(D | s) is defined as

H(D | s) := H(D≤)p(xsattr ≤ svalue | (x,y) ∈ D) +

H(D>)p(xsattr > svalue | (x,y) ∈ D). (2.20)

Each split s corresponds to a node of the decision tree with two children. The same
procedure is then repeated for the resulting subsets D≤ and D>, until the leaves are
homogeneous with respect to the target class, i.e., the entropy in the dataset of the leaf
with respect to the target classes is zero. An important step after training is pruning
to avoid over-fitting to the training data. This is done by replacing a whole subtree
by a leaf node if the expected error rate (computed on a separate test dataset held out
during training) in the subtree is greater than in the single leaf.

In this thesis, we use decision tree learning for the classification of the state of ob-
jects based on tactile sensor observations in Chapter 7. A simple example of a binary
classification problem is depicted in Figure 2.2. Here, a manipulation robot learns to
discriminate empty from full bottles using tactile sensing. In this case, the inputs corre-
spond to tactile features that are extracted from the high-frequency components of the
sensor signal.

2.1.3 Dimensionality Reduction

So far, we have assumed that both the inputs as well as the targets are fully observable,
i.e., that the training set contains both input and target vectors. The previously dis-
cussed regression and classification techniques therefore fall in the category of supervised
learning approaches. In contrast, unsupervised learning refers to the class of problems
where the values of the target variables y are unknown. A random variable that is not
observable is also called latent, and so the target space is also called the latent space.

20 Chapter 2: Basics

The goal in unsupervised learning is to reveal the structure underlying the training data
in the input space and to establish a suitable mapping to the latent space.

Principal Component Analysis

Principal component analysis (PCA) is a classical tool in statistics to reveal the main
axes of variation in a data set. The goal of PCA is to transform a set of possibly
correlated variables into a set of uncorrelated variables using an orthogonal projection.
PCA assumes that the data is centered around the origin. The covariance of the data
can be estimated using

Cov :=
1

n− 1

∑
i=1,...,n

xi x
T
i , (2.21)

where n is the number of data samples in the training set, and xi are the zero-centered
data samples, i.e., xi := xi− 1

n

∑n
j=1 xj. Assuming that the covariance matrix is positive-

definite, it can be decomposed in its eigenvalues and eigenvectors, i.e.,

Cov = WΣW T , (2.22)

where Σ = diag(σ2
1, . . . , σ

2
D) is the diagonal matrix of the squared eigenvalues, W =

(w1, . . . , wD) are the corresponding eigenvectors, and D is the number of input dimen-
sions. The number of dimensions of the resulting latent variable can be reduced while
maximizing the variance by keeping only the d dimensions with the largest variance.
The resulting projection becomes

y = W T
d x, (2.23)

where Wd = (wi1 , . . . ,wid) are the d < D eigenvectors associated with the d largest
eigenvalues. Different methods exist for choosing the number of dimensions d of the
latent space. Depending on the application, d has a fixed value (for example, d = 2
for visualizing high dimensional data), or it is chosen in such a way that a particular
percentage, for example, 95%, of the original variance is preserved. As PCA provides
a linear mapping from the data space to the latent space, the dimensionality reduction
based on PCA works well if the input data lies on or close to a linear manifold. However,
if the data lies on nonlinear manifolds, it can’t be characterized well with a single linear
projection.

Locally Linear Embedding

This problem is addressed by Locally Linear Embedding (LLE) which is a nonlinear
method for dimensionality reduction. The goal of LLE is to find a mapping from input

2.1 Model Learning 21

0 0.5 1

0

0.5

1

q = 0.00

q = 0.12

q = 0.26

q = 0.40

q = 0.57
q = 0.84 q = 1.00

x [m]

y
[m

]
true model

noisy observations

0

0.2

0.4

0.6

0.8

1

Figure 2.3: Example of a dimensionality reduction problem. Here, LLE is used to infer the
latent configuration q from pose observations (x, y) of a rolling garage door. The
inferred configurations are encoded by the color.

space to latent space that locally preserves the distances of neighboring data points both
in the input and the latent space (Roweis and Saul, 2000). While the exact derivation
of LLE is somewhat involved, the general idea of LLE can intuitively be described as
follows. First, LLE finds for each data sample i the k-nearest neighbors of the input xi,
denoted as the sequence 〈xi1 , . . . ,xik〉. Second, it seeks a weight vector wi for each data
sample that can be used to reconstruct each input vector xi as a linear combination of
its neighbors, i.e.,

wi = arg min
w∈RD,
‖w‖=1

xi −
∑

j∈{1,...,k}

wijxij

 , (2.24)

where xij denotes the j-th nearest neighbor of the i-th data sample and wi =

(wi1 , . . . , wik) correspondingly refers to the i-th weight vector. Under the constraint
that each weight vector has unit length, i.e., ‖w‖ = 1, this minimization can be solved
in closed form. In the third step, LLE seeks for latent vectors yi such that the same
reconstruction property also holds in the latent space, i.e.,

yi = arg min
y

yi −
∑

j∈{1,...,k}

wijyij

 , (2.25)

where yij refers to the j-th nearest neighbor of the latent coordinates corresponding to
the i-th data sample. With a few additional constraints, the minimization in Eq. (2.25)
can be solved again in closed form. The advantage of LLE over PCA is that it can

22 Chapter 2: Basics

recover both linear and nonlinear manifolds from the training data. The downside is
that LLE is more sensitive to noise and computationally more demanding.

We use both PCA and LLE to infer the latent configuration of articulated objects in
Chapter 4. Figure 2.3 shows an example where LLE has been applied to a sequence of
pose observations of a rolling garage door. The robot observes the poses in 3D space and
uses LLE to estimate their corresponding latent, one-dimensional configurations. The
circles in the figure correspond to the observations of the xy-position, while the color of
the circles encodes the latent configuration as recovered by LLE, i.e., the one-dimensional
configuration of the garage door.

2.1.4 Clustering

The goal of clustering it to assign each training sample to one of k different clusters,
i.e., it assumes a finite latent space with Y = {1, . . . , k}. This means that one needs
to find a mapping from input vectors to clusters that minimizes the distances between
input vectors belonging to the same cluster and maximizes the distances between input
vectors from different clusters. In this section, we introduce k-means clustering and the
expectation maximization algorithm as two popular clustering techniques.

K-means

K-means defines a cluster i = 1, . . . , k by its center (or mean) µi ∈ X in input space.
Initially, these cluster centers are initialized to random samples from the training set. In
each iteration, each training sample is assigned to the nearest cluster, i.e., the partition
for cluster j becomes

Si ← {x ∈ D | d(x,µi) ≤ d(x,µi′) for all i′ = 1, . . . , k} . (2.26)

Subsequently, the cluster centers are re-assigned to the mean of all assigned input vec-
tors, i.e.,

µi ←
1

|Si|
∑
x∈Si

x. (2.27)

This procedure is repeated until the cluster centers have converged. In this thesis, we
apply the k-means algorithm to generate a feature vocabulary from tactile images in
Chapter 6 for object recognition using the bag-of-features approach introduced earlier
in this chapter.

2.1 Model Learning 23

Expectation Maximization

Expectation maximization (EM) is a general method to find maximum likelihood es-
timates of parameters in latent variable models (Dempster et al., 1977; McLachlan
and Krishnan, 1997). EM is a generalization of the k-means algorithm and similar
to k-means, it iteratively estimates the values of the latent variables and re-estimates
the model parameters given these values.

One particular application of EM is to estimate the parameters of a Gaussian mixture
distribution given by

p(x) =
∑

i=1,...,k

πiN (x | µi,Σi), (2.28)

where πi are the so-called mixing coefficients (all positive and summing to one), and
N (x | µi,Σi) are the individual Gaussian mixture components. The goal is to infer
the assignment of training samples to mixture components and to their parameters
µi,Σi. The EM method solves this estimation problem iteratively in two steps. In the
expectation step, the responsibilities of each mixture component for each data sample are
computed based on the current estimate of the model parameters, i.e., for all mixture
components i and all data samples j

γij ←
πiN (x | µi,Σi)∑

l=1,...,k πlN (x | µl,Σl)
. (2.29)

Subsequently, in the maximization step, the model parameters are re-estimated given
the current assignments of training samples to mixture components, i.e., for all i we set

µi ←
∑

j=1,...,n γijxj∑
j=1,...,n γij

, (2.30)

Σi ←
∑

j=1,...,n γij(xj − µi)(xj − µi)
T∑

j=1,...,n γij
, (2.31)

and

πi ←
1

n

∑
j=1,...,n

γij. (2.32)

This process is repeated until the parameters converge. As both EM and k-means
are greedy methods, they are not guaranteed to find the global optimum. A practical
solution is to re-start the algorithm several times with randomized initializations and to
select the solution with the highest data likelihood.

24 Chapter 2: Basics

0 0.5 1

0

0.5

1

x [m]

y
[m

]
noisy observations

estimated model

0

0.2

0.4

0.6

0.8

Figure 2.4: Example of a clustering problem. EM iteratively assigns observations to the inlier
and outlier component, and estimates the parameters of the circular model from
the inliers. The color encodes the assignment of each observation to the mixture
components.

In Chapter 4, we apply the EM algorithm to estimate both the model parameters
and the outlier assignments from a sequence of pose observations in a Gaussian mixture
model. Figure 2.4 shows an example problem from this chapter where a robot has ob-
served a sequence of noisy poses of a cabinet door and aims to fit a circular model. Some
of the observations, however, are real outliers that need to be detected and excluded
in the estimation of the arc. In the figure, the colors of the dots encode the estimated
probability of a sample being an inlier and the black line corresponds to the circular
model fitted to the inliers.

2.2 Model Comparison and Model Selection

In the previous section, we introduced various methods for learning models from noisy
data. After several alternative models have been learned from the data, the question
arises how these models can be compared to each other. In this section, we present
different approaches to evaluate and rank alternative models. When evaluated on inde-
pendent and identically distributed data sets, the root mean square error or the data
likelihood are suitable measures to compare alternative models even of different com-
plexity. However, as additional data is typically either not available or costly to acquire,
cross-validation techniques offer a solution where the limited training data can both be
used for learning and validation. Finally, Bayesian model comparison allows to directly
compare alternative models by their posterior probability, but requires a suitable prior
over the model space.

2.2 Model Comparison and Model Selection 25

true model estimated model noisy observations

0 2π

−1

0

1

x

y

(a)

0 2π

−1

0

1

x

y

(b)

Figure 2.5: These figures illustrate the problem of over-fitting. (a) The model fits exactly to the
training points but generalizes poorly to previously unseen data. (b) An alternate
model matches the training data less accurately, but generalizes better to new data.

2.2.1 Root Mean Square Error

The root mean square (RMS) error measures the derivation of the model predictions
from the observations. It is computed as the root of the average of the squared differences
between predictions and observations, and is defined as

ERMS(D | M,θ) =

√
1

n

∑
i=1,...,n

‖fM(xi;θ)− yi‖2, (2.33)

where ‖ · ‖ is a distance metric in the target space,M is the model, and θ its parameter
vector. The division by n allows to compare data sets of different sizes. The advantage
of the RMS error is that it can be intuitively interpreted, as it is measured in the same
units as the target variable.

2.2.2 Data Likelihood

The data likelihood can also be used to measure the quality of a model. It is defined as
the product over all observation likelihoods of an evaluation set D = {(xi,yi)}ni=1, i.e.,

p(D | M,θ) =
∏

i=1,...,n

p(yi | xi) (2.34)

∝
∏

i=1,...,n

exp
(
−(fM(xi;θ)− yi)

TΣ−1(fM(xi;θ)− yi)
)
, (2.35)

where the second line holds under a Gaussian noise assumption with zero mean and
covariance Σ.

26 Chapter 2: Basics

2.2.3 Cross-Validation

Note that evaluating the RMS error or the data likelihood on the training set alone
does not provide a good indicator of the predictive accuracy of a model on new data.
The reason for this is that a complex model can fit the training data very accurately
but generalize poorly to new data. This effect is called over-fitting, and is visualized
in Figure 2.5. Although the RMS error of the model in Figure 2.5a is close to zero
on the training set, it does not generalize well to new data. In contrast, the model
in Figure 2.5b has a slightly higher RMS error on the training set, but generalizes
much better to previously unseen data. A solution to this problem is to evaluate the
data likelihood on an independent set of validation data that is drawn from the same
distribution as the training data. In practice, however, the amount of available training
data is strongly limited. Therefore, the expected predictive error of a model has to be
estimated as efficiently as possible from the limited training data.
Cross-validation solves this problem by splitting the available data into mutually

exclusive training and validation sets. Typically, several rounds of cross-validation are
carried out to average over the expected predictive error. Different strategies for drawing
the training and validation sets from the data exist. The most popular strategy is
called k-folds cross-validation where in each of the k rounds a proportion 1/k of the
data is left out for assessing the performance. Leave-one-out cross-validation is the
extreme case where k = n, i.e., in each of the n rounds the model is trained from all
but one sample, and evaluated on the remaining one. Cross-validation comes at an
additional computational cost as the model needs to be learned anew in each of the k
rounds. If there are several regularization parameters that need to be evaluated, the
number of rounds can grow exponentially with the number of parameters (Bishop, 2007).
Therefore, various other techniques have been developed that estimate the quality of a
model directly from the data by incorporating the model complexity as a penalty term
in the computation.

2.2.4 Bayesian Model Comparison

The Bayesian solution to the problem of model comparison is to assign a probability
p(M | D) to each model that reflects the uncertainty in model choice (MacKay, 2003).
From a Bayesian perspective, it is not even necessary to choose a single model, but the
law of total probability can be applied to average over all models, i.e.,

p(y | x,D) =
∑
M∈M

p(y | x,D,M)p(M | D). (2.36)

In practice, reasoning with all possible models quickly becomes intractable and therefore,
often only the single most-likely model M̂ is considered. This is reasonable when the

2.2 Model Comparison and Model Selection 27

likelihood for the most-likely model dominates the likelihoods of all other models, i.e.,
when

∀M ∈M \ M̂ : p(M̂ | D)� p(M | D). (2.37)

Then, a good approximation of the sum in Eq. (2.36) is given by

p(y | x,D) ' p(y | x,D,M̂). (2.38)

Selecting the most-likely model according to Eq. (2.37) thus requires the evaluation and
comparison of the posterior probabilities p(M | D) of all models, i.e.,

M̂ = arg max
M∈M

p(M | D). (2.39)

By applying Bayes’ rule, this term can be re-written as

M̂ = arg max
M∈M

p(D | M)p(M)

p(D)
, (2.40)

where the prior probability of the data p(D) can be neglected as it is the same for all
models. The prior over models, p(M), expresses the probability with which a model
M is expected to be the true model before having observed any data. The interesting
term in Eq. (2.40) is thus the model evidence p(D | M). Given a uniform prior over the
model space, the model selection problem reduces to

M̂ = arg max
M∈M

p(D | M). (2.41)

Most models contain a parameter vector θ over which one needs to integrate to compute
the model evidence from the data likelihood, i.e.,

p(D | M) =

∫
p(D | M,θ)p(θ | M) dθ. (2.42)

For many problems, it is reasonable to assume that the posterior distribution over the
parameter vector

p(θ | M,D) ∝ p(D | M,θ)p(θ | M) (2.43)

has a strong peak at the most-likely parameter vector θ̂ so that it can be approximated
with a Gaussian. By using the Laplace approximation (elaborated in more detail in

28 Chapter 2: Basics

xi

yi

M,θ

i = 1, . . . , n

Figure 2.6: Generic Bayesian network model underlying all regression, classification, clustering
and dimensionality reduction problems discussed in this chapter.

Appendix A) we obtain

log p(D | M) ' log p(D | M, θ̂) + log p(θ̂ | M) +
k

2
log(2π)− 1

2
log |A|, (2.44)

where k is the number of dimensions of the parameter vector θ and A is the Hessian of
the data likelihood evaluated at θ̂. In theory, the Hessian A can be estimated directly
from the likelihood function. However, typically no closed form solution is available, and
evaluating the Hessian is both numerically unstable and costly especially when many
parameters are involved. Under a few additional assumptions (for more details, see
Appendix B), the posterior of Eq. (2.44) can be approximated as

log p(D | M) ' log p(D | M, θ̂)− 1

2
k log n, (2.45)

which is known as the Bayesian information criterion (BIC) (Schwarz, 1978). The
advantage of the BIC is that it is easy to compute. However, it tends to over-estimate
the (effective) number of parameters and thus overly favors simple models. In practice,
the BIC has been applied successfully to a large set of different model selection problems.
Yet, if a more accurate estimate of the model evidence is required, one can still resort
to the Laplace approximation in Eq. (2.44) or even to a full (numerical) integration of
Eq. (2.42).

2.3 Graphical Models

So far, we only considered the problem of learning a model describing the relationship
between two random variables. Although problems with more random variables can be
treated as a single learning problem with a high-dimensional input and target space,
often an internal structure between the random variables exists that can be exploited
during model learning. In particular, if parts of the problem are conditionally indepen-
dent of each other, learning them separately is much more efficient.
Probabilistic graphical models are an appealing tool to represent the dependencies

2.3 Graphical Models 29

. . . xt−1 xt xt+1 . . .

yt−1 yt yt+1

Figure 2.7: The model underlying the Kalman filter is a dynamic Bayesian network.

between random variables in an intuitive way (Pearl, 1988; Jensen, 2001; Koller and
Friedman, 2009). Graphical models encode the conditional independence structure as a
graph. In general, nodes in this graph correspond to the random variables and edges (or
the lack of edges) between nodes encode conditional (in-)dependencies between them.

Bayesian Networks

A Bayesian network is a graphical model that uses directed acyclic graphs to represent
the dependency structure. An incoming edge indicates the conditional dependency of a
child node on the node from where the edge originates (called the parent node). Nodes in
a Bayesian network are conditionally independent of their ancestors given their parents,
such that the joint probability distribution of all nodes is given by

p(x1, . . . ,xn) =
∏

i=1,...,n

p(xi | parents(xi)). (2.46)

Here, x1, . . . ,xn are the n random variables of the problem and parents(xi) refers to the
set of parents of xi. Therefore, specifying both the structure and the individual condi-
tional density functions p(xi | parents(xi)) fully defines the joint probability distribution
p(x1, . . . ,xn).

In the first part of this chapter, we discussed various techniques for learning mod-
els between input and target variables. The graphical model underlying these learning
problems is visualized in Figure 2.6. The training data D = {(xi,yi)}ni=1 can be consid-
ered as a set of n input variables x1, . . . ,xn with associated target variables y1, . . . ,yn.
The relationship between these variables is defined by a model M and its parameter
vector θ. Together, this induces the conditional density function p(y | x,M,θ) that is
shared by all observation pairs (xi,yi) in the training set. Further, all training samples
(xi,yi) are independent of each other and identically distributed given the model D and
its parameter vector θ. In Figure 2.6, the plate notation is used to indicate that the
random variables xi and yi are copied n times, i.e., for i = 1, . . . , n. As the modelM
and its parameter vector θ are located outside the plate, they exist only once and are
shared by the variables in the plate.

30 Chapter 2: Basics

Dynamic Bayesian Networks

Dynamic Bayesian networks (DBN) are a special form of Bayesian networks that are
well suited to represent sequences of variables. For example, the model underlying the
Kalman filter is a simple DBN that represents a process as depicted in Figure 2.7.
Here, the system state at time t is denoted by xt and depends only on its immediate
predecessor xt−1 indicated by the single, incoming arrow. The state xt of the system
evolves over time according to the system dynamics that are specified by the conditional
density function p(xt+1 | xt). In each time step an observation yt of the state is made
according to the observation model p(yt | xt). The Kalman filter is an efficient method
to estimate the state of the system (Thrun et al., 2005).

Inference in Bayesian Networks

A typical inference problem in Bayesian networks is to infer the distribution over one or
more random variables given a set of observed random variables by marginalizing over all
other variables. For example, during the training phase of a regression or classification
problem, this is achieved in two steps. First, the probability distribution of the model
parameter θ is inferred from the training data. Subsequently, this estimate is used for
making predictions, i.e., to infer the target value of a novel input vector.

Various inference algorithms exist for Bayesian networks, including both exact and ap-
proximate methods. When all random variables are assumed to be normally distributed,
often exact inference can be achieved (Koller and Friedman, 2009). Otherwise, iterative
methods such as belief propagation, variational Bayes, or Markov chain Monte-Carlo
sampling can be employed to approximate probability distributions over random vari-
ables in the Bayesian network. It is also possible to infer the structure of a graphical
model. This includes both the connectivity between the nodes in the graph, as well
as the number and dimensionality of (hidden) random variables. Depending on the
problem structure, this can be implemented in a variety of ways, but the most general
solution is to treat the structure as an additional (hyper-)parameter that needs to be
inferred from the data. For this aim, the techniques presented in Section 2.2 can be
employed. For example, alternative network structures can be ranked by their posterior
probability p(M | D). Finally, graphical models can also be used for decision making,
i.e., to control a process where outcomes are partly random and partly under the control
of the decision maker.

We use graphical models in this thesis as a well-understood theoretical framework for
modeling large probabilistic learning problems. In Chapter 3 and 4, we represent the
kinematic functions of robotic manipulators and articulated objects as Bayesian net-
works, infer both their structure and their kinematic parameters, and use them to solve
forward and inverse kinematics. In Chapter 8, we model descriptions of manipulation
tasks as dynamic Bayesian networks. In this approach, we encode a task description as

2.4 Summary 31

probability distribution over task constraints which enables a robot to reproduce a task
even under different conditions.

2.4 Summary

In this chapter, we discussed the set of machine learning techniques that we use to learn
flexible models for mobile manipulation robots. We introduced regression, classifica-
tion, dimensionality reduction, and clustering problems and presented relevant solution
techniques. Further, we showed how cross-validation and the Bayesian model posterior
can be used to rank alternative models and to select the best one. Finally, we intro-
duced Bayesian networks as a general framework to factorize large learning problems
into feasible components.

Chapter 3

Body Schema Learning

Kinematic models are widely used in robotics to describe the mechanism of a robot.
For example, the kinematic model of a manipulation robot is typically specified by the
position of its joints, and the size and orientation of its links (Craig, 1989; Sciavicco and
Siciliano, 2000). Kinematic models are usually derived analytically by a robot engineer
and thus rely heavily on prior knowledge about the geometry of the robot. When such
a model is applied to a real robot, its parameters have to be carefully calibrated (Gatla
et al., 2007) to ensure a high accuracy, for example, using expensive calibration systems
at the robot manufacturer’s site. As robotic systems become more versatile and are
increasingly delivered in completely reconfigurable ways, there is a growing demand
for techniques to learn kinematic models automatically. Ideally, such techniques would
neither require human intervention nor costly calibration equipment. This capability
does not only facilitate the deployment and calibration of new robotic systems but also
enables robots to autonomously adapt their models when the kinematics change, for
example, as a result of hardware failures or material fatigue. Furthermore, the intelligent
use of tools also requires the robot to include a tool dynamically in its kinematic model
(Nabeshima et al., 2006).

The concept of kinematic models in robotics is closely related to the concept of the
body schema in cognitive neuroscience (Stamenov, 2005; Gallagher, 2005) that refers to
our internal representation of the body. Neuro-physiological experiments indicate that
humans as well as higher primates adapt their body schema continuously (Meltzoff and
Moore, 1997), for example, when handling tools (Maravita and Iriki, 2004).

In this chapter, we develop a novel approach that allows a robot to learn its body
schema using visual self-observation and exploratory actions. Our model is based on
Bayesian networks that we use to represent the kinematic structure. We learn models
for the individual joints of a robot using Gaussian process regression and develop an
efficient algorithm to estimate the full kinematic structure of the robot. In experiments

34 Chapter 3: Body Schema Learning

Learn

Bootstrap and adapt a Bayesian
network that describes the
kinematics of the robot.

IK
xtarget qtarget

SystemObs.

−

M

Control end-effector position
using differential kinematics

ActObserve 6D poses of body parts
using a monocular camera

Sense

actions

pose observations kinematic model

Figure 3.1: Schematic overview of our approach to body schema learning.

carried out in simulation and on real robots, we demonstrate that our approach enables
a manipulation robot to learn its kinematic model from scratch and to maintain it
over extended periods of time. Furthermore, we show that a robot using our approach
can accurately predict and control the pose of its end effector even in the presence of
hardware failures.

Figure 3.1 illustrates the proposed approach. The robot sends random “motor bab-
bling” commands to its joints, observes the resulting pose, and estimates the kinematic
model of itself from this sequence of observations. In each iteration, the robot learns
Gaussian process models for the individual joints and searches for the kinematic struc-
ture that best explains the observed motion. The robot can use the learned model to
predict and control the pose of its end effector. We developed and tested our approach
on several simulated and two real manipulation robots as depicted in Figure 3.2.

This chapter is structured as follows. In Section 3.1, we briefly introduce kinematic
models for manipulation robots and explain how they can be represented using Bayesian
networks. Subsequently in Section 3.2, we present our probabilistic framework for learn-
ing such kinematic models from visual self-observations. In Section 3.3, we extend our
framework to enable a robot to localize errors in the model and efficiently replace mis-
matching parts. In Section 3.4, we present experimental results obtained with real and

3.1 Kinematic Models for Manipulation Robots 35

(a) 2-DOF robot (b) 7-DOF robot

Figure 3.2: The manipulation robots used in this chapter to develop and test our approach.

simulated manipulator arms. These experiments demonstrate that our approach is able
to learn compact and accurate models and is capable of dealing robustly with noisy
observations. Finally, we conclude this chapter with a discussion of related work in
Section 3.5.

3.1 Kinematic Models for Manipulation Robots

The kinematic model of a manipulation robot describes the relationship between its
configuration and its body posture, i.e., the relationship between the joint angles and
the poses of the body parts in 3D space. Figure 3.3a shows an example of a simple
2-DOF manipulation robot. The robot consists of two rotary joints q1 and q2, and five
body parts x1, . . . ,x5. The first two body parts are connected rigidly. This means that
the geometric transformation ∆12 from the trunk x1 to the shoulder x2 is independent of
the configuration of the joints. The shoulder x2 and the upper arm x3 are connected by
the shoulder joint q1, and thus their geometric transformation ∆23(q1) depends on the
joint angle of q1. The same holds for the following parts, as the joint angle of the elbow
joint q2 has direct influence on the geometrical transformation ∆34(q2) between the
upper arm x3 and the lower arm x4. The gripper x5 is attached rigidly to the lower arm
x4, such that ∆45 is a fixed transformation. The kinematic function of this manipulator
can thus be constructed by the concatenation of these individual transforms, i.e.,

f(q1, q2) := ∆12 ◦∆23(q1) ◦∆34(q2) ◦∆45. (3.1)

The kinematic function f(q1, q2) describes the full geometrical transformation from
the coordinate frame of the trunk to the coordinate frame of the gripper. In engineering,

36 Chapter 3: Body Schema Learning

x1

x2

x3
x4

x5

∆12

∆23

∆34
∆45

q1

q2

(a)

q1 q2

∆12 ∆23 ∆34 ∆45

x1 x2 x3 x4 x5

(b)

Figure 3.3: (a) Simple 2-DOF manipulator consisting of 5 body parts. (b) The kinematic model
of this robot represented as a Bayesian network.

the kinematic function of a manipulation robot is often constructed of the individual
transformations by the specification of the Denavit-Hartenberg (DH) parameters (Sci-
avicco and Siciliano, 2000).

For many robotic applications, it is necessary to compute the configuration q1 and
q2 to reach a given target position in the workspace. This requires the inversion of
f , which is also called the inverse kinematic function. As the algebraic inversion is
only possible for simple manipulators, a solution to the inverse kinematic problem is
in practice often computed using an iterative numerical method such as the Jacobian
transpose, pseudo-inverse or damped-least squares method (Buss and Kim, 2005).

A fundamental insight in our work is that the kinematic model of a manipulation
robot (and also those of articulated objects as we will see in Chapter 4) can be repre-
sented in form of Bayesian networks. Consider the example given in Figure 3.3b: the
configuration variables q1 and q2, the poses of the body parts x1, . . . ,x5, and the relative
transformations ∆12, . . . ,∆45 of our example robot appear as nodes in the Bayesian net-
work. Further, the topology of the network encodes the kinematic structure: the relative
transformation ∆12 relates the first two body parts x1 and x2, while the second relative
transformation ∆23 depends additionally on the configuration q1 of the first joint.

We can now use standard inference techniques for Bayesian networks to predict the
pose of the end effector (given q1, . . . , qm and x1, infer xn) or to control the pose of the end
effector (given x1 and xn, infer q1, . . . , qm). Both problems can be solved by marginalizing
over all other variables in the network: solving forward kinematics corresponds to a
marginalization over all intermediate body parts. As we will elaborate in the next
section, this marginalization can be solved efficiently and in closed form when we assume
that all variables in the Bayesian network are normally distributed.

3.2 A Bayesian Framework for Body Schema Learning 37

3.2 A Bayesian Framework for Body Schema Learning

One of the central ideas in our work is to use Bayesian networks for representing kine-
matic models. We define the robotic body schema as the joint probability distribution
over joint actions q = (q1, . . . , qm), true poses x = (x1, . . . ,xn), and pose observations
y = (y1, . . . ,yn) of a manipulation robot. The individual qi ∈ R are real-valued vari-
ables corresponding to the latest configuration request sent to the i-th joint of the robot.
The xi ∈ SE (3) encode the true poses of the body parts with respect to a reference co-
ordinate frame. The yi ∈ SE (3) are the robot’s pose observations of its body parts that
are generally noisy and potentially missing. Here, SE (3) refers to the special Euclidean
group that represents all three-dimensional poses (including both position and orienta-
tion). Internally, we represent these 3D poses as homogeneous R4×4 matrices, which can
be concatenated and inverted. We denote a sequence of t action-pose observations as
D = 〈(q1,y1), (q2,y2), . . . , (qt,yt)〉. Formally, we seek to learn the probability distribu-
tion

p(x1, . . . ,xn,y1, . . . ,yn | q1, . . . , qm) , (3.2)

which in this form is intractable for all but the simplest scenarios. Therefore, we assume
that each observation variable yi is independent from all other variables given the true
pose xi of the corresponding body part and that they can thus be fully characterized by
an observation model p(yi | xi). Furthermore, if the kinematic structure of the robot
was known, a large number of pair-wise independencies between action signals and body
parts could be assumed, which in turn would lead to the much simpler, factorized model

p(x1, . . . ,xn | q1, . . . , qm) =
∏
i

p(xi | parents(xi)) . (3.3)

Here, parents(xi) refers to the parent nodes of xi in the Bayesian network and comprises
only those body parts and action signals on which xi directly depends on. Note that the
actions are given and, thus, do not depend on other variables in this model. We now
make the factorized structure of the problem explicit by introducing hidden variables
∆ij := x−1i xj corresponding to the relative geometric transformation between all pairs
(xi,xj) of body parts. Further, we denote with zij := y−1i yj the relative geometric
transformation relating the observations yi and yj that correspond to xi and xj. Using
this, we define as a local model the subgraph of our network that describes the geometric
relationship between any two body parts xi and xj given the relevant part of the action
signal, if all other body parts are ignored. Figure 3.4 shows a prototypical local model.
Here, we denote with Qij the set of action signals that have a direct influence on ∆ij.
Any set of (n−1) local models which forms a spanning tree over all n body parts defines
a model for the whole kinematic structure and is a solution to Eq. (3.3).

38 Chapter 3: Body Schema Learning

Note that our approach does not depend on a proprioceptive sensor telling the robot
in which configuration a particular joint is after executing an action qi. At first sight,
it seems that with proprioception one could learn the kinematic function passively from
visual and proprioceptive observations only. While this is true, one would lack the
mapping from motor commands to motor encoders such that the learned model would
not suffice for manipulator control. One would either need to assume that motors and
proprioceptive sensors are calibrated precisely, or one would need to additionally learn
the mapping from actions to joint encoder values for each joint. In contrast to this,
we learn a combined model that directly maps from motor commands to body pose
observations. In this way, our approach closes the action-perception-loop, as visualized
in Figure 3.1, and it obviates the need for the explicit calibration of the motor encoders.
For the sake of completeness, it should be noted that our approach can also be used to
learn the kinematic model based on proprioception, by replacing the motion requests by
the observed joint configurations.

In the following, we explain how to learn local models from data and how to find
the spanning tree built from these local models that best explains the whole robot. We
consider the single best solution only and do not perform model averaging over possible
alternative structures. Note that in theory, it would be straight-forward to keep multiple
structure hypotheses and to average over them for prediction using Bayes’ rule. Control
under structure uncertainty, however, is a slightly more difficult problem. One would
have to consider all possible structures and assess the individual risks and gains for
alternative actions. Then, one would select the action that maximize the overall gain
while keeping all possible risks low. In practice, we found that considering the most-likely
structure only is sufficient for most of the relevant tasks. Our approach is conservative
in this respect since it requires a certain minimal accuracy from all parts of the body
schema before the model is considered complete.

3.2.1 Local Models

The local kinematic models are the central concept in our body schema framework. A
local model M (see Figure 3.4) describes the geometric relationship between two body
parts i and j given a set of action signals Qij. We propose to learn this relationship
from data samples acquired while requesting random joint configurations and observing
their effects on the robot’s pose. As the learning framework for solving this supervised
regression problem, we apply Gaussian process models for regression (Rasmussen and
Williams, 2006). The observations yi of part locations xi are obtained by tracking
visual markers in 3D space including their position and orientation (Fiala, 2005). These
markers are also depicted in Figure 3.2. Note that the observations yi’s are inherently
noisy and that missing observations are common, for example, in consequence of (self-
)occlusion. Formally, the task is to learn the local transformations ∆ij, each linking

3.2 A Bayesian Framework for Body Schema Learning 39

Qij

∆ij

xi xj

zij

yi yj

Figure 3.4: Template of a local model that defines the kinematics between two related body
parts.

two body parts xi and xj. Considering Figure 3.4, a straight-forward approach would
be to infer the true poses xi and xj from the noisy observations yi and yj, by assuming
Gaussian white noise on the observations, i.e.,

yi ∼ N (xi,Σy). (3.4)

Then, one would need to integrate over the latent true poses xi and xj in order to reason
about ∆ij.

However, since the absolute positions xi are irrelevant for describing the relative trans-
formations, we take a slightly different approach by focusing directly on the transforma-
tions zij between observations yi and yj. Note that these virtual measurements zij are
noisy observations of the true transformation ∆ij as a result of Eq. (3.4), i.e., we obtain

zij ∼ N (∆ij,Σz). (3.5)

With this, we can directly learn the relationships of actions Qij to relative transforma-
tions p(zij | Qij). The problem of learning a single local model now has the form of the
noisy regression problem

zij = fM(Qij) + ε (3.6)

that is, the regression function

fM : R|Qij | → R16,

Qij 7→ ∆ij (3.7)

has to be learned from a sequence of noisy observations zij.
For simplicity, we consider the over-parametrized transformation matrices in the fol-

40 Chapter 3: Body Schema Learning

-0.4

-0.2

0

0.2

0.4

-150 -75 0 75 150

p
re
d
ic
te
d
p
os
it
io
n
[m

]

joint position [deg]

x
y
z

(a)

-0.4

-0.2

0

0.2

0.4

-150 -75 0 75 150

p
re
d
ic
te
d
p
os
it
io
n
[m

]

joint position [deg]

x
y
z

(b)

Figure 3.5: Two local models learned from real data. (a) Example of an accurate local model.
(b) Another local model that is less likely to be selected. The shaded areas represent
the uncertainty of the learned Gaussian process.

lowing with d = 12 independent components and keep the remaining 4 elements of the
homogeneous matrices fixed to (0 0 0 1). Subsequently, we learn the functional mapping
for each of the 12 components separately. Due to this simplification, we cannot guaran-
tee that all predictions correspond to valid, homogeneous transformation matrices. In
practice, however, they lie close to valid transformations such that a normalization step
resolves the problem. In particular, we ortho-normalize the rotational part of the homo-
geneous matrix using singular value decomposition. For solving the regression problem
as stated in Eq. (3.7), we learn a Gaussian process model (Rasmussen and Williams,
2006) for the transformation functions fM for all local modelsM and choose the squared
exponential covariance function to parametrize the process.

An example of this is given in Figure 3.5. The red, green and blue curves show
the translational x-, y-, and z- components of two different local models, respectively.
The depicted models were learned from real data using Gaussian process regression.
In the situation shown in Figure 3.5a, the action (x-axis) physically corresponds to
the transformation being measured (y-axis). Thus, the data set is self-consistent and
accurate functions with low noise levels can be learned. The higher noise level for the
z-component is due to larger measurement error in this direction (i.e., the camera’s line
of vision). In the situation depicted in Figure 3.5b, a local model has been learned for
variables that do not have a direct physical relationship. As a result, the model predicts
the observations with a high uncertainty and thus does not explain the data well. Such
a local model is likely to be discarded during the search for the full body model.

3.2 A Bayesian Framework for Body Schema Learning 41

3.2.2 Learning a Factorized Full Body Model

We seek to find a factorized model of the kinematic model that best explains the observed
data. Our aim is to learn and evaluate this model efficiently, i.e., we aim to minimize
the number of local models that need to be learned.

We implement this by discarding all local models that are overly inconsistent with
the observed data. We define a local model M to be valid given a set of observations
D, if and only if the sample observation log-likelihood is above some threshold η, i.e.,

1

|D|
log p(D | M) > η (3.8)

that we will denote with the Boolean predicate validM(D). In practice, we use the 3σ

confidence interval based on the sensor noise as a threshold to reject models that are
overly inconsistent with the observations. We compute the data likelihood of a set of
observations D as the product of the likelihoods of the individual observations, i.e.,

p(D | M) :=
∏

(zij ,Qij)∈D

p(zij | Qij,M). (3.9)

According to our observation model from Eq. (3.5), we assume Gaussian noise in the
observations zij with covariance Σy with respect to the expected pose ∆̂ij := E[∆ij |
Qij,M] as predicted from the Gaussian process model, resulting in

p(zij | Qij,M) :=
1√

(2π)6 |Σy|
exp

(
−1

2
(zij − ∆̂ij)

TΣy(zij − ∆̂ij)

)
. (3.10)

To compare models with different data likelihoods and complexities, we define a model
quality measure as

q(M) := log p(D | M)︸ ︷︷ ︸
accuracy

− k log(η |D|)︸ ︷︷ ︸
complexity

(3.11)

where k ∈ N denotes the dimensionality of the modelM, i.e., the number |Q
ij
| of action

signals that the model depends on. This measure is proportional to both the model
accuracy and to a penalty term for model complexity. Note that this quality measure
is similar to the Bayesian information criterion (BIC) as introduced in Chapter 2. The
key difference of our quality measure is that it contains the likelihood threshold as an
additional factor in the complexity penalty. This formulation provides us two important
properties that we can exploit to specify an efficient search strategy for the kinematic
structure. These two properties are:

• Given two models of the same complexity but different data likelihoods, the quality
measure favors the model with the better data fit.

42 Chapter 3: Body Schema Learning

• Given two valid models with different complexity, the quality measure favors the
model with the lower complexity.

The first property follows directly from the definition of the quality measure. The
second property results from the definition of valid models in Eq. (3.8) in combination
with the threshold as a factor in the model quality measure. If k1 < k2 and both models
are valid, i.e., both log p(D | M1) > η|D| and log p(D | M2) > η|D|, we can show that
q(M1) > q(M2) as follows:

q(M1)− q(M2) = log p(D | M1)− k1 log(η |D|)− [log p(D | M2)− k2 log(η |D|)]
> log η |D| − k1 log(η |D|)− [log p(D | M2)− k2 log(η |D|)]
≥ log η |D| − k1 log(η |D|)− [log 1− k2 log(η |D|)]
≥ log η |D| − k1 log(η |D|)− [log 1− (k1 + 1) log(η |D|)]
= log η |D| − k1 log(η |D|)− 0 + k1 log(η |D|) + log(η |D|) = 0.

Finding the Network Topology

If no prior knowledge about the body structure of the robot exists, we initialize a fully
connected kinematic model containing a total of

∑m
k=0

(
n
2

)(
m
k

)
local models (linking m

action signals to n relative transformations). Given a set of observations, the robot first
eliminates those local models that are highly inconsistent with the data by evaluating
validM(D) as described above. The remaining set of valid models is typically still
large. Certain ambiguities will, for instance, remain even after infinitely many training
samples. If, for example, p(z12 | q1,M1) has been determined to be a valid local model,
then p(z12 | q1, q2,M2) will also be. Although these alternative models might not be
distinguishable regarding their data likelihood p(D | M), they differ significantly in
their complexities k and therefore in their model quality q(M).

To find the best topology on a global level, we aim to select the minimal subset
M̂ ⊂ Mvalid from the superset of all valid local models Mvalid = {M1, . . .MN} that
covers all body parts and simultaneously maximizes the overall model fit, i.e.,

M̂ := arg max
M

∑
M∈M

q(M). (3.12)

This subset can be found efficiently by computing the minimal spanning tree of Mvalid

taking the negative model quality measure of the individual local models as cost function.
For our purposes, the spanning tree needs to cover all body parts but not necessarily all
action variables, since some of them might not have an influence on the robot.

To connect all n body poses in the Bayesian network, exactly |M̂| = (n−1) local mod-
els need to be selected. This yields

(|Mvalid|
|M̂|

)
possible network structures to be considered.

In the typical case, where the robot is composed of n− 1 arbitrarily connected 1-DOF

3.2 A Bayesian Framework for Body Schema Learning 43

← obs. poses

← q1

← x2

← x1

(a)

x1 x2

q1 q2q1 q2

x1 x2

q1 q2q1 q2

k = 0
k = 1

k = 2

(b)

← q1, q2

↙
x2

↘
obs. poses

← x1

(c)

x1 x2

q1 q2q1 q2

x1 x2

q1 q2q1 q2

k = 0
k = 1

k = 2

(d)

Figure 3.6: Example of a 2-DOF robot composed of two body parts and a single spherical joint.
(a)+(b) Result after actuating only the first DOF. (c)+(d) Result after actuating
both DOF.

joints, this number reduces to the order of O(n3). Regarding the scalability to higher
degrees of freedom and longer kinematic chains, the growth of the search space is of less
practical importance than other factors such as the observability of local transformations
(from a given camera view point).

