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Abstract

Recently, logistic regression on hyperbolic space
rather than Euclidean space has been shown to im-
prove accuracy in pixel-wise semantic image segmen-
tation. In this project, I extend this idea to three di-
mensions and segment point clouds using hyperbolic
multinomial logistic regression (MLR). While I cannot
find a significant increase in accuracy when compar-
ing hyperbolic and Euclidean variants, I do observe
the importance of proper parameter initialization in
hyperbolic MLR. I furthermore find that the inclusion
of hierarchical information improves accuracy much
more than in the Euclidean case. And lastly, average
inter-class results tended to be better in the hyperbolic
setting, indicating a better generalization ability.

1 Introduction

Deep learning algorithms operating on hyperbolic
manifolds instead of Euclidean space have recently
gathered increasing research interest as hyperbolic
space seems to lend itself well for problems exhibit-
ing a hierarchical structure [10]. In the field of com-
puter vision, hyperbolic neural networks [5] have been
shown to be effective in prototype learning [7], image
segmentation [1] and in modeling uncertainty [8].

While computer vision is often associated with two-
dimensional image data, increased effort is being put
in research on processing three-dimensional (3D) ob-
jects, as they represent reality more accurately. One
problem which naturally extends to this setting from
the two-dimensional case is semantic segmentation.
Just as image segmentation is typically described as a
pixel-wise classification problem, 3D part segmenta-
tion is the classification of each point in a point-cloud,
i.e. a set of points in 3D space representing an object
in question.

In this practical course, I aim to extend efforts in
hyperbolic image segmentation to the 3D setting by
applying hyperbolic multinomial logistic regression
(MLR) to a 3D part segmentation problem. In the
following section, I will provide mathematical back-

Figure 1 Simple logistic regression

ground information on hyperbolic geometry and logis-
tic regression. This is followed by a section detailing
my experimentation setup to compare Euclidean and
hyperbolic variants and various hyper-parameters. In
the fourth section, I present the results along with
some specifically interesting findings. Finally, I dis-
cuss those results, providing some hypotheses as well
as an outlook on possible further research.

I would like to thank my supervisors Lu Sang and
Simon Weber who advised me on this project.

2 Mathematical Principles

Euclidean logistic regression Logistic regression
is a common way to model a binary outcome depend-
ing on data points comprised of multiple input fea-
tures. Typically, each input data point (𝑥1, ..., 𝑥𝑛) is
viewed as an 𝑛-dimensional vector in ℝ𝑛 which shall
be mapped to either 1 or 0, usually corresponding to
"is in class" or "is not in class". In linear logistic
regression, a hyperplane is fit such that it bests sep-
arates the two possibilities. The fitted hyperplane is
also known as decision boundary. An example using
synthetic data in ℝ2 can be seen in Figure 1 with the
decision boundary shown in black. It is possible to
also model the probability of a data point to belong to
the class, with the formula 𝑝 = 𝑒𝑙 with 𝑙 being the per-
pendicular (i.e. geodesic) distance between the data
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point and the hyperplane. Note that depending on the
side of the boundary, 𝑙 is either positive or negative. 𝑙
is also called the data point’s logit.

So far, we have only modeled the probability of a
data point belonging to a class or not. In the multi-
nomial case, we are interested in the choice among 𝐾
possible classes where 𝐾 hyperplanes are fit by mini-
mizing cross entropy and each input produces 𝐾 logits
𝑙𝑘 . The most likely class is the one with the largest
probability (i.e. logit).

In their seminal paper on hyperbolic neural net-
works, Ganea et al. formulate this exact concept over
hyperbolic geometry, i.e. a Riemannian manifold with
constant negative curvature [5]. Earlier, hyperbolic
space had been shown to be effective when embed-
ding highly hierarchical, tree-like structures, as the
"additional" space can be exploited to better disentan-
gle child nodes while keeping short distances to their
parents [10].