We illustrate our approach with an example. Figure 3.6 shows a simulated robot
consisting of two body parts x1 and x2 linked by a 2-DOF spherical joint with two action
signals q = (q1 q2)

T . To learn its kinematic model, the robot repeatedly samples random
actions q and sends these to its joint. After the motion comes to rest, the robot observes
the resulting pose of its body parts and adds the action-pose pair to the sequence of
training data. Given these pose observations, it learns four local models relating its two
body parts, for all possible dependencies on the two action signals: the first model is
indepedent of any action signal, the second model depends on q1, the third model on q2,
and the fourth model on both action signals. Initially, we let the robot only actuate the
first DOF q1 and keep q2 = 0 fixed. Correspondingly, the robot moves its end effector on
a circular arc, as visualized by the yellow cones above the robot in Figure 3.6a. From this
data, the robot trains all four local models. After learning, both models M2 and M4

44 Chapter 3: Body Schema Learning

Algorithm 1: Estimation of the kinematic structure
Input: training data D
Output: kinematic structure M̂
for k ∈ {0, 1, . . . ,m} do1

Let Mk := {M | log p(D | M) > η|D| ∧ |Q| = k} be the set of all valid models2

of complexity k;
Let M1:k :=

⋃k
i=1Mi be the set of all valid models found so far;3

if a spanning tree of x1, . . . ,xn exists in M1:k then4

Compute the minimum spanning tree M̂ from M1:k, for example, using5

Prim’s or Kruskal’s algorithm;
Return M̂ as the optimal kinematic structure;6

end7

end8

are evaluated to be valid, i.e., have log p(D | M) > η|D|. With respect to our quality
measure, however,M4 has a much higher complexity penalty as k2 = 1 and k4 = 2, and
correspondingly,M2 is selected. The resulting kinematic structure is visualized by the
bold arrows in Figure 3.6b. This situation looks different when the robot actuates both
DOFs simultaneously. The resulting area covered by the end effector then corresponds
to a hemisphere, as visualized in Figure 3.6c. Again, the robot trains all possible local
models, but now finds that onlyM4 is valid (see Figure 3.6d). AsM2 does not depend
on the second DOF, its data likelihood is far below the acceptance threshold η and thus
gets rejected. These two examples demonstrate that our quality measure favors simple
models over more complex ones, but also selects more complex models if necessary.

Note that for implementing this structure search efficiently, typically not every of
the

∑m
k=0

(
n
2

)(
m
k

)
possible local models needs to be evaluated. By the choice of the

quality measure in Eq. (3.11), a valid model with a lower complexity will always have a
higher quality than any other valid model with a larger complexity. This follows from
the threshold on valid models which serves as a lower bound on the model quality: all
models with data likelihoods below this threshold are invalid and thus discarded. As a
consequence, an efficient algorithm can be devised to minimize the number of models
to be evaluated. It is sufficient to evaluate only the first k complexity layers of local
models until a minimal spanning tree is found for the first time. This spanning tree
then corresponds to the global maximum of the overall model quality. The resulting
algorithm is given in Algorithm 1. Important for the efficiency is that only the minimal
set of local models actually gets trained and evaluated (line 2–3) and that the algorithm
stops training more models after the first spanning tree has been found (line 4–6).

We illustrate the effect of this property in Figure 3.7. In this experiment, we consider
a manipulator consisting of five body parts and four action signals. The yellow nodes
correspond to all theoretically possible local models. The local models depicted in this

3.2 A Bayesian Framework for Body Schema Learning 45

x1 →

x2 →

x3 →

← x4

← x5

← q1

← q2

← q3

q4 →

(a)

x1 x2 x3 x4 x5

q1 q2 q3 q4q1 q2 q3 q4

x1 x2 x3 x4 x5

q1 q2 q3 q4q1 q2 q3 q4

k = 0
k = 1

k = 2

k = 3

k = 4

(b)

Figure 3.7: (a) Example of a 4-DOF serial chain manipulator consisting of five body parts.
(b) Recovered kinematic model.

x3 occluded →

x1 x2 x3 x4 x5

q1 q2 q3 q4q1 q2 q3 q4

x1 x2 x3 x4 x5

q1 q2 q3 q4q1 q2 q3 q4

k = 0
k = 1

k = 2

k = 3

k = 4

Figure 3.8: Same robot as in Figure 3.7, but x3 was occluded and thus never observed. As a
result, a joint model from x2 to x4 depending both on q2 and q3 is selected.

46 Chapter 3: Body Schema Learning

figure are sorted corresponding to their complexity, i.e., the bottommost row corresponds
to local models representing rigid transforms (k = 0), the four next rows correspond to
local models that depend only on a single action signal (k = 1), the next six rows to
models that depend on two action signals simultaneously (k = 2), and so on. After the
robot has evaluated the first two complexity layers (k = 0 and k = 1), it detects that the
set of valid models contains a spanning tree, and thus the evaluation of all remaining
local models with k ≥ 2 can be skipped. The best kinematic model corresponds to the
minimum spanning tree between all body parts and the local models and is visualized
by the bold edges in the figure. This experiment illustrates that the proposed quality
measure contributes to the efficiency of our approach, as only the first two layers of local
models need to be evaluated to find the optimal kinematic model.

In a second experiment, we occluded the visual marker corresponding to the third
body part of the same robot. Figure 3.8 shows the resulting Bayesian network. As x3

was never observed, no local model relating the other body parts to x3 could be trained.
Therefore, after evaluating the local models with complexities k = 0 and k = 1, no
spanning tree exists, as no valid connection between x2 and x4 can be established. Only
after evaluating additionally all local models that simultaneously depend on two action
signals, the robot finds a local model between x2 and x4 depending both on q2 and
q3. This experiment demonstrates that our approach also works when only parts of the
system are observable. However, learning local models with high-dimensional inputs is
a more complex learning problem and usually requires more training samples before the
same prediction accuracy is achieved.

3.2.3 Pose Prediction and End-effector Pose Control

Having discussed the learning of local models and the selection of the network structure,
we now show how the resulting model can be used to predict the pose of the robot for
a given action (forward kinematics) and how to infer a suitable action that moves the
manipulator to a given pose (inverse kinematics).

The kinematic forward model can be constructed directly from the local models con-
tained in M, since these form a tree over all body part variables xi. We can write

p(x1, . . . ,xn | q1, . . . , qm) =
∏
i

p(xi | parents(xi)) (3.13)

= p(xroot)
∏
Mij∈M

p(∆ij | Qij,Mij) (3.14)

= p(xroot)
∏
Mij∈M

p(x−1i xj | Qij,Mij) , (3.15)

where xroot is the position of the robot trunk, which serves as the reference frame for
all other body parts. We useMij to denote the local model of M which describes the

3.2 A Bayesian Framework for Body Schema Learning 47

transformation between xi and xj. From p(x1, . . . ,xn|q1, . . . , qm) in the factorized form,
we can now approximate the maximum likelihood estimate of the resulting body posture
given an action q by concatenating the geometric transformations of the individual
geometric transformations. We define the kinematic function by finding the maximum
of the probability distribution

f(q) := max
xee

p(xn | q1, . . . , qm,xroot), (3.16)

where xee denotes the body part corresponding to the end effector (i.e., the body part to
be controlled). As all local models evaluated for a particular action q provide a Gaussian
distribution in pose space, the marginal over the pose of the end effector can efficiently
be computed as the concatenation of the marginals of the individual local models. In
particular, we are interested in the maximum likelihood estimate for the end effector
which we can compute efficiently by concatenation, i.e.,

f(q) := fM12
(Q12)fM23

(Q23) · · · fM
(n−1)n

(Q(n−1)n). (3.17)

Here, fMij
(Qij) refers to transformation predicted by the local modelMij and evaluated

for relevant part of the action signal Qij. Note that also the covariances of the pose
estimate can be computed efficiently by approximating the result of the multiplication
of two Gaussians with a Gaussian. As each regression function fMij

corresponds to a
Gaussian process, also the expected variance is known and can be propagated efficiently,
similar to Eq. (3.17), through the Bayesian network. We may refer the interested reader
to Ware and Lad (2003) on this topic. In practice, however, we found that estimating
the variance directly from the training data is more reliable, as it provides us with a
global estimate of the uncertainty instead of a summation over local uncertainties.

The ordering of multiplications in Eq. (3.17) depends on the kinematic structure
defined by M̂. This ordering can efficiently be computed for example using Dijkstra’s
algorithm to find the (shortest) path between two nodes in the spanning tree. Note that
the marginalization of Eq. (3.17) is only valid for open kinematic trees. We generalize
this procedure to arbitrary kinematic systems in Chapter 4, including kinematic systems
containing kinematic loops.

In principle, the inverse kinematic model can be derived by applying Bayes’ rule,

p(q1, . . . , qm | x1, . . . ,xn) =
p(q1, . . . , qm)

p(x1, . . . ,xn)
p(x1, . . . ,xn | q1, . . . , qm), (3.18)

it is in practice difficult to determine the maximum likelihood (ML) solution for the
action q1, . . . , qm. This is due to the fact that the target posture is typically not fully
specified for all body parts but rather for the root part and the end effector. Thus, the

48 Chapter 3: Body Schema Learning

Bayesian network is only constrained at both “ends”, which results in a high-dimensional
optimization problem.

For this reason, we resort to differential kinematics which uses the Jacobian to com-
pute a configuration that moves the end effector iteratively towards the desired target
pose Sciavicco and Siciliano, 2000. Since all individual functions fMi

are continuous,
the maximum likelihood estimate f from Eq. (3.17) of the forward kinematic model is
continuous, too, and so the Jacobian of the forward model can be computed as

Jf (q) =

[
∂f(q)

∂q1
, . . . ,

∂f(q)

∂qm

]T
. (3.19)

Given the Jacobian Jf (q), it is straight-forward to implement a gradient descent-based
algorithm that continuously minimizes the distance function and, thus, controls the
manipulator towards the target pose. While such a “greedy” controller may get trapped
in local minima of the distance function and might fail to plan around obstacles, it is
often used in practice for manipulator control and forms the basis of many higher-level
path-planning algorithms such as probabilistic road-maps or rapidly-exploring random
trees (LaValle, 2006).

3.3 Failure Awareness and Life-Long Adaptation

So far, we have assumed that the kinematics of the robot remain unchanged during its
life-time. It is clear, however, that in many real-world applications, the kinematics of
a robot will change over the course of its life-time. This can, for example, be caused
by material fatigue, wear and tear, or inaccurate repairs. This requires that the robot
revises parts of its internal model over time and can discriminate between earlier and
more recent observations to reason about such changes. We would like the robot to
detect changes of its kinematics by testing the validity of its local models continuously.
It might even be useful for the robot to maintain multiple body schema at different time
scales. Consider, for example, a robot that uses an accurate pre-programmed model over
a long period of time and that has the ability to learn additional models in response to
kinematic changes. Such a situation is depicted in Figure 3.9. In this experiment, we
changed the tool in the end effector without notifying the system. The task of the robot
is to detect this change and to learn a replacement for the mismatching local model.

To deal with model changes over time, we add a time index T to the local models
MT to indicate this dependency. Consequently, the size of the learning problem grows
exponentially in time yielding the immense upper bound of

∑m
k=0

(
n
2

)(
m
k

)
2|T | local models

to be considered. As it is intractable to evaluate all of these local models even for small
periods of time, we make three additional assumptions such that an efficient algorithm
for online applications can be implemented:

3.3 Failure Awareness and Life-Long Adaptation 49

q1 q2 q3 q4 q5 q6

∆geo
12 ∆geo

23 ∆geo
34 ∆geo

45 ∆geo
56 ∆geo

67

x1 x2 x3 x4 x5 x6 x7

(a)

x6 →

∆gp’
67 →

← x7

(b)

q4 q5 q6

∆geo
45 ∆geo

56 ∆geo
67

. . . x5 x6 x7

(c)

x6 →
∆gp

67 →

← x7

(d)

q4 q5 q6

∆geo
45 ∆geo

56 ∆geo
67 ∆gp

67

. . . x5 x6 x7

(e)

∆gp’
67 →

x6 →

x7 →

(f)

q4 q5 q6

∆geo
45 ∆geo

56 ∆geo
67 ∆gp’

67

. . . x5 x6 x7

(g)

Figure 3.9: Adaptation of the body schema during tool-use. (a) Initial body schema. (b) After
a different tool is placed in the gripper, the model does not fit the observations
anymore. (c) The mismatching model ∆67 is revoked. (d)+(e) The first newly
sampled model (∆gp

67) has a high uncertainty because of the missing dependency
on the action signal q6. (f)+(g) The second sampled model (∆gp′

67) is a suitable
replacement.

50 Chapter 3: Body Schema Learning

1. Changes to the kinematic structure and/or kinematic properties are relatively rare
events.

2. Changes happen incrementally.

3. Whatever local models were useful in the past, it is likely that similar – or even
the same – local models will be useful in the future.

Due to the first assumption, we do not have to re-learn the local models continuously
and re-optimize the network, but rather it is sufficient to monitor the data likelihood of
the models until one of them is not evaluated as being valid any more. In this case, the
second assumption states that the network cannot change completely at a given time
step, but that we can recover the new structure by exchanging non-valid local models
by re-learned ones individually. Furthermore, according to our third assumption, it is
reasonable to begin the search for new models with those that are similar to previously
useful models, i.e., to keep a history of successful local models and to start searching
within this history before learning new models from scratch.

We incorporate these assumptions into an integrated system that is able to learn a
body schema from scratch and to exchange local models at a later stage whenever a
misfit is detected. For rating and ordering alternative local models, we consider the
structural proximity dDBN(M1,M2) of two local models which we define as the ratio of
shared nodes in the Bayesian network. This way, models that depend on a similar set of
variables are given preference in the search. We now present an experimental evaluation
of the integrated system in simulation and on two real robotic manipulators.

3.4 Experiments

We tested our approach in a series of experiments on a real robot as well as in simulation.
The goal of our experiments was to verify that

1. the robot is able to learn its kinematic structure and individual transformation
functions,

2. subsequent changes to the robot’s body are detected reliably (blocked
joints/deformations),

3. the body schema is updated automatically without human intervention, and

4. the resulting model allows for accurate prediction and control.

The two real robots used to carry out the experiments were equipped with a 2-DOF and
with a 7-DOF manipulator, respectively, composed of Schunk PowerCube modules (see
Figure 3.2). We compare the learned kinematic model with a carefully hand-tuned model

3.4 Experiments 51

0

0.05

0.1

0.15

0.2

0.25

0.3

2 4 6 8 10 12 14 16 18 20

p
os
it
io
n
al

er
ro
r
[m

]

number of training samples

Observation noise
Pose prediction error

End-effector positioning error

Figure 3.10: Pose prediction and end-effector positioning errors of our model learning approach
evaluated on a real 2-DOF manipulation robot.

that uses the joint encoder measurements for predicting the current pose. Note that our
approach uses in contrast only the actions and not proprioception for learning the model
and predicting the pose. Visual perception was implemented using a Sony DFW-SX900
FireWire camera at a resolution of 1280x960 pixels. Seven black-and-white markers were
attached to the joints of the robot and the ARToolkit vision module (Fiala, 2005) was
used to continuously estimate their 3D poses. The standard deviation of the camera noise
was measured to σmarkers = 0.044m in 3D space, which is acceptable considering that
the camera was approximately located two meters away from the robot. The prediction
errors and error bars reported in the following were evaluated using independent test
sets Dtesting with 15 data samples.

3.4.1 Evaluation of Model Accuracy

To quantitatively evaluate the accuracy of the kinematic models learned from scratch as
well as the convergence behavior of our learning approach, we generated random action
sequences and analyzed the intermediate models using the 2-DOF robot of which the
kinematic model is perfectly known. Figure 3.10 gives the absolute errors of prediction
and control after certain numbers of observations have been processed. For a reference,
we also give the average observation noise, i.e., the absolute localization errors of the
visual markers. As can be seen from the diagram, the body schema converges robustly
within the first 10 observations. After about 15 training samples, the accuracy of the
predicted body part positions becomes even higher than the accuracy of the direct
observations. The latter is a remarkable result as it means that, although all local
models are learned from noisy observations, the system is able to “blindly” estimate its
pose more accurately than immediate perception. The figure also gives the accuracy

52 Chapter 3: Body Schema Learning

(a)

q1 q2 q3 q4 q5 q6 q7

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

k = 0
k = 1
k = 2

(b)

Figure 3.11: Experiment with a simulated 7-DOF-manipulator consisting of 10 body parts.
Body part x4 was occluded and, thus, never observed. (a) Picture of the simulated
robot. (b) After 10 training samples, the Bayesian network has converged to the
correct kinematic structure.

when the robot is using the learned model to control its position. Here, we used an
additional marker to define the target location of the end effector. We learned the full
body schema from scratch as in the previous experiment and used the gradient-based
control algorithm to bring the end effector to the desired target location. The average
positioning error is in the order of the perception noise (approximately 0.050m, see
Figure 3.10), which is slightly higher than the prediction error alone.

The second experiment was carried out on a 2-DOF robot of similar size in simulation.
Therein, we analyzed the convergence behavior of the local models with respect to the
training size in the absence of observation noise. We evaluated the accuracy of the
learned models on independently drawn test sets. Here, we found that the accuracy
was on average below 0.002m and 1° after 20 training samples, and below 0.001m
and 0.2° after 100 training samples. This shows that the underlying Gaussian process
regression models can approximate the kinematic function arbitrarily well, given that
enough training data is available.

Further, we evaluated our algorithm on a simulated 7-DOF manipulator consisting of
10 body parts, to verify that our approach also scales to larger manipulators. The total
length of the simulated manipulator was 1.300m. The manipulator has been assembled
as follows (see Figure 3.11):

• Body parts x1 and x2 were firmly connected to each other.

• Two fingers x9 and x10 were mounted on the 1-DOF gripper whose configuration
is given by q7.

• The remaining body constituted a chain of visible body parts x2, . . . ,x8 and rev-
olute joints q1, . . . , q6.

The structure of the learned forward model converges after around 10 samples, similar

3.4 Experiments 53

to previous experiments. The average prediction error after around 100 samples was
below 0.001m.

With these experiments, we demonstrated that our approach is able to recover the
kinematic model of several real and simulated manipulators. Furthermore, we showed
that the learned models are more accurate than the observation noise in the real robot ex-
periment and asymptotically converge towards zero error in the noise-free case. Finally,
with the experiment on the simulated 10 part manipulator and 7 DOFs, we demonstrated
that our approach applies also to more complex structures.

3.4.2 Recovery from a Blocked Joint

In a second experiment we used the 7-DOF robot depicted in Figure 3.2b to evaluated
how well the proposed system can detect a stuck joint and repair its model accordingly.
To this end, we initialized the body schema with an accurate, manually calibrated model.
Upon detection of a model mismatch, new local models were trained from a set Dtraining

of 30 consecutive training samples recorded after the model was instantiated. In order
for a local model to be valid, its translational and orientational error on the test set was
required to be within 3σz,pos = 0.150m and 3σz,orient = 45°, with σz,pos and σz,orient the
standard deviations of the positional and orientational observation noise, respectively.
New local models were only sampled when no valid spanning tree could be constructed
for 15 consecutive time steps. This corresponds to the time it takes to replace the data
samples in the test set – depending on the visibility of the individual markers.

We generated a large sequence of random actions 〈q1, . . . ,qt〉. Before accepting a
pose, we checked that these actions would not cause any (self-)collisions and that the
visual markers of interest would potentially be visible on the monocular camera image.
This sequence was sent to the robot and after the motion of the manipulator stopped,
the observed marker poses (y1, . . . ,yn) were recorded. We allowed for arbitrary motion
patterns (only constrained by the geometry of the manipulator) and thus do not require
full visibility of the markers. In the rare case of an anticipated or actual (self-)collision
during execution, the robot stopped and the sample was rejected. Analysis of the
recorded data revealed that, on average, the individual markers were visible only in
86.8% of the images. In a second run, we blocked the end effector joint q4 so that it
could not move and again recorded a log-file. An automated test procedure was then
used to evaluate the performance and robustness of our approach. For each of the 20
recorded runs, a data sequence was sampled from the log-files, consisting of 4 blocks
with N = 100 data samples each. The first and the third block were sampled from the
initial body shape, while the second and the fourth block were sampled from the log-file
where the joint got blocked.

Figure 3.12a shows the absolute errors of the local models predicting the end effector
pose. As expected, the prediction error of the engineered local model increases signif-

54 Chapter 3: Body Schema Learning

0

0.1

0.2

0.3

0 50 100 150 200 250 300 350 400

p
re
d
ic
ti
on

er
ro
r
[m

]

time step

joint stuck joint repaired joint stuck

Engineered model
Learned replacement model

(a)

0

0.1

0.2

0 50 100 150 200 250 300 350 400

p
re
d
ic
ti
on

er
ro
r
[m

]

time step

joint stuck joint repaired joint stuck

Combined kinematic model

(b)

0

5

10

0 50 100 150 200 250 300 350 400

n
u
m
b
er

o
f
m
o
d
el
s

time step

Size of kinematic model
Size of training set

Size of test set

(c)

Figure 3.12: Experimental evaluation of model recovery after a joint is blocked. (a) Prediction
errors of the engineered and learned replacement model of a single run. (b) Pre-
diction error of the combined model averaged over 20 runs. (c) Number of models
in the current Bayesian network, the current training set, and the current test
set. On average, our approach only needs to sample a single model before the
kinematic model is restored.

3.4 Experiments 55

Visibility rate Failure type Time steps until recovery

first occurrence restore/repair second occurrence

91.9% Joint stuck 16.50 ± 1.20 0.45 ± 0.86 0.65 ± 1.15
79.0% Tool exchange 20.20 ± 1.96 11.10 ± 0.83 12.10 ± 1.64

Table 3.1: Evaluation of the number of pose observations required until the robot can re-
establish a valid kinematic model after being exposed to different types of failures.
The numbers give the mean and standard deviations in 20 independent runs.

icantly after the end effector joint gets blocked at t = 100. After a few samples, the
robot detects a mismatch in its internal model and starts to learn a new dynamic model
(around t = 130), which quickly reaches the same accuracy as the original, engineered
local model. At t = 200, the joint gets repaired (unblocked). Now the estimated error of
the replacement model quickly increases while the estimated error of the engineered lo-
cal model decreases rapidly towards its initial accuracy. Later, at t = 300, the joint gets
blocked again in the same position, the accuracy of the previously learned replacement
model increases significantly, and thus the robot can re-use this local model instead of
having to learn a new one.

We averaged the precision of the combined model – i.e., the engineered one fused with
the one learned after having detected the failure – over 20 runs of the experiment. The
results are given in Figure 3.12b. The hand-tuned initial geometrical model evaluates
to an averaged error at the end effector of approximately 0.037m. After the joint gets
blocked at t = 100, the error in prediction increases rapidly. After t = 115, a single new
local model gets sampled, which already is enough to bring down the overall error of the
combined kinematic model to approximately 0.051m. Training of the new local model
is completed at around t = 135.

Later, at t = 200, when the joint gets un-blocked, the error estimate of the com-
bined kinematic model increases slightly, but returns much faster to its typical accuracy:
switching back to an already known local model requires less data samples than learning
a new model (see Table 3.1). At t = 300, the same quick adaption can be observed when
the joint gets blocked again.

3.4.3 Tool Use

In a third experiment, we changed the end effector link length and orientation and
applied the same evaluation procedure as in the previous subsection. This was ac-
complished by placing a tool with an attached marker in the gripper and changing its
configuration during the experiment (see Figure 3.9). After a different tool is placed
in the gripper, the body schema does not fit the observations anymore. In particular,
the robot identifies ∆67 as the mismatching component and seeks for a replacement.

56 Chapter 3: Body Schema Learning

0

0.1

0.2

0.3

0 50 100 150 200 250 300 350 400

p
re
d
ic
ti
on

er
ro
r
[m

]

time step

2nd tool 1st tool 2nd tool

Engineered model
Learned replacement model

(a)

0

0.1

0.2

0 50 100 150 200 250 300 350 400

p
re
d
ic
ti
on

er
ro
r
[m

]

time step

2nd tool 1st tool 2nd tool

Combined kinematic model

(b)

0

5

10

0 50 100 150 200 250 300 350 400

n
u
m
b
er

o
f
m
o
d
el
s

time step

Size of kinematic model
Size of training set

Size of test set

(c)

Figure 3.13: In this experiment, the tool in the end effector of the robot was repeatedly ex-
changed. (a) Prediction error of the engineered and learned replacement model of
a single run. (b) Prediction error of the combined model averaged over 20 runs.
(c) Evolution of models being trained and tested while the kinematic model gets
updated. In this case, the robot samples on average two local models before the
kinematic model is restored.

3.4 Experiments 57

Shape Strategy Control error [m]

initial static 0.007 ± 0.011
deformed static 0.189 ± 0.028
deformed adaptive 0.015 ± 0.002

Table 3.2: Evaluation of the control of a deformed robot in simulation. Experimental compar-
ison of the control error while following a trajectory in the presence of hardware
failures.

The first newly sampled model (∆gp
67) has a high uncertainty because of the missing de-

pendency on the action signal q6. Accordingly, the robot samples a second model ∆gp′

67

which it evaluates as a suitable replacement. As a result, the adapted body schema is
again valid and the robot can position its tool accurately.

The quantitative results for a single run and the average over 20 runs of this experiment
are given in Figure 3.13. After the tool gets displaced at t = 100, two local models have
to be sampled on average to repair the kinematic model. The prediction accuracy of the
whole system closely resembles the levels that were obtained in the case of the blocked
joint. On average, we measured an accuracy of 0.047m after recovery. In Table 3.1, we
summarize the averaged recovery times for this and the previous experiment. As can
be seen from the results, the system recovers from a blocked joint quicker than from
a deformed link, and recalling a previously successful model is significantly faster than
learning a new model from scratch.

3.4.4 Controlling a Deformed Robot

Finally, we performed a series of experiments to verify that dynamically maintained
body schemata can be used for accurate positioning and control. The experiments were
performed on a simulated 4-DOF manipulator. We defined a trajectory consisting of
30 way points (in 3D space) that the manipulator was requested to approach using
the differential kinematics using its current body schema. When the initial geometric
model was used to follow the trajectory by using the undamaged manipulator, the robot
achieved a positioning accuracy of 0.007m. After we had deformed the middle link by
45°, the manipulator with a static body schema was significantly off course, leading
to an average positioning accuracy of 0.189m. With dynamic adaptation enabled, the
precision settled at 0.015m. These results are also summarized in Table 3.2 including
the standard deviations of the errors computed over 20 independent runs. The results
show that dynamic model adaptation enables a robot to maintain a high positioning
accuracy even after substantial changes to its kinematics.

With the experiments on blocked joints, deformed links, and tool changes, we showed
that robots equipped with our approach are able to maintain a valid kinematic model
even after significant damage or changes occur to the robot. Furthermore, our approach

58 Chapter 3: Body Schema Learning

does not require to re-learn the complete model, but is able to identify inaccurate parts
of the Bayesian network and to replace these efficiently using a suitable search heuristic.
With our experiments on controlling a deformed robot, we demonstrated that a robot
using our approach stays operational after link deformations and hardware failures and
thus requires less human supervision.

3.5 Related Work

The central idea of our approach is to represent the kinematic model as a probabilistic
Bayesian network whose vertices correspond to body parts and action signals and whose
edges encode the local kinematic models. Dearden and Demiris (2005) enabled a robot
to learn a Bayesian network that relates action commands to the visual motion of its
gripper. In comparison to our work, the problem considered by Dearden and Demiris is
much simpler as they deal only with two body parts observed in two-dimensional camera
images. As a result, their model does not provide a three-dimensional kinematic model
of the manipulator.

Kuipers et al. provided with the “spatial semantic hierarchy” (SSH) a set of concepts
on representing and learning sensor-motor maps for robots at different abstraction levels.
Their work is inspired by the concept of human cognitive maps (Kuipers and Byun,
1988; Kuipers et al., 2000; Remolina and Kuipers, 2004). The general idea is to learn
mappings that relate sensor input to motor commands and that enable a robot, for
example, to follow trajectories without any prior knowledge. A different approach has
been presented by Kolter and Ng (2007) who applied dimensionality reduction to find
a suitable subspace in order to learn a walking gait for a four-legged robot. Another
instance of approaches based on dimensionality reduction is given by the work of Grimes
et al. (2006) who employed principal component analysis in conjunction with Gaussian
process regression to learn walking gaits for a humanoid robot. Yoshikawa et al. (2004a)
used Hebbian networks to discover the body schema from self-occlusion and self-touching
sensations, and learned classifiers for body/non-body discrimination from visual data
(Yoshikawa et al., 2004b). By combining the sensor data across multiple modalities such
as visual, proprioceptive and tactile sensor data, Sawa et al. (2007) enabled a robot to
infer the Jacobian even for invisible hand positions.

Other approaches model the (inverse) kinematic function directly as a high-
dimensional regression problem. For example, Natale (2004) used neural feed-forward
networks to learn reaching movements, Gaskett and Cheng (2003) proposed self-
organizing maps to coordinate hand-eye movements, and Kumar et al. (2010) employed
radial basis function networks (RBFs) to learn the local mappings between configura-
tions and end effector poses. Recurrent neural networks have also been used to learn
the kinematics and dynamics of manipulation robots (Reinhart and Steil, 2008; Rolf

3.5 Related Work 59

et al., 2009). As no global inverse kinematic function exists for redundant kinematic
chains, D’Souza et al. (2001) estimated the inverse kinematic function locally from ob-
served data. As the required number of training samples increases exponentially with
the degrees of freedom of the robot, Lopes and Santos-Victor (2005) proposed to learn
the kinematic function incrementally, first by moving only the shoulder and elbow joints
and, subsequently, the hand. Other approaches aim to reduce the number of training
samples required to learn an accurate kinematic model. Martinez-Cantin et al. (2010)
showed how active learning can be used to reduce the number of required training sam-
ples, by actively choosing joint configurations that maximize the expected information
gain. Angulo and Torras (2005) approached this problem by splitting the manipulator
into two or more virtual robots. However, Angulo and Torras assumed that a suitable
decomposition of the manipulator is known beforehand, and thus, did not tackle the
problem of learning the kinematic structure.

The approach presented in this article is also related to the problem of parameter
optimization, which can be understood as a sub-problem of body schema learning. When
the kinematic model is given in a parametric form, the parameters can be optimized
efficiently with respect to an error measure (Gatla et al., 2007; Pradeep et al., 2010; He
et al., 2010) or the data likelihood (Roy and Thrun, 1999). Hersch et al. (2008) showed
that parameter optimization can also be used to adapt the body schema during tool-use,
for example, to estimate the tool position and orientation. Martinez-Cantin et al. (2010)
extended this approach to active learning, i.e., they generated observation actions that
maximize the expected information gain. Such methods can also be used to identify the
dynamic parameters such as the center of mass, the moments of inertia, etc. Ting et al.
(2006), for example, presented a Bayesian approach for estimating these parameters on
two different manipulation robots. In principle, these methods could be applied after
our approach has bootstrapped the kinematic model, in order to refine or augment
the model and achieve a faster convergence. Genetic algorithms can also be used for
parameter optimization given a suitable parametrization of the kinematic model space.
Bongard et al. (2006a,b) described a robotic system that continuously learns its own
structure from actuation-sensation relationships. Their system generates new structure
hypotheses using stochastic optimization, which are validated by generating actions and
by analyzing the following sensory input. In a more general context, Bongard and
Lipson (2007) studied structure learning in arbitrary nonlinear systems using similar
mechanisms.

In contrast to all of the approaches described above, our approach learns both the
structure as well as the functional mappings for the individual building blocks of the
body schema. Furthermore, it does not require an explicit parametrization of the body
schema, and the representation in form of a Bayesian network allows a robot to quickly
revise its structure and to replace invalidated local models on-the-fly. Recently, Hoff-

60 Chapter 3: Body Schema Learning

mann et al. (2010) published a comprehensive review on body schema learning in robotics
which includes a detailed discussion of our work.

3.6 Summary

In this chapter, we presented a novel approach to body schema learning for manipu-
lation robots. Our first contribution is to represent the kinematics of a manipulation
robot as a Bayesian network. Marginalization in the Bayes net corresponds to forward
and inverse kinematics, depending on which variables are marginalized. The second
contribution is an efficient algorithm for finding the kinematic model from observations.
We continuously learn a large set of conditional density functions (or local models) us-
ing nonparametric regression for different hypotheses of the network structure. Given
this set of models, we search for the arrangement that best explains the full system.
Our approach recovers the kinematic structure by finding the minimum spanning tree
in the set of possible models. To the best of our knowledge, this is the first time that
Bayesian models of such complex kinematic systems have been learned from scratch
using visual self-observation. In experiments carried out with real manipulation robots
and in simulation, we demonstrated that our system is able to deal with missing and
noisy observations, operates in full 3D space, and allows a robot to robustly control its
end effector even in the presence of hardware failures. With our approach, we contribute
an innovative solution that increases the dependability and accuracy of manipulation
robots that operate over extended periods of time without the supervision of an expert.

Chapter 4

Learning Kinematic Models
of Articulated Objects

Service robots operating in domestic environments are typically faced with a variety of
objects they have to deal with to fulfill their tasks. Some of these objects are articulated
such as cabinet doors and drawers, or room and garage doors. The ability to deal with
such articulated objects is relevant for service robots, as, for example, they need to
open doors when navigating between rooms and to open cabinets to pick up objects in
fetch-and-carry applications.

Although the problem of operating articulated objects has been investigated by many
researchers (Jain and Kemp, 2009a; Klingbeil et al., 2009; Meeussen et al., 2010; Wieland
et al., 2009), most of these approaches are either entirely model-free or assume sub-
stantial prior knowledge about the model and its parameters. Whereas model-free
approaches aim at releasing designers from providing any a-priori model information,
knowledge about objects and their kinematic properties supports the robot in state es-
timation, motion prediction, and planning. As large variations exist in the properties
of articulated objects in domestic environments, it is difficult to equip a robot with
appropriate models for all these objects.

This chapter presents a complete probabilistic framework that enables robots to learn
kinematic models of articulated objects from observations of their motion. We combine
parametric and nonparametric models consistently and utilize the advantages of both
methods. As a result of our approach, a robot can robustly operate articulated objects
in unstructured environments. As an illustrating example, consider Figure 4.1 where
a mobile manipulation robot interacts with various articulated objects in a kitchen
environment, learns their kinematic properties, and infers their kinematic structure.

In this chapter, we generalize our approach on kinematic model learning from the

62 Chapter 4: Learning Kinematic Models of Articulated Objects

(a) robot opening a fridge

revolute

(b) learned kinematic model

(c) robot opening a drawer

prismatic

(d) learned kinematic model

Figure 4.1: A service robot learns kinematic models of articulated objects in a kitchen environ-
ment by interacting with them.

previous chapter to articulated objects. As the configuration of articulated objects is
in general not directly observable, we treat the configuration as a latent variable in our
model. Furthermore, we add parametric models to increase the robustness of model
estimation for prismatic and revolute links while we keep Gaussian process models as a
flexible solution for all other links. We apply Bayesian model selection as a consistent
method to compare and rank alternative models. With our approach, a robot can
estimate both the kinematic structure and the degrees of freedom of the articulated
object. Furthermore, our framework can deal with closed kinematic chains and allows
the incorporation of prior knowledge during model learning. In our experiments on real
robots and in simulation, we demonstrate that robots using our approach can learn
accurate kinematic models of various articulated objects, operate them reliably, and
improve over time by exploiting previous experiences.

This chapter is organized as follows. In Section 4.1, we introduce our unified frame-
work for modeling the kinematics of articulated objects. In Section 4.2, we present

4.1 Unified Framework for Learning Kinematic Models 63

model
fitting

structure
selectionpose

observations
candidate
link models

kinematic
graph

Figure 4.2: Schematic overview of our approach.

several extensions including the exploitation of prior information, kinematic loops, and
the estimation of degrees of freedom. In Section 4.3, we describe different options to
perceive and control the motion of articulated objects. We analyze our approach in
an extensive set of experiments both in simulation and on real robots and report our
results in Section 4.4. Finally, we conclude the chapter with a discussion of related work
in Section 4.5.

4.1 Unified Framework for Learning Kinematic
Models

We define an articulated object to consist of two or more object parts with one or more
passively actuated mechanical links between them. These links constrain the motion
between the parts, for example, the hinge of a door constrains the door to move on an
arc, and the shaft of a drawer constrains the drawer to move on a line segment. The
simplest articulated object consists of two rigid parts with one mechanical link. More
complex objects may consist of several articulated parts, like a door with a door handle,
or a car with several doors, windows, and wheels.

Figure 4.2 gives a high-level overview of the proposed system. A robot observes the
pose of an articulated object being manipulated. For the relative motion of any two
parts, it fits different candidate models that describe different mechanical links. From
this set of candidate link models, it selects the kinematic structure that best explains the
observed motion, i.e., the kinematic structure that maximizes the posterior probability.

We assume that a robot, external to the object, observes the pose of an articulated
object consisting of p object parts. We denote the true pose of object part i ∈ {1, . . . , p}
by a vector xi ∈ SE (3) representing the 3D pose of that part (including position and
orientation), where SE (3) = R3×SO(3) stands for the special Euclidean group. Further,
we refer to the full object pose (containing the poses of all parts) with the vector x1:p =

(x1, . . . ,xp)
T . Two object parts i and j are related by their relative transformation

∆ij = xi 	 xj. We use ⊕ and 	 for referring to the motion composition operator and
its inverse1.

1For example, if the poses are represented as homogeneous matrices, i.e., x1,x2 ∈ R4×4, then these
operators correspond to matrix multiplication x1⊕x2 = x1x2 and inverse multiplication x1	x2 =
(x1)−1x2, respectively.

64 Chapter 4: Learning Kinematic Models of Articulated Objects

We denote a kinematic link model between two object parts i and j as Mij, and
its associated parameter vector as θij ∈ Rkij , where kij ∈ N0 denotes the number of
parameters of the model describing the link. A kinematic graph G = (VG, EG) consists
of a set of vertices VG = {1, . . . , p} corresponding to the parts of the articulated object
and a set of undirected edges EG ⊂ VG × VG describing the kinematic link between two
object parts. Furthermore, each edge (ij) has an associated kinematic link modelMij

with parameter vector θij.
All kinematic link models that we consider here (except for the trivial rigid link) have

a latent variable qij ∈ Cij ⊂ Rdij that describes the configuration of the link. For a door,
this can be the opening angle. Cij stands for the configuration space of the link. The
variable dij represents the degrees of freedom (DOFs) of the mechanical link between the
two parts.

While the object is being articulated, the robot observes the object pose; we denote
the n-th pose observation of object part i as y

n
i . Correspondingly, we denote the n-th

pose observation of all parts as y
n
1:p and a sequence of n pose observations as Dy =〈

y1
1:p, . . . ,y

n
1:p

〉
. Further, we will refer to Dzij

=
〈
z1
ij, . . . , z

n
ij

〉
as the sequence of relative

transformations zij = yi 	 yj that the robot has observed so far for the edge (ij).
Figure 4.3a depicts a graphical model of an articulated object consisting of two parts

using the plate notation. The nodes inside the rectangle are copied for n times, i.e.,
for each time step t in which the object is observed. In each of these time steps, the
articulated object takes a particular configuration q12 defining – together with the model
and its parameters – the noise-free relative transformation ∆12 between the noise-free
pose of the object parts x1 and x2. From that, the robot observes the noisy poses y1 and
y2 and infers from them a virtual measurement z12 = y1 	 y2. During model learning,
the robot infers from these observations the link model and link parameters M12 and
θ12, respectively.

A reduced version of this graphical model is depicted in Figure 4.3b. To improve
readability, we leave out some nodes, i.e., the node corresponding to the relative trans-
formation ∆12 and the observation nodes y1, y2, and z12. Instead, we visualize the
dependency between x1 and x2 by a direct link and label it with the corresponding
model. Further, we collapse the configuration of the link into a single node correspond-
ing to the configuration of the whole object. Finally, we refer to the kinematic graph as
the graph that models the connectivity between object parts, as depicted in Figure 4.3c.

Problem Statement

The problem that we consider here is to find the most likely kinematic graph Ĝ given a
sequence of pose observations Dy of an articulated object. In Bayesian terms, this means
that we aim at finding the kinematic graph Ĝ that maximizes the posterior probability

4.1 Unified Framework for Learning Kinematic Models 65

qt
12

xt
1 xt

2

∆t
12

yt
1 yt

2

zt12

M12,θ12

t ∈ 1, . . . , n

(a) full graphical model with all
random variables

q

x1 x2

M12,θ12

(b) reduced graphical
model

x1 x2

M12,θ12

(c) kinematic graph

Figure 4.3: Three equivalent representations of kinematic models.

of observing the poses Dy of the articulated object, i.e.,

Ĝ = arg max
G

p(G | Dy). (4.1)

However, finding the global maximum of the posterior p(G | Dy) is difficult, because
it is a highly nonlinear function over a high-dimensional parameter space consisting of
discrete as well as continuous dimensions that encode both the kinematic structure and
the kinematic properties.

Therefore, in this section, we consider a simplified problem. We restrict the struc-
ture space to kinematic trees only and focus on the general problem in Section 4.2.
Kinematic trees have the property that their individual edges are independent of each
other. As a result, we can estimate the link parameters independently of each other
and independently of the kinematic structure. This means that for learning the local
kinematic relationship between object parts i and j, only the observations of the relative
transformations Dzij

= (z1
ij, . . . , z

n
ij) are relevant. With this insight, we can rephrase the

maximization problem of Eq. (4.1) for kinematic trees now as

Ĝ = arg max
G

p(G | Dz) (4.2)

= arg max
G

p({(Mij,θij) | (ij) ∈ EG} | Dz) (4.3)

= arg max
G

∏
(ij)∈EG

p(Mij,θij | Dzij
). (4.4)

66 Chapter 4: Learning Kinematic Models of Articulated Objects

The latter transformation follows from the mutual independence of the edges of kine-
matic trees.

The second insight in our work is that the kinematic link models representing the
edges can be estimated independently from the actual structure of the kinematic tree.
As a result, the problem can be solved efficiently: first, we estimate the link models of
all possibles edges (ij) ∈ VG × VG:

(M̂ij, θ̂ij) = arg max
Mij ,θij

p(Mij,θij | Dzij
). (4.5)

These link models are independent of each other and independent of whether they are
actually part of the kinematic structure EG. Second, given these link models, we estimate
the kinematic structure. This two-step process is also visualized in Figure 4.2.

Solving the first step, i.e., Eq. (4.5), is again a two-step process (MacKay, 2003): at
the first level of inference, we assume that a particular model (for example, the revolute
model) is true and estimate its parameters from the observations.

θ̂ij = arg max
θij

p(θij | Dzij
,Mij) (4.6)

By applying Bayes’ rule, we may rewrite this into

θ̂ij = arg max
θij

p(Dzij
| θij,Mij) p(θij | Mij)

p(Dzij
| Mij)

. (4.7)

Here, the term p(θij | Mij) defines the model-dependent prior over the parameter space.
In our work, we assume this prior to be uniform, so that it can be dropped. Further,
we can ignore the normalizing constant p(Dzij

| Mij), as it is has no influence on the
choice of the parameter vector. This results in

θ̂ij = arg max
θij

p(Dzij
| θij,Mij), (4.8)

which means that fitting of a link model to the observations corresponds to the problem
of maximizing the data likelihood.

At the second level of inference, we need to compare the probability of different models
given the data and select the model with the highest posterior probability, i.e.,

M̂ij = arg max
Mij

p(Mij | Dzij
) (4.9)

= arg max
Mij

∫
p(Mij,θij | Dzij

) dθij. (4.10)

In general, computing the exact posterior probability of a model is difficult and, there-

4.1 Unified Framework for Learning Kinematic Models 67

fore, we use in our work the Bayesian information criterion (BIC) for selecting the best
model according to Eq. (4.10).

As a result of this inference, we obtain for each edge (ij) ∈ VG×VG a model M̂ij with
parameter vector θ̂ij, that best describes the motions in Dzij

observed between these
two parts. We denote this set of all possible link models with

M̂ = {(M̂ij, θ̂ij) | (ij) ∈ VG × VG}. (4.11)

Given a maximum-likelihood model estimate for each link, we can now efficiently
estimate the kinematic structure EG ⊂ VG × VG. Our goal is to find the subset that
maximizes the posterior probability of the resulting kinematic graph, i.e.,

ÊG = arg max
EG

∫
p(EG,M | Dz) dM. (4.12)

We solve the equation again by maximizing the BIC over all possible structures EG
using the maximum-likelihood estimates of the models M̂ to approximate the integral.

With this factorization, we provide an efficient way for finding the kinematic model
of a kinematic object: (1) we fit all models to the data, (2) select the best model for
each link, and (3) find the kinematic structure of the whole articulated object. In the
following, we explain how to solve the model fitting problem of Eq. (4.8) and the model
selection problem of Eq. (4.10) efficiently and robustly from noisy observations. In
Section 4.1.3, we present a solution how to efficiently solve Eq. (4.12) given the link
models. Finally in Section 4.2, we generalize our approach to general kinematic graphs
including structures with kinematic loops.

Observation Model

We start by introducing our observation model. For now, we consider simple articulated
objects consisting of only p = 2 rigid parts and drop the ij indices to increase readability.
We consider the case that the robot has observed a sequence of n relative transformations
Dz =< z1, . . . , zn > between two adjacent rigid parts of an articulated object. We
assume the presence of Gaussian noise in each of the measurements z with zero mean
and covariance Σz ∈ R6×6.

Further, we assume that a small fraction of the observations are real outliers that
cannot be explained by the Gaussian noise assumption alone. These outliers may be the
result of poor perception, bad data association, or other sensor failures that are hard to
be modeled explicitly. As these outliers are not related to the true value of ∆ = x1	x2

at all, we assume that they come from a uniform prior distribution. One can think of
this as a latent variable v ∈ {0, 1} indicating whether an observation is an inlier (v = 1)
or an outlier (v = 0). Further, we denote with γ the probability of drawing an outlier,

68 Chapter 4: Learning Kinematic Models of Articulated Objects

i.e., p(v = 0) = γ. Our full observation model then becomes

z ∼

{
∆ +N (0,Σz) if v = 1

U if v = 0
. (4.13)

The resulting data likelihood for a single observation z thus is a mixture of a Gaussian
and a uniform distribution with mixing constant γ:

p(z |∆, γ) = (1− γ)p(z | v = 1) + γp(z | v = 0). (4.14)

Note that in general neither the true transformation ∆ nor the outlier ratio γ are
directly observable and thus need to be estimated from the data. To compare models
with different outlier ratios, we assume a prior on the outlier ratio of p(γ) ∝ exp(−wγ)

with w being a weighting constant and, thereby, favor models with fewer outliers over
models with more outliers. The resulting data likelihood of an observation z given its
true value ∆ thus becomes:

p(z |∆) = p(z |∆, γ)p(γ). (4.15)

Candidate Models

When considering the set of objects relevant for a service robot, one quickly realizes that
the joints in many articulated objects belong to a few generic classes. In particular, rev-
olute and prismatic joints occur frequently, although a few objects are composed of other
mechanical linkages, for example spherical joints, screws, or two-bar links. Examples of
revolute joints include doors, door handles, and windows. This also includes the doors
of dishwashers, microwave ovens or washing machines. Examples of articulated objects
with prismatic joints include drawers, sliding doors, and window blinds. However, there
are also objects that have different mechanical linkages such as garage doors or two-bar
desk lamps. This motivates the use of a set of candidate models, that are well suited for
describing the kinematic properties of a particular class of articulated links. Our can-
didate set consists of parametric and nonparametric models, in particular, it includes a
model for revolute joints (Mrevolute), for prismatic joints (Mprismatic), and rigid trans-
formations (Mrigid). Additionally, there may be articulations that do not correspond
to these standard motions, for which we consider a parameter-free model (MGP). This
model uses a combination of dimensionality reduction and Gaussian process regression
to represent arbitrary joints.

In our framework, a model class defines the conditional probability distributions p(∆ |
q,M,θ) and p(q | ∆,M,θ) by means of a forward kinematic function fM,θ(q) = ∆

and the inverse kinematic function f−1M,θ(z) = q. This means that we assume that our
link models are deterministic, and we attribute all noise to measurement noise in the

4.1 Unified Framework for Learning Kinematic Models 69

observations of the object parts, i.e., by means of the observation model p(∆ | z) defined
in Section 4.1.

Since we have no prior information about the nature of the connection between the
two rigid parts, we do not aim to fit only a single model. Instead, our approach is to
fit all candidate models to the observed data and subsequently, from this set, select the
best model.

4.1.1 Model Fitting

For estimating the parameters of any of the above-mentioned models, we need to find a
parameter vector θ ∈ Rk that maximizes the data likelihood given the model, i.e.,

θ̂ = arg max
θ

p(Dz | M,θ). (4.16)

In the presence of noise and outliers, finding the right parameter vector θ that minimizes
Eq. (4.16) is not trivial, as least squares estimation is sensitive to outliers and thus not
sufficient given our observation model. Therefore, we use the MLESAC (maximum like-
lihood consensus) algorithm as introduced by Torr and Zisserman (2000). We estimate
the initial kinematic parameters from a minimal set of samples randomly drawn from
the observation sequence that we subsequently refine using nonlinear optimization of
the data likelihood.

The MLESAC procedure for a modelM works as follows: First, we generate a guess
for the parameter vector θ̂ in Eq. (4.16) from a minimal set of samples from Dz . For
this guess, we compute the data likelihood of the whole observation sequence Dz as the
product over all data

p(Dz | M, θ̂) =

n∏
t=1

p(zt | M, θ̂). (4.17)

We repeat this sampling step for a fixed number of iterations and finally select the
parameter vector maximizing Eq. (4.17). On this initial guess, we apply nonlinear opti-
mization on the data likelihood to refine the parameter vector using Broyden-Fletcher-
Goldfarb-Shanno (BFGS) optimization, which is a quasi-Newton method for function
maximization. During the maximization of the data likelihood, MLESAC iteratively
also estimates the outlier ratio γ, using the Expectation Maximization algorithm.

In the following, we show for each of our link models how to (1) estimate the parameter
vector θ from a minimal sample set of observations, (2) estimate a transformation z given
a configuration q, and (3) estimate the configuration q given a transformation z. A brief
summary of the model candidates presented in this section is given in Table 4.1.

70 Chapter 4: Learning Kinematic Models of Articulated Objects

candidate modelM DOFs d parameters k

rigid model 0 6
prismatic model 1 9
revolute model 1 12
Gaussian process model 1, . . . , 5 1 + d+ 6n

Table 4.1: Overview of the four candidate models used in our approach.

Rigid Model

We parametrize a rigid link by a fixed relative transformation between two object parts.
Thus, the parameter vector θ has k = 6 dimensions. During the sampling consensus step,
we draw a single observation z from the training data Dz that gives us an initial guess
for the parameter vector θ̂. This parameter vector thus corresponds to the estimated
fixed relative transformation between the two parts. For the rigid transformation model,
the forward kinematics function for the rigid model equals the parameter vector as it
corresponds to the estimated fixed relative transform between the two parts:

fMrigid,θ(q) = θ. (4.18)

As the rigid model has zero DOFs (d = 0), an inverse kinematic function is not needed.

Prismatic Model

Prismatic joints move along a single axis and thus have a one-dimensional configuration
space. The prismatic model describes a translation along a vector of unit length e ∈ R3

relative to some fixed origin a ∈ SE (3). This results in a parameter vector θ = (a; e)

with k = 9 dimensions.
To estimate these parameters, we sample two observations from the training data. For

this, we pick the transformation of the first sample as the origin a and the normalized
vector between them as the prismatic axis e.

A configuration q ∈ R then encodes the distance from the origin a along the direction
of motion e. The forward kinematics function for the prismatic modelMprismatic is

fMprismatic,θ(q) = a⊕ qe. (4.19)

Let trans(·) be the function that removes all rotational components. The inverse kine-
matic function then becomes

f−1Mprismatic,θ
(z) = eT trans(a	 z). (4.20)

4.1 Unified Framework for Learning Kinematic Models 71

Revolute Model

The revolute model describes the motion of a revolute joint, i.e., a one-dimensional
motion along a circular arc. We parametrize this model by the center of rotation c ∈
SE (3) and a rigid transformation r ∈ SE (3) from the center to the moving part. This
yields a parameter vector θ = (c; r) with k = 12 dimensions.

For the revolute model, we sample three observations zi, zj and zk from the training
data. First, we estimate the plane spanned by these three points; its plane normal then
corresponds to the rotation axis. Second, we compute the circle center as the intersection
of the perpendicular lines of the line segments between the three observations. Together
with the rotation axis, this gives us the center of rotation c. Finally, we estimate the
rigid transformation r of the circle from the first sample.

For the forward kinematic function, we obtain for revolute links

fMrevolute,θ(q) = c⊕ RotZ(q)⊕ r, (4.21)

where RotZ(q) denotes a rotation around the Z-axis by q. Thus, q ∈ R specifies the
angle of rotation. For estimating the configuration of a revolute joint we use

f−1Mrevolute,θ
(z) = Rot−1Z (c	 (z 	 r)), (4.22)

where Rot−1Z (·) gives the rotation around the Z-axis.

Gaussian Process Model

Although rigid transformations in combination with revolute and prismatic joints might
seem at the first glance to be sufficient for a huge class of articulated objects, many
real-world objects cannot be described by a single shifting or rotation axis. Examples
for such objects include garage doors or desk lamps, as well as furniture whose joints
have aged and became loose.

Therefore, we provide additionally a nonparametric model which is able to describe
more general kinematic links. This model is based on dimensionality reduction to recover
the latent configuration manifold and Gaussian process regression to learn a generative,
predictive model. For example, consider the motion of two object parts described by
a sequence of relative pose observations Dz . Depending on the DOFs d of this link,
the data samples will lie on or close to a d-dimensional manifold with 1 ≤ d ≤ 6 being
nonlinearly embedded in SE (3).

There are many different dimensionality reduction techniques such as principal com-
ponent analysis (PCA) for linear manifolds, or Isomap and locally linear embedding
(LLE) for nonlinear manifolds (Tenenbaum et al., 2000; Roweis and Saul, 2000). In our
experiments, we used both PCA and LLE for dimensionality reduction. PCA has the

72 Chapter 4: Learning Kinematic Models of Articulated Objects

advantage of being more robust against noise for near-linear manifolds, while LLE is
more general and can also model strongly nonlinear manifolds.

The general idea is that we use the dimensionality reduction technique to obtain the
inverse kinematics function f−1MGP : SE (3) → Rd. As a result, we can assign configura-
tions to each of the observations, i.e.,

f−1MGP(z) = q. (4.23)

These assignments of observations to configurations can now be used to learn the forward
kinematics function fMGP,θ(·) from the observations. Except for linear actuators, we
expect this function to be strongly nonlinear.

A flexible approach for solving such nonlinear regression problems given noisy obser-
vations are Gaussian process (GPs) models. The main feature of the Gaussian process
framework is, that the observed data points are explicitly included in the model and,
thus, no parametric form of fMGP : Rd → SE (3) needs to be specified. Data points can
be added to a GP at any time, which facilitates incremental and online learning. For
this model, we aim to learn a GP that fits the dependency

fMGP(q) + ε = z (4.24)

for the unknown forward model underlying the articulated link under consideration. We
assume homoscedastic Gaussian noise, i.e., independent and identically distributed noise
terms ε ∼ N (0,Σz). For simplicity, we train 12 independent Gaussian processes for the
free components of a homogeneous 4×4 transformation matrix similar to the approach in
Chapter 3. As a consequence of this over-parametrization, the predicted transformation
matrices are not necessarily valid. In practice, however, they are very close to valid
transformation matrices, that can be found using ortho-normalization via singular value
decomposition. In our approach, we use the standard choice for the covariance function,
the squared exponential. It describes the relationship between two configurations qi and
qj in configuration space by

k(qi,qj) = σ2
f exp

(
−1

2
(qi − qj)

TΛ−1(qi − qj)

)
, (4.25)

where σ2
f is the signal variance and Λ−1 = diag(l1, . . . , ld) is the diagonal matrix of the

length-scale parameters. This results in a (1 + d)-dimensional hyper-parameter vector
θ = (σ2

f , l1, . . . , ld). As GPs are data-driven, they require the full set of training data for
making predictions. Therefore, we count all data samples as parameters of our model,
so that the number of parameters becomes k = (1 + d) + 6n, where n is the number
of observations. We refer the interested reader to the text book by Rasmussen and
Williams (2006) for more details about GP regression.

4.1 Unified Framework for Learning Kinematic Models 73

Note that this GP link model directly generalizes to higher-dimensional configuration
spaces, i.e., with d > 1: after the dimensionality reduction from observations in SE (3)

to configurations in Rd, we can learn a Gaussian process regression for the mapping from
the configuration space Rd back to transformations in SE (3). Our model is similar to
the GPLVM model introduced by Lawrence (2005). In contrast to GPLVM, we do not
optimize the latent configurations for maximizing the data likelihood as this invalidates
the inverse kinematics function in Eq. (4.23). Correspondingly, the GPLVM model maps
only from latent space to data space. With our approach, we can map in both directions,
i.e., from pose observations to configurations, and vice versa.

4.1.2 Model Evaluation

To evaluate how well a single observation z is explained by a model, we have to evaluate
p(z | M,θ). As the configuration is latent, i.e., not observable by the robot, we have to
integrate over all possible values of q, i.e.,

p(z | M,θ) =

∫
p(z | q,M,θ)p(q | M,θ) dq. (4.26)

Under the assumption that all DOFs of the link are independent of each other and that
all configuration states q are equally likely, we may write

p(q | M,θ) ≈ n−d , (4.27)

where n = |Dz| is the number of observations so far and thus the number of estimated
configurations in the d-dimensional configuration space. With this, Eq. (4.26) can be
simplified to

p(z | M,θ) ≈ n−d
∫
p(z | q,M,θ) dq. (4.28)

If we assume that p(z | q,M,θ) is a unimodal distribution, an approximation of the
integral is to evaluate it only at the estimated configuration q̂ given observation z using
the inverse kinematics function of the model under consideration, i.e.,

q̂ = f−1M,θ(z). (4.29)

For this configuration, we compute the expected transformation ∆̂ using the forward
kinematics function of the model,

∆̂ = fM,θ(q̂). (4.30)

74 Chapter 4: Learning Kinematic Models of Articulated Objects

Given the observed transformation z and the expected transformation ∆̂, we can now
efficiently compute the data likelihood of Eq. (4.28) using the observation model from
Eq. (4.15) as

p(z | M,θ) ≈ n−dp(z | ∆̂). (4.31)

Intuitively, the approximation of the integral based on the forward and inverse kinemat-
ics model corresponds to a projection of the noisy observations onto the model. Finally,
the marginal data likelihood over the whole observation sequence becomes the product
over all individual likelihoods, i.e.,

p(Dz | M,θ) =
∏
z∈Dz

p(z | M,θ). (4.32)

4.1.3 Model and Structure Selection

After having fitted all model candidates to an observation sequence Dz , we need to select
the model that best explains the data. For Bayesian model selection, this means that
we need to compare the posterior probability of the models given the data, i.e.,

p(M | Dz) =

∫
p(Dz | M,θ)p(θ | M)p(M)

p(Dz)
dθ. (4.33)

While the evaluation of the model posterior is in general difficult, it can be approximated
efficiently based on the Bayesian information criterion (BIC). We denote with k the
number of parameters of the current model under consideration and n the number of
observations in the training data. Then, the BIC is defined as

BIC(M) = −2 log p(Dz | M, θ̂) + k log n, (4.34)

where θ̂ is the maximum likelihood parameter vector. Model selection now reduces to
selecting the model that has the lowest BIC, i.e.,

M̂ = arg min
M

BIC(M). (4.35)

More details on model comparison and model selection are given in Chapter 2, and a
detailed derivation of the BIC is presented in Appendix B.

Finding the Connectivity

So far, we ignored the question of connectivity and described how to evaluate and select
a model M only for a single link between two parts of an articulated object. In this

4.1 Unified Framework for Learning Kinematic Models 75

section, we extend our approach to efficiently find kinematic trees for articulated objects
consisting of multiple parts.

We adopt the connectivity model from Featherstone and Orin (2008) for modeling the
kinematic structure as an undirected graph G = (VG, EG). The nodes VG in this graph
correspond to the poses of the individual object parts, while the edges EG correspond
to the links between these parts. We now reintroduce the ij-indices, i.e., use Dzij

to
refer to the observations of link (ij) and Dz to refer to the observations of the whole
articulated object. Dz thus contains the observations of all edges in the graph G, i.e.,
Dz = {Dzij

| (ij) ∈ EG}. In the previous section, we established an algorithm that fits

and selects for any given edge (ij) in this graph a corresponding link model M̂ij with
parameter vector θ̂ij. Given this, we now need to select the kinematic structure EG,
that describes which of these link models are actually present in the articulated object
under consideration.

For the moment, we restrict ourselves to objects that are kinematic trees, i.e., mecha-
nisms without kinematic loops. We consider a fully connected graph with p vertices, i.e.,
one vertex for each object part of the articulated object. The set of possible kinematic
trees for the articulated object is now given by all spanning trees of this graph. Explic-
itly computing, evaluating, and reasoning with all possible kinematic trees, however, is
not tractable in practice. We therefore seek to find the kinematic structure EG that
maximizes the posterior as stated previously in Eq. (4.12),

ÊG = arg max
EG

p(EG | Dz) (4.36)

= arg max
EG

p({(M̂ij, θ̂ij) | (ij) ∈ EG} | Dz) (4.37)

= arg max
EG

∏
(ij)∈EG

p(M̂ij, θ̂ij | Dz) (4.38)

= arg max
EG

∑
(ij)∈EG

log p(M̂ij, θ̂ij | Dz). (4.39)

The independence assumption of the individual links for kinematic trees allows us
to write the posterior of the kinematic model for the whole object in Eq. (4.37) as
the product over the posteriors of the individual links in Eq. (4.38). After taking the
logarithm in Eq. (4.39), the structure selection problem takes a form that can be solved
efficiently. The key insight here is that the kinematic tree that maximizes Eq. (4.39)
corresponds to the problem of selecting the minimum spanning tree in a fully connected
graph whose edge costs correspond to the negative log posterior, i.e.,

costij = − log p(Mij,θ ij|Dzij
). (4.40)

These edge costs can efficiently be approximated by the BIC. The sum over these edge

76 Chapter 4: Learning Kinematic Models of Articulated Objects

costs then corresponds to the negative log posterior of the kinematic tree. Therefore,
the minimum spanning tree of this graph maximizes the posterior of Eq. (4.39) and thus
is the solution to the maximization problem of Eq. (4.39). The minimum spanning tree
can be found efficiently, i.e., in O(p2 log p) time, for example using Prim’s or Kruskal’s
algorithm (Cormen et al., 2001).

4.2 Framework Extensions

With the approach described so far, a robot can learn accurate kinematic models of
articulated objects from observation. In the following, we consider three extensions.
The first extension allows the robot to exploit prior knowledge learned during previous
interactions. Second, we generalize our approach to general kinematic graphs, i.e., con-
sider additionally objects that contain closed kinematic chains. Third, we show that
estimating the DOFs of articulated objects directly follows from our approach.

Learning and Exploiting Priors

Using the approach from above, a robot always starts learning a model from scratch
when it observes movements of a new articulated object. From a learning perspective,
this may be seen as unsatisfactory since most articulated objects encountered in man-
made environments belong to few different classes with similar parameters. For example,
in a specific office or kitchen, many cabinet doors will open in the same way, i.e., have
the same radius and rotation axis. Thus, a robot operating in such environments over
extended periods of time can significantly boost its performance by learning priors over
the space of possible articulated object models.

This section describes an extension to our approach that allows a robot to learn priors
for articulated objects and a means to exploit them as early as possible while manipu-
lating previously unseen articulated objects. Our goal is to transfer model information
contained in already learned models to newly seen articulated objects. Our key idea is
to identify a small set of representative models for the articulated objects and to utilize
this as prior information to improve model learning when handling new objects.

To keep the notation simple, consider the case that we have previously encountered
two articulated objects consisting of two parts and thus a single link only. Their observed
motion is given by two observation sequencesDz,1 andDz,2. The question now is whether
both trajectories should be described by two distinct modelsM1 andM2 or by a joint
modelM1+2. In the first case, we can split the posterior as the two models are mutually
independent, i.e.,

p(M1,M2 | Dz,1,Dz,2) = p(M1 | Dz,1)p(M2 | Dz,2). (4.41)

4.2 Framework Extensions 77

In the latter case, both trajectories are explained by a single, joint model M1+2 with
a parameter vector θ1+2, that is estimated from the joint data Dz,1 ∪ Dz,2. For future
reference, we denote the corresponding posterior probability as

p(M1+2 | Dz,1,Dz,2). (4.42)

To determine whether a joint model is better than two separate models by comparing
the posterior probabilities from Eq. (4.41) and Eq. (4.42), one can evaluate

p(M1+2 | Dz,1,Dz,2) > p(M1 | Dz,1)p(M2 | Dz,2). (4.43)

This expression can efficiently be approximated with the BIC as follows. The joint model
is learned from n = n1 +n2 data points, using k parameters and has a data likelihood of
L = p(M1+2 | Dz,1,Dz,2). In contrast, the two separate models are learned from n1 and
n2 samples using k1 and k2 parameters and have data likelihoods of L1 = p(Dz,1 | M1)

and L2 = p(Dz,2 | M2), respectively. Accordingly, we need to check whether

BIC(M1+2 | Dz,1,Dz,2) < BIC(M1 | Dz,1) + BIC(M2 | Dz,2) (4.44)

or, equivalently,

−2 logL+ k log n < −2 log(L1L2) + k1 log n1 + k2 log n2. (4.45)

Informally, merging two models into one is beneficial if the joint model can explain the
data equally well (i.e., L ≈ L1L2), while requiring only a single set of parameters.

If more than two trajectories are considered, one has to evaluate all possible assign-
ments of these trajectories to models and select the assignment with the highest pos-
terior. As this quickly becomes intractable due to the combinatorial explosion, we use
an approximation and consider the trajectories sequentially and in the order in which
the robot observes them. We check whether merging the new trajectory with one of the
existing models leads to a higher posterior compared to adding a new model for that
trajectory to the set of previously encountered models. This algorithm is summarized
in Algorithm 2.

After having identified a set of models as prior information, we can exploit this knowl-
edge to make better predictions when observing a previously unseen articulated object.
Consider the situation in which a partial trajectory of a new object has been observed.
To exploit the prior information, we proceed exactly as before. We compute and com-
pare the posteriors according to Eq. (4.45), i.e., we add the newly observed data points
as a new model or merge them into one of the w previously identified models. At each

78 Chapter 4: Learning Kinematic Models of Articulated Objects

Algorithm 2: Sequential clustering of kinematic trajectories
Input: ordered set of n trajectories
Output: ordered set of clustered models M = {M1, . . . ,Mm} and corresponding

trajectories D = {Dz,1, . . . ,Dz,m}
Initially, M := ∅ (and thus, m = 0);1

for each newly observed trajectory Dz,new do2

/* Either initialize a new model for the new trajectory.. */
Estimate a modelMnew for Dz,new;3

Mbest := M ∪ {Mnew};4

Dbest := D ∪ {Dz,new};5

for j ∈ {1, . . . ,m} do6

/* ..or assign the new trajectory to one of the existing models
*/

Estimate a joint modelMj+new from Dz,j ∪ Dz,new;7

if p(M1, . . . ,Mj+new , . . . ,Mm) > p(Mbest) then8

Mbest :=
{
M1, . . . ,Mj+new , . . . ,Mm

}
;9

Dbest := {Dz,1, . . . ,Dz,j ∪ Dz,new, . . . ,Dz,m};10

end11

end12

M := Mbest;13

D := Dbest;14

end15

Return the set of clustered models M and corresponding trajectories D;16

time step, we check whether

p(Mnew ,M1, . . . ,Mw) < max
j=1,...,w

p(M1, . . . ,Mj+new , . . . ,Mw). (4.46)

If the newly observed data is merged with an existing model, the parameter vector is
estimated from a much larger, combined dataset Dz,j ∪ Dz,new instead of Dz,new which
may lead to a better estimation. Note that this step is carried out after each observation
of the new sequence. Thus, if the currently manipulated object ceases to be explained
by the known models, the method instantaneously creates a new model. After successful
object manipulation, this model serves as additional prior information for the future.

As an concrete example, imagine that the robot explores cabinet doors in a kitchen
scenario. Initially, the robot doesn’t have any prior models. When it opens the first
door, say a left-opening door, the robot observes the resulting opening trajectory and
estimates a model for it. After this, the robot interacts with a right-opening door and
observes its opening trajectory. Now, the robot has the option to either learn a new
model for the right-opening door, or to merge the trajectories of both doors and learn
a single, combined model. In this case, the combined model will have a very low data
likelihood as the left- and right-opening doors are highly distinct. Therefore, the robot

4.2 Framework Extensions 79

will prefer two separate models. When the robot continues its exploration of the kitchen,
it might at some point observe the opening trajectory of another left-opening cabinet
door. Again, the robot estimates a separate model but also tries to merge the trajectory
into the already existing models. As the trajectories of the two left-opening doors are
very similar (given that they have a similar radius and rotation axis), the combined
model will explain both trajectories well (high data likelihood) while it requires only
a single set of parameters. Correspondingly, the posterior probability of the combined
model will be higher than the posterior probability of the separate models. Thus, the
robot will decide to merge the new trajectory into the existing model for left-opening
doors. As a result, the robot might interact with many cabinet doors, which it clusters
into two distinct models: one for two left-opening doors and one for the right-opening
door.

Closed Kinematic Chains

Although most articulated objects have the connectivity of kinematic trees, there are
also mechanisms containing closed kinematic chains (Featherstone and Orin, 2008). An
intuitive example of a closed-loop system is a robot that opens a door with its manipu-
lator. While both the robot and the door can be represented individually as kinematic
trees using our approach, the combined system of the robot, the door, and the floor cre-
ates a kinematic loop. Another example is a humanoid robot that has multiple contact
points, for example, by standing on both feet, or a robot that manipulates an object
with two arms (Sentis et al., 2010). To describe such closed-loop systems, we need to
extend our approach.

Remember that we established in Section 4.1.3, that the best graph is the one that
maximizes the posterior probability. Finding this graph was easy for kinematic trees
because we could use the minimum spanning tree algorithm. However, finding the best
kinematic graph is a more difficult problem. This results from the fact that the links
are no longer independent of each other. In contrast to kinematic trees, the chained up
predictions of the relative transformations between the object parts of a closed kinematic
chain will, in general, not lead to a globally consistent prediction.

This problem, however, is closely related to loop-closing in the graph-based formu-
lation of the simultaneous localization and mapping (SLAM) problem (Lu and Milios,
1997; Dellaert, 2005; Frese, 2006; Grisetti et al., 2009). For this type of problem, closed-
form solutions exist only for very simple cases. A popular solution for the general case
are iterative optimization approaches to deal with the underlying nonlinear least squares
problem.

To obtain a consistent pose estimation for the whole graph, we use the pose optimiza-
tion engine HOG-Man by Grisetti et al. (2010), originally designed to solve the SLAM
problem. To generate the input graph for HOG-Man, we proceed as follows. We add a

80 Chapter 4: Learning Kinematic Models of Articulated Objects

vertex for each object part representing its initial pose x̂′1, . . . , x̂
′
n, that we estimate for

an (arbitrary) spanning tree of the graph. Then, for each link modelMij in our graph
G, we add an edge that constrains the relative transformation between x̂′i and x̂′j to
the expected transformation ∆̂ij (in SLAM, this corresponds to an observation). The
optimization procedure generates a set of corrected poses x̂1, . . . , x̂n that it is the best
prediction in terms of the squared error.

For the pose observations yi, we assume Gaussian noise with zero mean and covariance
Σy , i.e.,

yi = xi + ε, (4.47)

ε ∼ N (0,Σy). (4.48)

The data likelihood of a single object part being observed at pose y while being expected
at pose x̂ (and given the kinematic graph G and a configuration q) then becomes

p(yi | G,q) ∝ exp

(
−1

2
(x̂i 	 yi)

TΣ−1y (x̂i 	 yi)

)
. (4.49)

Using this, the global data likelihood of an articulated object in a particular configuration
can be computed as the product over the likelihoods of all individual object parts, i.e.,

p(y1, . . . ,yp | G,q) =
∏

i∈1,...,p

p(yi | G,q). (4.50)

As the configuration q of the articulated object is latent and thus not known, we need
to integrate over all possible configurations, i.e.,

p(y1, . . . ,yp | G) =

∫
p(y1, . . . ,yp | G,q)p(q | G) dq. (4.51)

Similar to Eq. (4.26), we approximate this integral by evaluating it only at the most likely
configuration q̂ of the articulated object. We again assume that the configurations q are
uniformly distributed, i.e., p(q | G) ≈ n−D , where n is the number of pose observations
and D are the DOFs of the articulated object. The data likelihood for a pose observation
y1, . . . ,yp becomes

p(y1, . . . ,yp | G) ≈ n−Dp(y1, . . . ,yp | G, q̂). (4.52)

The data likelihood of an observation sequence Dy = (y1
1:p, . . . ,y

n
1:p) of a whole articu-

4.2 Framework Extensions 81

lated object is

p(Dy | G) ≈
∏

i∈1,...,n

n−Dp(yi1, . . . ,y
i
p | G, q̂i) (4.53)

= n−nD
∏

i∈1,...,n

p(yi1, . . . ,y
i
p | G, q̂i). (4.54)

This data likelihood can now be used to compare alternative structures and to select
the best one. Note that in principle, all possible graphs need to be evaluated – which
is super-exponential in the number of object parts and polynomial in the number of
template models, i.e., lies in O

(
(1 +m)p

2
)
for m candidate models and p object parts.

In contrast, finding the exact solution in the case of kinematic trees has a polynomial
complexity of O(mp2). Obviously, the massive set of possible graph structures can only
be fully evaluated for small articulated objects and few template models.

In the absence of an efficient, exact solution, we propose an efficient approximation
that is able to find the locally best graph from an initial guess using a randomized
search strategy in polynomial time. The idea is that given the spanning tree as an
initial solution, we iteratively evaluate the graphs in the neighborhood of the current
best structure, i.e., graphs whose topology is similar to the current one, for example, by
adding or removing one edge at a time. As we will see in the experimental section, this
heuristic is able to find the optimal (or near-optimal) graph structure in most of the
cases. Additionally, we can guarantee that this randomized search strategy never gets
worse than the initial solution, which is in our case the spanning tree.

Finding the Degrees of Freedom

The current configuration of the whole articulated object is given by the stacked vector
of all the individual configurations of its articulated links, i.e.,

qlinks =

qi1j1
qi2j2
...

qimjm

 , (4.55)

where {(i1j1), (i2j2), . . . , (imjm)} = EG. The question now is, whether the articulated
object actually has as many DOFs as the sum of DOFs of its individual links might
suggest. Clearly, in the case that the articulated object is a kinematic tree, the DOFs
Dobject of the articulated object directly equals the sum over the DOFs of its links
D links =

∑
(ij)∈EG

dij as all of its links can be actuated independently of each other.
However, for articulated objects containing loops, finding the DOFs of an articulated
object is not trivial.

82 Chapter 4: Learning Kinematic Models of Articulated Objects

For an example, consider the object in Figure 4.4a which consists of three object parts
and a total of three DOFs. In contrast, the object in Figure 4.4b consists of four object
parts, connected by four revolute links in the form of a loop. Each of the four links has a
single DOF and, therefore, the stacked configuration vector defining the configuration of
all links is given by qlinks = (q1, q2, q3, q4) ∈ R4. Yet, the overall system has only a single
DOF: when the first joint is brought into a particular configuration, the other joints are
fixed as well, as a result of the loop closure. This means that the object configuration
qobject ∈ R has only a single dimension and thus the object configuration space is a
one-dimensional manifold embedded in the four-dimensional link configuration space.

Finding a mapping between the high-dimensional link configuration space RD links and
a lower-dimensional object configuration space RDobject can, for example, be obtained
with PCA for linear manifolds or LLE for nonlinear manifolds. In the case of PCA, this
correspond to finding a projection matrix P ∈ RDobject×D links that describes the mapping

qobject = Pqlinks. (4.56)

Recall from Eq. (4.54) that the DOFs has a strong influence on the data likelihood
of a configuration because a higher dimensional configuration space results in a lower
likelihood for a single configuration. As a result, a model with fewer DOFs is preferred
over a model with more DOFs. At the same time, the dimension reduction of the
configuration space adds additional parameters which need to be considered during
model selection. For example, a linear projection requires a projection matrix P , and
thus kPCA = Dobject·D links additional parameters need (for the elements of the projection
matrix) to be considered. These additional parameters, however, quickly pay off when
the number of pose observations n increases. While the BIC penalty for additional model
parameters grows with log n by the regularizer, the DOFs D are penalized linearly with
n log n in the data likelihood term of the BIC score – see Eq. (4.54) and Eq. (4.34).

Informally speaking, if a kinematic graph with fewer DOFs explains the data equally
well, it will have a slightly higher data likelihood, and thus, it will be favored in the
structure selection step. In the experimental section, we will see that a robot can use
this to accurately and robustly estimate the DOFs of various articulated objects.

4.3 Perception and Control of Articulated Objects

For estimating the kinematic model of an articulated object, our approach needs a
sequence of pose observations Dy = 〈y1

1:p, . . . ,y
n
1:p〉. For our experiments, we used two

different sources for acquiring these pose observations. We used (1) visual markers to
observe the object pose passively, and (2) the proprioception of the robot to observe the
trajectory of its end effector while interacting with an object. Complementary to this,

4.3 Perception and Control of Articulated Objects 83

(a) open kinematic chain (b) closed kinematic chain

Figure 4.4: Example of an open and a closed kinematic chain. (a) The open chain has three
DOFs. (b) The closed chain has also only a single DOF.

we will present in Chapter 5 an approach to marker-less pose perception using a stereo
camera.

Marker-based Perception

We used three different marker-based systems for observing the pose of an articulated
object, each with different noise and outlier characteristics: a motion capture studio
with low noise and no outliers, ARToolkit markers with relatively high noise and fre-
quent outliers, and OpenCV’s checkerboard detector with moderate noise and occasional
outliers.

Motion capture studios typically use several high-speed cameras installed on a rig
along the ceiling and markers attached on the individual parts of the articulated object,
and provide highly accurate and virtually noise free pose estimates. The nominal noise
of our PhaseSpace system is σy,pos < 0.005m and σy,orient < 1°.

Additionally, we used the passive marker-based system ARToolkit for registering the
3D pose of objects by Fiala (2005). This system has the advantage that it requires only
a single camera and can be used without any further infrastructure. The ARToolkit
markers consist of a black rectangle and an error-correcting code imprinted on a 6x6-
grid inside the rectangle for distinguishing the individual markers. We found that the
observation noise of this system strongly depends on the distance and the angle of the
marker to the camera. With a marker side length of 0.08m and at a distance of 2m
from the camera, we typically obtain noise values of σy,pos = 0.05m and σy,orient = 15°.

In contrast to this, OpenCV’s checkerboard detector provides a much higher pose
accuracy. The detector searches the camera images for strong black and white corners
at sub-pixel accuracy (Bradski and Kaehler, 2008). With this system, we typically
obtain measurement noise around σy,pos = 0.005m and σy,orient = 5° with marker sizes

84 Chapter 4: Learning Kinematic Models of Articulated Objects

Articulated Object Observe Position
of End-Effector

Model Fitting
and Selection

Model Prediction
Cartesian Equi-
librium Point
Generation

Compliant Arm
Controller

y1:t

M̂, θ̂

x̂t, ĴtxCEP
t

Figure 4.5: Overall control structure. The robot iteratively estimates the kinematic model of
the articulated object from the perceived trajectory of its end effector and evaluates
it to generate the next Cartesian equilibrium point.

of 0.08m side length at 2m distance from the camera. One can distinguish different
markers with this system by using checkerboards with varying numbers of rows and
columns.

Real-time Model Estimation and Manipulator Control

Next to visual observation of articulated objects, a mobile manipulation robot can also
estimate the kinematic model while it physically interacts with an articulated object.
When the robot establishes firm contact with the handle of a cabinet door, the position
of its end effector directly corresponds to the position of the door handle. By evaluating
its joint encoders, the robot can compute the pose of its gripper through its forward
model. As a result, the robot can both sense the position of the handle as well as control
it by moving the manipulator.

The approach described in this section was developed in collaboration with Jain and
Kemp from the Healthcare Robotics Lab at Georgia Tech. The robot that we use
for this research is a statically stable mobile manipulator named Cody. It consists of
two arms from MEKA Robotics and an omni-directional mobile base from Segway. As
end effector, it uses a hook inspired by prosthetic hooks and human fingers, which is
described in more detail in the recent work of Jain and Kemp (2009a). Furthermore,
we used a PR2 robot from Willow Garage for additional experiments, equipped with a
standard two-finger parallel-yaw gripper.

Figure 4.5 shows a block diagram of our controller. The robot observes the pose of
its end effector in Cartesian space, denoted by y ∈ R3. While operating the object,
the robot records the trajectory y1:t over time as a sequence of poses. From this partial
trajectory, it continuously estimates the kinematic model of the articulated object, that
the robot uses in turn to predict the continuation of the trajectory.

To actually operate an articulated object, we use equilibrium point control
(EPC) (Jain and Kemp, 2010) which is a form of impedance control inspired by
the equilibrium point hypothesis. Using EPC, the motion of the robot’s arm is com-

4.4 Experiments 85

manded by adjusting the position of a Cartesian-space equilibrium point (CEP) that
denotes where the robot’s end effector would settle in the absence of externally ap-
plied forces other than gravity. We developed a trajectory controller that updates the
Cartesian equilibrium point based on the Jacobian of the estimated kinematic model of
the articulated object. This controller uses the kinematic model to generate Cartesian
equilibrium point trajectories in a fixed world frame, attached to the initial location of
the handle. At each time step t, the controller computes a new equilibrium point xCEP

t

as

xCEP
t = xCEP

t−1 + vmechanism
t + vhook

t , (4.57)

where vmechanism
t is a vector intended to operate the mechanism and vhook

t is a vector
intended to keep the hook from slipping off the handle. The controller computes

vmechanism
t = s

Ĵt

‖Ĵt‖
(4.58)

as a vector of length s = 0.01m along the Jacobian of the learned kinematic function of
the mechanism, i.e.,

Ĵt = ∇fM̂,θ̂(q)
∣∣
q=qt . (4.59)

For vhook
t , we use a proportional controller that tries to maintain a force of 5N between

the hook and the handle in a direction perpendicular to Ĵt. This controller uses the
force measured by the wrist force-torque sensor of the robot. We refer the reader to
the work of Jain and Kemp (2009b) for details about the implementation of equilibrium
point control and how it can be used to coordinate the motion of a mobile base and a
compliant arm (Jain and Kemp, 2010).

The positional accuracy of the manipulator itself is very high, i.e., σy,pos � 0.01m.
However, by using a hook as the end effector, the robot cannot sense the orientation
of the handle. As the manipulator is mounted on a mobile base, the robot can move
around and thus the positional accuracy of the sensed position of the hook in a global
coordinate system (and thus including localization errors of the base) reduces to about
σy,pos ≈ 0.05m.

4.4 Experiments

In this section, we present the results of a thorough evaluation of all aspects of our
framework. First, we demonstrate that accurate and robust estimates of the kinematic
models can be obtained using artificial markers. Second, we show that our approach
also works on data acquired with two different mobile manipulation robots operating

86 Chapter 4: Learning Kinematic Models of Articulated Objects

Articulated Rigid Prismatic Revolute GP
object model model model model

Microwave pos. error = 0.3086m 0.1048m 0.0003 m 0.0020m
(σz,pos. = 0.002 m, orient. error = 37.40° 32.31° 0.15° 0.16°
σz,orient. = 2.0°) γ = 0.891 0.816 0.000 0.000

Drawer pos. error = 0.0822m 0.0016 m 0.0018m 0.0017m
(σz,pos. = 0.002 m, orient. error = 2.06° 1.36° 1.60° 1.09°
σz,orient. = 2.0°) γ = 0.887 0.000 0.003 0.000

Garage door pos. error = 1.0887m 0.3856m 0.4713m 0.0450 m
(σz,pos. = 0.050 m, orient. error = 14.92° 10.79° 10.34° 0.93°
σz,orient. = 5.0°) γ = 0.719 0.238 0.418 0.021

Table 4.2: Evaluation of model prediction errors of the articulation models learned of a mi-
crowave oven, an office cabinet, and a garage door.

various pieces of furniture in domestic environments and thus is applicable to a wide
range of manipulation tasks for mobile service robots. Third, we present a detailed
analysis of our method on synthetic data. In particular, we study the robustness of
model estimation and selection against noise and outliers, the convergence behavior,
and the computational complexity as a function of the number of training samples.