Hyperbolic geometry Hyperbolic space is gener-
ally considered as a Riemannian manifold with con-
stant negative curvature 𝑐. In literature, 𝑐 is often
simply considered to be 1. 𝑛-dimensional hyper-
bolic space cannot be isometrically embedded into
𝑛-dimensional Euclidean space. Instead, there are
multiple (isometrically equivalent) models of hyper-
bolic geometry. In my opinion, the most intuitive
one is the Lorentz (also known as hyperboloid) model
which is defined over the top sheet of a two-sheeted
hyperbola. It is intuitive because the 𝑛-dimensional
manifold can be isometrically embedded in a (𝑛 + 1)-
dimensional Minkowski space [11], i.e. the hyperbolic
distance between two 𝑛-dimensional points is equal to
the geodesic distance along their (𝑛 + 1)-dimensional
embedding. An example is given in Figure 2. The
blue hyperbola represents an environment around the
origin in 1-dimensional space with constant curvature
−1, embedded in a 2-dimensional Minkowski space.
Plotted are the two points (−1.5) and (−0.5). In 1-
dimensional Euclidean space, their distance would be
| − 1.5 − (−0.5) | = 1. However, their hyperbolic dis-
tance is roughly 1.867 (the length of the purple line).
This means that there is almost double "as much space"
between these two points in hyperbolic space than in
Euclidean space.

One of the most prominent models to represent
hyperbolic geometry is the Poincaré ball for which
closed-form formulas to most relevant geometric no-
tions have been derived. Unlike the Lorentz model,
the 𝑛-dimensional Poincaré ball is fully embedded in

Figure 2 Two points and their distance on the 1-dimensional
Lorentz model embedded in a 2-dimensional Minkowski
space

Figure 3 Two points and their distance projected from the 1-
dimensional Lorentz model to the 1-dimensional Poincaré
ball

𝑛-dimensional Minkowski space. The 𝑛-dimesional
Poincaré ball with constant negative curvature 𝑐 is
defined as the set 𝔻𝑛

𝑐 = {𝑥 ∈ ℝ𝑛 : 𝑐 |𝑥 | < 1} with Rie-
mannian metric 𝑔𝔻

𝑛
𝑐

𝑥 = 2
1−𝑐 |𝑥 |2 𝕀𝑛 where 𝕀𝑛 is the 𝑛-

dimensional identity matrix (i.e. the Euclidean met-
ric) [1]. Given a point 𝑥, the Riemannian metric de-
termines the norm in the point’s tangent space T𝑥𝔻𝑛

𝑐 :

|𝑣 |𝑥 =

√︃
𝑣𝑔

𝔻𝑛
𝑐

𝑥 𝑣. Note that this norm depends on an an-
chor point 𝑥 which is necessary for all operations. To
ensure that values be comparable, this anchor point is
typically set to the origin, which also simplifies many
expressions. In the 2-dimensional space with curva-
ture −1, the Poincaré ball is the set of points on the
open unit disk. Because the embedding is not isomet-
ric, the exponentially growing distance to the origin is
not as easily graspable.

As all hyperbolic models are isometrically equiva-
lent, there exists a stereographic projection from the
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Lorentz model to the Poincaré ball. This projection
is useful to develop an intuition for the distribution
of space in the Poincaré model. Figure 3 visualizes
this projection for the 1-dimensional case. In hyper-
bolic space, the two purple lines have the same length,
indicating that the Poincaré model significantly "com-
presses" space.

Hyperbolic logistic regression In order to extend
logistic regression to hyperbolic space, Ganea et al.
define the notion of gyroplanes as hyperplanes in hy-
perbolic space. A gyroplane can be uniquely defined
by a point 𝑝 and a vector 𝑎 in the tangent space at 𝑝 that
is orthogonal to the plane. The hyperbolic multino-
mial logistic regression (MLR) model is then defined
by replacing the hyperplanes in Euclidean MLR by
hyperbolic gyroplanes.