4.4.1 Model Estimation and Model Selection

For our first experiments, we observed the poses of three typical objects in domestic
environments: the door of a microwave oven, the drawers of an office cabinet, and a
garage door. The goal of these experiments is to show that our approach both robustly
and accurately estimates link models, as well as the correct kinematic structure of the
whole object. In addition, we demonstrate that the range of the configuration space can
be obtained during model estimation.

We tracked the motion of the microwave oven and the cabinet using a motion capture
studio and the garage door using checkerboard markers. For each object, we recorded
200 data samples while we manually articulated each object. To evaluate our system, we
used 10-fold cross-validation. For each of the 10 runs, we sampled n = 20 observations
that we use for fitting the model parameters. We used the remaining observations for
measuring the prediction accuracy of the fitted model.

Model Fitting

The quantitative results of model fitting and model selection are given in Table 4.2.
As can be seen from this table, the revolute model is well suited for predicting the

4.4 Experiments 87

(a)

x1

microwave oven

x2

door

BIC(Mrigid
12) =

BIC(Mprism.
12) =

BIC(Mrev.
12) =

BIC(MGP
12) =

2568507.7

686885.1

−461.9

165.8

(b)

Figure 4.6: Visualization of the kinematic model learned for the door of a microwave oven.
(a) Visualization of the configuration range. (b) Kinematic graph. The numbers
on the edges indicate the BIC score of the corresponding model candidate.

opening movement of the microwave door (error below 0.0001m) while the prismatic
model predicts very accurately the motion of the drawer (error below 0.0016m), which
is the expected result. Note that the revolute model can also explain the motion of the
drawer with an accuracy of 0.0017m by estimating a revolute joint with a large radius.
It should be noted that the flexible GP model provides roughly the same accuracy as the
parametric models and is able to robustly predict the poses of both datasets (0.0020m
for the door and 0.0017m for the drawer). In the case of the simulated garage door,
however, all parametric models fail whereas the GP model provides accurate estimates.
The reader might wonder now why the GP model alone does not suffice, as the GP
model can represent many different types of kinematic models, including revolute and
prismatic ones. However, the GP model has a variable complexity and is thus more
prone to over-fitting in the presence of noise. In contrast, the specialized models have
a smaller number of free parameters and are therefore more robust against noise and
outliers. Furthermore, they require less observations to converge. We will investigate
these properties in more detail in Section 4.4.4. These experiments illustrate that our
system takes advantage of the expert-designed parametric models when appropriate
while we have the flexibility to learn models for unforeseen mechanical constructions as
well.

The learned kinematic models also provide the configuration range C of the articulated
object. For visualization purposes, we can now sample configurations from this range
and project them to object poses using the learned forward function. Figures 4.6, 4.7,
and 4.8 illustrate the learned configuration range for the door of the microwave oven,
the garage door, and the two drawers of the office cabinet, respectively.

88 Chapter 4: Learning Kinematic Models of Articulated Objects

Model and Structure Selection

After fitting the model candidates to the observed data, the next goal is to select the
model that best explains the data, which corresponds to finding the model that maxi-
mizes the posterior probability (or minimizes the BIC score).

The right image in Figure 4.6 shows the resulting graph for the microwave oven
dataset, with the BIC score indicated at each edge. As expected, the revolute model
is selected, because it has the lowest BIC score. Correspondingly, the right image in
Figure 4.7 shows the BIC scores for all edges for the garage door dataset, where the GP
model gets selected.

A typical articulated object consisting of multiple parts is a cabinet with two drawers
as depicted in Figure 4.8. In this experiment, we track the poses of the cabinet itself
(x1) and its two drawers (x2 and x3). During the first 20 samples, we opened and
closed only the lower drawer. Accordingly, a prismatic joint model Mprism.

23 is selected
(see top row of images in Figure 4.8). When also the upper drawer gets opened and
closed, the rigid modelMrigid

12 is replaced by a prismatic modelMprism.
12 , andMprism.

23 is
replaced by Mprism.

13 , resulting in the kinematic tree EG = {(1, 2), (1, 3)}. Note that it
is not required to articulate the drawers one after each other. This was done only for
illustration purposes.

Multi-dimensional Configuration Spaces

To illustrate that our approach is also able to find models with higher-dimensional
configuration spaces with d > 1, we let the robot monitor a table that was moved on the
floor. The robot is equipped with a monocular camera tracking an ARToolkit marker
attached to the table. In this experiment, the table was only moved but never turned,
lifted, or tilted and, therefore, the observable configuration space of the table has two
dimensions. Figure 4.9 shows four snapshots during learning. Initially, the table is
perfectly explained as a rigid object in the room (a). Then, a prismatic joint model best
explains the data since the table was moved in one direction only (b). After moving
sideways, a 1-DOF Gaussian process model is selected that follows a simple curved
trajectory (c). Finally, the full planar movement is explained by a 2-DOF Gaussian
process model, that can model movements on two-dimensional surfaces (d).

Additional Examples

We ran similar experiments on a large set of different articulated objects that typically
occur in domestic environments, including office cabinets, office doors, desk lamps, win-
dows, kitchen cabinets, fridges, dishwashers, and garage doors. Four examples are given
in Figure 4.10. For these experiments, we attached checkerboards of different sizes to
all movable parts and used both a consumer-grade video camera and a low-cost laptop

4.4 Experiments 89

(a)

x1

building

x2

garage door

BIC(Mrigid
12) =

BIC(Mprism.
12) =

BIC(Mrev.
12) =

BIC(MGP
12) =

9893.4

5450.8

5870.7

620.2

(b)

Figure 4.7: Visualization of the kinematic model learned for a garage door. (a) Ten uni-
formly sampled configurations from the learned model. (b) Corresponding kine-
matic graph.

(a)

x1

cabinet

x2

drawer 1

x3

drawer 2

BIC(Mrigid
ij) =

BIC(Mprism.
ij) =

BIC(Mrev.
ij) =

BIC(MGP
ij) =

−189.3
−63.9
−41.8
277.2

997.2

−61.7
−58.1
279.0

993.0

−62.6
−59.3
278.4

(b)

(c)

x1

cabinet

x2

drawer 1

x3

drawer 2

BIC(Mrigid
ij) =

BIC(Mprism.
ij) =

BIC(Mrev.
ij) =

BIC(MGP
ij) =

793.7

−88.8
−84.9
331.6

2892.2

−86.9
−84.4
331.0

3660.1

−84.7
−82.4
331.8

(d)

Figure 4.8: Incrementally estimating a model of two drawers of a cabinet. (a)+(b) Initially,
only the lower drawer is opened and closed. (c)+(d) Both drawers are opened and
closed independently.

90 Chapter 4: Learning Kinematic Models of Articulated Objects

(a) (b)

(c) (d)

Figure 4.9: Learning a model for a table moving on the floor. The arrows indicate the recovered
manifold of the configuration space.

webcam to acquire the image data. Our software also visualizes the learned articulation
models in 3D and back-projects them onto the image to allow for easy visual inspection.
The detected poses of the checkerboards are visualized as red/green/blue coordinate
axes systems, and selected links between them are indicated using a colored connection.
The software also displays the configuration range by generating poses in the estimated
range. For revolute joints, it additionally indicates the rotation axis using a line and a
surrounding circle.

From visual inspection of the objects in Figure 4.10, one can see how accurate the
model estimation works in conjunction with marker-based tracking: the motion of the
drawers of the cabinet is well matched, and the rotation axes of the door hinge and
the door handle are estimated very close to their true position. The upper part of the
garage door moves in a slider in the ceiling while the lower part is connected via a revolute
joint. The resulting motion is clearly neither revolute nor prismatic, and consequently

4.4 Experiments 91

x3

prismatic

x1

prismatic

x2

(a) office cabinet with two drawers

x1

revolute

x3

x2

revolute

(b) room door including handle

x1
GP

x2

(c) garage door

x3

GP

x2

GP

x1

(d) desk lamp with two links

Figure 4.10: Visualization of the learned articulation models for several further domestic ob-
jects.

our approach selects the GP model. The desk lamp consists of two-bar links that keep
the light housing always upright (or, loosely speaking, rigid in orientation), but moves
its head along a circle. This link type can be well explained by the GP model. The
existence of these objects shows the necessity to supply a domestic service robot with
such a general, nonparametric model that can deal with a wide variety of different
articulated objects. Yet, it is also clear that the majority of articulated objects in
domestic environments will consist of revolute and prismatic joints which can be more
robustly estimated using parametric models. This motivates again the necessity to fit
both parametric and nonparametric models to obtain the best performance.

Another interesting object is a car, as its doors and windows have both tree- and
chain-like elements. In Figure 4.11, we observed the motion of the driver’s door and
window. After the first few observations, our approach estimated the structure to be
rigid and links both the door and the window in parallel to the car body. After we

92 Chapter 4: Learning Kinematic Models of Articulated Objects

x1
rigid

rigid

x2

x3

(a) after 10 observations

x1
rigid

x2

prismatic

x3

(b) after 40 observations

revolute

x1
rigid

x2

x3

(c) after 60 observations

revolute
revolute

x1

x2

x3

(d) after 140 observations

Figure 4.11: Snapshots of the learning process when incrementally observing the motion of a
car door and its window from camera images.

opened the window to the half, our approach attached the driver’s window to the door
and selected a prismatic model. Surprisingly to us, when we opened the window further
(and thus acquire more observations), our approach switched to a revolute model for
the driver’s window associated with a large radius (r = 1.9m). By looking carefully at
the data and the car, we can confirm that the window indeed moves on a circular path
which is due to its curved window glass. Finally, after the driver closed the door, also a
revolute model for the link between the car body and the door was selected.

We conclude from these results, that our approach is able to estimate both the kine-
matic parameters and kinematic structures of several objects relevant for domestic ser-
vice robots at high accuracy, i.e., the prediction error of the learned models is around
0.001m and 1° for objects tracked in a motion capture studio, and around 0.003m and
3° for checkerboard markers. At this accuracy, the learned models are well suited for
robotic manipulation tasks.

4.4 Experiments 93

4.4.2 Operating Articulated Objects with a Mobile Manipulator

In this section, we show that real robots can utilize our approach to learn the kinematic
models of objects for active manipulation. Here, control of the arm was implemented
in close collaboration with Jain and Kemp. The experiments were conducted on two
different platforms, the robot “Cody” and “Marvin” robot (see Figure 1.2).

Task Performance

We evaluated the performance of our approach on five different objects and performed
eight trials for each object. The robot started approximately 1m from the location of
the handle. We manually specified the grasp location by selecting a point in a 3D point
cloud recorded by the robot, an orientation for the hook end effector, and the initial
pulling direction. The task for the robot was to navigate up to the articulated object
and operate it while it learned the kinematic model. We deemed a trial to be successful
if the robot navigated to the object and opened it through an angle greater than 60◦ for
revolute joints or 0.3m for prismatic joints.

Figure 4.12 shows the robot after it has pulled open each of the five objects in one
of the respective trials. The objects are (from left to right, top to bottom): a cabinet
door that opens to the right, a cabinet door that opens to the left, a dishwasher, a
drawer, and a sliding cabinet door. The robot successfully opened the three objects
with revolute joints in 21 out of 24 trials and the two objects with prismatic joints in
all 16 trials. The robot was able to open the doors more than 70° and to estimate their
radii on average with an error below 0.02m. Further, the robot pulled open the drawer
and the sliding cabinet on average over 0.49m. Overall the robot was successful in 37
out of 40 trials (92.5%).

All three failures were due to the robot failing to hook onto the handle prior to
operating the door or drawer, most likely due to odometry errors and errors in the
provided location of the handle. In our experiments, we did not observe that the model
learning caused any errors. In principle, however, the hook could slip off the handle if a
wrong model had been estimated.

Model Fitting and Selection from End-Effector Trajectories

Figure 4.1 and Figure 4.13 show examples of the PR2 robot operating several articulated
objects common to domestic environments, i.e., a fridge, a drawer, a dishwasher door,
the tray of a dishwasher, and the valve of a heater. For these experiments, we did not use
the feedback control loop as described in Section 4.3 but tele-operated the manipulator
manually. First, we recorded a set of trajectories by guiding the manipulator to operate
various articulated objects. During execution, we played these trajectories back using a
different implementation of equilibrium point control available on the PR2 platform and

94 Chapter 4: Learning Kinematic Models of Articulated Objects

Figure 4.12: Images showing Cody at Georgia Tech operating the five different objects using
the approach described in Section 4.3. Images courtesy of Jain and Kemp.

recorded the resulting end effector trajectories of the robot. We used these trajectories
subsequently to learn the kinematic models. Finally, we visualized these models by
superimposing them on images taken by a calibrated wide-angle camera mounted on the
head of the robot. In our experiments, our approach always selected the correct model
candidate. One can easily verify by visual inspection that our approach estimates the
kinematic properties (such as the rotation axis or the prismatic axis) very accurately.

These experiments show that robots can successfully learn accurate kinematic models
of articulated objects from end effector trajectories using our approach. With the PR2,
we achieved an average predictive accuracy of the learned models below 0.002m, which
is more than sufficient for using our models for mobile manipulation tasks in domestic
settings.

Improving Model Estimation based on Experience

In the experiments described in the previous section, we learned the kinematic models
for the kitchen furniture independently of each other. By using the approach described
in Section 4.2 on data from Cody, we verified that prior experience supports model
learning. Figure 4.14 shows the result of this experiment. The colors indicate the
prior models to which our approach assigned the observed trajectories. Our approach

4.4 Experiments 95

revolute

(a) cabinet door

revolute

(b) dishwasher door

prismatic

(c) dishwasher tray

revolute

(d) valve of a heater

Figure 4.13: A PR2 robot learns the kinematic models of different pieces of furniture while it
operates them.

96 Chapter 4: Learning Kinematic Models of Articulated Objects

-0.4

-0.2

0

0.2

0.4

-0.4 -0.2 0

y
[m

]

x [m]

top view

-0.4 -0.2 0

-0.4

-0.2

0

0.2

0.4

x [m]

side view

left door

right door

sliding cabinet

dish-
washer

drawer

dishwasher

drawer

left door

right door
sliding
cabinet

Figure 4.14: Observed trajectories and the 5 recovered models when minimizing the overall BIC
using our approach. Trajectories assigned to the same model are depicted in the
same color.

correctly recognized that the robot had operated five different objects and assigned the
37 different trajectories correctly to the corresponding models.

We measured the average prediction error with and without learning prior models
(see Figure 4.15), using leave-one-out cross-validation and a randomized ordering of the
trajectories. We found that the prior models reduce the prediction error considerably,
especially if the new trajectory is only partially observed. When 30% to 70% of the
new trajectory had been observed, the prediction error was reduced by a factor of three
and more. As a result, the robot came up with a substantially more accurate model
early and could utilize this knowledge to improve the control of its manipulator.

Throughout all experiments on Cody, we used a fixed noise term of σz,pos = 0.05m.
This accounts for inaccuracies in the observation of the end effector position due to
variations in the hooking position, and small errors in the kinematic forward model and
robot base localization. We found in repeated experiments that in the range between
0.02m ≤ σz,pos ≤ 0.20m, the results are similar to our previous results obtained with
σz,pos = 0.05m. Only for significantly smaller values of σz,pos more prior models are
created, for example due to small variations of the grasping point and other inaccuracies.
For much larger values, observations from different objects are clustered into a joint

4.4 Experiments 97

0

0.1

0.2

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p
re
d
ic
ti
on

er
ro
r
[m

]

ratio of the observed trajectory vs. the full trajectory

without learned prior models
with learned prior models

Figure 4.15: Average prediction error (line) and standard deviation (shaded area) of the learned
model on the full trajectory with and without prior information.

model. Thus, our results are insensitive to moderate variations in the observation noise
σz,pos.

This experiment illustrates that our approach enables a mobile robot to learn from
experience or exploit prior information when manipulating new objects. The experience
increases the prediction accuracy by a factor of approximately three.

4.4.3 Detecting Kinematic Loops

In our next set of experiments, we evaluated our approach on objects containing kine-
matic loops. The goal of these experiments is to show that our approach can estimate
correctly both the kinematic connectivity, as well as the DOFs.

For this purpose, we used the first four segments of a yardstick. This results in an open
kinematic chain consisting of three revolute joints (see top left image of Figure 4.16).
This object has three DOFs, as all revolute joints are independent of each other. In a
second experiment, we taped the fifth segment of the yardstick together with the first
one. This creates a kinematic loop, see top right image of Figure 4.16: the resulting
object consists of four revolute joints each having a single DOF. The resulting object
has effectively only a single DOF. We articulated the objects manually and recorded
object pose datasets with |Dy | = 200 samples each using checkerboard markers.

The second and the third row of Figure 4.16 visualize the learned kinematic model
for the open and the closed kinematic model, respectively, while the fourth row shows
the kinematic structure of the learned model. From this figure, it can be seen that
our approach correctly recognized that the object with an open kinematic consists
of three revolute links (Mrot.

12 ,Mrot.
23 ,Mrot.

34), having three DOFs q = (q1, q2, q3) in to-
tal. For the object with the kinematic loop, our approach selected four revolute links
(Mrot.

12 ,Mrot.
23 ,Mrot.

34 ,Mrot.
14) and correctly inferred that the object only exhibits a single

DOF q = (q1).
We also analyzed the progression of model selection while the training data is incor-

98 Chapter 4: Learning Kinematic Models of Articulated Objects

open kinematic chain closed kinematic chain

x2

revolute

x4

revolute

x3

revolute

x1

revolute
x2

x1

x3
revolute

revolute x4

revolute

x1 x2 x3 x4

q1 q2 q3 . . .

Mrev.
12 Mrev.

23 Mrev.
34

x1 x2 x3 x4

q1 q2 q3 . . .

Mrev.
12 Mrev.

14 Mrev.
23 Mrev.

34

Figure 4.16: Open kinematic chain with three DOFs (left column) and closed kinematic chain
with only a single DOF (right column). First row: images of the objects. Second
and third row: learned kinematic models from two different perspectives. Fourth
row: learned graphical model, showing the connectivity and the DOFs of the
learned kinematic model. The selected kinematic model is visualized by bold edges,
the estimated DOFs are given by the boldly type-set configuration variables.

4.4 Experiments 99

0 50 100 150 200
0

1

2

3

4

training samples n

D
O

Fs
DOFs

(a) open kinematic chain

0 50 100 150 200
0

1

2

3

4

training samples n

D
O

Fs

DOFs

(b) closed kinematic chain

Figure 4.17: Experiment on the estimation of the DOFs of open and closed kinematic chains.

porated. Figure 4.17a shows the DOFs of the learned kinematic model for the open
kinematic chain. Note that we opened the yardstick segment by segment, therefore the
DOFs increases step-wise from zero to three. Figure 4.17b shows the estimated DOFs for
the closed kinematic chain: our approach correctly estimated the DOFs to one already
after the first few observations.

In more detail, we analyzed the evolution of the BIC scores and the runtime of the
different approaches for the closed kinematic chain in Figure 4.18. The plot in the top
shows the evolution of the BIC scores of all possible kinematic structures. The color of
the curve indicates the spanning tree solution (solid red), heuristic search (dashed blue),
and the global optimum (dotted green). The spanning tree solution that we use as the
starting point for our heuristic search is on average 35.2% worse in terms of BIC than
the optimal solution. In contrast, the BIC of the heuristic search is only 4.3% worse and
equals the optimal solution in 57.5% of the cases. The time complexity of computing
the spanning tree is independent of the number of training samples, see bottom plot in
Figure 4.18. In contrast to that, the evaluation of kinematic graphs requires for each
kinematic structure under consideration the evaluation of whole object poses and thus is
linear in the number of training samples n. The heuristic search only evaluates kinematic
graphs along a trace through the structure space. As a result, for the yardstick object
with p = 4 object parts, the heuristic search requires on average 82.6% less time than
the full evaluation.

With these experiments, we showed that our approach is able to detect closed chains
in articulated objects and correctly estimates their DOFs. As loop closures (or reduced
DOFs) reduce the configuration space of an object significantly, this is valuable informa-
tion for a mobile manipulator, for example for reasoning about possible configurations
of an object.

100 Chapter 4: Learning Kinematic Models of Articulated Objects

0 20 40 60 80 100 120 140 160 180 200

−10,000

0

10,000

training samples n

B
IC

spanning tree search heuristic global optimum other models

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

training samples n

ti
m

e
[s

]

Figure 4.18: Evaluation of our algorithm on closed kinematic chains. Top: BIC scores of all
considered kinematic structures. Bottom: computation times as a function of the
number of training samples using different strategies.

4.4.4 Robustness and Convergence Analysis

In this section, we report our results of a detailed robustness and convergence analysis of
the candidate models proposed in this chapter. In particular, we analyzed the accuracy
and the robustness against varied amounts of noise and outliers, and the convergence
behavior with respect to the number of training samples. The goal of these experiments
was to show that our model estimators are robust against reasonable amounts of noise
and other disturbances.

We conducted these experiments using synthetic datasets which allowed us to control
the parameters for noise Σz , outlier ratio γ, and the number of samples n. For each run,
we generated an observation sequence from a known model M,θ with outlier ratio γ
and noise level σz,pos. From that, we estimated the model’s parameter vector θ̂ using our
approach. To measure the error of the estimated model, we generated an observation
sequence of noise-free and outlier-free testing samples.

For each model, we chose a set of fixed ground truth models that we used for simu-
lation. These models are depicted in Figure 4.19 and were used to sample observation
sequences according to our observation model. All experiments reported in this section
were repeated and averaged over 100 independent runs. If not stated otherwise, we
sampled for each run a sequence of n = 100 observations.

4.4 Experiments 101

1m

1m

1m

1m

1m

1m

1m

1m

(a) point (b) line (c) quarter circle (d) roll-up door

Figure 4.19: The four ground truth models used for the evaluation of the estimators.

Robustness against Normally-distributed Noise

In the first experiment, we varied the amount of normally distributed observation noise
σz,pos in the training data. Figure 4.20 gives the result. The sample error of all models
increases linearly but slowly with the amount of Gaussian noise. With an observation
noise of σz,pos = 1m, the GP model yields a sample error of 0.34m, the revolute model
of 0.28m, the prismatic model of 0.22m, and the rigid model of 0.14m. Thus, the rigid
model is by far the most robust against Gaussian noise. We attribute this to the fact
that the rigid model needs to estimate the fewest parameters and thus has the highest
ratio of training samples to free parameters.

Robustness against Uniformly-distributed Outliers

In a second experiment, we varied the outlier ratio 0 ≤ γ ≤ 1. The result is given in
Figure 4.21: the rigid, prismatic, and revolute model, i.e., the models using MLESAC
estimators, are highly robust against outliers. Even when 50% of the training data
are real outliers, the sample error is only twice as high as when the training data is
completely outlier-free. The rigid model is the most robust (its sample error stays below
the observation noise level until γ = 0.95), followed by the prismatic model (γ = 0.8),
and the revolute model (γ = 0.65). We attribute this effect to the model complexity,
i.e., models with more parameters require more samples for estimating the parameters.
We expect that more iterations during consensus sampling for the more complex models
can probably counteract this effect.

In contrast to the robust behavior of the parametric models, our implementation of
the GP model quickly diverges with an increasing number of outliers as we did not model
uniform outliers explicitly in this model. Note that there are several extensions to the
GP framework that make the GP model robust against outliers, for example mixture
noise models, Monte Carlo sampling methods, and iterative expectation maximization
(Kuss, 2008).

For computing the data likelihood, all models estimate the outlier ratio γ of the
training data. Figure 4.22 depicts the estimated outlier ratio versus the true outlier
ratio. While the models using MLESAC estimators perfectly match the true outlier

102 Chapter 4: Learning Kinematic Models of Articulated Objects

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

observation noise σz,pos [m]

er
ro

r
[m

]

Gaussian process model
revolute model

prismatic model
rigid model

Figure 4.20: Evaluation of the model prediction error on synthetic data for different noise values
σz,pos. The lines correspond to the mean of 100 independent runs, the shaded areas
mark a single standard deviation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

outlier ratio γ

er
ro

r
[m

]

Gaussian process model
revolute model
prismatic model
rigid model

Figure 4.21: Evaluation of the model prediction error on synthetic data for different outlier
ratios γ.

ratio, the GP model grossly overestimates the true value, as a result of its sensitivity
to outliers in general: under the GP model, the training data appears to contain much
more outliers than are actually present because it fails to recover the correct underlying
structure.

Convergence of Model Estimation

We also evaluated the convergence behavior of our estimators with respect to the number
of training samples on noisy but otherwise outlier-free data (σz,pos = 0.05m and γ = 0.0).
As expected, the sample error between the estimated and the true model converges to
zero within the first 10 to 20 training samples, see Figure 4.23. Note that the rigid model
needs at least one sample, for the prismatic model at least two, and for the revolute
and the GP model at least three samples for training. The error of the rigid model
falls below the observation noise already after the first sample, the prismatic and the

4.4 Experiments 103

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

true outlier ratio γ

es
ti

m
at

ed
ou

tl
ie

r
ra

ti
o
γ̂

Gaussian process model
revolute model

prismatic model
rigid model

Figure 4.22: Comparison of estimated outlier ratio versus true outlier ratio on synthetic data.

GP model after three samples, the revolute model after six. The revolute model is thus
the most sensitive to small training sets. We attribute this to the fact that it has the
highest number of free parameters. When more training data is available, the GP model
converges the slowest of all models: after 100 training samples, its error is still 2.5 times
higher than the error of the rigid model. The revolute model has an error 2.1 times as
high as the rigid model, and the prismatic model 1.5 times as high. We explain this
effect by the high flexibility of the GP model. In general, more complex models have
more free parameters to be estimated, are thus more sensitive to noise in the training
data and thus take longer to converge.

Further, we measured the computational time required for estimating the model. The
results are given in Figure 4.24. For the parametric models the time is linear in the
number of training samples. This is an expected result, as the optimization of the
model parameters depends linearly on the number of training samples. In more detail,
fitting the revolute model takes roughly 1.5 times as much time as fitting the prismatic
model and 2.1 times as much as fitting the rigid model. This is also expected, as
the computational load of parameter optimization depends linearly on the number of
parameters to be optimized, for example, for computing the derivative during parameter
optimization. The total complexity thus is O(nk2). The computational complexity for
fitting the GP model, however, depends cubically on the number of training samples.
This is because of the inversion of the covariance matrix which is an O(n3) operation.

In summary, we showed in this section that our estimators are robust against noise
and, with some restrictions for the GP model, are robust against outliers. Further, we
showed that they converge quickly with the number of training samples. From these
results, we conclude that models learned from ten or more training samples are already
significantly more accurate than the observation noise and can thus provide valuable
information about an articulated object to a robot. The parametric models are robust
to up to 50% outliers in the training data and are thus well suited for robots with
unreliable sensors. Finally, the computation time required for learning all models is

104 Chapter 4: Learning Kinematic Models of Articulated Objects

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

training size n

er
ro

r
[m

]

Gaussian process model
revolute model

prismatic model
rigid model

observation noise

Figure 4.23: Evaluation of the prediction error with respect to the number of training samples.
The average positional prediction error decreases quickly with number of training
samples n for all estimators.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

training size n

ti
m

e
[s

]

Gaussian process estimator
revolute estimator
prismatic estimator
rigid estimator

Figure 4.24: The average runtime of all model estimators. The parametric model estimators
run in O(nk2) time, while the GP model has a runtime of O(n3).

below 0.25 s for training sequences consisting of up to 30 observations and thus our
approach is suitable for online control.

Convergence of Model Selection

In a second series of experiments on synthetic data, we evaluated the model selection
behavior with respect to the number of training samples and the assumed observation
noise level. For this analysis, we sampled noisy observations, fitted the candidate models,
and selected the best model. We repeated all experiments for 10 independent runs and
evaluated the mean and the standard deviation. In the following, we present our results
exemplary for data sampled from the simulated roll-up door (see Figure 4.19d).

We present the training samples in the order of their configuration q, i.e., we first
presented data sampled from the vertical line segment, then additionally from the quar-
ter circle, and finally also from the horizontal line segment as visualized in Figure 4.19d.

4.4 Experiments 105

0

500

1,000

1,500

2,000

B
IC

sc
or

e

GP model
revolute model

prismatic model
rigid model

0 5 10 15 20 25 30 35 40 45 50
selected model

training size n

Figure 4.25: BIC score and resulting model selection after observing a sequence sampled from
the roll-up door.

Figure 4.25 shows the result of the first experiment, the relation between the BIC score
and the number of training samples. Remember that the model with the lowest BIC
score gets selected. Initially, after the first training sample is presented, only the rigid
model can be fitted. Starting from the second sample, the prismatic model explains
the data best until points are sampled from the arc. This is an expected behavior, as
the first 40% of the data truly come from a line segment. The score of the revolute
model is only slightly worse; it roughly achieves the same data likelihood, but has three
parameters more, leading to a slightly higher score. For 20 ≤ n ≤ 30, training samples
originate from the quarter circle. As a result, the data likelihood of the prismatic model
drops quickly, leading to a steep ascent of the BIC score, indicating a model mis-fit.
The revolute model can deal slightly better with the curvature and thus gets selected
for a short interval between 24 ≤ n ≤ 28. Starting from n = 29, the BIC curve of the
revolute model surpasses the curve of the GP model and the GP model gets selected.
Note that the number of parameters of the GP model grows linearly with the number
of training samples as it needs to store all training data. However, its data likelihood
stays almost constant, and, as a result, the BIC score grows linearly with the number
of training samples.

Furthermore, we investigated the influence of the assumed observation noise Σz on
the model selection process. When the number of training samples n is kept fixed,
then higher noise favors the selection of simpler models, and vice versa. Figure 4.26
illustrates this dependency: for n = 50 and σz,pos ≤ 0.02, the GP model is selected.
Between 0.02 ≤ σz,pos ≤ 0.2, the revolute model yields the best trade-off between model
complexity and data likelihood. Above 0.2 ≤ σz,pos, the rigid model best explains the
observations as the noise level of this magnitudes hides the underlying model.

From this set of experiments on synthetic data, we conclude that the proposed es-
timators are robust against normally distributed noise and that the MLESAC-based

106 Chapter 4: Learning Kinematic Models of Articulated Objects

0

500

1,000

1,500

2,000
B

IC
sc

or
e

Gaussian process model
revolute model
prismatic model
rigid model

0.0001 0.0010.001 0.01 0.1 1.0
selected model

observation noise σz,position

Figure 4.26: BIC score as a function of the assumed observation noise. A low noise assumption
favors the selection of more complex models, and vice versa.

estimators are additionally robust against uniformly distributed outliers. We illustrated
the effect of the number of training samples and noise assumptions on the model selec-
tion process and showed that model selection asymptotically converges to the correct
model with a convergence rate that depends on the observation noise.

4.5 Related Work

Several researchers addressed the problem of operating articulated objects with robotic
manipulators. A large number of these techniques focused in particular on the prob-
lem of handling doors and drawers in domestic environments (Klingbeil et al., 2009;
Kragic et al., 2002; Meeussen et al., 2010; Petrovskaya and Ng, 2007; Parlitz et al.,
2008; Niemeyer and Slotine, 1997; Andreopoulos and Tsotsos, 2008; Rusu et al., 2009;
Chitta et al., 2010). Meeussen et al. (2010) described an integrated navigation system
for mobile robots including vision- and laser-based detection of doors and door handles
that enabled the robot to successfully open doors using a compliant arm. Diankov et al.
(2008) formulated door and drawer operation as a kinematically constrained planning
problem and proposed to use caging grasps to enlarge the configuration space. They
demonstrated their approach on an integrated system that successfully performed a
wide variety of different fetch-and-carry tasks (Srinivasa et al., 2010). Wieland et al.
(2009) combined force and visual feedback to reduce the interaction forces when open-
ing kitchen cabinets and drawers. The majority of these approaches, however, implicitly
assumes that the kinematic model of the articulated object is known.

Katz and Brock (2008) enabled a robot to first interact with a planar kinematic object
on a table in order to visually learn its kinematic model and to manipulate it. Jain and
Kemp (2009b) presented an approach that enabled a robot to estimate the radius and

4.5 Related Work 107

location of the axis for revolute joints that move in a plane parallel to the ground while
opening doors and drawers using equilibrium point control. In contrast to our work, both
approaches assume planar objects and learn only two-dimensional kinematic models.

There are several approaches where tracking articulated objects is the key motiva-
tion. Krainin et al. (2010), for example, developed an approach for tracking articulated
objects such as a manipulator using a depth camera with a texture projector similar to
ours. However, this approach requires a geometric model of the manipulator. Kragic
et al. (2002) described an integrated navigation system for mobile robots which includes
a vision-based system for the detection of door handles and enables the robot to suc-
cessfully open doors. Anguelov et al. (2004) modeled doors as line segments that rotate
around a hinge and used EM to estimate the model parameters from 2D range data
and images. Nieuwenhuisen et al. (2010) described an approach where a mobile robot
increases its localization accuracy by learning the positions of doors. In contrast to our
work, these approaches make strong assumptions on the shape of the articulated objects
and the parameterizations of the kinematic models.

Estimating kinematic structure from observations was studied in the field of computer
vision, however, without subsequently using these models for robotic manipulation. Tay-
cher et al. (2002) addressed the task of estimating the underlying topology of an observed
articulated body. They focused on the recovery of the object topology rather than on
learning accurate generative models. Also, compared to their work, our approach can
handle links with more complex link models, including links with multiple DOFs and
nonparametric models. Kirk et al. (2004) extracted human skeletal topologies using 3D
markers from a motion capture system, however assuming that all joints are revolute.
Yan and Pollefeys (2006) presented an approach to learn the structure of an articulated
object from feature trajectories under affine projections. Other researchers addressed
the problem of identifying different object parts from image data. Ross et al. (2010)
used multi-body structure from motion to extract rigid parts from an image sequence
and fitted motion models to these links using maximum likelihood learning. They also
used graphical models to represent the kinematics, but introduced special variables to
indicate whether a particular edge in the graphical model is active or inactive. This
transforms the structure search into a parameter optimization problem. However, this
might result in local minima and the resulting models are not accurate enough to be
used by manipulation robots.

Kemp (2005) aimed at finding an assignment of body parts to internal sensors of a
motion tracking suit by minimizing a traveling salesman problem with a suitable cost
function. Although learning the structure of general Bayesian networks has been proven
to be NP-complete (Chickering, 1996), many approximate methods have been proposed
that can solve the structure search problem efficiently. Such methods include greedy
structure search, iterated hill climbing, genetic algorithms and ant colony optimization
(Chickering, 2002; Daly and Shen, 2009). In some cases, the size of the search space

108 Chapter 4: Learning Kinematic Models of Articulated Objects

can be reduced significantly by evaluating a number of statistical independence tests
(Margaritis and Thrun, 1999; Bromberg et al., 2009).

In contrast to all of the above work, we provide with our approach a complete prob-
abilistic framework that enables a robot to learn accurate, three-dimensional kinematic
models of articulated objects. Furthermore, our framework provides the kinematic struc-
ture and degrees of freedom, and allows a robot to use the learned models to operate
articulated objects.

4.6 Summary

In this chapter, we presented a complete probabilistic framework for learning kinematic
models of articulated objects. We learn both parametric and nonparametric models
to describe the geometric relationship between connected object parts and consistently
apply Bayesian model comparison to select the best models and infer the kinematic
structure. In extensive experiments carried out on real robots and in simulation, we
demonstrated that our approach is efficient and provides accurate kinematic models
from noisy observations. Furthermore, we showed that our approach is applicable to
a wide range of articulated objects and can be used in conjunction with a variety of
different sensor modalities. Our approach enables mobile manipulators to learn accu-
rate kinematic models of unknown articulated objects, operate them reliably, and can
improve their learning performance by exploiting prior experience.

Chapter 5

Vision-based Perception of
Articulated Objects

The probabilistic framework developed in the previous chapter enables a manipulation
robot to learn accurate kinematic models of articulated objects. As input, our framework
requires a sequence of pose observations of the articulated object. We implemented the
perception in the previous chapter using visual markers or by directly recording the end
effector trajectory while the robot was manipulating the articulated object. For the
daily use in domestic environments, however, both options are not satisfactory: clearly,
it is neither desirable to augment all furniture with visual markers nor to guide a robot
manually to the handles of all relevant objects.

In this chapter, we investigate how a robot can perceive the poses of cabinet doors
and drawers without requiring artificial markers. We use a stereo camera system with
an additional projector to generate dense depth images. As cabinet fronts appear in
the depth images as rectangles, we develop a sampling-based approach that efficiently
detects and tracks rectangles in these images. Our perception algorithm can be adapted
to the computational capabilities of the robot as it allows to adjust the number of pose
candidates per frame. After a sequence of pose observation has been acquired, the robot
can learn the kinematic model of the articulated object using the approach presented
in the previous chapter. In particular, our approach allows a robot (1) to infer the
model class of the tracked object, (2) to estimate its current configuration, and (3)
to make predictions about future configurations. In our experiments, we demonstrate
that robots using our approach can learn accurate kinematic models of cabinets without
requiring artificial markers in the environment. This is an important prerequisite for
using mobile manipulation robots in domestic environments. Furthermore, we provide

110 Chapter 5: Vision-based Perception of Articulated Objects

Figure 5.1: Experimental setup: the robot tracks the pose of a drawer in a sequence of dense
depth images and infers its kinematic model.

a detailed error analysis on our pose estimator based on ground truth data obtained in
a motion capture studio.

The experimental setup is depicted in Figure 5.1 in which the robot observes the
motion of a cabinet drawer. Our approach segments the depth image generated by
the active stereo system and iteratively fits rectangles as illustrated in Figure 5.2a. By
tracking the pose observations of the articulated object over time, the robot can learn
the corresponding kinematic model and use it to predict future configurations of the
object as visualized in Figure 5.2b.

This chapter is organized as follows. In Section 5.1, we develop our approach on
detecting and tracking articulated objects in depth images. In Section 5.2, we analyze
the properties of our approach in experiments carried out on a real robot in a domestic
environment. Further, we used a motion capture studio to evaluate the detection rate
and pose accuracy of our approach. Finally, we conclude this chapter with a discussion
of related work in Section 5.3.

5.1 Marker-less Pose Estimation

We assume that we obtain in each frame a dense depth image D ∈ R640×480 from
the stereo camera system, that contains for each pixel (u, v) its perceived disparity
D(u, v) ∈ R. The relationship between 2D pixels in the disparity image and 3D world
points is defined by the projection matrices of the calibrated stereo camera and can be
calculated by a single matrix multiplication from the pixel coordinates and disparity.

5.1 Marker-less Pose Estimation 111

(a) (b)

Figure 5.2: Illustration of the processing steps of the proposed approach. (a) The pose of the
rectangle is iteratively optimized. (b) By tracking the poses over multiple frames,
the kinematic model can be learned.

For acquiring dense depth images, we use the stereo camera system in conjunction with
a texture projector similar to the one used on the PR2 robot (Konolige, 2010).

5.1.1 Fast Processing of Depth Images

We apply the RANSAC algorithm to segment each depth image into planes, i.e., we
iteratively sample three pixels from the depth image, estimate the corresponding plane
coefficients zplane ∈ R4, and count the inliers of that plane. We define the plane to
comprise all pixels that are within a certain distance L of the plane, i.e.,

‖zplane(x y z 1)T‖ ≤ L. (5.1)

In general, L depends on the particular noise level of the camera – in our case, we used
L = 0.02m. We repeat this process of plane candidate generation until we find a plane
with a high enough support, or we exceed a given number of iterations. We select the
plane with the most inliers and subtract the corresponding inliers from the point cloud.
Subsequently, we apply the same strategy to the remaining points in the cloud, until no
more points remain or the maximum number of planes has been reached.

In contrast to typical approaches to RANSAC-based plane fitting which always assign
pixels to one plane, our masks allow points to belong to several planes at the same time.
This is useful, as the infinite planes determined via RANSAC always intersect with the
subsequent (less significant) planes, thereby cutting out points that make detection of
contiguous rectangles more difficult in the next step of the perception process.

For a visualization of the result, see Figure 5.3. In this example, our algorithm
automatically segmented three planes from a depth image of a cabinet door. For each

112 Chapter 5: Vision-based Perception of Articulated Objects

kitchen front hand/arm floor cabinet door

Figure 5.3: This figure shows the segmentation of a depth image into the three most prominent
planes with RANSAC.

plane, we create an image mask M with class labels for the pixels in the depth image,
i.e., M ∈ {in-plane, free, occluded, unknown}640×480, with

M(u, v) =

in-plane if ‖zplane(x y z 1)T‖ ≤ L

free if zplane(x y z 1)T > L

occluded if zplane(x y z 1)T < −L
unknown if missing value

. (5.2)

Here, “in-plane” indicates that the pixel belongs to the plane for which the mask M
is computed. In contrast to that, “free” indicates that the observed pixel lies behind the
plane and “occluded” that a pixel in front of the plane has been observed which occludes
the plane. “Unknown” means that no depth information is available for that pixel.

The next step is to find rectangles in the segmented planes. A rectangle in 3D space
has 8 degrees of freedom: its position, its orientation and its dimensions (3+3+2).
After the plane segmentation, we have already fixed 3 DOFs, so that we need to find
the remaining 5 DOFs. We apply an iterative fitting approach here. We start with a
sampled candidate rectangle and optimize its pose and size iteratively using an objective
function g.

For creating an initial rectangle candidate, we sample a random point from the plane
and sample the other DOFs from a prior distribution. The objective function g is based
on the average cost of the pixels inside the rectangle zrect ∈ R8,

g(zrect) := − 1

|pixels(zrect)|1+α
∑

pixels(zrect)

cost(M(u, v)). (5.3)

The parameter α (that we empirically chose around α = 0.05) makes g favor larger
rectangles over smaller ones.

Finding a good cost metric cost, in particular for occluded and unknown pixels, is
non-trivial. If chosen too low, the greedy search converges on too large rectangles,

5.1 Marker-less Pose Estimation 113

occluded pixels (hand) unknown pixels (window) correct recognition

Figure 5.4: Illustration of the effect of the cost parameter for unknown and occluded pixels.
Left: cost too high (1.0). Middle: cost too low (0.0). Right: good (0.2).

while a too high cost increases the amount of local maxima in g and in turn leads to
the detection of partial rectangles in the presence of occlusions or unknown pixels (see
Figure 5.4). Empirically, we found a cost value of cost(occluded) = cost(unknown) = 0.2
to be working well for our data, but the choice of this parameter depends in principle
on the ratio of occluded and unknown pixels in the scene, and, therefore, needs to be
adapted for different environments.

5.1.2 Pose Estimation

In each iteration, we now individually optimize every DOF of the rectangle. We apply a
small set of discrete changes to each DOF and evaluate the objective function on z′rect.
If g(z′rect) > g(zrect), we continue with the improved parameter set. When this greedy
search converges (or we reach the maximum number of iterations), we need to evaluate
the quality of the found match. In preliminary experiments, we found that the value of
the objective function was not sufficient for discrimination of false and true positives.

Therefore, we decided to evaluate the rectangle candidate zrect using two measures that
are inspired from statistical classification theory and that have a natural interpretation.
First, we evaluate the precision rprecision of the rectangle candidate as the ratio of detected
pixels and all pixels in the found rectangle. Second, we evaluate the recall rrecall as the
ratio of pixels in the found rectangle versus the pixels in the selected plane. For both
measures, we use our cost functions to weight occluded and unknown pixels accordingly:

rprecision(zrect) :=

∑
pixels(zrect)

1− cost(M(u, v))

|pixels(zrect)|
(5.4)

rrecall(zrect) :=

∑
pixels(zrect)

1− cost(M(u, v))∑
pixels(zplane)

1− cost(M(u, v))
. (5.5)

114 Chapter 5: Vision-based Perception of Articulated Objects

(a) (b)

Figure 5.5: Illustration of the iterative matching and filtering of rectangles in depth images.
(a) Accepted sample. (b) Rejected sample.

Empirically, we found that a good condition for thresholding is to require that both
ratios are above 0.7, which removes most of the false positives.

An example of the iterative pose fitting is given in Figure 5.5a: the rectangle candidate
started in the lower left of the door and iteratively converged to the correct pose and
size of the door. The candidate is accepted, because both ratios rprecision and rrecall have
high values. The greedy search however can get stuck in local maxima. In the example
depicted in Figure 5.5b, the hand is also part of the drawer front plane and the candidate
rectangle converged to a rectangle that fits to some extend the hand. Our algorithm
rejects this candidate rectangle because it does not contain the majority of pixels in the
plane, i.e., rrecall takes a low value.

We deal with the problem of local maxima by starting from several rectangle candi-
dates. In this sense, our algorithm is probabilistically complete, as we would find any
visible rectangle in the limit with probability 1 given enough candidates. In practice,
we chose a fixed number of m samples per plane.

5.1.3 Pose Tracking

In the remainder of this chapter, we drop the subscript in zrect = z to improve readability.
The rectangle detector described in the previous section gives us per frame between zero
and r ·s observations of rectangles (r rectangle candidates in s planes), which need to be
integrated into consistent tracks. Checking whether two rectangles zi and zj are similar
requires to take the ambiguity in the representation into account: the same rectangle
can be described by eight different parameter vectors (depending on the choice of the
corner of origin and the choice of the front or back side of the rectangle). As a result,

5.2 Experiments 115

(a) (b)

Figure 5.6: Examples of the observed tracks of a (a) cabinet drawer and (b) cabinet door,
respectively.

we obtain an integrated sequence

Dtz =
〈
z1, . . . , zn

〉
, (5.6)

when after t time steps n rectangles have been observed.
In our implementation, we check whether a new observation znew (under considera-

tion of the above-mentioned ambiguities) is close to an existing track Diz . Then it is
either appended to that track Di,t+1

z := 〈z1, . . . , zn , zn+1〉, or a new track is initialized
Dnew,t+1

z := 〈zn+1〉. For deciding whether a disambiguated observation is close enough
to an existing track, we use fixed thresholds on pose change and considered also the
uncertainty in the estimate of the object size.

Figure 5.6 shows two examples of the resulting tracks obtained when observing a
drawer and a door. In Figure 5.6a, only a single track for the drawer was created,
while in Figure 5.6b two tracks for the door (yellow and orange) were created and
not yet merged, as well as two stationary tracks (purple and cyan) were instantiated
corresponding to the background. In this experiment, our model selection framework
selected a rigid link for these additional trajectories.

With this mentioned approach, we obtain for each moving part i in the scene a
trajectory of observations Diz . This trajectory can directly be used to learn the kinematic
model as described in Chapter 4.

5.2 Experiments

We conducted two sets of experiments. The goal of the first set of experiments was
to evaluate the performance of our rectangle detector, pose estimator, and tracker. In

116 Chapter 5: Vision-based Perception of Articulated Objects

drawer person background background person drawer

Figure 5.7: Illustration of the ground truth evaluation of our system. The blue rectangle cor-
responds to the ground truth location reported by the motion capture system, the
green rectangles are our estimates.

the second set, we demonstrate that our approach enables a robot to successfully learn
kinematic models of articulated objects.

5.2.1 Evaluation of Detection Rate and Pose Accuracy

To evaluate the performance of our approach to marker-less perception, we placed a PR2
robot inside a motion capture studio and recorded time-synchronized stereo images with
the robot and ground truth pose information from the motion capture system. For our
experiments, we used an unmounted drawer of a typical office cabinet that we equipped
with 5 tracking LEDs. We recorded several sets of logfiles containing 19,412 stereo
images in a large variety of different poses. Figure 5.7 shows a typical point cloud (gray)
from this dataset including an overlay of the detected pose (green) and the ground truth
pose (blue). For evaluation, we used the ground truth pose information for checking
whether the drawer was fully visible in both camera images. If so, we checked whether
a rectangle was detected and measured its positional and orientational error.

As a first result, we found that the drawer was correctly detected in more than 75%
of the images up to a distance of 2.2m from the camera (see Figure 5.8 (top), red curve).
We attribute the drop of the detection rate after 2.2m to the maximum distance of the
texture projector: when the object is too far away from the camera, too many dropouts
(missing values in the depth image) occur and the depth image is no longer dense. The
range of the stereo camera system can either be increased by using a stronger projector
lamp, or by using other reconstruction techniques (Brox et al., 2010). With the distance
of the drawer to the camera, also the number of planes increases that need to be searched

5.2 Experiments 117

0

0.01

0.02

0.03

1 1.2 1.4 1.6 1.8 2 2.2
0
1
2
3
4
5

p
os
it
io
n
er
ro
r
[m

]

or
ie
n
ta
ti
on

er
ro
r
[d
eg
]

distance to camera [m]

0

0.25

0.5

0.75

1

1 1.2 1.4 1.6 1.8 2 2.2
0

1

2

3

4

5
d
et
ec
ti
on

ra
te

#
of

se
ar
ch
ed

p
la
n
es

error in position
error in orientation

detection rate
number of searched planes

Figure 5.8: Evaluation of the detector with respect to the distance to the camera. The line
corresponds to the mean, and the shaded area to a single standard deviation. Top:
detection rate and number of searched planes. Bottom: position and orientation
error.

before the drawer is detected. This is an expected result since the drawer appears smaller
in the depth image the further it is away (same figure, blue curve).

Further, we evaluated the positional and orientational error by comparing the detected
pose using our approach with the ground truth obtained from the motion capture studio.
Figure 5.8 (bottom) gives the result. We found that the average position error of the
estimator was on average below 0.015m. It also was almost independent of the actual
distance to the camera. The same holds for the orientation error, that was on average
below 3°.

5.2.2 Kinematic Model Learning

To evaluate the quality of the learned kinematic models, we recorded detailed logfiles of
both a door (0.395m × 0.58m) and a drawer (0.395m × 0.125m) of a typical kitchen
interior that we repeatedly opened and closed. We recorded a total of 1,023 and 5,202
images. From these logs, we sampled uniformly around 60 images in correct temporal
order, and ran our detector and tracker as described in Section 5.1 on the down-sampled
logfile. We trained the candidate models on the resulting tracks and evaluated the
outcome of the model selection. We repeated this evaluation 50 times to verify the
robustness of our approach. Figure 5.9 shows the result of the drawer dataset and

118 Chapter 5: Vision-based Perception of Articulated Objects

0

0.01

0.02

0.03

0.04

0.05

10 20 30 40 50 60
0

2

4

6

8

10

p
os
it
io
n
er
ro
r
[m

]

or
ie
n
ta
ti
on

er
ro
r
[d
eg
]

number of observations (drawer)

0

0.25

0.5

0.75

1

10 20 30 40 50 60

p
(m

o
d
el
)

error in position
error in orientation

rigid model
prismatic model
revolute model

Figure 5.9: Evaluation of model learning and selection for a cabinet drawer with respect to
the number of training samples. Top: posterior probability of candidate models.
Bottom: prediction error of the learned model. The line corresponds to the mean,
the shaded area to the standard deviation.

Figure 5.10 for the door. For the datasets of both objects, we found that for the first
10 observations, mostly the rigid model was selected, as no substantial motion of the
drawer or door was yet detected. With an increasing number of pose observations, the
predictive error of the rigid model grows, while the predictive errors of the prismatic
and the revolute models still remain low. After 30 observations, model selection has
converged in all cases to the true model, i.e., the prismatic model for the drawer and
the revolute model for the door. For the drawer model we measured prediction errors of
0.01m and 7°; and 0.01m and 3.5° for the door. In additional experiments, we found that
the pose estimates of the drawer are more sensitive to distortions around the horizontal
axis because of its small height (0.12.5m) of the drawer.

In our current, un-optimized implementation, the plane extraction takes on average
0.845 s on a single 2 GHz Pentium core. Creating the image mask of each plane takes
approximately 0.008 s. Sampling a rectangle candidate from the mask takes 0.010 s,
optimizing the pose around 0.313 s, and finally checking the precision and recall of the
candidate consumes another 0.0023 s.

In additional experiments, we validated our approach on large number of different
doors and drawers in two different kitchens. Also, we successfully tested the detector

5.3 Related Work 119

0

0.01

0.02

0.03

0.04

0.05

10 20 30 40 50 60
0

2

4

6

8

10

p
os
it
io
n
er
ro
r
[m

]

or
ie
n
ta
ti
on

er
ro
r
[d
eg
]

number of observations (door)

0

0.25

0.5

0.75

1

10 20 30 40 50 60

p
(m

o
d
el
)

error in position
error in orientation

rigid model
prismatic model
revolute model

Figure 5.10: Same as Figure 5.9, but for the door dataset. The plots show the evaluation of the
learned kinematic model. Top: posterior probability. Bottom: prediction error.

on a small office pedestal with three drawers of different size, a fuse door, and a fire
extinguisher door in the wall.

From these experiments, we conclude that our approach is reliable, i.e., it detects doors
and drawers up to a distance of 2.2m in more than 75% of the frames. Furthermore,
we demonstrated that the pose accuracy of our system is comparable to a marker-based
system, i.e., the average error in our experiments was below 0.015m and 3°. Finally,
we showed that at this accuracy, the resulting pose trajectories can be used to learn
accurate kinematic models with prediction errors below 0.01m and 7°.

5.3 Related Work

For our application, we require accurate and dense point clouds of the scene at video
frame rates. Flash ladars (Anderson et al., 2005) often have poor depth and spatial
resolution and have non-Gaussian error characteristics that are difficult to deal with.
Line stripe systems (Curless and Levoy, 1995; Quigley et al., 2009) have the requisite
resolution but neither achieve 15 Hz operation nor deal with moving objects. Stereo
systems that employ matching algorithms to produce dense results (Brox et al., 2010;
Konolige, 1997; Wedel et al., 2008) can be a suitable sensor for our application. However,
passive stereo suffers from the problem of dropouts, i.e., areas of low texture that cannot
be matched correctly. An interesting technology is to use structured light (Nishihara,

120 Chapter 5: Vision-based Perception of Articulated Objects

1984; Lim, 2009) either with monocular or stereo cameras. Recently, monocular systems
have become available at comparatively low prices providing both depth and color images
such as the Kinect sensor from Microsoft (Machline et al., 2010; Fox and Ren, 2010). For
our work, we used a compact projector for active stereo with a fixed, random pattern
developed by Konolige (2010). It provides a texture for stereo that produces excellent
error characteristics at distances up to 3 meters, even for surfaces with low reflectivity.

Many different sensors have been used for detecting and estimating the poses of room
doors. However, often strong appearance models are assumed, for example that all doors
are vertical or the dimensions are known (Monasterio et al., 2002; Andreopoulos and
Tsotsos, 2008). Murillo et al. (2008) proposed an approach to learn a probabilistic model
based on color and shape features which is a more general solution as the robot is able
to match the object models to the actual appearance of doors in a building. In general,
estimating the pose of an object from 2D images is hard when no additional assumptions
are made. Therefore, laser scanners are often used on mobile robots to measure the
distances to these objects directly. Several other approaches exist that detect doors in
2D laser scans. Yufeng et al. (2001) used the expectation-maximization algorithm to
estimate the position of doors. Nieuwenhuisen et al. (2010) detected dynamic obstacles
during mapping and fit lines to recover the positions of doors in the scene. Rusu et al.
(2009) presented an integrated approach for door and door handle detection using a
tilting laser scanner. Other approaches focus on the semantic interpretation of (static)
3D point clouds. Nüchter and Hertzberg (2008), for example, seek for a segmentation
and labeling of 3D point clouds into object classes such as walls, doors, floors and
ceilings.

In contrast to all of these approaches, we use dense depth images acquired from a
stereo camera system to estimate and track the poses of articulated objects. Further,
we use the resulting tracks in our framework to estimate accurate kinematic models of
these objects.

5.4 Summary

In this chapter, we presented an approach that enables a robot to detect and track
cabinet fronts from dense depth images. Our system segments depth images into planes
and iteratively fits rectangles to them. By tracking the detections over multiple frames,
the robot obtains pose sequences from which it can learn the kinematic model of an
articulated object using our approach from Chapter 4. In extensive experiments, we
evaluated the performance of our system in a motion capturing studio and found high
detection rates and accurate pose estimation. Furthermore, we demonstrated in our
experiments that a real robot using our approach could learn highly accurate kinematic
models of various doors and drawers in domestic environments. We consider the ability

5.4 Summary 121

to cope without artificial markers an important feature that significantly increases the
usability of mobile manipulation robots in everyday life.

Chapter 6

Object Recognition using
Tactile Sensors

So far, we have considered monocular and stereo vision to perceive the state of the world.
However, vision alone is in some cases not sufficient: for example, a robot that picks
up an object from a box cannot see which object it grasps because the robot partially
occludes its view with its own gripper. In particular for robotic manipulation tasks,
tactile sensing provides another sensor modality that can reveal relevant aspects about
the object being manipulated, for example, to infer its identity, pose, and internal state.

In this chapter, we develop an approach that enables a manipulation robot to identify
an object using tactile sensing. In our concrete scenario, we consider a manipulation
robot which has touch-sensitive sensor arrays installed in its finger tips, and we assume
that these sensors provide low-resolution pressure images of the grasped objects. An
example of such a tactile image is depicted in Figure 6.1. In this experiment, the robot
grasped the handle of a coffee mug with a two-fingered parallel jaw gripper. As a result,
the robot observes a diagonal stripe in the tactile images corresponding to the handle
of the mug.

Our approach uses the bag-of-features model that we apply to object classification
based on tactile images. First, the robot generates a suitable tactile feature vocabulary
using unsupervised clustering from real data. Second, it learns a set of feature models (a
so-called codebook) that encodes the appearance of objects in form of feature histograms.
After training, a robot can use this codebook to identify the grasped object. Since the
objects that we consider are typically larger than the sensor and consist of similar parts,
the robot may need multiple grasps at different positions to uniquely identify an object.
To reduce the number of required grasps, we apply a decision-theoretic framework that
chooses the grasping location in such a way that the expected entropy of the belief

124 Chapter 6: Object Recognition using Tactile Sensors

(a) (b)

Figure 6.1: A manipulation robot with touch-sensitive finger tips grasps the handle of a coffee
mug. (a) Visual image. (b) Tactile images showing the handle of the mug.

distribution is minimized. In experiments carried out on a large set of industrial and
household objects, we demonstrate that our approach enables a manipulation robot to
discriminate various objects only by touch.

The remainder of this chapter is organized as follows: in Section 6.1, we present our
approach on tactile object recognition based on the bag-of-features model. In Section 6.2,
we extend this approach with a decision-theoretic framework to minimize the number
of grasps required to uniquely identify an object. We present the evaluation of our
approach on a large set of different objects in Section 6.3. Finally, Section 6.4 concludes
this chapter with a discussion of related work.

6.1 The Bag-of-Features Model

We developed our approach on a mobile manipulation robot that has a 1-DOF Schunk
parallel gripper with two fingers as its end effector. Both fingers are equipped with
a tactile sensor from Weiss robotics for gathering tactile images (Weiss and Wörn,
2005). Each tactile sensor consists of an array of 84 pressure-sensitive cells arranged
in 6 columns and 14 rows with a size of 24mm by 51mm. The sensor principle is to
measure the conductivity of an elastic rubber foam above a circuit board. When a force
is applied to the rubber foam, the binding polymer gets compressed which lowers the
electrical resistance of the material. The exact calibration of the sensor array turned out
to be difficult in consequence of this sensor principle. However, we found that taking a
reference measurement before the experiments (with no pressure on all cells) was a sim-
ple means to suppress memory effects of the rubber foam. Furthermore, we normalized
all measurements to the sensor’s maximum response, such that we obtained for each
sensor array a measurement matrix Z ∈ [0, 1]6×14.

6.1 The Bag-of-Features Model 125

(a) (b)

Figure 6.2: Experimental setup. The robot grasps an object at different positions. (a) Real
robot grasping a mug. (b) Visualization of the planned trajectory.

For generating training data, we assume that the robot interacts with various objects
from a set of n different classes C = {1, . . . , n}. During training, we assume further that
the identity of an object is known to the robot, i.e., the corresponding class label c ∈ C
is given. The robot grasps each object repeatedly at different positions h along the
object by slowly closing its gripper. In this work, we do not deal with the localization
of the object but assume that a suitable coordinate system on the object is available to
the robot, for example, from a vision system. As soon as the gripper has established a
particular force on the object, the robot stops and records the tactile image of both of its
fingers Z left, Zright ∈ [0, 1]6×14. Furthermore, the robot reads out the distance between
its fingers which serves as an estimate of the object width w of the object at position h.
As a result, we obtain from each grasp a tactile observation z = (Z left, Zright, h, w) that
encodes the observed tactile images, grasping position, and corresponding object width.
After N grasps, this yields a set D = {(zi, ci)}Ni=1 of N of training tuples consisting of
tactile observations annotated with the corresponding class labels. Our procedure for
data acquisition is also illustrated in Figure 6.2, and pictures of some of the objects and
their corresponding tactile images are given in Figure 6.3.

As the finger of the robot is much smaller than all of our objects, the tactile ob-
servations the robot perceives of these objects are generally only partial views. To
perform the classification based on these local image patches, we apply a variant of
the bag-of-features approach (Zhang et al., 2007; Csurka et al., 2004; Agarwal et al.,
2004) which have been successfully applied in the area of computer vision. The bag-
of-features approach is appealing because of both its simplicity and power. The key
idea is to describe the observations with a common vocabulary of features. For tactile
perception, the vocabulary might include features such as “straight”, “round”, and “thin”
observations. Given that the feature vocabulary is rich enough, the resulting feature
histograms are well suited for object classification. For this purpose, a codebook needs

126 Chapter 6: Object Recognition using Tactile Sensors

LEFT RIGHT
FINGER FINGER

(a) cuboid

LEFT RIGHT
FINGER FINGER

(b) triangle

LEFT RIGHT
FINGER FINGER

(c) t-object

LEFT RIGHT
FINGER FINGER

(d) handle

LEFT RIGHT
FINGER FINGER

(e) cylinder

LEFT RIGHT
FINGER FINGER

(f) door key

LEFT RIGHT
FINGER FINGER

(g) large cup

LEFT RIGHT
FINGER FINGER

(h) small cup

LEFT RIGHT
FINGER FINGER

(i) goofy

LEFT RIGHT
FINGER FINGER

(j) figure

LEFT RIGHT
FINGER FINGER

(k) phone

LEFT RIGHT
FINGER FINGER

(l) bottle

LEFT RIGHT
FINGER FINGER

(m) kaleidoscope

LEFT RIGHT
FINGER FINGER

(n) tennis ball

LEFT RIGHT
FINGER FINGER

(o) soft ball

Figure 6.3: Visual and tactile images of some of the objects used in our experiments. The
visual image is depicted at the top and the tactile images corresponding to the left
and right finger at the bottom.

6.1 The Bag-of-Features Model 127

Figure 6.4: Illustration of the bag-of-features approach with three objects described using five
features. The learned histograms contain the occurrence frequency of each feature
on the object.

to be learned that contains the feature histograms of the trained objects. The set of all
feature histograms is called the codebook.

Figure 6.4 graphically illustrates the process of the codebook generation. In this
example, we consider tactile observations of three different objects, i.e., bottle, beer glass,
and coffee mug and five features. The features in of the vocabulary are “thick vertical”,
“medium vertical”, “thin vertical”, “horizontal”, and “diagonal” indicated with the small
patches below the columns of the histograms. By grasping each object at different
positions (indicated by the highlighted rectangles on the objects), the robot estimates the
occurrence frequency of each feature per object and learns the characteristic histograms.
After training, the robot can use these histograms to uniquely identify the grasped
object.

6.1.1 Unsupervised Creation of a Tactile Vocabulary

In practice, the appropriate vocabulary strongly depends on the objects that the robot is
supposed to grasp so that pre-defined vocabularies will in general not suffice. Therefore,
our goal is to create a suitable vocabulary automatically from the training data. Such
a vocabulary can be created using k-means clustering as introduced in Chapter 2. This
requires a distance metric of the tactile observations. A naive approach to compare two
tactile images R, S ∈ [0, 1]6×14 is to compute the pixel-wise distance, i.e.,

d1(R, S) :=
∑
x,y

|rxy − sxy|, (6.1)

where rxy and sxy refer to the components of the tactile image matrices R and S,
respectively. To allow for small translations of the object in the robot’s fingers, we
discount vertical shifts. We achieve this by defining a translation-invariant distance

128 Chapter 6: Object Recognition using Tactile Sensors

measure

d2(R, S) := min
τ=−m,...,m

(d1(R, shift(S, τ)), (6.2)

where shift refers to a matrix operation that vertically shifts the content of the matrix
S up- or downwards and m is the parameter that specifies the number of rows that
the matrix can be shifted. Finally, we create a combined distance for two observations
tuples z1, z2 comprising both fingers and the fingertip distance, i.e.,

dist(z1, z2) := α
(
d2(Z

left
1 , Z left

2) + d2(Z
right
1 , Zright

2)
)

+ (1− α)|w1 − w2|, (6.3)

where α ∈ [0, 1] is a weighting factor determining the influence of differences in tactile
and finger tip distance. In order to circumvent scaling issues between tactile distances
and finger distances, we normalize both of them to have unit variance on the training
set. The result of this clustering step are k cluster centers denoted by µ1, . . . ,µk that
form the tactile features of our vocabulary.

6.1.2 Learning the Feature Histograms

The next step is to learn the codebook, i.e., the set of feature histograms describing
the objects. Each element of the codebook, or feature histogram, hc represents to the
probability distribution over features for a particular object c. Therefore, each histogram
hc has k bins, one for each tactile feature, i.e., hc ∈ Rk. We denote the overall set of
such histograms for the codebook by H ∈ Rk×n.

To learn this codebook, we initialize hc = 0 and update each bin hci of hc according
to the observations z of object c in Dtraining by

hci ← hci + exp(−dist(µi, z)/l), (6.4)

for all i ∈ {1, . . . , k}, where l is the length scale parameter in the observation distance
space. After processing all observations, the individual hc must be normalized so that
the histogram sums to one.

The key idea of the codebook is to have a compact representation of the objects that
allows us to efficiently compute the likelihood that a new observation is generated by
touching a specific object c.

6.2 Selecting Observation Actions 129

6.1.3 Object Classification

To compute the distribution over potential object classes based on an observation, we
proceed as follows. By applying Bayes rule, we can write

p(c | z) = ηp(z | c)p(c), (6.5)

where η is a normalizing constant ensuring that the left-hand side sums up to one over
all c. The term p(c) is the prior over the object classes. In practice, this can be estimated
from the training data or alternatively assumed to be uniformly distributed.

To compute the observation model p(z | c), we generate a histogram hz of a single
observation z according to Eq. (6.4). As a result, we have two distributions over feature
occurrences. With this, we can compute p(z | c) using a similarity measure between
feature histograms of current observation and the histogram stored in the codebook.

There are multiple ways for computing the similarity between histograms. Among
the popular measures for comparing histograms (Hetzel et al., 2001) are the histogram
intersection, the χ2 distance and the Kullback Leibler divergence (KLD). In preliminary
experiments, we found that for our application, histogram intersection yielded the best
recognition results. This is probably due to the fact that the χ2 distance and the KLD
are heavily influenced by features with low support – an effect that can be observed
frequently in our dataset. Thus, the observation model, which is based on the histogram
intersection, is given by

p(z | c) ∝
k∑
i=1

min(hz
i ,h

c
i). (6.6)

The robot can now infer the most likely object class ĉ from a single observation by
computing

ĉ = arg max
c
p(c | z) (6.7)

using Eq. (6.5) and Eq. (6.6). While this leads to good results on small objects with
discriminative features, this strategy is prone to fail on objects that have common partial
views. In particular, for the industrial objects depicted in Figure 6.3, tactile images
acquired from the bottom of these objects would lead to similar data likelihoods for all
industrial objects and thus would not be very informative about the object class.

6.2 Selecting Observation Actions

To uniquely identify an object, the robot therefore has to carry out multiple grasping
actions at different height levels. Starting from a uniform prior p(c) over all object

130 Chapter 6: Object Recognition using Tactile Sensors

classes, we compute the posterior p(c | z1:t) according to Eq. (6.5) and Eq. (6.6) after t
observations and select the maximum-a-posteriori (MAP) object class according to

ĉ = arg max
c
p(c | z1:t). (6.8)

Intuitively, it seems that an uninformed grasping strategy is not optimal. For example,
a large number of grasps might be needed to distinguish different pieces of silverware
if they have similar shafts. We therefore propose an informed technique based on con-
cepts from information theory. Our approach seeks to determine the action a that is
expected to provide the highest information gain, that is, leads to the highest reduction
of uncertainty in the posterior over the object classes. The entropy is defined as

H(c) = −
∑
c∈C

p(c) log p(c). (6.9)

Note that we omit the conditioning on z1:T here to improve the readability. In our
concrete scenario, an action a encodes the (discretized) position at which the robot
grasps an object. Let a1:t be the sequence of grasping actions carried out until the
current time step t and let z1:t be the corresponding measurements obtained so far. The
robot then has to select the action at+1 that leads to the highest reduction in entropy.
Let a be an action under consideration and z be the corresponding observation that is
obtained when carrying out a. The information gain is defined as

I (c; z) = H(c)−H(c | z), (6.10)

and is the quantity that the robot seeks to maximize. Since the robot does not know
which measurement it will obtain by executing an action a, it needs to integrate over
all possible measurement outcomes in order to estimate the information gain, i.e.,

E[I (c; z) | a] =

∫
p(z | a)I (c; z) dz. (6.11)

In practice, reasoning about all potential observations is intractable since the number
of potential measurements grows exponentially in the number of dimensions of the mea-
surement space. A practical approximation, however, is to sum over observations stored
in the training set instead of integrating over the whole observation space, i.e.,

E[I (c; z) | a] ≈
∑

z∈Dtraining

p(z | a)I (c; z). (6.12)

The term p(z | a) can be approximated from the training data by counting how often a
particular observation in Dtraining was obtained when carrying out action a divided by
the number of training samples. Depending on the size of the training database, this

6.3 Experiments 131

sum might still be expensive to compute. To further reduce the complexity, one can
easily down-sample the training set.

This approach allows us to approximate the posterior efficiently since we can directly
utilize the discrete posterior about the identity of an object. The approximations sub-
stantially reduce the number of potential observations that have to be estimated by
simulation compared to the number of possible measurements the sensor can generate.
The ability to carry out such computations efficiently is an important prerequisite for
informed action selection.

After having computed the information gain for each action under consideration, we
select the action ât+1 with the highest expected utility

ât+1 = arg max
a
E[I (c; z) | a]. (6.13)

Every time the robot has to make the decision of where to grasp next, it uses Eq. (6.13)
to determine the action ât+1 with the highest expected information gain and executes it.
As soon as no action provides an expected reduction of uncertainty or the robot reaches
a given level of certainty, the identification task is completed.

In addition to the expected reduction of the entropy, one typically has to consider
a second quantity when selecting the next action. This quantity is the actual cost of
carrying out an action, which needs to be traded off with the expected information gain.
In our setting, however, the cost measured in terms of time needed to carry out an action
can be assumed to be identical for all actions since the movements of the manipulator
are carried out quickly without major differences in the duration. Thus, we ignore the
time needed by the manipulator for changing the position. Considering such a cost,
however, can be done in a straightforward manner by replacing the information gain in
Eq. (6.13) with a suitable utility function.

6.3 Experiments

The first goal of our experiments was to find a suitable number of tactile features k of
the generated vocabulary and a reasonable choice for the mixing factor α weighting the
influence of tactile versus haptic information. With these parameters, we evaluated the
recognition rates of different sets of objects. Finally, we used the information-theoretic
approach to select the observation actions and evaluated to what extend this improved
the recognition rate and recognition convergence.

Tactile Data

For testing our approach, we recorded tactile data for 16 different objects as shown in
Figure 6.3. The first 5 objects are industrial parts with a relatively similar shape (for

132 Chapter 6: Object Recognition using Tactile Sensors

number of clusters k 10 20 30 40 50

recognition rate 58.2% 72.8% 71.7% 84.4% 83.0%

Table 6.1: Influence of the number of tactile features k on the recognition rate.

weighting factor α 0.00 0.25 0.50 0.75 1.00

recognition rate 66.9% 84.3% 81.0% 78.3% 76.0%

Table 6.2: Influence of the weight parameter α on the recognition rate.

example, a metal cube, a cylinder, and a triangle), while the latter 11 objects were
household objects such as cups, toys, and bottles. We created a database of tactile
observations by grasping each object on a predefined path (from bottom to top). Some
objects were included twice in the dataset, both under 0◦ and 90◦ rotation. We obtained
a set of |D| = 830 tactile observations for 21 class labels. All experiments were then
carried out on this dataset using randomized, 2-fold cross-validation. For each run, we
thus had 415 samples for training the model, and 415 (independent) samples for the
evaluation.

6.3.1 Vocabulary and Codebook Creation

Before each run of our experiments, a vocabulary was created from the training data
D by running the k-means algorithm. An example of the resulting centroids is given
in Figure 6.5. We tried different choices for k and found, by evaluating the recognition
rates, that k = 50 was a reasonable choice for the number of clusters given our set of
objects (see Table 6.1). Alternatively, one could try to find k automatically, for example,
by using the Bayes information criterion (BIC). Further, we studied the influence of the
weighting factor α in the distance metric of Eq. (6.3). The results are given in Table 6.2.
As a result of this preliminary experiment, we chose α = 0.5 which means that both the
tactile images and the haptically determined object size were considered being equally
important. With this, we trained the codebook H according to Eq. (6.4) from the set
of labeled training data D.

6.3.2 Recognition Rates

For measuring the recognition rate, we repeatedly chose a random object, and selected
T = 10 random grasp observations z1:T of that object from the test set. With this, we
obtained a recognition rate of 84.6% over all 21 object classes. In experiments on specific
subsets of objects, we found that the household objects among each other were hardly
ever confused (96.2%), in contrast to the industry objects (58.0%), that look (partially)
very similar. The confusion matrices of these experiment are depicted in Figure 6.6. In

6.3 Experiments 133

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(11) (12) (13) (14) (15) (16) (17) (18) (19) (20)

(21) (22) (23) (24) (25) (26) (27) (28) (29) (30)

(31) (32) (33) (34) (35) (36) (37) (38) (39) (40)

(41) (42) (43) (44) (45) (46) (47) (48) (49) (50)

Figure 6.5: Tactile vocabulary created using unsupervised clustering with k = 50. Only the
left finger of the cluster centroids are depicted.

134 Chapter 6: Object Recognition using Tactile Sensors

tr
ia
n
g
le

0
◦

h
an

d
le

0
◦

h
an

d
le

90
◦

t-
o
b
je
ct

0◦

t-
o
b
je
ct

90
◦

cy
li
n
d
er

cu
b
oi
d

la
rg
e
cu
p

sm
al
l
cu
p

tr
ia
n
gl
e
90

◦

d
o
or

ke
y

ti
g
er

to
y

go
o
fy

to
y

m
a
n
to
y
0◦

m
a
n
to
y
9
0◦

ka
la
id
o
sc
op

e
m
o
b
il
e
p
h
on

e
0◦

m
o
b
il
e
p
h
on

e
90

◦

b
ot
tl
e

te
n
n
is

b
a
ll

so
ft

b
a
ll

triangle 0◦

handle 0◦

handle 90◦

t-object 0◦

t-object 90◦

cylinder
cuboid

large cup
small cup

triangle 90◦

door key
tiger toy
goofy toy

man toy 0◦

man toy 90◦

kalaidoscope
mobile phone 0◦

mobile phone 90◦

bottle
tennis ball

soft ball 100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

(a) all objects

la
rg
e
cu
p

sm
al
l
cu
p

d
o
or

ke
y

ti
ge
r
to
y

go
of
y
to
y

m
an

to
y
0◦

m
an

to
y
90

◦

ka
la
id
os
co
p
e

m
ob

il
e
p
h
on

e
0◦

m
ob

il
e
p
h
on

e
90

◦

b
ot
tl
e

te
n
n
is

b
al
l

so
ft

b
al
l

large cup
small cup
door key
tiger toy
goofy toy

man toy 0◦

man toy 90◦

kalaidoscope
mobile phone 0◦

mobile phone 90◦

bottle
tennis ball

soft ball

(b) household objects only

tr
ia
n
gl
e
0
◦

h
an

d
le

0
◦

h
an

d
le

90
◦

t-
ob

je
ct

0◦

t-
ob

je
ct

9
0◦

cy
li
n
d
er

cu
b
oi
d

tr
ia
n
gl
e
90

◦

triangle 0◦

handle 0◦

handle 90◦

t-object 0◦

t-object 90◦

cylinder
cuboid

triangle 90◦

(c) industrial objects only

Figure 6.6: Confusion matrices of the object recognition experiment after 500 object recognition
trials with 10 test grasps each on different subsets of our test objects.

6.3 Experiments 135

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

re
co
g
n
it
io
n
ra
te

number of grasps

informed
uninformed

(a) all objects

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

re
co
g
n
it
io
n
ra
te

number of grasps

informed
uninformed

(b) industrial objects only

Figure 6.7: Comparison of the uninformed and the informed grasping strategy depending on
the number of grasp actions.

our dataset, we have also included a tennis ball and a soft ball, two objects that have
a very similar visual appearance. In our experiments, we found that these two objects
could be separated easily from one another with a recognition rate of 93.8%.

6.3.3 Active Perception

We also verified whether objects can be recognized with fewer grasps when the robot
selects the grasping height based on the expected information gain. We evaluated the
recognition rates after each test grasp in 10 independent runs using both the uninformed
and the informed grasping strategy. The results are summarized in Figure 6.7. On
our full dataset (household and industrial objects), using the information gain strategy
performs on average 5.0% better than random grasping. In particular, one would expect
that a better grasping strategy improves the recognition rates on the more difficult
dataset of industrial objects. Indeed, we measured a performance gain of 18.9% of the
informed strategy over the random one, raising the average recognition rate from 58.0%
to 67.5%. In both experiments, a paired t-test showed significantly improved recognition
rates when choosing the position that maximizes the expected information gain.

With these experiments, we demonstrated that a robot equipped with tactile sensors
can reliably classify a large set of objects using our approach. In particular, we achieved
a correct classification rate of 84.6% over 21 different objects, including objects that
are hard to distinguish visually (for example, soft vs. hard tennis ball) and objects that
share common parts (such as the industrial objects). Furthermore, we showed that the
recognition rate as well as the convergence of the recognition rate improved significantly
when the robot used an active grasping strategy. Based on these results, we conclude
that mobile manipulation robots can use tactile sensors to recognize the grasped object.

136 Chapter 6: Object Recognition using Tactile Sensors

6.4 Related Work

Lee and Nicholls (1999) define a tactile sensor as “a device that can measure a given
property of an object or contact event through physical contact between sensor and
object” that is able to sense one or more of the following modalities: pressure, normal
and sheer forces, torques, slip, vibrations, or temperature. Important properties of
a sensor are its spatial and temporal resolution, noise, hysteresis, creep, and aging.
Different mechatronic principles have been explored in the past such as pressure-sensitive
conductive polymers (Weiss and Wörn, 2005), piezo-resistive sensors (Hasegawa et al.,
2004), piezo-electric vibration sensors (Motoo et al., 2007), and capacitive sensors which
can additionally measure the sheer forces (Chuang and Chen, 2005) or temperature
(Castelli, 2002). Recently, also vision-based tactile sensors have been developed (Ueda
et al., 2005). A good overview of current developments in tactile sensor hardware is
given by Dahiya et al. (2010).

Allen (1988) described an approach to map the 3D shape of objects using tactile
sensors. Okamura and Cutkosky (1999) detected ridges and bumps in the material by
sliding the robotic finger over an object. Omata et al. (2004) showed that piezo-electric
tactile sensors can be used to estimate the deformation properties of biomaterials. Doul-
geri and Arimoto (2007) enabled a manipulator to keep continuously physical contact
with a surface using force-sensitive fingers, and Bierbaum et al. (2009) presented an ap-
proach to explore objects tactically using a five-fingered hand based on potential fields.
Petrovskaya et al. (2006) showed how tactile sensors can be used to estimate the 3D pose
of objects with known shapes and recently presented an algorithm that globally localizes
an object in 6D under performance guarantees (Petrovskaya et al., 2010). As contact
sensors only reveal very little information about the probed object, the distributions
after the first grasps are highly multi-modal. Therefore, both a good representation of
the uncertainty and an effective probing strategy is required. This is a problem with
which we also deal in our work.

Several authors addressed the specific problem of recognizing objects using tactile sen-
sors. Russell (2000) proposed to extract geometric features such as point, line, or area
contacts from pressure images. Based on these geometric features, the system classified
objects into generic classes such as boxes, spheres, and cylinders using hand-coded deci-
sion trees. In contrast to his work, our method is not restricted to pre-defined geometric
shapes but learns both its own set of tactile vocabulary and feature histograms. Taka-
muku et al. (2008) used an anthropomorphic hand for recognizing objects. They found
that the recognition rate improves significantly after repeatedly opening and closing the
hand around the object until the object converges into a discriminative position. More
recently, Gorges et al. (2010) recognized different objects based on tactile and kinesthetic
sensors using self-organizing maps (SOMs). In their experiments, Gorges et al. found
that additional passive degrees of freedom between the robotic fingers and the tactile

6.5 Summary 137

sensor array helped the objects to settle in characteristic positions, which significantly
improved the recognition rates.

Tactile sensing requires to deal with actions and observations at the same time, as
no tactile observations can be made without touching an object. In their seminal work,
O’Regan and Noë (2001) proposed the view that the human brain represents the ex-
ternal world as sensorimotor experiences. Jeannerod (2007) extended this idea towards
an object-oriented view, i.e., that objects have both perceptual and motor-function at-
tributes that should be modeled jointly. Both approaches are strongly related to the
concept of object affordances as introduced by Gibson (1977). Both Takamuku et al.
(2008) and Gorges et al. (2010) exploited in their work that the shape of an object
induces a few stable, characteristic grasps which helps to distinguish objects. In our
approach, we explicitly exploit the relationship between grasping actions and tactile
observations and achieve a significant improvement of the recognition rate.

In contrast to all previous works on tactile object recognition, our approach ensures
that the tactile features match the data as the robot generates them from real data
by creating a tactile vocabulary. Also, the learned codebook is well grounded as the
robot learns the feature histograms from its own tactile observations. Furthermore,
most related approaches have only been evaluated on a small set of different objects
while we validated our approach on a large set of 21 different object classes.

6.5 Summary

In this chapter, we presented a novel approach for object recognition using tactile obser-
vations based on the bag-of-features model. The robot creates a feature vocabulary for
the tactile observations based on unsupervised k-means clustering and learns a codebook
over this vocabulary to describe the appearance of objects. Subsequently, it can use the
learned codebook to recognize a large set of objects. To reduce the number of required
grasps, we extend our approach to active grasping with a decision-theoretic framework
that uses the expected information gain of potential grasp actions. In experiments on a
real manipulation robot, we validated our approach on a large set of real-world objects
and achieved accurate recognition results. Furthermore, we demonstrated that our ap-
proach on active grasping significantly improves the recognition rate. As a result, our
approach enables manipulation robots to quickly identify the grasped objects.

Chapter 7

Object State Estimation
using Tactile Sensors

In the previous chapter, we introduced tactile sensors as an additional source of infor-
mation that enables a manipulation robot to identify the grasped object. To recognize
the object, the robot acquired static tactile images after grasping was complete. In
contrast to this, we focus in this chapter on features that describe the dynamics in the
tactile response while the robot is grasping or manipulating an object. As we will show,
the dynamic components of the tactile signal can be used to infer several aspects of the
internal state of an object. For example, these features allow a robot to detect whether
a grasped bottle contains liquid and whether its cap has been properly closed. This in-
formation is highly relevant for domestic robots that fulfill service tasks such as tidying
up.

We motivate this problem with an example. The robot depicted in Figure 7.1a is given
the task of tidying up a table full of bottles. To achieve this task, the robot has to decide
which bottles are full or empty and, therefore, can be disposed or have to be placed in
the fridge. As the bottles are opaque, it is difficult to determine their fill state purely
from vision. The approach presented in this paper enables a robot to estimate this state
by manipulating the object, i.e., by squeezing and rolling it as shown in Figure 7.1b.

In this chapter, we develop a novel set of dynamic tactile features that most manipula-
tion robots equipped with force-sensitive finger tips can extract while they are grasping
an object. Our set includes features that describe the deformation properties of an ob-
ject such as the average compression ratio and compression velocity. Based on these
features, we learn a decision tree classifier and show that a robot can use it to reliably
estimate both the identity of an object and its internal state. As an application, we
demonstrate that a robot can distinguish open from closed containers and full ones from

140 Chapter 7: Object State Estimation using Tactile Sensors

(a) (b)

Figure 7.1: (a) To clean the table, the service robot needs to decide which bottles it can dispose
because they are empty. (b) The robot detects liquid in a bottle by actuating it.

empty ones. To show that this is a hard perception problem, we conduct a comparative
study with human test subjects that perform the same discrimination task. In further
experiments carried out on a real robot, we demonstrate that a robot can detect the
liquid in a container by slowly rolling it.