Specifically, an MLR layer classifying 𝐾 classes re-
ceives a set of 𝑛-dimensional points 𝑥𝑖 . Each 𝑥𝑖 is
first mapped from 𝑛-dimensional Euclidean space to
𝑛-dimensional hyperbolic space, by interpreting it as
a vector in the (Euclidean) tangent space at the ori-
gin T0𝔻

𝑛
𝑐 and then applying the exponential map at

the origin, 𝑧𝑖 = 𝑒𝑥𝑝0(𝑥𝑖) which projects tangent space
onto the manifold. Then, 𝐾 logits are calculated as the
gyrodesic distances to the respective 𝐾 gyroplanes,
each defined by points 𝑝𝑘 and orthogonal vectors 𝑎𝑘 .
The model is fit to minimize cross entropy loss by op-
timizing the points 𝑝𝑘 using Riemannian Stochastic
Gradient Descent [3] or Riemannian Adaptive Opti-
mization Methods [2]. As the orthogonal vectors 𝑎𝑘
reside in the Euclidean tangent space, they may be
optimized by rescaling and applying regular gradient
descent methods [5].

Figure 4 and Figure 5 show examples of hyperbolic
simple logistic regression in 2D and 3D space in the
Poincaré ball (𝑛 = 2, 3). In 3D space, gyroplanes
embedded in the Pointcaré ball resemble a parabolic
satellite dish (by nature). Note that the gyroplanes
are perfectly straight. The visible curvature is due
to the before-mentioned projection from an (𝑛 + 1)-
dimensional isometric embedding to an 𝑛-dimensional
non-isometric embedding. The greater the Euclidean
distance of a point on the disk to the origin, the expo-
nentially larger is their true (hyperbolic) distance.

Figure 6 displays hyperbolic multinomial logistic
regression with four classes and corresponding data.
The true class is indicated by a data point’s color while
predicted classes are shown by partitioning the embed-
ding space.

Figure 4 Simple hyper-
bolic logistic regression in
2D space

Figure 5 Gyroplane in 3D
space

Figure 6 Multinomial hyperbolic logistic regression

3 Experimentation

Atigh et al. use such hyperbolic MLR classifiers on a
pixel-wise image segmentation task to show how espe-
cially on small dimensions, embedding pixel features
into hyperbolic space significantly increases segmen-
tation accuracy [1].

In their evaluation, they use a pre-trained ResNet101
network and DeepLabV3+ as the model backbone fol-
lowed by a hyperbolic MLR layer to perform the actual
classification.

Setup and Architecture In my setup, I aim to ex-
tend this concept to the three-dimensional space and
perform point-wise segmentation on the ShapeNet-
Part dataset [4]. ShapeNet-Part consists of 16 classes
of objects each made up of up to 6 parts. In total, there
are 50 different parts and each part can only occur in
instances of a single class. Example shapes are shown
in Figure 9 with their different parts coded in color.
Shape classes and parts can be seen as a hierarchy and
the idea is that this may lead to easier classification
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when embedded in hyperbolic space versus Euclidean
space.

A point cloud is represented as a set of 𝑁 points,
randomly sampled from the shape mesh. Each point
𝑝𝑖 is characterized by its 3D (Euclidean) coordinates
(𝑝𝑖,1, 𝑝𝑖,2, 𝑝𝑖,3). A point cloud is thus a matrix of
shape 𝑁 × 3.

I use the popular PointNet [12] architecture as the
backbone of the network. Originally, I experimented
with an extension, PointNet++ [13], but decided on
the simpler original variant, as the results were com-
parable and the former is considerably more complex.
Given a point cloud input matrix of shape 𝑁 × 3,
PointNet produces an 𝑛-dimensional (Euclidean) fea-
ture vector 𝑥𝑖 per point 𝑝𝑖 , i.e. a matrix of shape 𝑁×𝑛.
In my experiments, I compare 𝑛 = 50, 𝑛 = 3 and 𝑛 = 2.
I chose these values as Atingh et al. note that hyper-
bolic space performs the better compared to Euclidean
space the lower the dimension.