In Section 7.1, we develop our approach based on a set of dynamic tactile features. We
evaluate our algorithm on a large set of real data and compare the performance of the
algorithm with that of humans in a similar discrimination task in Section 7.2. Inspired
by the feedback obtained in this human study, we introduce in Section 7.3 an additional
dynamic feature based on the high-frequency components in the tactile sensor signal.
In a second set of experiments, we demonstrate that this feature can be used to detect
liquid in a container. Finally, we conclude this chapter with a discussion of related work
in Section 7.4.

7.1 Generic Tactile Features for State Estimation

We assume that a mobile manipulator has a force-sensitive finger tips installed in its
gripper that reports at each point in time its position p(t) ∈ R, velocity ṗ(t) ∈ R and
the force f(t) ∈ R acting on its fingers. In this section, we formulate our approach based
on these raw (and noisy) sensor measurements. Furthermore, we assume the existence
of a controller that we can use to apply a specified force on an object. The aim here is
that the controller should not damage the objects but still should be able to grasp the
object firmly.

7.1 Generic Tactile Features for State Estimation 141

(a)

2× 1 array
(side)

1× 1 array
(back)

2× 1 array
(top)

2× 1 array
(side)

5× 3 tactile sensor array
(inner surface of fingertip)

(b)

Figure 7.2: (a) Image of the PR2 gripper used in our experiments. (b) Schematic drawing of
the tactile sensor consisting of 22 cells installed in both finger tips.

7.1.1 Feature Extraction

In this work, we concentrate on internal state estimation using two-fingered grasps. Such
grasps involve pinching an object between its fingers. In our implementation, we used a
robotic gripper with two fingers (see Figure 7.2), in principle, our approach also applies
to multi-fingered hands.

In preliminary studies, we found that the position, velocity, and force profile of a
prototypical grasp has a shape schematically depicted in Figure 7.3. The distance p(t)
represents in our case the distance between the two fingers, but could also refer to the
volume of the enclosed region of a multi-fingered hand. It decreases until contact with
the object is made. The object may deform slightly but ultimately will result in a
steady state where the distance between two fingers stays constant. ṗ(t) corresponds to
the velocity of the fingers. f(t) represents the total force measured at the fingertips using
the tactile sensors. Before contact is made, this value is zero. The spike indicates the
onset of contact. After the impact, the force reduces again as the object gets deformed
and the fingers decelerate. After a while, the motion of the fingers stops and a steady
state is reached.

From these profiles, we identified two important points in time: the moment the
gripper makes first contact with the object tfirst and the time tsteady after which the
sensor values have converged to a steady state. In practice, we require for the first
contact detection that both fingers are in contact with the object, i.e., that the force
measurement of both fingers is above a threshold F . tsteady denotes the point in time
where the gripper comes to rest, i.e., its velocity drops below a value V :

tfirst = arg min
t
|f(t)| > F, (7.1)

tsteady = arg min
t>tfirst

|ṗ(t)| < V. (7.2)

142 Chapter 7: Object State Estimation using Tactile Sensors

Figure 7.3: Illustration of a generic force, position, and velocity profile while grasping an object.

At moment tfirst, we extract the first contact distance pfirst = p(tfirst). This is the distance
between the two fingertips when contact with the object is first achieved. Note that this
is a measure of the uncompressed size of the object. The second feature is the distance
between the two fingertips after the gripper has compressed the object fully. We label
this the steady state distance

psteady = p(tsteady). (7.3)

Note that this distance is a function of both the material and geometric properties of
the object and of the internal state of the object, i.e. whether the object is open or
closed and full or empty.

Another useful feature is the time that it takes between making contact with the
object and coming to a rest, denoted by

∆t = tsteady − tfirst. (7.4)

Additional features are defined using the force measured by the fingertip sensor array.
Let ffirst be the measured force when both fingertips make first contact with the object
and fsteady be the measured force once the finger have come to rest. Two other useful
features are the average velocity ∆p/∆t of compression and the average rate of change
of the fingertip center sensor force ∆f/∆t, which can be computed from the features
from above as follows:

∆p/∆t = (psteady − pfirst)/∆t, (7.5)

∆f/∆t = (fsteady − ffirst)/∆t. (7.6)

The average velocity ∆p/∆t represents the rate at which the object gets compressed and
can differ based on the material properties and the geometry of the object. Equivalently,
∆f/∆t could be thought of as representing an average compression ratio. For computing
the measured force, we sum over the measured forces of all cells in the tactile sensor
array.

These six generic features can be easily extracted by most robots equipped with tactile

7.1 Generic Tactile Features for State Estimation 143

Feature Description

pfirst finger distance at first contact
psteady distance after which grasping is complete
fsteady force sensed after grasping has completed
∆t time between first contact and steady state
∆p/∆t average compression velocity
∆f/∆t average compression ratio

Table 7.1: Proposed set of tactile features.

sensors while grasping an object. Although we do not claim that this list is complete,
we were able to reliably estimate the internal state of various containers.

7.1.2 Decision Tree Classifier

Using the tactile features defined above, we gathered data for a large number of different
objects. For each trial, we obtained measurements for the 6-dimensional feature vector
a ∈ R6, i.e.,

a = (pfirst, psteady, fsteady,∆t,∆p/∆t,∆f/∆t)
T , (7.7)

and a label c ∈ C describing the object’s class and internal state. As a result, we
obtained a training database D containing a sequence of attribute-class tuples (a, c). A
summary of our six generic tactile features is given in Table 7.1.

Subsequently, we applied a C4.5 decision tree classifier on our training data as intro-
duced in Chapter 2. We also tried other supervised classifiers such as support vector
machines and neural networks, from which we obtained similar (or slightly worse) re-
sults. The reason for this might be that all algorithms are able to extract almost the
same amount of data from the training set. The advantage of decision trees over other
classifiers is that the learned concepts can intuitively be interpreted. The C4.5 decision
tree classifier (Quinlan, 1992) is an extension of the ID3 algorithm that can additionally
deal with continuous attributes.

7.1.3 Experiments

The hardware used for the experiments described in this chapter is part of the PR2 robot
from Willow Garage. The PR2 is a general-purpose mobile manipulation robot with two
arms. Each gripper (see Figure 7.2a) has one degree of freedom which is actuated by a
brushless DC motor with a planetary gearbox and an encoder. The rotary motion of the
motor is converted into linear motion of the two fingertips of each gripper. Thus, the
PR2 gripper is essentially a parallel jaw gripper with 1-DOF. We used the encoder for
measuring the finger position p(t) and velocity ṗ(t). The gripper can apply a maximum

144 Chapter 7: Object State Estimation using Tactile Sensors

0

25000

50000

75000

100000

0 25 50 75 100 125 150 175 200

ra
w

se
n
so
r
va
lu
es

applied force [N]

raw sensor values

Figure 7.4: Calibration data relating raw sensor values to forces calibrated using a load cell.

force of 200N but is software limited to 100N. Note that this is also approximately the
amount of force that a human can apply by pinching the forefinger and thumb together.

Tactile Sensor

Each finger has a capacitive sensor consisting of 22 individual cells mounted on the
fingertip. A 5×3 array is mounted on the parallel gripping surface itself while 2 sensors
are mounted on the tip of the fingertip, 2 sensors on each side of the fingertip and one on
the back, see Figure 7.2b. For this set of experiments, the data from the inner surface
of each fingertip was fused into a single force measurement fraw(t) by summing over all
sensor cells. The sensors are capacitive-based pressure sensors and respond to normal
pressure exerted on the fingertips. We recorded a calibration curve g(fraw) = fcalibrated for
the sensors using a load cell. The calibration curve as depicted in Figure 7.4 was used as a
lookup table. As a result, we obtain calibrated sensor values f(t) = g(fraw(t)) measured
in Newtons. Measurements from the tactile sensors on the grippers are obtained at
25Hz while proprioceptive joint data is measured at 1KHz. All the joints on the robot
are torque controlled in a 1KHz soft realtime loop. An accelerometer in the gripper
measures accelerations in the frame of the gripper which is sampled at 3KHz.

Switching Velocity-force Controller

We explored different controllers for the gripper to achieve the objective of grasping
objects without crushing them. A pure velocity controller cvelocity(ṗ(t), t) makes the
gripper approach an object slowly, but after it contacts the object, it increases its force
output in order to establish a constant velocity ṗtarget and thereby crushes the object.
Another option is to use a force controller cforce(f(t), t). Such a controller can hold an
object in the hand firmly, by trying to apply a constant force ftarget. With a constant
force controller, the gripper continuously accelerates until contact is achieved. This can
lead to high velocities at impact. As an example, see Figure 7.5, where the gripper
was grasping a very rigid object (here, a wooden block). The significant impact force
applied to the object on contact can easily damage rigid, but delicate objects, like eggs.

7.1 Generic Tactile Features for State Estimation 145

0

20

40

60

80

100

0 2 4 6 8 10 12

m
ea
su
re
d
fo
rc
e
[N

]

time [s]

soft object
hard object

Figure 7.5: Measured net fingertip force (N) for grasping a wooden block (hard) and a rubber
toy (soft) when using a pure force controller. The high impact forces can destroy
delicate, but rigid objects, like eggs.

0.05
0.06
0.07
0.08
0.09
0.1

0 2 4 6 8 10 12
0
5
10
15
20
25

fi
n
ge
rt
ip

d
is
ta
n
ce

[m
]

m
ea
su
re
d
fo
rc
e
[N

]

time [s]

p(t)
f(t)

Figure 7.6: This plot shows the reduced impact forces when using our switching controller.
Note that the fingertip force does not spike above the desired probing force on
impact.

Of course, the applied constant force could be reduced to deal with such cases. In
practice, however, if the commanded force is below the force required to overcome static
friction, the gripper does not move at all.

Driven by these considerations, we chose to create a switching controller: first, we
close the gripper slowly around an object using the velocity controller until it makes
contact with the object. Then, we switch seamlessly to the force controller in order to
gently measure the object’s deformability properties, i.e.,

cgrasping(t) =

{
cvelocity(ṗ(t), t) while f(t) = 0

cforce(f(t), t) thereafter.
(7.8)

This switching controller has two parameters: both the initial velocity ṗtarget and the
probing force ftarget have influence on the executed grasp.

The result of the switching velocity-force controller can be seen in Figure 7.6. Here,
a wooden block was grasped by the gripper using the new controller. The peak force
acting on the object is significantly lower. In preliminary experiments, we found that
this controller was successful in grasping eggs without crushing them.

146 Chapter 7: Object State Estimation using Tactile Sensors

(a)

a b c d

Odwalla bottles = a 58 1 0 1
Naked bottles = b 8 40 0 0
Softdrink cans = c 0 0 41 3
Water bottles = d 0 0 1 76

(b)

Figure 7.7: (a) Bottles and cans used in our experiments. From left to right: Odwalla bottles,
water bottles, Naked bottles, Softdrink cans. (b) Confusion matrix for recognizing
the class of the container. The recognition rate is 93.9%.

Evaluation of Object Recognition and State Estimation

In this section, we describe our experimental setup and subsequently present our results
on the recognition rate of object classes and internal states using our approach.

The container classes present in our training set are Odwalla fruit juice bottles, Naked
fruit juice bottles, soda cans and plastic water bottles, see Figure 7.7a. The internal
states of these containers are: closed and full, open and full, open and empty, and closed
and empty (except for the soda cans, which cannot be closed again after having been
opened).

We started the acquisition of training samples with the gripper fully open. The
containers were placed one at a time between the gripper fingertips, i.e., we did not
deal with localizing the object prior to grasping via vision nor with moving the gripper
towards the object. The gripper was then closed using the switching force velocity
controller described earlier. Once the gripper came fully to rest, the controller waited
for a small interval of time before opening the gripper fully. During each trial, the
features described in Section 7.1 were extracted and written to a file.

We collected data for each of the internal states for each container class using our
controller. We carried out a total of 66 trials with 12 Odwalla fruit juice bottles in 4
different internal states, 80 trials with 16 water bottles in 4 different internal states, 42
trials with 12 cans with 3 different internal states, and 41 trials with 10 Naked fruit juice
bottles with 4 different internal states. We used different instances of each container
class in collecting the data to account for variations within a container class. We also
rotated the containers between taking measurements to account for variations in surface
properties of individual containers. All this data was collected with the probing force set
to ftarget = 20N. We also collected a subsequent dataset just for the Odwalla fruit juice
bottles using three different probing forces of 17, 20 and 23N. This involved conducting

7.1 Generic Tactile Features for State Estimation 147

ftarget Recognition Rate

17N 69.8%
20N 83.3%
23N 94.8%

Table 7.2: The recognition rate depends on the probing force parameter ftarget. Here, the
recognition rates for the Odwalla fruit juice bottles are given.

24 trials for each internal state for a total of 96 trials for all the 4 internal states for
each probing force.

To test our classifier, we used ten-fold cross-validation for each experiment. First, we
divided the stratified dataset into 10 parts. Second, we learned the classifier on 9 parts
and used it subsequently to classify the test instances from the remaining part. This was
repeated for each of the ten folds such that we ended up with target class predictions for
all instances in the dataset. Finally, we compared the predictions to the true target class
and computed the recognition rate as the ratio between correct and incorrect instances.

In the first experiment, we found a 93.9% accuracy in recognizing the different liquid
containers. Figure 7.7b shows the confusion matrix for this experiment. From the
learned decision trees, this high performance can mainly be attributed to the different
size of objects, thus pfirst and psteady are very discriminative for this set of containers.
Note that our approach is not meant to compete with other senses like vision, but is
meant to complement other approaches and could, for example, be used to confirm a
particular object class hypothesis while the robot grasps an object.

After that, we evaluated the recognition rate of the internal state of a container,
given its class. We found that the recognition rate strongly depends on the particular
container. This result is not surprising, as obviously feeling the internal state of a
container strongly depends on how well it manifests its internal state to the outside,
i.e., in its tactile appearance. Interestingly, we found that the Odwalla bottles were
separable the easiest. Their internal state was estimated correctly at 94.8%, compared
to 74.4% for cans, 58.3% for Naked bottles, and only 32.5% for water bottles. The
reason for the low performance on water bottles could be that they are made of very
flimsy plastic and tend to deform unpredictably.

We also found that the recognition rate was a function of the parameters of our switch-
ing controller. While the influence of the initial grasping velocity ṗtarget was negligible,
we found that choosing a good probing force ftarget could improve the recognition sub-
stantially (see Table 7.2). This parameter determines how hard the gripper probes into
the object and should therefore be carefully selected according to the object class. In
the case of the Odwalla bottle, we found, for example, the stronger probing force of
ftarget = 23 N to be more informative than weaker ones, yielding a recognition rate of

148 Chapter 7: Object State Estimation using Tactile Sensors

a b c d

full closed = a 24 0 0 0
empty open = b 0 20 1 3

full open = c 0 0 24 0
empty closed = d 1 2 0 21

Table 7.3: Confusion matrix of our approach for recognizing the internal state of an Odwalla
fruit juice bottle from the tactile appearance using a robotic gripper (ftarget = 23N).
The recognition rate is 94.8%.

the internal state of 94.8%. The confusion matrix for the specific case of recognizing
the internal state of an Odwalla bottle is shown in Table 7.3.

In a combined experiment, where we let the robot estimate both the container class
and the object internal state except for water bottles (resulting in 11 possible combina-
tions), we obtained a recognition rate of 63.8%.

By evaluating the learned decision trees, we found that the open and full bottle tends
to be compressed for the longest time, i.e., ∆t is large. The steady state force fsteady
differentiates between the open and empty bottle and the empty and closed bottles
while the steady state distance psteady differentiates the closed and full bottle very easily.
However, when we repeated this experiment with bottles that had been subjected to
repeated compressions, the recognition rate decreased again to 81.0%. This is not
surprising considering that the classifier was trained on data from fresh bottles while
the testing was now done with bottles that had been subject to repeated stress.

Our experiments show that our approach enabled the robot to recognize the container
classes at the high rate of 93.9%. The performance on recognizing the internal class
strongly depends on the object class, ranging from excellent 94.8% for the Odwalla
bottle down to only 32.5% for the flimsy water bottles.

7.2 Comparative Human Study

We designed a human study to compare the performance of the robot to that of humans
for the internal state estimation problem. The aim of the study was to find out if,
using only tactile feedback, humans could achieve comparable recognition rates for the
task of recognizing the internal state of an object. Figure 7.8a shows the experimental
setup used for this study. We asked the test subjects to recognize, using only tactile
information from squeezing a bottle, the internal state of the bottle. Beforehand, we
provided the test subjects with the opportunity to train until they were confident about
their ability to discriminate between the different internal states of the bottles. Then,
we asked each test subject to identify the internal state of 16 different bottles sequenced
in a random order. The subjects were instructed not to move or pick up the bottles and

7.2 Comparative Human Study 149

(a)

a b c d

empty open = a 48 8 5 0
empty closed = b 5 41 1 3

full open = c 16 11 55 2
full closed = d 2 8 7 63

(b)

Figure 7.8: Experimental setup and results of the comparative human study. (a) The human
test subject estimates the state of a juice bottle. (b) Confusion matrix for all
human subjects for recognizing internal state of an Odwalla fruit juice bottle. The
recognition rate is 75.2%.

could not see the bottles while they were grasping them. To simulate the two-fingered
grasp used by the gripper, we asked the test subjects to use only their thumb and
index finger for the grasping task. Additionally, the test subjects wore noise-canceling
headphones to minimize the sound cues that subjects could pick up. In total, 17 persons
participated in our study.

Figure 7.8b shows the overall confusion matrix for all the trials together. The average
recognition rates for all the subjects was 75.2%. The highest recognition rate was
for bottles that were full and closed. There was considerable confusion between the
empty/closed and full/open bottles. Based on a questionnaire filled out by the subjects
at the end of the test, we found that most subjects were using features similar to the
ones chosen for the learning approach. The two most cited features by the human
subjects were the total compression distance and the rate at which the bottle returns
to its original shape. The second feature is easier for humans to detect than for the
robot since the grippers on the robot are not easily back-drivable. The most successful
test subjects cited a different set of features to discriminate between the bottles. They
used high-frequency feedback from tapping the bottle with their fingers to detect the
presence or absence of liquid in the bottle. We took this inspiration to develop a novel
tactile feature that enables a robot to extract similar information and to use it for the
detection of liquid in containers. We present this extension of our approach in the next
section.

150 Chapter 7: Object State Estimation using Tactile Sensors

Figure 7.9: Containers used in the experiments
to determine the presence of liquid.
From left to right, top to bottom:
Sauve, Nesquik, Dry Erase Cleaner,
Zero Calorie, 409 containers, tape
dispenser, Odwalla Orange, Might
Mango, Summer Lime, Green Tea,
dummy weight, Tropicana, water
bottle, Coffee Mate, CVS HP and
Palmolive containers.

7.3 High-frequency Tactile Feature for State
Estimation

Several human subjects cited their use of high-frequency feedback from tapping the con-
tainer with their fingers as critical to the success of their recognition efforts. Gaining
such information with a robot, however, requires the ability to excite an object suffi-
ciently fast and the ability to sense the response of the object to such actuation. Most
robotic hands do not have the high bandwidth necessary for such actuation. In our
case, the gripper by itself is not fast enough to excite the contents of the container in
such a manner. However, we found that we could achieve the desired effect by using
the entire arm of the PR2. In this section, we expand on the details of actuation and
sensing for the PR2 to be able to use high-frequency information to detect the internal
state of objects. We present experimental results that show how this information can
prove useful, in particular, in detecting the presence of liquids inside containers.

Figure 7.1b show snapshots of the actuation procedure for experiments designed to
excite the internal contents of objects. The objects used in the set of experiments are
liquid containers. Each container is grasped firmly in the gripper of the PR2 and rolled
from side to side at about 0.6Hz. This motion is designed to excite the internal contents
of closed containers. Note that if the object were an open container, its contents would
spill out as a result of this motion.

In preliminary experiments, we also tried horizontal movements that would allow for
open containers. However, we found the PR2 to be too slow to sufficiently excite the
contents of the probed containers. This forced the use of the strongest joint on the
robot (the joint that rolls the wrist from side to side) to sufficiently excite the contents
of the container by forcing the liquid to slosh around under the influence of gravity. In
our belief, the overall approach is more generic and should be executable on any robot
that is capable of exciting the internal contents of objects at higher frequencies. In
particular, we believe that it is also applicable to open containers with liquid in them

7.3 High-frequency Tactile Feature for State Estimation 151

-20

-10

0

10

20

30

40

50

12 13 14 15 16 17 18 19 20

ra
w

ac
c.

[m
/s

2
]

Odwalla bottle, no liquid

-20

-10

0

10

20

30

40

50

12 13 14 15 16 17 18 19 20

Odwalla bottle, with liquid

raw acc. x
raw acc. y
raw acc. z

raw acc. x
raw acc. y
raw acc. z

(a) raw measurements of the accelerometer

-20

-10

0

10

20

30

40

50

12 13 14 15 16 17 18 19 20

fi
lt
er
ed

ac
c.

[m
/s

2
]

time [s]

-20

-10

0

10

20

30

40

50

12 13 14 15 16 17 18 19 20

time [s]

filtered acc. x
filtered acc. y
filtered acc. z

filtered acc. x
filtered acc. y
filtered acc. z

(b) after 5Hz high-pass filtering of the accelerometer data

Figure 7.10: Accelerometer data corresponding to a container without liquid (left column) and
with liquid (right column) for the Odwalla orange juice bottle.

if the robot were capable of shaking the container from side to side at a high frequency
while maintaining it level.

Experimental results are presented here for the 15 different containers depicted in
Figure 7.9. Five trials were carried out for 13 containers with liquid in them. The
liquids in the different containers included water, orange juice, mango juice, shampoo
and cleaning fluid, thus representing a good range of viscosity and content. Most of the
containers were filled to half their volume with liquid. The Odwalla Orange container
was tested with two amounts of liquid in it - full and half-full, the Dry Erase Liquid
container was tested with a full volume of liquid and the Mighty Mango and Sauve
containers were tested when about a quarter full. Five trials each were also carried out
for 13 of the containers with no liquid in them, i.e., the contents of the container were
completely emptied out. An additional five trials were carried out for a rigid weight
that weighed about the same as some of the containers with liquid in them. Figure 7.9
shows all the containers used in the experiment.

152 Chapter 7: Object State Estimation using Tactile Sensors

7.3.1 Training Data

The data measured and recorded for each trial included acceleration data from the
accelerometer in the gripper of the robot, tactile sensor data from all 44 elements of the
tactile sensors on both fingers of the PR2 gripper and joint positions, velocities, and
torques for all the moving joints in the arm of the PR2.

Figure 7.10 and Figure 7.11 represent two example sets of sensor data for the time
period when the container is being rolled: the plots on the left of each figure correspond
to data for a container with no liquid in it while the plots on the right correspond to
data for a container with liquid in it. The accelerometer data in Figure 7.10 (top) is
noisy and dominated by the component corresponding to the motion of the container.
Figure 7.11 (top) shows the individual tactile sensor responses (for all 44 tactile sensors)
over the same period. It is clear that the raw data in this form is not very useful to
discern the presence or absence of internal contents in the container.

Our key idea is that liquid sloshing around in a container will produce high-frequency
responses that the robot can measure. We preprocessed both the acceleration data
and the tactile data with a high-pass filter. After filtering, we condensed the 3- and
44-dimensional signal for the acceleration and tactile data, respectively, into a single,
real-valued signal by computing the Euclidean norm of the signal vector.

Figure 7.10 (bottom row) and Figure 7.11 (bottom row) show the resulting signal
from acceleration data and the tactile sensor data filtered through a 5Hz high-pass
filter, respectively. The filter attenuates the low-frequency components corresponding
to the rotation of the container. While the accelerometer signal is slightly different for
the two cases, the higher-frequency components in the tactile sensor data, however, are
clearly different when the container has liquid in it. The sloshing of the liquid in the
container due to its excitation during the rolling of the container results in a spike in
the tactile sensor pressure whenever the direction of rotation undergoes a change. This
information can easily be computed online and is used to train a classifier that can
detect the presence of liquids in containers. For that, we compute the variance in the
signal measured by the tactile sensor while the object is being actuated. The difference
in this value for the two cases (presence or absence of liquids), is large and consistent
across different containers. A summary of our results is given in Table 7.4.

In contrast to the tactile sensor, the accelerometer is significantly affected by the
motion of the arm. This makes the acceleration data noisy. It is possible that an
accelerometer placed closer to the object (for example, on the fingertips) may be able
to capture better object information. The tactile sensors on the PR2 are closer to the
object and the multiple sensor cells on the sensor can measure the response at multiple
points on the object at the same time.

7.3 High-frequency Tactile Feature for State Estimation 153

0

2

4

6

8

10

12 13 14 15 16 17 18 19 20

ra
w

fo
rc
e
[N

]

time [s]

Odwalla bottle, no liquid

0

2

4

6

8

10

12 13 14 15 16 17 18 19 20

time [s]

Odwalla bottle, with liquid

(a) raw measurements of the 44 tactile sensor cells

-0.1

-0.05

0

0.05

0.1

12 13 14 15 16 17 18 19 20

fi
lt
er
ed

fo
rc
e
[N

]

time [s]

Odwalla bottle, no liquid

-0.1

-0.05

0

0.05

0.1

12 13 14 15 16 17 18 19 20

time [s]

Odwalla bottle, with liquid

(b) after 5Hz high-pass filtering of the 44 tactile sensor cells

0

0.2

0.4

0.6

0.8

1

12 13 14 15 16 17 18 19 20

ta
ct
il
e
si
gn

al
[N

]

time [s]

Odwalla bottle, no liquid

0

0.2

0.4

0.6

0.8

1

12 13 14 15 16 17 18 19 20

time [s]

Odwalla bottle, with liquid

ffiltered(t) ffiltered(t)

(c) combined tactile feature

Figure 7.11: Tactile sensor data corresponding to a container without liquid (left column) and
with liquid (right column) for the Odwalla orange juice bottle. The sloshing liquid
produces very clear spikes in tactile signal (bottom right).

154 Chapter 7: Object State Estimation using Tactile Sensors

7.3.2 Feature Extraction

The high-pass filters we apply to each of the tactile sensors i ∈ 1, . . . , 44 are first-order
Butterworth filters designed with a cutoff frequency of 5Hz for the sampling rate of
24 Hz. A similar filter (designed for the sampling rate of 3KHz) is also applied to the
accelerometer signal. The use of the 5Hz cutoff frequency was motivated by experiments
that showed that humans possess tactile receptors that specifically react to signals in
the 5–50Hz range when responding to force disturbances (Johansson and Flanagan,
2009). Let f ifiltered denote the filtered signal for each individual tactile sensor element
(here i ∈ 1, . . . , 44). We combine the signals of all tactile sensor elements into a single
signal by computing the Euclidean norm of the filtered signal vectors, i.e.,

ffiltered(t) =

(∑
i∈1,...,44

(f ifiltered)2

)1/2

. (7.9)

From this combined signal, we estimate the sample mean and variance of this signal as

µ =
1

n

∑
t=1,...,n

ffiltered(t) and (7.10)

σ2 =
1

n− 1

∑
t=1,...,n

(ffiltered(t)− µ)2, (7.11)

where n is the number of data samples while the robot was rolling the object and t

refers to the corresponding time indices. In total, we collected data from 136 trials of
15 different containers, see Table 7.4.

For detecting the presence of liquid, we use the estimated signal noise σ as the only
tactile feature. The target attribute is binary, i.e., either indicating an empty or a filled
container. We train a decision tree classifier and evaluate its performance using ten-fold
cross-validation.

7.3.3 Experiments

The learned classifier was able to predict the correct internal state of a bottle correctly
in 91.9% of the cases. Table 7.5 gives the confusion matrix for this experiment.

By looking at the instances for which prediction errors occurred, we found that all
five examples of a full CVS HP bottle were incorrectly classified as empty. This bottle
is much smaller than the other containers. As a result, the tactile response is relatively
small, when compared with the response of heavier containers.

To remedy this problem, we provided in another experiment the weight of the object
in the gripper as a second (additional) feature. By using both the weight and the signal
noise, we found a 98.5% correct classification rate. It is important to note that the

7.3 High-frequency Tactile Feature for State Estimation 155

Object State Weight Trials Avg. Tactile
[kg] Feature [N]

Dummy object no liquid 0.199 5 0.000 ± 0.000

409 no liquid 0.074 5 0.004 ± 0.001
with liquid 0.459 5 0.177 ± 0.104

Coffee Mate no liquid 0.0417 5 0.003 ± 0.002
with liquid 0.3188 5 0.292 ± 0.333

CSV HP no liquid 0.0268 5 0.001 ± 0.002
with liquid 0.160 5 0.002 ± 0.001

Dry Erase Cleaner with liquid 0.254 5 0.025 ± 0.014

Green Tea no liquid 0.033 5 0.000 ± 0.000
with liquid 0.300 5 0.012 ± 0.007

Mighty Mango no liquid 0.0381 3 0.000 ± 0.000
with liquid 0.075 5 0.042 ± 0.026

Nesquik no liquid 0.038 5 0.000 ± 0.000
with liquid 0.311 5 0.042 ± 0.016

Odwalla Orange no liquid 0.031 5 0.000 ± 0.000
half full 0.311 5 0.011 ± 0.009
full 0.487 5 0.041 ± 0.018

Palmolive no liquid 0.045 5 0.000 ± 0.000
with liquid 0.390 5 0.312 ± 0.061

Sauve with liquid 0.206 5 0.030 ± 0.010

Summer Lime no liquid 0.029 3 0.008 ± 0.007
with liquid 0.315 5 0.093 ± 0.043

Tropicana no liquid 0.032 5 0.000 ± 0.000
with liquid 0.256 5 0.052 ± 0.048

Water Bottle no liquid 0.014 5 0.000 ± 0.000
with liquid 0.253 5 0.179 ± 0.035

Zero Calorie no liquid 0.042 5 0.000 ± 0.000
with liquid 0.323 5 0.041 ± 0.022

Table 7.4: Evaluation of the high-frequency tactile feature for various objects.

156 Chapter 7: Object State Estimation using Tactile Sensors

a b

no liquid = a 58 3
with liquid = b 8 67

Table 7.5: Confusion matrix for the recognition rate of the fill state of various objects using
high-frequency filtering on tactile data. The recognition rate is 91.9%.

0

0.05

0.1

0.15

0.2

12 13 14 15 16 17 18 19 20

ta
ct
il
e
si
gn

al
[N

]

time [s]

ffiltered(t)

(a) heavy dummy object, no liquid

0

0.05

0.1

0.15

0.2

-5 0 5 10 15 20 25 30

time [s]

ffiltered(t)

(b) light CVS HP bottle, with liquid

Figure 7.12: The weight only marginally influences the high-frequency feature. The heavy
dummy object in (a) shows virtually no response, while the light CVS HP bottle
in (b) produces clear spikes.

heavy weighted dummy object was classified correctly as containing no liquid, while the
light CVS HP bottle was correctly classified as containing liquid. When looking at the
learned decision tree, we found that the resulting classifier uses both the tactile signal
and weight for predicting the fill state of a container.

In our experimental setup, one might argue that the weight is a strong indicator of
the internal state of an object. While it may have some contribution to the amplitude of
the observed high-frequency part of the tactile signal induced by the robot’s motors, it is
worth noting that the corresponding signal shown in Figure 7.12 for the dummy weight
displays virtually no high-frequency component, while the signal of the much lighter
CVS HP bottle displays a weak but clear signal. This implies that the presence of liquid
in the containers plays a significant role for the observed tactile feature ffiltered(t), but
that its magnitude depends on the weight of the liquid content.

However, we also found that the tactile signal corresponding to a slip of the object
also has a high-frequency component. Heavier objects are most likely to slip, especially
if they are hard to grasp in the parallel jaw gripper of the PR2. A heavier weight (the
tape dispenser in Figure 7.9 weighing about 0.5 kg) does display the same frequency
response as containers with liquid as illustrated in Figure 7.12. The ability to detect
shearing forces on the fingertips (using a slip sensor) might allow us to separate out the
slip component of the signal, but currently, in the absence of such data, our approach

7.4 Related Work 157

is unable to distinguish between the slip of heavy objects that are grasped awkwardly
and containers with liquid in them. A stronger gripper that can grasp heavier objects
more firmly would also help to reduce the slip. The other possible modification to our
approach which may help to reduce the effect of weight is actuating the containers from
side to side while keeping them level.

In this section, we demonstrated that the high-frequency components in the tactile
signal can be used for estimating whether a container contains liquid. Our approach
enabled our manipulation robot to correctly classify objects with 91.9% accuracy. If the
robot additionally used the weight as a second feature, the recognition rate increased
to 98.5%. These results show that tactile sensors can provide valuable information for
mobile manipulation robots.

7.4 Related Work

Several studies from neurophysiology have shown that humans cope very well with mod-
ulating the applied grasp force in relation to the expected load force (Johansson, 1996;
Williams et al., 2010). Even during dynamic motions such as walking or running, hu-
mans always apply the minimum force required to hold an object safely. These coor-
dinative constraints simplify the control by reducing several degrees of freedom during
the manipulation tasks. Tactile perception hereby plays an essential role: in experi-
ments with humans, it was shown that the test subjects exerted much more gripping
force than needed when their fingertips were anesthetized even if visual feedback was
available (Monzee et al., 2003). Furthermore, Johansson and Flanagan (2009) described
how humans use the high-frequency components of the tactile signals in pick-and-place
tasks.

In their recent survey, Dahiya et al. (2010) reviewed current tactile sensor hardware for
manipulation robots, for example the work of Weiss and Wörn (2005) on resistive sensor
cells, Ohmura et al. (2006) on a flexible sensor skin, Ueda et al. (2005) on vision-based
tactile finger tip sensors. Both Maeno (2004) and Matuk Herrera (2008) estimated the
friction coefficients of the grasped object to avoid slippage. Frank et al. (2010) considered
the problem of navigating in environments with deformable objects. By combining a
force-torque sensor with a depth camera, they learned the deformation coefficients of
various objects. They showed that this information can then be used to minimize the
expected deformation costs during trajectory generation. Saal et al. (2010) estimated the
viscosity of different liquids by shaking a container. They proposed a strategy to speed
up the convergence by actively varying the shaking frequency and amplitude. Another
notable approach used acoustic sensors: Sinapov et al. (2009) demonstrated that a robot
can discriminate containers from non-containers based on the sound an object produces
while the robot performs grasping, shaking, and dropping behaviors. In their later work,

158 Chapter 7: Object State Estimation using Tactile Sensors

Sinapov and Stoytchev (2010) investigated to what respect the information from multiple
sensor modalities is redundant. Their analysis included auditory, proprioceptive, and
tactile observations. In contrast to these previous approaches, our goal of estimation is
different, i.e., we apply tactile sensors to learn a classifier for the internal state of various
containers.

7.5 Summary

In this chapter, we presented a novel approach to determine the internal state of objects
based on a small set of tactile features. These features can be extracted from the sensor
while the robot grasps or manipulates the object. To estimate the internal state, we train
a decision tree classifier on a limited set of labeled training data. In experiments carried
out on real robots, we demonstrated that a robot using our approach can reliably classify
the internal state of the grasped object. Furthermore, we found in a comparative study
on human test subjects that the recognition capability of the robot match is similar
to the performance of humans. To conclude, our approach enables a robot to reliably
detect empty bottles when cleaning up a table which we consider an important ability
for service robots operating in domestic environments.

Chapter 8

Learning Manipulation
Tasks by Demonstration

To accomplish a particular manipulation task, a robot needs a detailed description
of how to execute it. However, it is not possible to specify all potential tasks of a
manipulation robot beforehand. For example, robotic assistants operating in industrial
contexts are frequently faced with changes in the production process. As a consequence,
novel manipulation skills become relevant on a regular basis. For this reason, there
is a need for solutions that enable normal users to quickly and intuitively teach new
manipulation skills to a robot.

Promising approaches to this problem have been presented in the imitation learning
community (Argall et al., 2009; Billard et al., 2008; Abbeel et al., 2007; Ijspeert et al.,
2002; Bakker and Kuniyoshi, 1996). The key idea behind these approaches is that
the robot learns a new manipulation skills by observing a human demonstrator. As
a motivating example, consider Figure 8.1. The human instructor illustrates how to
clean a white board while the robot observes his motions using visual motion capture.
From this presentation, the robot infers the underlying task description. By carefully
evaluating the differences and similarities between multiple demonstrations, the robot
generalizes the task model so that it becomes applicable to novel situations. This enables
the robot to robustly reproduce a learned skill even under varied conditions, for example,
to also clean white boards of different sizes.

In this chapter, we consider the problem of learning generalized descriptions of ob-
ject manipulation tasks from human demonstrations. We employ dynamic Bayesian
networks (DBN) as a compact representation where special nodes encode geometrical
constraints between the relevant objects in the scene and the hand of the demonstrator.
This formulation allows the robot to learn generalized task descriptions from multiple

160 Chapter 8: Learning Manipulation Tasks by Demonstration

(a) human instructor (b) reproduction (c) generalization

Figure 8.1: A manipulation robot learns how to clean a white board by observing a human
instructor.

demonstrations so that it can reproduce them also under changed conditions. Further-
more, novel constraints can easily be added during the reproduction of a task. This
is, for example, relevant to allow a robot to deal with obstacles. To reproduce a task,
the robot searches for the action sequence that maximizes the data likelihood in the
DBN. In experiments carried out in simulation as well as on a real manipulation robot,
we show that our approach enables robots to efficiently learn novel manipulation skills
from human demonstrations and to robustly reproduce them in different situations.

The remainder of the chapter is organized as follows: in Section 8.1, we introduce our
model for manipulation tasks based on DBNs. In Section 8.1.1, we show how a robot can
infer the relevant constraints from motion capture data and describe in Section 8.1.2 how
a robot can reproduce a learned manipulation skill in novel situations. We evaluated our
approach both in simulation and on a real 6-DOF manipulator, and present our results
in Section 8.2. Finally, we conclude this chapter with a discussion of related work in
Section 8.3.

8.1 Modeling Manipulation Tasks

We model a manipulation task as a stochastic process that we represent by means of a
dynamic Bayesian network as depicted in Figure 8.2. During the execution of a task, the
demonstrator q manipulates the poses x of objects in the scene. The robot observes the
body configuration ỹ (in joint angles) of the demonstrator and the poses of objects in
the scene y (in Cartesian coordinates). From that, the robot learns the task constraints
both in configuration space r̃ and Cartesian space r. During reproduction, the robot uses
these constraints to infer the next most likely body configuration which it subsequently
executes.

Concretely, our goal is to estimate the constraints rt between n objects in the world
and the manipulator as well as constraints r̃t in the body configuration from the demon-

8.1 Modeling Manipulation Tasks 161

t t+ 1

r̃

q

ỹ

r

x

y

.

.

Figure 8.2: We model the imitation learning problem using a dynamic Bayesian network (DBN).

strations of the human teacher. These constraints encode the essence of the manipulation
task. We learn the object constraints rt ∈ R3p between p objects that we encode as the
3D position of each object with respect to the position of the end effector. Further, we
learn the configuration constraints r̃t ∈ Rd that correspond to the joint angles of the d-
DOF manipulator (or demonstrator). We model each of these constraints as a Gaussian
distribution that we estimate for each time step t from the human demonstrations. The
general idea is that relevant constraints will lead to peaked probability distributions,
while irrelevant constraints will manifest themselves as distributions with high variance.

During task reproduction, we use the learned constraints to infer a sequence of con-
sistent configurations that maximizes the likelihood of the learned task model. At this
time, the robot uses the learned probability distributions encoding the task constraints
to generate an action sequence that reproduces the task given the current world state.

For simplicity, let us consider first the Bayesian network corresponding to a single time
step t (neglecting the index t). Let q ∈ Rd refer to the configuration of the d-DOF arm
of the demonstrator (during learning) or the robot (during reproduction). Let x ∈ R3p+3

be the vector of the 3D positions of relevant objects in the scene, i.e.,

x = {xE,x1, . . . ,xp} , (8.1)

where x1, . . . ,xp are the positions of the p objects in the scene. In the remainder of this
chapter, we use a robot manipulator for imitating humanoid arm movements. Thus, xE
encodes the position of the human hand during the demonstrations and the position of
the robotic end effector during the reproduction. Note that any set of body parts can
be used in case full body actions should be imitated without changing the math except
for adding additional variables and indices (xE would become xE1 , . . . ,xEp′

for p′ body
parts). Further, we denote a noisy observation of the true pose x as y ∈ R3p+3, and a
noisy observation of the true joint configuration q as ỹ ∈ Rd .

162 Chapter 8: Learning Manipulation Tasks by Demonstration

Our DBN depicted in Figure 8.2 gives rise to the following factorization:

p(r̃,q, ỹ, r,x,y) = p(r̃)p(r)p(q | r̃)p(x | q, r)p(ỹ | q)p(y | x). (8.2)

In our model, we assume the following distributions in the nodes of the DBN: the
observation models p(ỹ | q) and p(y | x) are assumed to be Gaussian distributions with
mean q and x and a (known) variance that corresponds to the noise in the observations.
Similarly, we model the distributions over constraints p(r̃) and p(r) as Gaussian distribu-
tions. For each time step t, we estimate the mean and covariance of these distributions
from the human demonstrations. Since we have no information about the distributions
over constraints in the beginning, we set their initial variance to infinity.

The posterior about the objects in the scene can be split into the forward model of
the manipulator p(xE | q), and the constraints between the objects in the scene and the
end effector. By applying the product rule and by assuming that the poses of objects
are independent from the joint configuration given the position of the end effector, we
obtain

p(x | q, r) = p(xE | q)p(x1, . . .xp | xE, r). (8.3)

By further applying the product rule, we obtain:

p(x | q, r) = p(xE | q)p(x1 | xE, r)p(x2, . . .xn | xE, r) (8.4)

= p(xE | q)
∏

i=1,...,p

p(xi | xE, ri) (8.5)

= p(xE | q)
∏

i=1,...,p

p(xi − xE | ri) (8.6)

≈ p(xE | q)
∏

i=1,...,p

Nri(µi; Σi) (8.7)

Eq. (8.4) is obtained by assuming that given the constraints r as well as xE, the positions
of two objects in the scene are independent. By applying this assumption p times, we
obtain Eq. (8.5). We additionally assume that the posterior about the pose of the end
effector p(xE | q) is Gaussian and thus corresponds to the kinematic model.