Each feature vector is then fed into an MLR layer
which classifies it as one of 𝐾 parts. We denote the
𝑘-th logit as 𝑙𝑘 and the corresponding probability 𝑝𝑘 .
Note that in my evaluation, the network’s accuracy over
the 16 shape classes is not (directly) measured and no
class-related probabilities are returned. Instead, only
the 50 parts are output by the logistic regression.

Loss function Analogously to Atigh et al., I com-
pare two different variants of calculating the probabil-
ities 𝑝𝑘 from the logits 𝑙𝑘 . First, I try regressing and
classifying just the 50 parts using cross entropy, thus
𝑝𝑘 = 𝑒𝑙𝑘 . In this variant, the network is unaware of
the additional information that some parts are semanti-
cally connected by belonging to the same shape class.
In the second variant, which Atigh et al. call hierar-
chical softmax, 16 + 50 gyroplanes are fit. The first 16
logits 𝑙1...𝑙16 correspond to the 16 shape classes and
the remaining 50 logits 𝑙17...𝑙66 to the 50 parts. For a
given shape class 𝐶 with index 𝑘𝐶 ∈ [1; 16] and parts
P𝐶 with indices 𝑘P𝐶

= {𝑘𝑃 : 𝑃 ∈ P𝐶} ⊆ [17; 66]
the probability of an input point belonging to a spe-
cific part 𝑃 with index 𝑘𝑃 is then calculated as

𝑃𝑟 [𝑝𝑎𝑟𝑡 = 𝑃] =
𝑃𝑟 [𝑐𝑙𝑎𝑠𝑠 = 𝐶] · 𝑃𝑟 [𝑝𝑎𝑟𝑡 = 𝑃 | 𝑐𝑙𝑎𝑠𝑠 = 𝐶] =
𝑒𝑙𝑘𝐶∑16
𝑘=1 𝑒

𝑙𝑘
· 𝑒𝑙𝑘𝑃∑

𝑘∈𝑘P𝐶
𝑒𝑙𝑘

This calculates the conditional probability that the
point is classified as the part’s shape class and among
this class’ parts, it is classified as the part in question.

Evaluation metrics To measure segmentation qual-
ity, I calculate the mean union over intersection (mIoU)
of the true segmentation and the predicted segmen-
tation in a validation batch. In order to assess the
network’s ability to generalize well over structurally
heterogeneous classes, I also calculate the mean union
over intersection after grouping samples by class.
Lastly, I determine the class posterior based on part
probabilities as suggested by Weber et al. [14]. Given
a class𝐶 and its parts P𝐶 , the class posterior is defined
as

𝑃𝑟 [𝑐𝑙𝑎𝑠𝑠 = 𝐶] =∑︁
𝑃∈P𝐶

𝑃𝑟 [𝑝𝑎𝑟𝑡 = 𝑃] =∑︁
𝑃∈P𝐶

𝑝𝑘𝑃

Note that in the case of the simple loss, 𝑝𝑘𝑃 are
learned without hierarchical knowledge, whereas for
hierarchical softmax, class-part relations are implicitly
learnt by the network. We would thus expect better per-
class accuracy using hierarchical softmax than simple
softmax.

The MLR layer is characterized by three hyper-
parameters: the dimension of the Poincaré ball 𝑛, the
number of parts 𝐾 to decide on, and the negative Rie-
mannian curvature 𝑐. In all experiments 𝑐 = 1, as
Atigh et al. reported this value to perform best on
small dimensions and most literature chooses it im-
plicitly.

To investigate the difference in performance based
on point cloud density, I compare training on a mesh
resolution of 2048 points and a batch size of 32 to a
resolution of 1024 with a batch size of 16. Network Eu-
clidean and hyperbolic parameters are optimized over
100 epochs using Euclidean and Riemannian Adap-
tive Optimization Methods respectively, both with a
learning rate of 10−3.