Finally, we make the assumption that the relative position of object parts to end
effector position can be described using Gaussian distributions. Thus, the individual
per-object constraints ri ∈ r are represented by Gaussians with mean µi ∈ R3 and
covariance Σi ∈ R3×3. This leads to Eq. (8.7). Similarly, the individual joint constraints
r̃j ∈ r̃ are represented by individual Gaussians with mean µj ∈ R and variance σ2

j ∈ R.

8.1 Modeling Manipulation Tasks 163

Thus, p(q | r̃) can be computed as

p(q | r̃) =
∏

j=1,...,d

p(qj | r̃j), (8.8)

=
∏

j=1,...,d

Nr̃i(µ̃i; σ̃2
i) (8.9)

With this, we have a full specification of the DBN depicted in Figure 8.2. We learn
Gaussian distributions in Eq. (8.7) and Eq. (8.9) for the joint constraints r̃ and Cartesian
constraints r gathered from multiple human demonstrations. Further, we assume that
the kinematic model p(x | q) of the robot is known, as well as the observation models
p(ỹ | q) and p(y | x).

So far, we have only considered the Bayesian network corresponding to a single time
step t. We extend this to multiple time steps by copying the template DBN in Figure 8.2
for each time step. Furthermore, we add edges between consecutive poses xt and xt+1

and joint configurations xt and xt+1 to ensure temporal consistency and to track the
poses and configurations from human demonstrations with a Kalman filter.

8.1.1 Learning Task Descriptions from Human Demonstrations

During learning, the robot observes a person that repeatedly carries out the task the
robot has to perform. Given the DBN structure explained above, the key challenge of
this learning phase is to learn the constraints between objects and the manipulator p(r)

and, if needed, the constraints on joint configurations p(r̃).

Motion Capturing and Object Pose Estimation

To estimate the motion trajectories of the human demonstrator while executing a task
and the 3D position of relevant objects in the scene, we use passive markers and images
of a monocular camera (Fiala, 2005). We attach compounds of four markers around the
teacher’s arm (see Figure 8.1a) to bypass the problem of occlusions. In most cases, not
more than one marker of the same compound is visible. To deal with the case that two
markers are visible simultaneously (sensing more than two markers at the same time is
impossible due to their mutual orthogonality within one compound), we perform a linear
interpolation between their poses depending on the degree of visibility of the markers.
Finally, we apply a Kalman filter to track the 3D marker position estimates over time.
To derive the demonstrator’s joint angles from marker poses, we use an anthropomorphic
arm model and apply straightforward geometric operations. As a result, we are able to
reliably estimate the arm configuration qt,g and object poses xt,g for each time step
t = 1, . . . , T in demonstration g = 1, . . . , G, where G is the number of demonstrations.

164 Chapter 8: Learning Manipulation Tasks by Demonstration

Aligning multiple demonstrations

Our approach relies on multiple demonstrations to achieve a good generalization. One
problem when generalizing task descriptions from multiple demonstrations is the fact
that the observations of the individual demonstrations are not time-synchronized, even
though the different demonstrations typically do not vary largely. To deal with vary-
ing movement velocity profiles, we apply derivative dynamic time warping (Keogh and
Pazzani, 2001) which is able to account for local distortions in the time domain by
computing a nonlinear transformation of the time axis of the individual demonstrations.
Based on the aligned demonstrations, we can derive the constraints p(r) and p(r̃) which
encode the action to imitate.

Learning the task constraints

By assuming that the constraints p(r) and p(r̃) are composed of individual Gaussians,
we can directly infer a mean and a variance estimate of the individual constraints for
each point in time given the estimates for p(x) and p(q). The estimated variance in
each of the constraints is of particular importance since it describes how accurately the
demonstrator enforced a particular constraint during his demonstrations.

Formally, an object-manipulator constraint ri is fully described by the mean position
of the objects relative to the manipulator µi ∈ R3 and a covariance matrix Σi ∈ R3×3.

In theory, we could compute µi and Σi directly from the estimates for x and q during
learning. In practice, however, we typically have to deal with a few demonstrations and,
therefore, rather rough and non-smooth estimates are obtained if the values are com-
puted directly. To overcome this problem, we apply a Parzen window kernel estimator
for computing smooth function approximations. This is a nonparametric technique that
allows to estimate a value for µ based on a set of sample points. We weight each training
sample by a factor

wt,gi (t′) =
1

ηt
K

(
t′ − t
h

)
, (8.10)

where h is the Parzen window size (empirically determined, h = 0.2 s) and K is a kernel
function. We use the standard choice for the K, namely the squared exponential kernel

K(d) = exp (−1

2
‖d‖2). (8.11)

Here, ηt is a normalizing constant, to ensure that all sample weights with respect to

8.1 Modeling Manipulation Tasks 165

time step t sum to one, i.e.,

ηt =
G∑
g=1

T∑
t′=1

wt,g(t′), (8.12)

where G stands for the number of demonstrations. This gives us for the constraint ri
the weighted sample mean

µt
i =

G∑
g=1

T∑
t′=1

wt,g(t′)
[
xt,gi − xt,gE

]
, (8.13)

between object i in the scene and the end effector of the manipulator. Similarly, the
weighted sample covariance can be estimated as

Σt
i =

G∑
g=1

T∑
t′=1

wt,gi (t′)
([

xt,gi − xt,gE
]
− µt

i

) ([
xt,gi − xt,gE

]
− µt

i

)T
1−

G∑
g=1

T∑
t′=1

(
wt,gi (t′)

)2 . (8.14)

This procedure is carried out for each time step t and each object i in the scene. Ac-
cordingly, we specify a configuration constraint as a normal distribution describing a
mean configuration µ̃t ∈ Rd and an associated covariance matrix Σ̃t ∈ Rd×d . Similar to
the object-manipulator constraints, we compute the joint constraints r̃t as

µ̃t =
G∑
g=1

T∑
t′=1

wt,gi (t′)qt,g (8.15)

and

Σ̃t =

G∑
g=1

T∑
t′=1

wt,gi (t′) (qt,g − µ̃t) (qt,g − µ̃t)
T

1−
G∑
g=1

T∑
t′=1

(
wt,gi (t′)

)2 . (8.16)

8.1.2 Reproducing Tasks

The goal of the reproduction or imitation phase is to carry out the demonstrated task
to achieve the same result. Given the DBN, we can seek for the configuration of joints
q∗ that maximizes the likelihood given the learned task model.

166 Chapter 8: Learning Manipulation Tasks by Demonstration

Incremental Optimization

If we consider only a single time step of the reproduction, we seek for the configuration
q∗ that maximizes the joint probability of a single time slice. After the learning phase,
the task space constraints p(r̃) and the configuration space constraints p(r) are known.
Furthermore, the robot can control its manipulator by specifying a joint configuration
q and does not have to rely on noisy marker observations ỹ as in the learning phase.
Therefore, the maximization turns into

q∗ = arg max
q

p(q | r̃)p(x | q, r). (8.17)

As discussed in Section 8.1, the posteriors p(q | r̃) and p(x | q, r) are basically
products of Gaussians and lead to a Gaussian distribution again. Thus, to maximize
the joint probability, we need to determine the mean of this Gaussian distribution. To
do so, we proceed as follows. Consider that we are currently at time step t and seek for
the joint configuration that maximizes Eq. (8.17) at t+ 1. Each constraint between an
object i and the end effector generates a relative displacement vector ∆i, i.e,

∆t+1
i = µt+1

i − (xti − xtE). (8.18)

Correspondingly, each object-manipulator constraint has an associated covariance ma-
trix Σt+1

i that encodes how much variation in this constraint was observed in the human
demonstrations. One can imagine the underlying idea here visually as follows: the end
effector is pulled towards each constraint according to the variance present in the demon-
strations. Constraints with low variance will influence the motion of the manipulator
stronger than constraints with high variance.

Since we want to compute a new joint configuration for the robot, we need to convert
the constraints expressed in world coordinates in joint space. We achieve this by apply-
ing a variant of the damped-least squares method described by Buss and Kim (2005).
This approximative technique performs a linearization of the kinematic function. Ac-
cording to this method, a desired movement in Cartesian space (∆) is transformed to
an executable movement in joint space (∆̃) by

∆̃t+1
ri

= J
(
JJT + λ2I

)−1
∆t+1

i , (8.19)

Σ̃t+1
ri

=
(
J
(
JJT + λ2I

)−1)
Σt+1
i

(
J
(
JJT + λ2I

)−1)T
, (8.20)

where λ is the so-called damping factor and J refers to the Jacobian of the end effector.
Due to the linear mapping, we also obtain a Gaussian in configuration space. The con-
figuration space constraints defined by r̃t+1 can easily be used to compute an executable

8.1 Modeling Manipulation Tasks 167

movement

∆̃t+1
r̃ = µ̃t+1 − qt, (8.21)

Σ̃t+1
r̃ = Σ̃t+1. (8.22)

Note that the covariance matrix of the configuration constraints does not need to be
transformed as it is already expressed in configuration space.

All constraints resulting from the observation of the demonstrator’s configurations or
from the arrangement of objects in the scene are now expressed in terms of updates in
configuration space. This allows us to merge these normal distributions into a single
Gaussian (Calinon and Billard, 2008). The resulting distribution is the product over the
p+1 Gaussians resulting from the p task space relations plus the joint space relations. We
can use it to directly obtain an estimate q̂t+1 of the next configuration q∗,t+1 according
to Eq. (8.17) by selecting the mean from this combined Gaussian, as given by

q̂t+1 = qt + Σ̃t+1

(
(Σ̃t+1

r̃)−1∆̃t+1
r̃ +

n∑
i=1

(Σ̃t+1
ri

)−1∆̃t+1
ri

)
, (8.23)

with

Σ̂t+1 =

(
Σ̂t + (Σ̃t+1

r̃)−1 +
n∑
i=1

(Σ̃t+1
ri

)−1

)−1
. (8.24)

The mean of this distribution specifies the configuration of the robot at the next time
step that maximizes the probability distribution given in Eq. (8.17).

Local Optimization with Obstacles

The technique described in the previous section can directly be applied to deal with
unforeseen obstacles in the scene during reproduction. Consider that the robot observes
an obstacle during the imitation that was not there during the demonstrations. To avoid
this obstacle during the reproduction task, we can add additional constraints between
the observed obstacle and the closest point on the robot’s body as used in approaches
based on potential fields for collision avoidance.

Without changing the framework described above, the robot can reactively introduce
constraints for avoiding obstacles while carrying out its task as similarly as possible to
the human demonstrations. Let xO be the position of the obstacle. Instead of adding a

168 Chapter 8: Learning Manipulation Tasks by Demonstration

repellent force, we add an attractor at the opposite side of the end effector,

∆O = −α xO − xE
‖xO − xE‖

(8.25)

ΣO = β · exp
(
‖xO − xE‖2

)
· I, (8.26)

where α determines the desired distance to the obstacle and β gives the relative impor-
tance with respect to the other constraints.

It should be noted that this technique works well for small or rather simple structured
obstacles added to the scene. In case complex or, for example, U-shaped obstacles are
found in the environment, this approach is likely to suffer from local minima caused by
contradictory constraints.

Global Optimization

The problem of local minima, however, can be avoided by globally optimizing the joint
probability distribution of the DBN over all time steps 1 . . . T of the task sequence at
once, i.e.,

q∗,1:T = arg max
q1:T

p(r̃1:T ,q1:T , ỹ1:T , r1:T ,x1:T ,y1:T). (8.27)

Note that at a particular time step t, only the first 1 . . . t observations y1:t are already
available and can be included for planning. Doing this optimization on a global level,
however, comes with significantly increased computational cost due to the high dimen-
sionality of q∗,1:T .

One way of efficiently estimating q∗,1:T is to make use of probabilistic roadmaps or
rapidly-exploring random trees (LaValle, 2006) to find the shortest path using A∗ on the
sampled set of nodes. Given that we properly encode the likelihoods of all constraints in
the cost function later used by A∗, the solution of the planner will approximate Eq. (8.27)
well.

As cost function, we use the Mahalanobis distance of the combined Gaussian distri-
bution N (q̂t; Σ̂t+1) as computed in Eq. (8.23) and Eq. (8.24). This distribution incor-
porates all constraints r, r̃ and the obstacle constraints in a time-dependent way. For
a configuration q at time t+ 1, we define the cost as the likelihood with respect to the
previously computed combined distribution, i.e.,

cost(qt+1) =
(
qt − q̂t+1

)T
(Σ̂t+1)−1

(
qt − q̂t+1

)
. (8.28)

Then, finding the cost-optimal sequence of configurations q∗,1:T is equivalent to maxi-
mizing the likelihood of the trajectory q∗,1:T in Eq. (8.27).

8.2 Experiments 169

8.2 Experiments

We carried out a set of experiments to evaluate our approach. We observed a human
demonstrator equipped with markers of the ARToolkit as depicted in Figure 8.3 at a
rate of 5 Hz. We used this data to learn the constraints for the task reproduction. In
our experiments, we segmented the training trajectories corresponding to the individual
demonstrations manually. Further, instead of estimating the full covariance matrices
as described in Section 8.1.1, we restricted ourselves to the diagonal values. We found
that this makes the estimation of the task constraints more robust when the number of
expert demonstrations is limited.

The goal of our experiments is to demonstrate that different manipulation tasks can
be learned with our approach. We show this using the example of different pick-and-
place tasks and the task of cleaning a white board. In these experiments, the robot
successfully generalized the learned task models to novel spatial setups. Further, we
evaluate the convergence behavior of our approach with respect to the number of required
human demonstrations. Lastly, we show that global planning can be used to circumvent
local minima during task reproduction, for example, in the presence of contradictory
constraints.

8.2.1 Imitating Human Actions

To imitate the observed behavior, we reproduced the tasks using a real robot equipped
with a manipulator and two simulated robots, one with a manipulator and one with a
human-like arm.

In our first experiment, a human demonstrator repeated a simple pick-and-place task
four times, as illustrated in Figure 8.3. In this experiment, we tracked the configuration
of the human arm, the Cartesian position of the human hand, as well as the positions
of the mug and the table. Figure 8.4 shows the reproduction of the pick-and-place task
after being demonstrated four times. The human-like simulated robot considers both
the joint and the task constraints, which leads to the fluent, human-like movement.

In Figure 8.5, the same task was reproduced by the robotic manipulator in simulation.
Since the demonstrator and the imitator have significantly different kinematics, we dis-
abled the joint constraints r̃ during reproduction. Furthermore, in this experiment, we
swapped the positions of the two tables. As can be seen from the plotted trajectories,
the robot was able to generalize the task successfully, i.e., it approached the tables in
the correct order.

In the experiment depicted in Figure 8.6, we analyzed the number of demonstrations
needed until a task could reliably be reproduced. For this analysis, a teacher picked up a
cup and placed it at a distance of 1m. After the first demonstration, the robot could not
sufficiently generalize the task to reproduce it reliably. After the second demonstration,

170 Chapter 8: Learning Manipulation Tasks by Demonstration

Figure 8.3: Human demonstration of a pick-and-place task. The trajectory is recorded both in
task and joint space.

Figure 8.4: Reproduction of the pick-and-place task by a human-like manipulator in simulation
using both task and joint space constraints.

Figure 8.5: Reproduction of the same pick-and-place task by our 6-DOF manipulator. Note
that the robot successfully generalized the task as the start and goal location were
exchanged.

8.2 Experiments 171

0

0.5

1

1.5

2

0 2 4 6 8 10

d
is
ta
n
ce

to
in
it
ia
l
cu

p
p
os
it
io
n
[m

]

time [s]

picking region
placing region

after 1 demonstration
after 2 demonstrations
after 4 demonstrations
after 8 demonstrations

Figure 8.6: Evaluation of the convergence behavior of our approach with respect to the number
of expert demonstrations.

the robot correctly approached the picking region but slightly missed the spot for placing
the cup. After four demonstrations, the task model converged and the robot was able
to reproduce the task reliably.

8.2.2 Dealing with Obstacles during Imitation

The additional obstacle constraints described in Section 8.1.2 allow the robot to deal
with unforeseen obstacles during task execution. The obstacle constraints act similar to
a potential field pushing the robot away from obstacles. We implemented the perception
of obstacles using additional ARToolkit markers.

Figure 8.7 illustrates an example for a constraint in a pick and place task. The figure
shows the reproduced trajectory for the obstacle free case and a trajectory that was
generated in the presence of an obstacle. As can be seen, the robot moved its arm over
the obstacle in order to avoid a collision.

We carried out a white board cleaning task that nicely illustrates the properties of the
presented methods. First, a human repeatedly cleaned a white board in an area bounded
by 4 markers with the same number of ups and downs (see left image of Figure 8.1).
Then, we attached a sponge to the robot and let it imitate the demonstrated task. In the
first experiment, we modified the size of the area to clean for illustrating the capabilities
of generalization. Photos from this experiment can be seen in Figure 8.8. Note that in
case the area to clean is much larger than during learning, the white board may not be
cleaned well. The reason for that is that our approach imitates the task at a trajectory
level and thus does not generalize coverage patterns over areas. As a result, there might
be parts of the white board that are not covered by the imitated trajectory, and thus,
will not be cleaned.

172 Chapter 8: Learning Manipulation Tasks by Demonstration

1.2

1.4

1.6

1.8

2

0 1 2 3 4

z
[m

]

time [s]

learned task model (mean)
learned task model (std. dev)
reproduction without obstacle

reproduction with obstacle

Figure 8.7: Visualization of the learned constraints including the variances as well as two re-
production trajectories – one for the obstacle free case and one in case an obstacle
blocks the trajectory.

In the second experiment, we introduced an additional obstacle marker during repro-
duction (see first image of Figure 8.9). As a result, the robot imitated the cleaning task
while avoiding obstacles (and thus not cleaning the area of the marker). For reasons of
illustration, we removed the marker during the experiment but kept it in the internal
memory of the robot. As a result, the robot did not clean the corresponding area. Four
photos were taken during the reproduction and are depicted in Figure 8.9. In our ex-
periment, the robot lifted the sponge away from the white board (in the direction of the
observing camera) in order to avoid the area.

It should be noted that the degree of generalization of our approach strongly depends
on amount of the variation present in the expert’s demonstrations. If only few variations
exist, the learned task model might over-fit to these demonstrations. On the other hand,
too much variation makes it harder for the robot to find the invariants. A good solution
here is to teach a novel manipulation skill to a robot incrementally, i.e., demonstrating
it a few times and checking how well the robot has generalized the task.

8.2.3 Imitation by Planning

In the experiments presented above, we applied the incremental strategy to reproduce
the task. This can be solved efficiently online, but this strategy suffers from local minima,
for example, in the presence of U-shaped obstacles. Such an example is presented in
Figure 8.10 where the robot gets stuck when using the incremental strategy.

If one applies the global optimization technique described in Section 8.1.2, one can
overcome this problem since the optimal solution over all time steps is computed. Thus,

8.2 Experiments 173

Figure 8.8: The reproduction of the board cleaning task by our robot. It imitates the zig-zag
movement for cleaning the board with the sponge.

obstacle

not cleaned

Figure 8.9: During the second reproduction, we introduced an additional obstacle that the
robot has to consider using a visual marker. As a result, the robot does not clean
the area under the obstacle.

174 Chapter 8: Learning Manipulation Tasks by Demonstration

-0.8
-0.6

-0.4
-0.2

0

-1

-0.8

-0.6

-0.4

-0.2

0

1

1.2

1.4

1.6

z [m]

obstacle
global optimum

incremental

x [m]

y [m]

z [m]

start

U-shaped obstacle

target

Figure 8.10: The plot shows the end effector position of the robot over time during two exper-
iments. When applying the incremental method, the end effector gets stuck in a
U-shaped obstacle while the global method solves the task and the end effector
reaches the target location.

the robot is able to reproduce the task including the avoidance of the U-shaped obstacle.
This global method, however, comes with a significantly increased computational load.

To summarize our results, we demonstrated in our experiments that the learned task
descriptions are general enough so that the robot can successfully reproduce the task
even when the positions of the objects in the scene were changed. Furthermore, we
showed that a robot can include additional constraints during task reproduction, for
example, to evade obstacles that were not there during learning. In convergence ex-
periments, we found that our approach required only four demonstrations to reliably
reproduce a pick-and-place task. Finally, we showed that global planning finds solutions
where incremental approaches gets stuck.

8.3 Related Work

Various techniques have been proposed in the past to transfer a task description to
robotic systems. In the industrial context, a common solution is to teach suitable tra-
jectories using a joystick or kinesthetic training. Assuming that the environment is
precisely specified, the robot can exactly reproduce the recorded sequence and no gener-
alization is required. However, if the observations are noisy or unpredicted disturbances
in the task environment occur, simple playback of the recorded motion is not sufficient
to reliably reproduce a given task. Detailed surveys on the current state-of-the-art in
the domain of imitation learning and robot programming by demonstration are given in
the works of Billard et al. (2008) and Argall et al. (2009).

8.3 Related Work 175

Calinon and Billard (2008) learned Gaussian mixture models to encode the spatial
relationships between objects in the scene and the end effector of the robot. This
approach has been applied to a variety of different manipulation tasks, including ironing
(Kormushev et al., 2011), archery (Kormushev et al., 2010), and various pick-and-place
tasks (Calinon and Billard, 2009).

In contrast to trajectory-based methods, Ijspeert et al. (2002) proposed to learn
parametrized controllers that they term Dynamic Motion Primitives (DMP) based on
differential equations (Schaal et al., 2003). Recently, Pastor et al. (2009) showed how
an extension of the DMP approach can be used to robustly adapt the trajectory while
objects relevant for the reproduction are being moved.

Reinforcement learning (RL) techniques have been successfully applied to learn con-
trollers for individual manipulation skills (Hafner and Riedmiller, 2007; Bentivegna et al.,
2004), and have been shown to scale well even to high-dimensional learning problems
(Peters et al., 2003). In recent work, Kober and Peters (2009) combined policy gradient
methods with dynamic motion primitives to solve more complex dynamic motion prob-
lems. However, all reinforcement learning techniques assume prior knowledge about the
reward function that already encodes the goal to be achieved.

Recently, several approaches have been proposed to infer such a reward function from
demonstrations of an expert using inverse reinforcement learning (Abbeel et al., 2007;
Ziebart et al., 2008). Depending on the underlying model, the controller can be learned
from imperfect expert demonstrations and the resulting policy can even outperform the
expert (Coates et al., 2008).

Other authors proposed to use hidden Markov models (HMM) for encoding the tem-
poral sequence of manipulation goals (Asfour et al., 2006; Calinon et al., 2005; Tso and
Liu, 1996). Pardowitz and Dillmann (2007) presented a system that generalizes over
household tasks in a hierarchical manner. Actions performed by the human demonstra-
tor are recognized as a sequence of “elementary operators”, of which a graph-based task
representation is learned. In this approach, the incrementally updated network topology
reflects the learned temporal ordering of the individual actions. Although not directly
related to imitation learning, Beetz et al. (2010) described a system that enabled a robot
to retrieve semantic task instructions from the world wide web in order to efficiently set
a table.

While symbolic representations are well suited for planning and reasoning, their limi-
tation to higher-level skills renders them inapplicable in domains where a continuous mo-
tor control is required. By contrast, trajectory learning directly starts by encoding each
demonstration by a sequence of continuous observations. Due to the high-dimensional
input space, dimensionality reduction techniques are often applied. Chalodhorn et al.
(2007) used principal component analysis (PCA) to reduce the high-dimensional motion
capture data of a recorded human walk. While a direct playback of the human data
on a humanoid robot would make it fall, the authors showed that after a few trials

176 Chapter 8: Learning Manipulation Tasks by Demonstration

the robot was able to modify the imitated gait incrementally. Similarly, Grimes et al.
(2006) also used PCA to reduce the high-dimensional configuration space and applied
a DBN to infer dynamically stable imitative actions using constraint variables and a
learned forward model of the robot dynamics. Grochow et al. (2004) consider the pose
ambiguity problem that arises in inverse kinematics as a constrained optimization task.
They show that different movement styles can be learned from human demonstrations
and used as a prior of an animated character.

The approach presented in this chapter is inspired by the prior work of Calinon and
Billard (2008). In contrast to their approach, we (1) provide a probabilistic formulation
of the imitation learning problem as a dynamic Bayesian network, (2) show that this
formulation facilitates the inclusion of additional constraints, and (3) demonstrate that
global optimization during task reproduction provides solutions where incremental ap-
proaches fail. It should be noted that our method does not generalize the learned tasks
above the trajectory level. For example with the white-board cleaning task, our method
always reproduces the same number of ups and downs, which means that – in its current
form – cannot deviate to generate other coverage plans. Such high-level generalization
capabilities are clearly also highly relevant in many real-world applications. One pos-
sible solution is to apply imitation learning at different levels simultaneously, i.e., to
combine low-level motor learning, trajectory-level imitation learning for atomic actions,
and high-level task learning. This, however, remains a topic for future investigation.

8.4 Summary

In this chapter, we developed an approach to imitation learning that enables a robot to
learn, generalize, and reproduce tasks by observing a human demonstrator. We model
the description of a manipulation task as a DBN in which special nodes encode the
geometrical relationships between objects in the scene and the end effector of the robot.
To reproduce the task, we seek for the action sequence that maximizes the likelihood
of the DBN. The formulation as a DBN allows to flexibly add or remove constraints
during task reproduction, for example, to avoid obstacles. In experiments carried out in
simulation and on a real robot, we demonstrated that a robot using our approach can
learn, generalize, and reproduce various manipulation tasks even under different spatial
setups. To conclude, our approach provides a solution that enables normal users to
intuitively teach novel tasks to a service robot.

Chapter 9

Conclusions

In this thesis, we presented several innovative techniques that enable mobile manipula-
tion robots to robustly operate in unstructured environments under changing, real-world
conditions, which is essential for the success of mobile manipulation robots in the future.
Many of the relevant applications require that robots function robustly in new situations
while they are dealing with considerable amounts of noise and uncertainty. Therefore,
the main objective of this thesis was to develop novel approaches that enable manipu-
lation robots to autonomously acquire the models they need to successfully implement
their service tasks.

In domestic environments, a manipulation robot needs to operate over extended peri-
ods of time without being supervised by an expert. Therefore, we investigated methods
which a robot can use to learn its body schema from scratch and adapt it in case of
changes. We introduced a flexible representation for kinematic models based on Gaus-
sian processes and Bayesian networks and devised an efficient algorithm that recovers
both the kinematic structure and the kinematic properties of the manipulation robot.
Our approach enables the robot to position its end effector accurately even in the pres-
ence of hardware failures. In our experiments, we demonstrated that self-observation
allows a robot to significantly increase its mean time between failures.

A central task of service robots is to interact with articulated objects, for example,
to open doors in order to navigate between rooms or to pick up objects from cabinets
or drawers. To allow the robot to deal with such objects, we extended our approach
to kinematic model learning to become applicable also to passively-actuated articulated
objects. Our proposed framework combines parametric and nonparametric models and
provides a principled solution to compare and rank alternate models. Furthermore,
we showed that prior knowledge can consistently be used during model learning. As we
demonstrated in a large set of experiments, robots using our approach can learn accurate
kinematic models for a large number of different articulated objects, and two different

178 Chapter 9: Conclusions

mobile manipulators could robustly operate various real-world objects. Furthermore,
we developed a marker-less perception system to visually detect articulated objects in
kitchen environments and to learn their kinematic models. With our approach, we
provide a complete probabilistic framework that enables robots to learn and operate
various types of articulated objects.

In addition to articulated objects, service robots also need to manipulate many other
objects such as bottles, silverware, or dishes. We showed that robots can benefit from
tactile sensing, for example, to verify that it has grasped the correct object and to deter-
mine its content. We developed a system based on the bag-of-features approach where
the robot generates a tactile vocabulary to learn a codebook for recognizing objects. In
our experiments, we demonstrated that a robot using our approach can distinguish be-
tween a large set of objects including both typical household objects and industrial work
pieces. Additionally, we addressed the problem of estimating the internal state during
object manipulation, which enables a service robot, for example, to determine whether
a bottle contains liquid. The robot achieves this task by extracting high-frequency
features from the tactile signal and by learning a decision tree classifier. Our results
indicate that tactile sensing is a useful source of information for a robot to augment its
perceptions during object manipulation.

Another prerequisite for successful service robotics applications is that normal users
can quickly and intuitively instruct the robot to perform novel tasks. Inspired by work
on imitation learning, we developed a technique to infer task descriptions from human
demonstrations. As imitation learning is a high-dimensional learning problem, we ap-
proach the problem by factorizing it using dynamic Bayesian networks into individual
task constraints that can be learned separately from the data. As the constraints are
expressed relative to other objects in the scene, a robot can reproduce the task also
in different spatial setups. In contrast to existing approaches, our solution allows to
add novel task constraints dynamically during execution, for example, to avoid obsta-
cles. The ability of our system to quickly learn novel tasks from the user is an essential
feature for the everyday use of mobile manipulation robots.

All techniques presented in this thesis have been implemented and thoroughly tested.
The experiments have been carried out in simulation as well as on real robots. We
used mobile manipulation robots from Schunk, Meka, and Willow Garage. Every single
approach presented in this thesis has been evaluated in extensive sets of real-world ex-
periments. We demonstrated that our techniques enable robots to autonomously learn
suitable models from noisy observations and use them to reliably fulfill their manipula-
tion tasks. Our experiments support the claim that our approaches seriously decrease
the dependency on hand-crafted models and significantly increase the flexibility and
robustness of mobile manipulation robots.

The contributions of this thesis are solutions to various challenging problems in the
context of model learning, imitation learning, and tactile sensing. All techniques have

9.1 Future Work 179

either been integrated into the robot operating system ROS or the robotics toolkit
Carmen. Our solutions enable robots to autonomously answer the following questions:

• How can a manipulation robot position its end effector accurately, even in the
presence of hardware failures?

• How can articulated objects such as doors and drawers be moved, and how can a
robot operate them reliably?

• How can a manipulation robot use its tactile sensors to gain information about
the objects it manipulates?

• How can a user quickly teach novel manipulation tasks to a robot, and how can
the robot generalize them and reproduce them in a new situation?

We believe that the approaches presented in this thesis enable manipulation robots to
operate in more realistic environments and we hope that the proposed solutions are
relevant for future service robots that assist us in our everyday life.

9.1 Future Work

Despite the promising results presented in this thesis, there are several open research
questions that remain for future investigation. For example, we think that the ability of
a robot to observe the outcome of its actions is the key to create more dependable and
resilient machines. A first step could be to apply our approach on body schema learning
to other components of a mobile service robot. With a few extensions, the robot’s base
or an articulated sensor head could be included into our framework. Another extension
is to learn additional models for specific tasks that are carried out only in a small area
of the work space. For example, it could make sense to learn a specific body schema for
high-precision assembly tasks on a workbench that reflects the kinematics of the robot
more accurately than the global body schema describing the whole configuration space.
It would also be interesting to see whether and how our approach can be generalized to
learn the kinematic models of real actuators with complicated nonlinear effects, such as
for example belt gear or gear backlash.

In our current approach, we learn the kinematic models from static pose observations.
It would be interesting to include the velocities or accelerations of object or body parts.
This would allow the robot to learn the dynamic parameters as well and enable it to
plan time-optimal motion trajectories. A dynamical model would enable the robot to
accurately execute motions at higher speeds. Furthermore, a robot that can measure
forces and torques while actuating an object could additionally learn friction and damp-
ing profiles and include this information in the learned model as well. The robot could
evaluate these profiles to estimate the torque required to open a drawer and to detect,

180 Chapter 9: Conclusions

for example, whether it is jammed. Another open question is whether knowledge about
the physical structure of the world can be exploited during model learning. For example,
prior knowledge about common types of mechanical linkages could help a robot to infer
and disambiguate the kinematic structure. For example, the robot could exploit that
drawers are more likely to be connected to the cabinet than to each other, or that a
door is more likely to be attached to the door frame and not to the floor. Both cases
are currently not distinguishable with our current approach.

As we have demonstrated in this thesis, tactile sensing provides valuable information
about the state of an object. We are convinced that tactile information can support
object manipulation in a variety of ways. In particular, approaches that tightly combine
perception with control bear a large potential. Especially during grasping, tactile sensors
provide many details about the contact state of hand and object, or object and table,
that are difficult to access using other sensor modalities. For example, a robot could
choose the approach trajectory that is expected to minimize the pose uncertainty while
grasping the object and filtering its pose using tactile sensing. Another example is to
use tactile sensors to detect that an object has made firm contact with a surface before
releasing it.

Our approach on imitation learning enables a person to quickly teach novel manip-
ulation tasks to a manipulation robot by demonstration. An interesting extension is
interactive teaching: the robot tries to reproduce a task directly after the first demon-
stration, while the instructor incrementally provides additional demonstrations when
the reproduction fails or is unsatisfactory. This would also provide feedback to the user
how well the robot has inferred and generalized the task description. During the au-
tonomous reproduction of a task, it would be beneficial if the robot was able to detect
failures autonomously. This is not trivial, as, at the same time, the robot should be able
to generalize a task to different situations which explicitly requires some derivations from
the original demonstrations. A solution would be that the robot learns a classifier based
on additional user demonstrations to decide which deviations are acceptable and which
are not. Finally, a general shortcoming of trajectory-based imitation learning methods
is that they do not generalize the task very well above the trajectory level. Therefore,
it would also be interesting to investigate methods that focus more on the learning of
higher-level task descriptions.

Several ongoing research projects are currently using or extending our approach on
learning kinematic models of articulated objects. The RoboEarth project1 aims at the
creation of a worldwide object database and plans to annotate articulated objects with
the models learned using our approach. The goal of the SFB/TR 82 is to investigate

1RoboEarth is part of the Cognitive Systems and Robotics Initiative from the European Union Seventh
Framework Programme FP7/248942 (2009–2013).

2The interdisciplinary Transregional Collaborative Research Center Spatial Cognition: Reasoning,
Action, Interaction has been established by the German Research Foundation (DFG) (2003–2014).

9.1 Future Work 181

the cognitive foundations for human-centered spatial assistance systems, and plans in
project A8 to extend our approach to learn 3D models of the rigid parts of articulated
objects. The First-MM project3 aims to enable robots to acquire new manipulation
skills which also involve grasping and operating articulated objects using our approach.
The goal of the TidyUpRobot project4 is to use the PR2 robot in various tidying-up
tasks. As part of this project, the PR2 robot will have to annotate floor plans with
articulated objects and their respective kinematic models.

To conclude, we think that mobile manipulation robots have a large application po-
tential in the near future. In this work, we presented several innovative approaches to
relevant problems that appear when mobile manipulators are applied in unstructured
environments and changing situations. We hope that our work increases the depend-
ability, flexibility, and ease of use of manipulation robots and thereby contributes to the
development of truly useful robotic assistants for industry and society.

3First-MM is another research project founded under the European Union Seventh Framework Pro-
gramme FP7/248258 (2010–2014).

4The TidyUpRobot project is part of the PR2 beta program sponsored by Willow Garage (2010–2012).

Appendix A

The Laplace
Approximation

The Laplace approximation is a technique that can be used to approximate the inte-
gral

∫
f(x) dx of a function f(x). The general idea is to approximate the normalized

probability distribution p(x) = f(x)/Z with a multi-variate Gaussian distribution and
to use this approximation for estimating the normalization constant Z =

∫
f(x) dx. In

the following, we summarize the derivation of the Laplace approximation according to
the text book of Bishop (2007). We introduce the Laplace approximation here because
we need it later as a tool during the derivation of the BIC in Appendix B.

Given a function f(x), the Laplace approximation assumes that the function has a
peak at x̂. At this point, we Taylor-expand the log density function around x̂ to the
second order which gives us

log f(x) ' log f(x̂)

+∇ log f(x)
∣∣
x=x̂

(x− x̂)

+
1

2
(x− x̂)T

(
∇∇ log f(x)

∣∣
x=x̂

)
(x− x̂), (A.1)

where ∇ is the gradient operator. As the point x̂ is at a maximum of f(x) and, conse-
quently, of log f(x), the first-order derivative ∇ log f(x)

∣∣
x=x̂

equals zero. As a result the
second term in Eq. (A.1) vanishes. Further, by denoting the negative of the second-order
derivative as

A = −∇∇ log f(x)
∣∣
x=x̂

, (A.2)

184 Appendix A: The Laplace Approximation

we can rewrite Eq. (A.1) as

log f(x) ' log f(x̂)− 1

2
(x− x̂)TA(x− x̂), (A.3)

Taking the exponential on both sides we obtain

f(x) ' f(x̂) exp

(
−1

2
(x− x̂)TA(x− x̂)

)
. (A.4)

Remember that a multivariate, k-dimensional Gaussian distribution has a (normalized)
probability density function of

N (x;µ,Σ) =
1

(2π)k/2
1

|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (A.5)

Identifying the parameters with µ = x̂ and Σ = A−1 we obtain a Gaussian approxima-
tion q(x) of p(x) with

p(x) ' q(x) :=
|A|1/2

(2π)k/2
exp

(
−1

2
(x− x̂)TA(x− x̂)

)
(A.6)

Comparing Eq. (A.4) with Eq. (A.6) yields (together with p(x) = f(x)/Z) an approxi-
mation of the normalization constant Z, i.e.,

f(x̂)

Z
' |A|

1/2

(2π)k/2
. (A.7)

When we solve this equation for the normalization constant Z, we obtain an estimate
of the integral

∫
f(x) dx, i.e.,

Z =

∫
f(x) dx ' (2π)k/2

|A|1/2
f(x̂) (A.8)

which we will use in Appendix B for deriving the Bayesian information criterion.

Appendix B

Derivation of the Bayesian
Information Criterion

In this section, we derive the Bayesian Information Criterion (BIC). The BIC is an
approximation of the model evidence p(D | M) for choosing between alternative models.
The BIC was first proposed by Schwarz (1978). However, the original derivation in this
paper is hard to understand and the underlying assumptions are not clearly stated. In
this appendix, we derive the BIC by ourselves step by step. The derivation is based on
exercise 4.23 in the book of (Bishop, 2007) and its sample solution1 described in more
detail. Our goal is to provide the reader with a thorough understanding of the BIC
including its underlying assumptions as needed for Chapter 4.

The BIC assumes that the prior over the parameters is broad, i.e., p(θ) = N (θ;µ,Σ)

is a Gaussian distribution that has a covariance matrix Σ with a large determinant.
Further, the BIC assumes that the data samples in D = {(xi)}ni=1 are independent and
identically distributed (i.i.d.).

Remember from Section 2.2.4 that the model evidence can be computed by integrating
over the whole parameter space of a model, i.e.,

p(D | M) =

∫
p(D | M,θ)p(θ | M) dθ. (B.1)

The BIC assumes that the posterior p(θ | M,D) ∝ p(D | M,θ)p(θ | M) has a strong
peak at the maximum-a-posteriori parameter vector when D is fixed, i.e.,

θ̂ = arg max
θ

p(D | M,θ)p(θ | M), (B.2)

1http://research.microsoft.com/en-us/um/people/cmbishop/prml/
prml-web-sol-2009-09-08.pdf, last visited on July 23, 2011

http://research.microsoft.com/en-us/um/people/cmbishop/prml/prml-web-sol-2009-09-08.pdf
http://research.microsoft.com/en-us/um/people/cmbishop/prml/prml-web-sol-2009-09-08.pdf

186 Appendix B: Derivation of the Bayesian Information Criterion

so that it can be approximated with a Gaussian. This is accomplished by using Laplace’s
approximation as described in Appendix A: we identify f(θ) = p(D | M,θ)p(θ | M)

and use Eq. (A.8) for approximating the integral Z =
∫
f(θ) dθ. This gives us

p(D | M) ' (2π)k/2

|A|1/2
p(D | M, θ̂)p(θ̂ | M), (B.3)

where A = −∇∇ log p(D | M,θ)p(θ | M)
∣∣
θ=θ̂

is the Hessian of the posterior probability
distribution evaluated at θ̂. By taking the log on both sides, we obtain

log p(D | M) ' log p(D | M, θ̂) + log p(θ̂ | M) +
k

2
log(2π)− 1

2
log |A|, (B.4)

The Hessian can be split accordingly into two components relating to the data likeli-
hood and the prior over the parameter space, i.e.,

A = −∇∇ log p(D | M,θ)p(θ | M)
∣∣
θ=θ̂

(B.5)

= −∇∇ log p(D | M,θ)
∣∣
θ=θ̂
−∇∇ log p(θ | M)

∣∣
θ=θ̂

(B.6)

= H + Σ−1, (B.7)

where H is the matrix of second derivatives of the negative log likelihood p(D | M,θ)

evaluated at θ̂. If the prior over the parameters is broad, or the number of data samples
in D is large, the Hessian will be dominated mostly by the first term and Σ−1 can be
neglected so that we approximate

A ' H. (B.8)

Together with our assumption that the parameters are normally distributed, i.e.,

log p(θ | M) =
1

2
(θ − µ)TΣ−1(θ − µ) + const, (B.9)

we can rewrite Eq. (B.4) using Eq. (B.8) and Eq. (B.9) as

log p(D | M) '

log p(D | M, θ̂) +
1

2
(θ̂ − µ)TΣ−1(θ̂ − µ)− 1

2
log |H|+ const. (B.10)

By using again the assumption that the prior over the parameters is broad, Σ−1 is small
and the second term on the right-hand side in Eq. (B.10) vanishes. Note that the same
happens if the number of data samples is sufficiently large: as the prior is constant in
the number of data samples, the data likelihood term dominates over the prior for large

187

n. As an intermediate result, we approximate the model evidence as

log p(D | M) ' log p(D | M, θ̂)− 1

2
log |H|+ const. (B.11)

In the next step of the BIC approximation, we consider the second term in Eq. (B.11)
regarding the Hessian H of the data likelihood. When the data samples in D are i.i.d.,
then the Hessian corresponds to the sum of Hessians induced by the individual data
samples. This means that we can factorize the Hessian, i.e.,

H = −∇∇ log p(D | M,θ)
∣∣
θ=θ̂

(B.12)

= −∇∇ log
∏

i=1,...,n

p(xi | M,θ)
∣∣
θ=θ̂

(B.13)

=
∑

i=1,...,n

−∇∇ log p(xi | M,θ)
∣∣
θ=θ̂

(B.14)

By denoting the contribution of a single data sample to the Hessian as

Hi = −∇∇ log p(yi | xi,M,θ)
∣∣
θ=θ̂

, (B.15)

we can now express the Hessian as the sum of the individual contributions, i.e.,

H =
∑

i=1,...,n

Hi = nĤ. (B.16)

and finally approximate it as the product of the number of data samples n and the
average sample contribution Ĥ. Using this decomposition, we can now approximate the
determinant of H in the third term in Eq. (B.10) using

log |H| = log |nĤ| (B.17)

= log
(
nk|Ĥ|

)
(B.18)

=k log n+ log |Ĥ|, (B.19)

where k corresponds to the number of parameters, i.e., θ ∈ Rk. Note that we assume for
this approximation that the sample-wise average Hessian Ĥ has full rank. Combining
this result with Eq. (B.11), we obtain an approximation of the model evidence that is
exclusively based on the data likelihood p(D | M, θ̂), the number of model parameters
k and the number of data samples n.

log p(D | M) ' log p(D | M, θ̂)− k

2
log n+ const. (B.20)

The Bayesian information criterion is typically defined as the negative logarithm of the

188 Appendix B: Derivation of the Bayesian Information Criterion

model evidence multiplied by two, i.e.,

BIC = −2 log p(D | M) (B.21)

' −2 log p(D | M, θ̂) + k log n+ const, (B.22)

so that the model with the lowest BIC score is the one to be preferred.