4 Results

Over all experiments, it can be said that in general,
hyperbolic logistic regression did not significantly im-
prove classification accuracy. Leaving all other hyper-
parameters unchanged, both configurations usually
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Figure 7 In each of the three accuracy metrics, the top three configurations converge to the same maximum

Figure 8 Segmented embedding space for 𝑛 = 2

converged to the same maximal accuracy, with the Eu-
clidean variant often performing slightly better. Fig-
ure 9 shows true versus predicted segmentation using
hyperbolic MLR, dimension 𝑛 = 50, hierarchical soft-
max and a point cloud resolution of 1024 points.

The overall best per-instance mIoU accuracy
(0.8356) was achieved using Euclidean space, with
dimension 𝑛 = 50, hierarchical softmax and the
smaller resolution of 1024 points. This is followed by
the equivalent configuration instead using hyperbolic
space (0.834) and then by the variant using Euclidean
space, 𝑛 = 50, simple softmax and a resolution of 2048
points (0.8327).

In terms of per-class mIoU accuracy, using Eu-
clidean space, 𝑛 = 50, simple softmax and 2048
points yielded the best result (0.7791). The next-
best per-class accuracy were both using hyperbolic
space, 𝑛 = 50. The second-best accuracy was achieved
using hierarchical softmax and the lower resolution

(0.7751), followed by the simple softmax and 2048
points (0.7746).

The best class posterior accuracy (0.9897) was
found using hyperbolic space, 𝑛 = 50, hierarchical
softmax and the smaller resolution of 1024 points.
The next-best accuracy (0.989) was achieved by three
configurations: both variants (Euclidean and hyper-
bolic) using dimension 𝑛 = 50, simple softmax and
2048 points, and, remarkably, the hyperbolic variant
using 𝑛 = 3, hierarchical softmax and small dimension
of 1024 points.

Dimension The embedding dimension 𝑛 of the em-
bedding space played the largest role in the quality
of the classification. Variants using 𝑛 = 50 reached
on average a per-instance mIoU of 0.833, an average
per-class mIoU of 0.775, and a mean class posterior
accuracy of 0.989. For 𝑛 = 3, these numbers drop to
0.812, 0.713 and 0.986, and in the two-dimensional
case 𝑛 = 2 they fall to merely 0.736, 0.558 and 0.949.

For 𝑛 = 50, the average per-instance mIoU, per-class
mIoU and class posterior accuracy among Euclidean
versus hyperbolic variants differed only marginally by
0.2%, 0.5% and 0.1%, respectively.

In the case of 𝑛 = 3, average hyperbolic per-class
mIoU was 2.5% higher than among Euclidean variants.
Per-instance mIoU and class posterior accuracy did not
change significantly.

Compressing embedding space to 𝑛 = 2 lead to a
higher average per-instance mIoU among Euclidean
variants (1.9%), while per-class mIoU and class pos-
terior accuracy were higher among hyperbolic variants
(2.5% and 1.6%, respectively).

Softmax The use of the hierarchical softmax as
described by Atigh et al. clearly benefits classifi-
cation quality. Averaged over all experiments, us-
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Figure 9 True segmentation versus predicted using hyperbolic MLR

ing hierarchical softmax increased per-instance mIoU
from 0.7705 to 0.7899 (+2.5%), per-class mIoU from
0.6455 to 0.6653 (+3.1%) and class posterior accuracy
from 0.954 to 0.9837 (+3.1%).

When comparing the hyperbolic configuration with
𝑛 = 2 and the smaller point resolution, per-instance
mIoU reaches 0.5763 for the simple softmax versus
0.7531 with hierarchical softmax, which is a gain of
roughly 30.7%. An even starker improvement can be
seen when examining the class-based metrics. Per-
class mIoU climbs from 0.3728 to 0.609 (+63.4%),
indicating that inter-class accuracy varies significantly
less when training on the hierarchical loss. Class pos-
terior accuracy sees an increase from 0.8148 to 0.9867
(+21.1%).

In the equivalent Euclidean configuration, us-
ing hierarchical softmax impacts the accuracy much
less. Per-instance mIoU insignificantly decreases from
0.7744 to 0.7739 (-0.1%), per-class mIoU increases
from 0.5395 to 0.5933 (+10.0%) and class posterior
accuracy improves from 0.9633 to 0.9794 (+1.7%).