List of Figures

1.1 Research questions addressed in this thesis 2
1.2 Robots used for the development and the evaluation of our approaches . 5

2.1 Example of a regression problem . 16
2.2 Example of a classification problem . 19
2.3 Example of a dimensionality reduction problem 21
2.4 Example of a clustering problem . 24
2.5 Data likelihood and over-fitting . 25
2.6 Example of a Bayesian network . 28
2.7 Dynamic Bayesian network underlying the Kalman filter 29

3.1 Schematic overview of our approach to body schema learning 34
3.2 Manipulators used in the experiments . 35
3.3 Representation of robot kinematics using Bayesian networks 36
3.4 Bayesian network template for two body parts 39
3.5 Two examples of learned models . 40
3.6 Structure selection for a 2-DOF manipulator 43
3.7 Structure selection for a 4-DOF manipulator 45
3.8 Experiment on model learning from incomplete data 45
3.9 Adaptation of the body schema during tool-use 49
3.10 Evaluation of prediction and positioning errors of a 2-DOF manipulator . 51
3.11 Body schema learning on a 7-DOF-manipulator 52
3.12 Evaluation of body schema adaptation after hardware failures 54
3.13 Evaluation of body schema adaptation during tool use 56

4.1 Examples of two articulated objects in a kitchen environment 62
4.2 Schematic overview of the proposed approach 63
4.3 Representations of articulated objects using graphical models 65
4.4 Open and closed kinematic chains . 83
4.5 Online model estimation and control of articulated objects 84
4.6 Visualization of the learned model for the door of a microwave oven . . . 87
4.7 Visualization of the learned model for a garage door 89
4.8 Visualization of the learned model for a cabinet with two drawers 89

190 List of Figures

4.9 Higher-dimensional configuration spaces 90
4.10 Visualization of the learned models for various other objects 91
4.11 Incremental model learning for a car door and its window 92
4.12 Robot operating various cabinet doors and drawers 94
4.13 Robot learning models for various objects in a kitchen environment . . . 95
4.14 Experiment on learning model priors . 96
4.15 Evaluation of the prediction error with and without learned priors 97
4.16 Example of an open and a closed kinematic chains 98
4.17 Experiment on the estimation of DOFs for an open and a closed kinematic

chain . 99
4.18 Evaluation of model learning for closed kinematic chains 100
4.19 Models used for the evaluation on synthetic data 101
4.20 Evaluation of the prediction error w.r.t. normally distributed noise . . . 102
4.21 Evaluation of the prediction error w.r.t. uniformly distributed outliers . . 102
4.22 Comparison of estimated outlier ratio versus true outlier ratio 103
4.23 Evaluation of the prediction error w.r.t. the number of training samples . 104
4.24 Evaluation of the runtime for all model estimators 104
4.25 Evaluation of model selection w.r.t. the number of training samples . . . 105
4.26 Evaluation of model selection w.r.t. the noise assumption 106

5.1 Experimental setup for tracking articulated objects in depth images . . . 110
5.2 Illustration of the processing steps of the proposed approach 111
5.3 Illustration of the image segmentation using RANSAC 112
5.4 Illustration of the effect of the cost parameter 113
5.5 Iterative pose matching and filtering of candidates 114
5.6 Example of observed tracks from a cabinet door and a drawer 115
5.7 Ground-truth evaluation using a motion capture system 116
5.8 Evaluation of the detection rate and the pose accuracy 117
5.9 Evaluation of model learning for the drawer dataset 118
5.10 Evaluation of model learning and selection for the door dataset 119

6.1 Example data from a tactile sensor array 124
6.2 Experimental setup for recognizing objects based on tactile sensing . . . 125
6.3 Visual and tactile images of various objects 126
6.4 Illustration of the bag-of-features approach 127
6.5 Tactile vocabulary created with unsupervised clustering 133
6.6 Confusion matrices of the learned classifier 134
6.7 Comparison of the uninformed and the informed grasping strategy 135

7.1 Estimating the internal state of an object 140
7.2 Robotic hardware used in the experiments 141

List of Figures 191

7.3 Generic force, position, and velocity profile while grasping an object . . . 142
7.4 Calibration data relating raw sensor values to forces 144
7.5 Measured net fingertip forces when using a pure force controller 145
7.6 Illustration of the reduction in impact forces when using tactile sensing . 145
7.7 Bottles and cans used in our experiments 146
7.8 Experimental setup of the comparative human study 149
7.9 Containers used in the experiments to determine the presence of liquid . 150
7.10 accelerometer data of a container with and without liquid 151
7.11 Tactile sensor data of a container with and without liquid 153
7.12 Case study of two objects with different weight 156

8.1 Example task: white board cleaning . 160
8.2 Modeling task descriptions as dynamic Bayesian networks 161
8.3 Human demonstration of a pick-and-place task 170
8.4 Reproduction of the pick-and-place task with a humanoid robot 170
8.5 Reproduction of the same task with a 6-DOF manipulator 170
8.6 Evaluation of the convergence w.r.t. to the number of demonstrations . . 171
8.7 Visualization of the learned task constraints 172
8.8 Reproduction of the board cleaning task with a 6-DOF manipulator . . . 173
8.9 Reproduction of the board cleaning task in the presence of obstacles . . . 173
8.10 Illustration of global versus local task reproduction 174

List of Tables

3.1 Evaluation of the recovery time after a hardware failure 55
3.2 Evaluation of the positioning accuracy in the presence of hardware failures 57

4.1 Overview of the proposed candidate models for articulated links 70
4.2 Quantitative results of model learning and selection 86

6.1 Evaluation of the recognition rate w.r.t. the number of tactile features k 132
6.2 Evaluation of the recognition rate w.r.t. the weight parameter α 132

7.1 List of the proposed tactile features . 143
7.2 Evaluation of the recognition rate w.r.t. to the probing force ftarget . . . 147
7.3 Confusion matrix for recognizing the internal state of a container 148
7.4 Evaluation of the high-frequency feature for various objects 155
7.5 Confusion matrix for recognizing the fill state 156

List of Algorithms

1 Estimation of the kinematic structure . 44
2 Sequential clustering of kinematic trajectories 78

Bibliography

P. Abbeel, A. Coates, M. Quigley, and A.Y. Ng. An application of reinforcement learning
to aerobatic helicopter flight. In Proc. of the Conf. on Neural Information Processing
Systems (NIPS), Vancouver, Canada, 2007.

S. Agarwal, A. Awan, and D. Roth. Learning to detect objects in images via a sparse,
part-based representation. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 26(11):1475–1490, 2004.

P.K. Allen. Integrating vision and touch for object recognition tasks. Intl. Journal of
Robotics Research (IJRR), 7(6):15–33, 1988.

D. Anderson, H. Herman, and A. Kelly. Experimental characterization of commercial
flash ladar devices. In Proc. of the Intl. Conf. on Sensing and Technology, Palmerston
North, New Zealand, 2005.

A. Andreopoulos and J.K. Tsotsos. Active vision for door localization and door opening
using playbot. In Proc. of the Canadian Conf. on Computer and Robot Vision (CRV),
Windsor, Canada, 2008.

D. Anguelov, D. Koller, E. Parker, and S. Thrun. Detecting and modeling doors with
mobile robots. In Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA),
New Orleans, LA, USA, 2004.

V.R. De Angulo and C. Torras. Using PSOMs to learn inverse kinematics through
virtual decomposition of the robot. In Proc. of the Intl. Work-Conf. on Artificial
Neural Networks (IWANN), Barcelona, Spain, 2005.

B.D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from
demonstration. Robotics and Autonomous Systems (RAS), 57(5):469–483, 2009.

T. Asfour, F. Gyarfas, P. Azad, and R. Dillmann. Imitation learning of dual-arm manip-
ulation tasks in humanoid robots. In Proc. of the IEEE-RAS Intl. Conf. on Humanoid
Robots (Humanoids), Genova, Italy, 2006.

P. Bakker and Y. Kuniyoshi. Robot see, robot do: An overview of robot imitation. In
Proc. of the Workshop on Learning in Robots and Animals (AISB), Sussex, UK, 1996.

198 Bibliography

M. Beetz, D. Jain, L. Mösenlechner, and M. Tenorth. Towards performing everyday
manipulation activities. Robotics and Autonomous Systems (RAS), 58(9):1085–1095,
2010.

D.C. Bentivegna, C.G. Atkeson, and G. Cheng. Learning tasks from observation and
practice. Robotics and Autonomous Systems (RAS), 47(2–3):163–169, 2004.

A. Bierbaum, M. Rambow, T. Asfour, and R. Dillmann. Grasp affordances from multi-
fingered tactile exploration using dynamic potential fields. In Proc. of the IEEE-RAS
Intl. Conf. on Humanoid Robots (Humanoids), Paris, France, 2009.

A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Robot Programming by Demonstra-
tion, chapter 59. Springer, 2008.

C.M. Bishop. Pattern Recognition and Machine Learning. Information Science and
Statistics. Springer, 2007.

J. Bongard and H. Lipson. Automated reverse engineering of nonlinear dynamical sys-
tems. Proc. of the National Academy of Sciences, 104(24):9943–9948, 2007.

J. Bongard, V. Zykov, and H. Lipson. Resilient machines through continuous self-
modeling. Science, 314(5802):1118–1121, 2006a.

J. Bongard, V. Zykov, and H. Lipson. Automated synthesis of body schema using
multiple sensor modalities. In Proc. of the Intl. Conf. on the Simulation and Synthesis
of Living Systems, Bloomington, IN, USA, 2006b.

G. Bradski and A. Kaehler. Learning OpenCV: Computer Vision with the OpenCV
Library. O’Reilly Media, 2008.

F. Bromberg, D. Margaritis, and V. Honavar. Efficient Markov network structure dis-
covery using independence tests. Journal of Artificial Intelligence Research (JAIR),
35(1):449–485, 2009.

T. Brox, B. Rosenhahn, J. Gall, and D. Cremers. Combined region- and motion-based
3D tracking of rigid and articulated objects. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 32(2):402–415, 2010.

S.R. Buss and J. Kim. Selectively damped least squares for inverse kinematics. Journal
of Graphics Tools, 10(3):37–49, 2005.

S. Calinon and A. Billard. A probabilistic programming by demonstration framework
handling skill constraints in joint space and task space. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), Nice, France, 2008.

Bibliography 199

S. Calinon and A. Billard. Statistical learning by imitation of competing constraints in
joint space and task space. Advanced Robotics, 23(15):2059–2076, 2009.

S. Calinon, F. Guenter, and A. Billard. Goal-directed imitation in a humanoid robot. In
Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA), Barcelona, Spain,
2005.

F. Castelli. An integrated tactile-thermal robot sensor with capacitive tactile array.
IEEE Transactions on Industry Applications, 38(1):85–90, 2002.

R. Chalodhorn, D.B. Grimes, and R.P.N. Rao. Learning to walk through imitation. In
Proc. of the Intl. Conf. on Artificial Intelligence (IJCAI), San Mateo, CA, USA, 2007.

D.M. Chickering. Learning Bayesian networks is NP-Complete. In D. Fisher and H. Lenz,
editors, Learning from Data: Artificial Intelligence and Statistics V, pages 121–130.
Springer, 1996.

D.M. Chickering. Learning equivalence classes of Bayesian-network structures. Journal
of Machine Learning Research (JMLR), 2:445–498, 2002.

S. Chitta, B. Cohen, and M. Likhachev. Planning for autonomous door opening with
a mobile manipulator. In Proc. of the IEEE Intl. Conf. on Robotics and Automation
(ICRA), Anchorage, AK, USA, 2010.

C. Chuang and R. Chen. 3D capacitive tactile sensor using DRIE micromachining. In
Smart Sensors, Actuators, and MEMS II, Seville, Spain, 2005.

O. Chum and J. Matas. Matching with PROSAC - progressive sample consensus. In
Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), San
Diego, CA, USA, 2005.

A. Coates, P. Abbeel, and A.Y. Ng. Learning for control from multiple demonstrations.
In Proc. of the Intl. Conf. on Machine Learning (ICML), Helsinki, Finland, 2008.

T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, 2001.

J.J. Craig. Introduction to Robotics: Mechanics and Control. Addison-Wesley Publishing
Company, 1989.

G. Csurka, L. Dance, J. Willamowski, and C. Bray. Visual categorization with bags of
keypoints. In Proc. of the Workshop on Statistical Learning at the Europ. Conf. on
Computer Vision (ECCV), Prague, Czech Republic, 2004.

B. Curless and M. Levoy. Better optical triangulation through spacetime analysis. In
Proc. of the Intl. Conf. on Computer Vision (ICCV), Boston, MA, USA, 1995.

200 Bibliography

R.S. Dahiya, G. Metta, M. Valle, and G. Sandini. Tactile sensing: From humans to
humanoids. IEEE Transactions on Robotics (T-RO), 26(1):1–20, 2010.

R. Daly and Q. Shen. Learning Bayesian network equivalence classes with ant colony
optimization. Journal of Artificial Intelligence Research (JAIR), 35(1):391–447, 2009.

A. Dearden and Y. Demiris. Learning forward models for robots. In Proc. of the
Intl. Conf. on Artificial Intelligence (IJCAI), Edinburgh, Scotland, 2005.

F. Dellaert. Square root SAM. In Proc. of Robotics: Science and Systems (RSS),
Cambridge, MA, USA, 2005.

A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1):
1–38, 1977.

R. Diankov, S. Srinivasa, D. Ferguson, and J. Kuffner. Manipulation planning with
caging grasps. In Proc. of the IEEE-RAS Intl. Conf. on Humanoid Robots (Hu-
manoids), Daejeon, Korea, 2008.

Z. Doulgeri and S. Arimoto. Force position control for a robot finger with a soft tip and
kinematic uncertainties. Robotics and Autonomous Systems (RAS), 55(4):328–336,
2007.

A. D’Souza, S. Vijayakumar, and S. Schaal. Learning inverse kinematics. In Proc. of
the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), Maui, HI, USA,
2001.

R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification and Scene Analysis. John
Wiley & Sons Inc, 1973.

C. Eppner. Techniques for the imitation of manipulative actions by robots. MSc thesis,
University of Freiburg, Germany, 2008.

R. Featherstone and D. Orin. Dynamics, chapter 2. Springer, 2008.

L. Fei-Fei and P. Perona. A Bayesian hierarchical model for learning natural scene
categories. In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), San Diego, CA, USA, 2005.

M. Fiala. ARtag, a fiducial marker system using digital techniques. In Proc. of the
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), San Diego, CA,
USA, 2005.

Bibliography 201

M. Fischler and R. Bolles. Random sample consensus: a paradigm for model fitting
with application to image analysis and automated cartography. Communications of
the ACM, 24(6):381–395, 1981.

D. Fox and X. Ren. Overview of RGB-D cameras and open research issues. In Proc. of
the Workshop on Advanced Reasoning with Depth Cameras at Robotics: Science and
Systems (RSS), Zaragoza, Spain, 2010.

B. Frank, R. Schmedding, C. Stachniss, M. Teschner, and W. Burgard. Learning the
elasticity parameters of deformable objects with a manipulation robot. In Proc. of
the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), Taipei, Taiwan,
2010.

U. Frese. Treemap: An O(log n) algorithm for indoor simultaneous localization and
mapping. Autonomous Robots, 21(2):103–122, 2006.

S. Gallagher. How the Body Shapes the Mind. Oxford University Press, USA, 2005.

C. Gaskett and G. Cheng. Online learning of a motor map for humanoid robot reaching.
In Proc. of the Intl. Conf. on Computational Intelligence, Robotics and Autonomous
Systems (CIRAS), Singapore, 2003.

C.S. Gatla, R. Lumia, J. Wood, and G. Starr. An automated method to calibrate indus-
trial robots using a virtual closed kinematic chain. IEEE Transactions on Robotics
(T-RO), 23(6):1105 –1116, 2007.

J.J. Gibson. The theory of affordances. In R. Shaw and J. Bransford, editors, Perceiv-
ing, Acting, and Knowing: Toward an Ecological Psychology, pages 67–82. Lawrence
Erlbaum, 1977.

N. Gorges, S.E. Navarro, D. Göger, and H. Wörn. Haptic object recognition using
passive joints and haptic key features. In Proc. of the IEEE Intl. Conf. on Robotics
and Automation (ICRA), Anchorage, AK, USA, 2010.

D. Grimes, R. Chalodhorn, and R. Rao. Dynamic imitation in a humanoid robot through
nonparametric probabilistic inference. In Proc. of Robotics: Science and Systems
(RSS), Philadelphia, PA, USA, 2006.

G. Grisetti, C. Stachniss, and W. Burgard. Non-linear constraint network optimization
for efficient map learning. IEEE Transactions on Intelligent Transportation systems,
10(3):428–439, 2009.

G. Grisetti, R. Kümmerle, C. Stachniss, U. Frese, and C. Hertzberg. Hierarchical
optimization on manifolds for online 2D and 3D mapping. In Proc. of the IEEE
Intl. Conf. on Robotics and Automation (ICRA), Anchorage, AK, USA, 2010.

202 Bibliography

K. Grochow, S.L. Martin, A. Hertzmann, and Z. Popović. Style-based inverse kinematics.
ACM Transactions on Graphics (TOG), 23(3):522–531, 2004.

R. Hafner and M. Riedmiller. Neural reinforcement learning controllers for a real robot
application. In Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA),
Rome, Italy, 2007.

Y. Hasegawa, M. Shikida, T. Shimizu, T. Miyaji, H. Sasaki, K. Sato, and K. Itoigawa.
Micromachined active tactile sensor for hardness detection. Sensors and Actuators A:
Physical, 114(2–3):141–146, 2004.

R. He, Y. Zhao, S. Yang, and S. Yang. Kinematic-parameter identification for serial-
robot calibration based on POE formula. IEEE Transactions on Robotics (T-RO), 26
(3):411–423, 2010.

M. Hersch, E. Sauser, and A. Billard. Online learning of the body schema. Intl. Journal
of Humanoid Robotics, 5(2):161–181, 2008.

G. Hetzel, B. Leibe, P. Levi, and B. Schiele. 3D object recognition from range images
using local feature histograms. In Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), Kauai, HI, USA, 2001.

M. Hoffmann, H. Marques, A. Hernandez Arieta, H. Sumioka, M. Lungarella, and
R Pfeifer. Body schema in robotics: a review. IEEE Transactions on Autonomous
Mental Development, 2(4):304–324, 2010.

A.J. Ijspeert, J. Nakanishi, and S. Schaal. Learning attractor landscapes for learning
motor primitives. In Proc. of the Conf. on Neural Information Processing Systems
(NIPS), Vancouver, Canada, 2002.

A. Jain and C.C. Kemp. Behavior-based door opening with equilibrium point control. In
Proc. of the Workshop on Mobile Manipulation in Human Environments at Robotics:
Science and Systems (RSS), Seattle, WA, USA, 2009a.

A. Jain and C.C. Kemp. Pulling open novel doors and drawers with equilibrium point
control. In Proc. of the IEEE-RAS Intl. Conf. on Humanoid Robots (Humanoids),
Paris, France, 2009b.

A. Jain and C.C. Kemp. Pulling open doors and drawers: Coordinating an omni-
directional base and a compliant arm with equilibrium point control. In Proc. of the
IEEE Intl. Conf. on Robotics and Automation (ICRA), Anchorage, AK, USA, 2010.

M. Jeannerod. Object oriented action. In K.M.B. Bennet and U. Castiello, editors,
Insights into the Reach to Grasp Movement, pages 3–15. North-Holland, 2007.

Bibliography 203

F.V. Jensen. Bayesian Networks and Decision Graphs. Springer, 2001.

R.S. Johansson. Sensory and memory information in the control of dexterous manipu-
lation. In F. Lacquaniti and P. Viviani, editors, Neural Bases of Motor Behaviour,
pages 205–260. Kluwer Academic Publishers, 1996.

R.S. Johansson and J.R. Flanagan. Coding and use of tactile signals from the fingertips
in object manipulation tasks. Nature Reviews Neuroscience, 10:345–359, 2009.

D. Katz and O. Brock. Manipulating articulated objects with interactive perception. In
Proc. of Robotics: Science and Systems (RSS), Pasadena, CA, USA, 2008.

C.C. Kemp. A wearable system that learns a kinematic model and finds structure in
everyday manipulation by using absolute orientation sensors and a camera. PhD
thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2005.

E.J. Keogh and M.J. Pazzani. Derivative dynamic time warping. In Proc. of the SIAM
Intl. Conf. on Data Mining (SDM), Chicago, IL, USA, 2001.

A. Kirk, J.F. O’Brien, and D.A. Forsyth. Skeletal parameter estimation from optical
motion capture data. In Proc. of the Intl. Conf. on Computer Graphics and Interactive
Techniques (SIGGRAPH), Los Angeles, CA, USA, 2004.

E. Klingbeil, A. Saxena, and A.Y. Ng. Learning to open new doors. In Proc. of the
Workshop on Robot Manipulation at Robotics: Science and Systems (RSS), Seattle,
WA, USA, 2009.

J. Kober and J. Peters. Learning motor primitives for robotics. In Proc. of the IEEE
Intl. Conf. on Robotics and Automation (ICRA), Kobe, Japan, 2009.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques.
MIT Press, 2009.

J. Kolter and A. Ng. Learning omnidirectional path following using dimensionality
reduction. In Proc. of Robotics: Science and Systems (RSS), Atlanta, GA, USA,
2007.

K. Konolige. Small vision systems: hardware and implementation. In Proc. of the
Intl. Symp. on Robotics Research, Hayama, Japan, 1997.

K. Konolige. Projected texture stereo. In Proc. of the IEEE Intl. Conf. on Robotics and
Automation (ICRA), Anchorage, AK, USA, 2010.

P. Kormushev, S. Calinon, R. Saegusa, and G. Metta. Learning the skill of archery by
a humanoid robot iCub. In Proc. of the IEEE-RAS Intl. Conf. on Humanoid Robots
(Humanoids), Nashville, TN, USA, 2010.

204 Bibliography

P. Kormushev, S. Calinon, and D.G. Caldwell. Imitation learning of positional and force
skills demonstrated via kinesthetic teaching and haptic input. Advanced Robotics,
2011. To appear.

D. Kragic, L. Petersson, and H.I. Christensen. Visually guided manipulation tasks.
Robotics and Autonomous Systems (RAS), 40(2–3):193–203, 2002.

M. Krainin, P. Henry, X. Ren, and D. Fox. Manipulator and object tracking for in hand
model acquisition. In Proc. of the IEEE Intl. Conf. on Robotics and Automation
(ICRA), Anchorage, AK, USA, 2010.

B. Kuipers and Y.-T. Byun. A robust, qualitative method for robot spatial learning. In
Proc. of the National Conf. on Artificial Intelligence (AAAI), Saint Paul, MN, USA,
1988.

B. Kuipers, R. Browning, B. Gribble, M. Hewett, and E. Remolina. The spatial semantic
hierarchy. Artificial Intelligence, 119:191–233, 2000.

S. Kumar, L. Behera, and T.M. McGinnity. Kinematic control of a redundant manip-
ulator using an inverse-forward adaptive scheme with a KSOM based hint generator.
Robotics and Autonomous Systems (RAS), 58(5):622–633, 2010.

M. Kuss. Gaussian process models for robust regression, classification, and reinforcement
learning. PhD thesis, University of Darmstadt, Germany, 2008.

S.M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

N.D. Lawrence. Probabilistic non-linear principal component analysis with Gaussian
process latent variable models. Journal of Machine Learning Research (JMLR), 6:
1783–1816, 2005.

M.H. Lee and H.R. Nicholls. Tactile sensing for mechatronics – a state of the art survey.
Mechatronics, 9(1):1–31, 1999.

D.D. Lewis. Naive (Bayes) at forty: The independence assumption in information re-
trieval. In Proc. of the European Conf. on Machine Learning (ECML), Chemnitz,
Germany, 1998.

J. Lim. Optimized projection pattern supplementing stereo systems. In Proc. of the
IEEE Intl. Conf. on Robotics and Automation (ICRA), Kobe, Japan, 2009.

M. Lopes and J. Santos-Victor. Visual learning by imitation with motor representations.
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 35(3):
438–449, 2005.

Bibliography 205

F. Lu and E. Milios. Globally consistent range scan alignment for environment mapping.
Autonomous Robots, 4(4):333–349, 1997.

M. Machline, Y. Arieli, A. Sphpunt, and B. Freedman. Depth mapping using projected
patterns. Prime Sense Ltd., US patent 20100118123, 2010.

D.J.C. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge
University Press, 2003.

T. Maeno. Friction estimation by pressing an elastic finger-shaped sensor against a
surface. IEEE Transactions on Robotics and Automation, 20(2):222–228, 2004.

Angelo Maravita and Atsushi Iriki. Tools for the body (schema). Trends in Cognitive
Sciences, 8(2):79–86, 2004.

D. Margaritis and S. Thrun. Bayesian network induction via local neighborhoods. In
Proc. of the Conf. on Neural Information Processing Systems (NIPS), Denver, CO,
USA, 1999.

R. Martinez-Cantin, M. Lopes, and L. Montesano. Body schema acquisition through
active learning. In Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA),
Anchorage, AK, USA, 2010.

R. Matuk Herrera. Multilayer perceptrons for bio-inspired friction estimation. In Proc. of
the Intl. Conf. on Artificial Intelligence and Soft Computing (ICAISC), Zakopane,
Poland, 2008.

G.J. McLachlan and T. Krishnan. The EM Algorithm and Extensions. Wiley-
Interscience, 1997.

W. Meeussen, M. Wise, S. Glaser, S. Chitta, C. McGann, M. Patrick, E. Marder-
Eppstein, M. Muja, V. Eruhimov, T. Foote, J. Hsu, R. Rusu, B. Marthi, G. Bradski,
K. Konolige, B. Gerkey, and E. Berger. Autonomous door opening and plugging in
with a personal robot. In Proc. of the IEEE Intl. Conf. on Robotics and Automation
(ICRA), Anchorage, AK, USA, 2010.

A.N. Meltzoff and M.K. Moore. Explaining facial imitation: A theoretical model. Early
Development and Parenting, 6(3–4):179–192, 1997.

I. Monasterio, E. Lazkano, E. Rano, and B. Sierra. Learning to traverse doors using vi-
sual information. Mathematics and Computers in Simulation, 60(3–5):347–356, 2002.

J. Monzee, Y. Lamarre, and AM. Smith. The effects of digital anesthesia on force control
using a precision grip. Journal of Physiology, 89(2):672–683, 2003.

206 Bibliography

K. Motoo, T. Fukuda, F. Arai, and T. Matsuno. Piezoelectric vibration-type tactile
sensor with wide measurement range using elasticity and viscosity change. IEEE
Sensors Journal, 7(7):1044–1051, 2007.

A.C. Murillo, J. Kosecka, J.J. Guerrero, and C. Sagues. Visual door detection integrating
appearance and shape cues. Robotics and Autonomous Systems (RAS), 56(6):512–521,
2008.

C. Nabeshima, Y. Kuniyoshi, and M. Lungarella. Adaptive body schema for robotic
tool-use. Advanced Robotics, 10(20):1105–1126, 2006.

L. Natale. Linking action to perception in a humanoid robot: A developmental approach
to grasping. PhD thesis, University of Genoa, Italy, 2004.

G. Niemeyer and J.-J. Slotine. A simple strategy for opening an unknown door. In
Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA), Albuquerque,
NM, USA, 1997.

M. Nieuwenhuisen, J. Stückler, and S. Behnke. Improving indoor navigation of au-
tonomous robots by an explicit representation of doors. In Proc. of the IEEE
Intl. Conf. on Robotics and Automation (ICRA), Anchorage, AK, USA, 2010.

H.K. Nishihara. PRISM: a practical real-time imaging stereo matcher. Technical Report
AIM-780, Massachusetts Institute of Technology, Cambridge, MA, USA, 1984.

A. Nüchter and J. Hertzberg. Towards semantic maps for mobile robots. Robotics and
Autonomous Systems (RAS), 56(11):915–926, 2008.

Y. Ohmura, Y. Kuniyoshi, and A. Nagakubo. Conformable and scalable tactile sensor
skin for curved surfaces. In Proc. of the IEEE Intl. Conf. on Robotics and Automation
(ICRA), Orlando, FL, USA, 2006.

A.M. Okamura and M.R. Cutkosky. Haptic exploration of fine surface features. In
Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA), Detroit, MI,
USA, 1999.

S. Omata, Y. Murayama, and C.E. Constantinou. Real time robotic tactile sensor
system for the determination of the physical properties of biomaterials. Sensors and
Actuators, 112(2-3):278–285, 2004.

J.K. O’Regan and A. Noë. A sensorimotor account of vision and visual consciousness.
The Behavioral and Brain Sciences, 24(5):939–973, 2001.

M. Pardowitz and R. Dillmann. Towards life-long learning in household robots: The
Piagetian approach. In Proc. of the IEEE Intl. Conf. on Development and Learning
(ICDL), London, UK, 2007.

Bibliography 207

C. Parlitz, M. Hägele, P. Kleint, J. Seifertt, and K. Dautenhahn. Care-O-Bot 3 –
Rationale for human-robot interaction design. In Proc. of the Intl. Symp. on Robotics
(ISR), Seoul, Korea, 2008.

P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal. Learning and generalization of motor
skills by learning from demonstration. In Proc. of the IEEE Intl. Conf. on Robotics
and Automation (ICRA), Kobe, Japan, 2009.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, 1988.

J. Peters, S. Vijayakumar, and S. Schaal. Reinforcement learning for humanoid robotics.
In Proc. of the IEEE-RAS Intl. Conf. on Humanoid Robots (Humanoids), Karlsruhe,
Germany, 2003.

A. Petrovskaya and A. Ng. Probabilistic mobile manipulation in dynamic environments,
with application to opening doors. In Proc. of the Intl. Conf. on Artificial Intelligence
(IJCAI), Hyderabad, India, 2007.

A. Petrovskaya, O. Khatib, S. Thrun, and A.Y. Ng. Bayesian estimation for autonomous
object manipulation based on tactile sensors. In Proc. of the IEEE Intl. Conf. on
Robotics and Automation (ICRA), Orlando, FL, USA, 2006.

A. Petrovskaya, S. Thrun, D. Koller, and O. Khatib. Guaranteed inference for global
state estimation in human environments. In Proc. of the Workshop on Mobile Manip-
ulation at Robotics: Science and Systems (RSS), Zaragoza, Spain, 2010.

V. Pradeep, K. Konolige, and E. Berger. Calibrating a multi-arm multi-sensor robot: A
bundle adjustment approach. In Intl. Symp. on Experimental Robotics (ISER), New
Delhi, India, 2010.

M. Quigley, S. Batra, S. Gould, E. Klingbeil, Q. Le, A. Wellman, and A.Y. Ng. High-
accuracy 3D sensing for mobile manipulation: Improving object detection and door
opening. In Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA), Kobe,
Japan, 2009.

J.R. Quinlan. Learning with continuous classes. In Australian Joint Conf. on Artificial
Intelligence, Singapore, 1992.

J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning. Adap-
tive Computation and Machine Learning. The MIT Press, 2006.

208 Bibliography

R.F. Reinhart and J.J. Steil. Recurrent neural associative learning of forward and inverse
kinematics for movement generation of the redundant PA-10 robot. In Proc. of the
ECSIS Symp. on Learning and Adaptive Behaviors for Robotic Systems (LAB-RS),
Edinburgh, United Kingdom, 2008.

E. Remolina and B. Kuipers. Towards a general theory of topological maps. Artificial
Intelligence, 152(1):47–104, 2004.

M. Rolf, J.J. Steil, and M. Gienger. Efficient exploration and learning of whole body
kinematics. In Proc. of the IEEE Intl. Conf. on Development and Learning (ICDL),
Shanghai, China, 2009.

D.A. Ross, D. Tarlow, and R.S. Zemel. Learning articulated structure and motion.
Intl. Journal of Computer Vision (IJCV), 88(2):214–237, 2010.

S.T. Roweis and L.K. Saul. Nonlinear dimensionality reduction by locally linear embed-
ding. Science, 290(5500):2323–2326, 2000.

N. Roy and S. Thrun. Online self-calibration for mobile robots. In Proc. of the IEEE
Intl. Conf. on Robotics and Automation (ICRA), Detroit, MI, USA, 1999.

R.A. Russell. Object recognition by a ’smart’ tactile sensor. In Proc. of the Australian
Conf. on Robotics and Automation, Melbourne, Australia, 2000.

R.B. Rusu, W. Meeussen, S. Chitta, and M. Beetz. Laser-based perception for door
and handle identification. In Proc. of the Intl. Conf. on Advanced Robotics (ICAR),
Munich, Germany, 2009.

H.P. Saal, J. Ting, and S. Vijayakumar. Active estimation of object dynamics parameters
with tactile sensors. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), Taipei, Taiwan, 2010.

F. Sawa, M. Ogino, and M. Asada. Body image constructed from motor and tactile
images with visual information. Intl. Journal of Humanoid Robotics, 4(2):347–364,
2007.

S. Schaal, J. Peters, J. Nakanishi, and A.J. Ijspeert. Learning movement primitives. In
Proc. of the Intl. Symp. of Robotics Research (ISSR), Siena, Italy, 2003.

A. Schneider. Objektklassifikation mittels Tastsensoren. BSc thesis, University of
Freiburg, Germany, 2009.

G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):
461–464, 1978.

Bibliography 209

L. Sciavicco and B. Siciliano. Modeling and Control of Robot Manipulators. Advanced
Textbooks in Control and Signal Processing. Springer, 2000.

L. Sentis, J. Park, and O. Khatib. Compliant control of multi-contact and center of
mass behaviors in humanoid robots. IEEE Transactions on Robotics (T-RO), 26(3):
483–501, 2010.

J. Sinapov and A. Stoytchev. The boosting effect of exploratory behaviors. In Proc. of
the National Conf. on Artificial Intelligence (AAAI), Atlanta, GA, USA, 2010.

J. Sinapov, M. Wiemer, and A. Stoytchev. Interactive learning of the acoustic properties
of household objects. In Proc. of the IEEE Intl. Conf. on Robotics and Automation
(ICRA), Kobe, Japan, 2009.

S. Srinivasa, D. Ferguson, C. Helfrich, D. Berenson, A.C. Romea, R. Diankov, G. Gal-
lagher, G. Hollinger, J. Kuffner, and J.M. Vandeweghe. HERB: a home exploring
robotic butler. Autonomous Robots, 28(1):5–20, 2010.

M.I. Stamenov. Body schema, body image, and mirror neurons, chapter 2. John Ben-
jamins Publishing, 2005.

S. Takamuku, A. Fukuda, and K. Hosoda. Repetitive grasping with anthropomor-
phic skin-covered hand enables robust haptic recognition. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), Nice, France, 2008.

L. Taycher, J.W. Fisher, and T. Darrell. Recovering articulated model topology from
observed rigid motion. In Proc. of the Conf. on Neural Information Processing Systems
(NIPS), Vancouver, Canada, 2002.

J.B. Tenenbaum, V. de Silva, and J.C. Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.

S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. The MIT Press, 2005.

J. Ting, M. Mistry, J. Peters, S. Schaal, and J. Nakanishi. A Bayesian approach to
nonlinear parameter identification for rigid body dynamics. In Proc. of Robotics:
Science and Systems (RSS), Philadelphia, PA, USA, 2006.

P.H.S. Torr and A. Zisserman. MLESAC: A new robust estimator with application
to estimating image geometry. Computer Vision and Image Understanding, 78(1):
138–156, 2000.

S.K. Tso and K.P. Liu. Hidden Markov model for intelligent extraction of robot trajec-
tory command from demonstrated trajectories. In Proc. of the IEEE Intl. Conf. on
Industrial Technology (ICIT), Shanghai , China, 1996.

210 Bibliography

J. Ueda, Y. Ishida, M. Kondo, and T. Ogasawara. Development of the NAIST-hand
with vision-based tactile fingertip sensor. In Proc. of the IEEE Intl. Conf. on Robotics
and Automation (ICRA), Barcelona, Spain, 2005.

R. Ware and F. Lad. Approximating the distribution for sums of products of normal
variables. Technical Report UCDMS 2003/15, University of Canterbury, New Zealand,
2003.

A. Wedel, C. Rabe, T. Vaudrey, T. Brox, U. Franke, and D. Cremers. Efficient dense
scene flow from sparse or dense stereo data. In Proc. of the European Conf. on
Computer Vision (ECCV), Marseille, France, 2008.

K. Weiss and H. Wörn. The working principle of resistive tactile sensor cells. In Proc. of
the IEEE Intl. Conf. on Robotics and Automation (ICRA), Barcelona, Spain, 2005.

S. Wieland, D. Gonzalez-Aguirre, N. Vahrenkamp, T. Asfour, and R. Dillmann. Com-
bining force and visual feedback for physical interaction tasks in humanoid robots. In
Proc. of the IEEE-RAS Intl. Conf. on Humanoid Robots (Humanoids), Paris, France,
2009.

C. Williams, D. Shang, and H. Carnahan. Pressure Is a Viable Controlled Output of
Motor Programming for Object Manipulation Tasks, pages 339–344. Lecture Notes in
Computer Science. Springer, 2010.

J. Yan and M. Pollefeys. Automatic kinematic chain building from feature trajectories
of articulated objects. In Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), New York, NY, USA, 2006.

Y. Yoshikawa, K. Hosoda, and M. Asada. Binding tactile and visual sensations via
unique association by cross-anchoring between double-touching and self-occlusion. In
Proc. of the Intl. Workshop on Epigenetic Robotics, Genoa, Italy, 2004a.

Y. Yoshikawa, Y. Tsuji, K. Hosoda, and M. Asada. Is it my body? Body extraction from
uninterpreted sensory data based on the invariance of multiple sensory attributes. In
Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), Sendai,
Japan, 2004b.

Y.L. Yufeng, R. Emery, D. Chakrabarti, and W. Burgard. Using EM to learn 3D models
of indoor environments with mobile robots. In Proc. of the Intl. Conf. on Machine
Learning (ICML), Williamstown, MA, USA, 2001.

J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid. Local features and kernels for
classification of texture and object categories: A comprehensive study. Intl. Journal
of Computer Vision (IJCV), 73(11):123–138, 2007.

Bibliography 211

B.D. Ziebart, A. Maas, J.A. Bagnell, and A.K. Dey. Maximum entropy inverse rein-
forcement learning. In Proc. of the National Conf. on Artificial Intelligence (AAAI),
Chicago, IL, USA, 2008.

	Introduction
	Key Contributions of this Thesis
	Publications
	Contributions to Open-Source Software in Robotics
	Collaborations
	Symbols and Notation

	Basics
	Model Learning
	Regression
	Classification
	Dimensionality Reduction
	Clustering

	Model Comparison and Model Selection
	Root Mean Square Error
	Data Likelihood
	Cross-Validation
	Bayesian Model Comparison

	Graphical Models
	Summary

	Body Schema Learning
	Kinematic Models for Manipulation Robots
	A Bayesian Framework for Body Schema Learning
	Local Models
	Learning a Factorized Full Body Model
	Pose Prediction and End-effector Pose Control

	Failure Awareness and Life-Long Adaptation
	Experiments
	Evaluation of Model Accuracy
	Recovery from a Blocked Joint
	Tool Use
	Controlling a Deformed Robot

	Related Work
	Summary

	Learning Kinematic Models of Articulated Objects
	Unified Framework for Learning Kinematic Models
	Model Fitting
	Model Evaluation
	Model and Structure Selection

	Framework Extensions
	Perception and Control of Articulated Objects
	Experiments
	Model Estimation and Model Selection
	Operating Articulated Objects with a Mobile Manipulator
	Detecting Kinematic Loops
	Robustness and Convergence Analysis

	Related Work
	Summary

	Vision-based Perception of Articulated Objects
	Marker-less Pose Estimation
	Fast Processing of Depth Images
	Pose Estimation
	Pose Tracking

	Experiments
	Evaluation of Detection Rate and Pose Accuracy
	Kinematic Model Learning

	Related Work
	Summary

	Object Recognition using Tactile Sensors
	The Bag-of-Features Model
	Unsupervised Creation of a Tactile Vocabulary
	Learning the Feature Histograms
	Object Classification

	Selecting Observation Actions
	Experiments
	Vocabulary and Codebook Creation
	Recognition Rates
	Active Perception

	Related Work
	Summary

	Object State Estimation using Tactile Sensors
	Generic Tactile Features for State Estimation
	Feature Extraction
	Decision Tree Classifier
	Experiments

	Comparative Human Study
	High-frequency Tactile Feature for State Estimation
	Training Data
	Feature Extraction
	Experiments

	Related Work
	Summary

	Learning Manipulation Tasks by Demonstration
	Modeling Manipulation Tasks
	Learning Task Descriptions from Human Demonstrations
	Reproducing Tasks

	Experiments
	Imitating Human Actions
	Dealing with Obstacles during Imitation
	Imitation by Planning

	Related Work
	Summary

	Conclusions
	Future Work

	The Laplace Approximation
	Derivation of the Bayesian Information Criterion