Over all experiments, hyperbolic models improved
in per-instance mIoU by 6.9%, in per-class mIoU by
9.3% and in class posterior accuracy by 6.4% when us-
ing hierarchical softmax. Euclidean models worsened
on average, with a decrease by 1.2% in per-instance
mIoU and 2.4% in per-class mIoU. Class posterior
accuracy did not change significantly.

Resolution Comparing hyperbolic and Euclidean
variants in terms of input resolution and batch size,
I found that Euclidean performance changed insignif-

icantly. Hyperbolic models responded much more to
the increased detail with average per-instance mIoU
increasing from 0.7683 to 0.7951 (+3.5%), average
per-class mIoU from 0.6566 to 0.6886 (+4.9%) and
average class posterior accuracy from 0.9583 to 0.988
(+3.1%). While hyperbolic models performed below
Euclidean configurations in the lower resolution, they
were on par when training on more detailed point
clouds.

I did observe an interesting effect when compar-
ing the hyperbolic variant on 𝑛 = 3 dimensions and
hierarchical loss, first with a point cloud resolution
of 2048 and then 1024 points. I found that the per-
instance mIoU did not change significantly, aside from
a slower convergence within the first half of training.
However, per-class mIoU started out worse than in
the high-resolution setting, but increased quickly and
ended up at 0.6834 for the 1024 point configuration
versus 0.6378 for the 2048 point variant (improvement
of roughly 7.15%). An evolution of these two metrics
over the epoch is shown in Figure 10 and Figure 11,
respectively. Reducing the dimension to 𝑛 = 2, this ef-
fect vanished and both variants converged to the same
accuracy.

Initialization As Ganea et al. note in [6], points 𝑝
in the hyerpbolic MLR layer must be initialized close
to the origin. Originally, I sampled both points 𝑝
and directions 𝑎 from a (multivariate) standard nor-
mal distribution (𝜇 = 0, 𝜎2 = 1). After changing
the per-component distribution of 𝑝 to the uniform
distribution with bounds [−10−3; 10−3], per-instance
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Figure 10 Per-instance
mIoU for 1024 mesh
points vs. 2048 mesh
points

Figure 11 Per-class mIoU
for 1024 mesh points vs.
2048 mesh points

mIoU increased from 0.7155 to 0.7489 (+4.7%) and
per-class mIoU improved significantly from 0.489 to
0.6049 (+23.7%) when examining the case 𝑛 = 2 using
hierarchical loss.

5 Discussion

Unfortunately, I ultimately could not produce the same
result as Atigh et al., where the hyperbolic model per-
formed significantly better in terms of accuracy than
the Euclidean equivalent.

In most experiments, both variants seem to converge
to the same maximum accuracy, but the hyperbolic
model performs worse, sometimes significantly, but in
general so little that performance can be considered as
equal.

The results suggest that for higher embedding di-
mensions, Euclidean and hyperbolic models are nearly
identical. This is aligned with evaluations performed
by Atigh et al. and makes sense because in higher
dimensions, the network has ample space to distribute
points, thus the ability of using space efficiently is not
critical. Forcing the network to densely embed points
in lower dimensions hinted at an advantage of hyper-
bolic variants in class-related metrics. This seems
plausible as these measures benefit from an embed-
ding that reflects the hierarchical relationship, which
hyperbolic space is suspected to be better at. The
fact that Euclidean networks perform higher in terms
of per-instance accuracy but reach a lower per-class
accuracy indicates that they performed better on some
classes but much worse on others than their hyperbolic
counterparts (higher inter-class variance in classifica-
tion accuracy).

The implicitly learnt topological knowledge when
using hierarchical softmax clearly enables hyperbolic
networks to better disentangle classes, as is indicated
by the immensely improved accuracy, especially in

Figure 12 Hyperbolic embeddings with simple softmax
versus hyperbolic softmax

per-class mIoU. Figure 12 depicts point embeddings
after training using simple versus hierarchical softmax.
It is evident that parts of the same class (blobs of
similar color) are much better geometrically isolated in
the latter case and much more entangled in the former.

Examining the embeddings more closely, some
class are embedded almost exclusively on the edge of
the disk, i.e. they collapse at the boundary. This effect
has been observed by various authors (e.g. [6] or [9])
and has been linked to degraded performance due to
numerical instability of the Poincaré model stemming
from limited precision in floating-point arithmetic.

In the experiments published by Atigh et al., clas-
sifiers appear to converge to a state where gyroplanes
representing children were geometrically enclosed by
the gyroplanes of their parent, mirroring the hierarchi-
cal relations. In my trials, I could not observe the same
effect, even when using hierarchical softmax. Rather,
class gyroplanes seemed to not at all geometrically re-
late to gyroplanes of their children. I tried to add a
loss that would penalize if the gyroplane point 𝑝 of a
class was farther from the origin (larger |𝑝 |) than those
of its parts’ gyroplane. This resulted in significantly
decreased performance, so I did not pursue the idea
further.

Resolution seemed to not have a significant effect on
overall accuracy in general. Curiously, the larger di-
mension sometimes produced worse accuracy than the
smaller variant. However, because training was always
limited to 100 epochs, this could simply indicate that
the PointNet backbone converges slower on the larger
resolution, which seems plausible. The curious case
I noted in the results section, where per-class mIoU
seemed to converge to a better accuracy in the lower
resolution variant could indicate that higher resolution
leads to overfitting on some class geometries and thus
more inter-class accuracy variance.

Upon investigation, the bottleneck seems to be
mostly the inability of PointNet to disentangle the
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shape geometries any further. This is supported by
the fact that in most experiments, hyperbolic and Eu-
clidean variants converge to the same classification
accuracy. Because the Euclidean configuration is a
simple linear layer on PointNet output, its accuracy
on 𝑛 = 50 is equivalent to plain PointNet. The fact
that this configuration scored best in terms of per-
instance mIoU and the top hyperbolic models were
almost equivalent in performance, suggests that the
upper bound on accuracy is mostly determined by
PointNet and whether using hyperbolic or Euclidean
embedding space only plays a marginal role.

Outlook As the overall network output seems to be
limited by PointNet, an obvious first step would be to
consider better backbone models to improve disentan-
glement of geometries, especially in low dimensions
such as 𝑛 = 2 and 𝑛 = 3.

Another option is pre-training the backbone, for
example in a Euclidean setting and then optimizing
just the hyperbolic embedding and classification in a
second step. In fact, Atigh et al. use a pre-trained
ResNet101 as their backend.

In order to further assess the effect of larger reso-
lutions, experiments could be rerun for longer periods
to examine the convergence behavior depending on
shape resolution. Furthermore, modifying the batch
size in my experiments could have introduced bias to
the evaluation on the effect of resolution.

Another hyper-parameter to examine is the Rieman-
nian curvature 𝑐. While I do not believe that much
greater accuracy can be achieved, the optimum might
not be at 𝑐 = 1, but at some slightly different level.

Lastly, improvements have been suggested to en-
hance embedding stability on the Pointcaré ball.
Ganea et al. present hyperbolic entailment cones [6]
to force the spatial distribution of embeddings to re-
flect hierarchical relations. Another approach makes
use of tiling methods, such as in [15], to confine preci-
sion loss to fixed bounds across the whole embedding
space.

6 Conclusion

In this project, I explored the performance of hy-
perbolic neural networks on semantic point-wise 3D
shape segmentation. I compare Euclidean and hyper-
bolic configurations, as well as other hyper-parameters
such as point-cloud resolution, embedding dimension
and the harnessing of hierarchical relations in the data.
I find that especially the latter had a significant effect

on hyperbolic models which is aligned with prior re-
search. In terms of achieved accuracy, however, hyper-
bolic classification metrics would converge to perform
either below or on par with the Euclidean equivalents.
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