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Abstract

Real-world deployment of segmentation models elevates the objective of out-of-
distribution (OOD) detection. Models that utilize OOD supervision implicitly extend
the in-distribution (ID) set, contradicting the fundamentals of the objective. On the
other hand, unsupervised methods rely on inferring the inherent information from
the model’s decision patterns. Recent methods utilize class scores as an informative
medium for OOD detection. Surprisingly, the role that the embedding positions
play on the class scores is mainly unexplored. Our technical analysis and empirical
observations uncover that the norm of the embeddings contains information that is
primarily related to the distribution of the external factors, regardless of the objects’
whatness. Consequently, norms aggravate ambiguity in the class scores, rendering
them less informative as a comparative measure. To mitigate the external ambiguity,
we propose normalized class scores obtained by post-hoc projection of embeddings
into a hypersphere. Additionally, our observations suggest that class weight nor-
malization utilized in the classification does not extend to the segmentation domain.
Through empirical evaluation, we show that unsupervised OOD detection methods
employed with normalized class scores consistently outperform their counterparts
for multiple datasets and different backbones. Furthermore, we identify the driving
factor of the ViT model’s OOD accuracy as their norm uniformity by showing the
practical equivalence of ViT models to hyperspherical representation.
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1 Introduction

Advancements in semantic segmentation models enabled a medium where such
models can be used in real-world scenarios [44, 34, 11, 10]. With extended usage, it is
now apparent that further advancement is not only bottlenecked by the discriminative
power of the model but also the assumptions. By constraints of segmentation models,
the correctness of a prediction can only be defined if prior knowledge of the testing
domain is assumed. However, with the widened usage of segmentation models, the
assumption of equivalence of the In-Distribution (ID) set and the global set of all
possible use cases can not hold anymore. By defining the set difference between
global and ID sets as Out-Of-Distribution (OOD), OOD detection models aim to
discriminate between ID and OOD sets [27, 24, 32, 7, 29, 33, 37].

In recent literature, models commonly try to approximate the OOD set as a union
of numerous predefined low-level classes [7, 48, 2, 18, 33]. These non-intersecting
low-level classes are manually selected from a distinct classification taxonomy and
used to supervise the model to learn this union set as OOD. As a result, instead of
discriminating between ID and OOD sets, such models learn to classify predefined
subsets of the OOD set. This selection is equivalent to selecting a subset from the
global set and classifying the selected subset using direct supervision. In segmentation
tasks, ID objects are defined as a selected subset of the global set, which is then learned
by providing supervision. One can argue that such OOD-supervised models extend
the ID set by adding a subset of the global set rather than estimating the difference
between the global set and the ID set.

Conversely, unsupervised models use inherent information from the model’s
decision to estimate a score function for OOD detection [32, 25, 28, 23]. In deep
models, this information is generally extracted from the last layer of the model, where
the representation of the input is converged. In supervised and unsupervised models
alike, class scores or logits are commonly interpreted as a representative medium
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1 Introduction

to detect if an input belongs to any ID distributions [32, 18, 48, 33, 51, 23, 25, 56,
38, 37]. For the same input, the internal ranking of the class scores determines the
prediction confidence. Consequently, a high class score compared to other classes
yields high confidence. However, this does not indicate that class scores are an
informative medium for comparing different inputs. A low class score can produce
high confidence if its exponential ranking is superior to that of other classes. Inversely,
high class scores can result in low confidence if class scores are uniform.

In this work, our contributions are as follows. (i) We challenge the class score based
unsupervised OOD detection methods through technical investigation of components
of class score generation. (ii) We identify the norm as a degree of freedom the model
uses to stay robust under different external shifts. (iii) Decoupled from the object’s
whatness, we claim the norm as the driving factor of the ambiguity in class scores.
(iv) Via post-hoc mapping of embedding to a hypersphere, we mitigate the ambiguity
imposed by the norms. (v) We reason the high OOD detection accuracy of ViT models
to their practical equivalence to a hypersherical representation. (vi) With thorough
evaluation, we support our claims with empirical evidence.
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2 Preliminaries

2.1 Semantic Segmentation

Semantic segmentation is the problem of clustering pixels in a given image where
a semantic taxonomy defines each cluster [39]. Pixels corresponding to the same
class of objects clustered together to achieve a human-understandable partitioning in
the image. If an expected taxonomy over objects is unknown, clusters obtained by
segmentation are used to infer the information about the possible semantic classes
in a given domain by leveraging found object similarities. Such methods are called
unsupervised segmentation methods [55, 21, 13]. However, more commonly, an
expected taxonomy on the domain is known, and either the clusters are found to
match the predefined classes after processing, or clusters are predefined by matching
semantic classes before processing. The decision to use pre- or post-process matching
generally depends on the availability of labeled data for a subset of the domain [36].
Methods that leverage the labeled data to define semantic classes and supervise
the representation of pixels to match the predefined class distribution are called
supervised segmentation methods [47, 54, 9, 12, 50].

The supervised classification aims to extract a singular representation for each data
point, assuming the data points are independent [3]. In the segmentation case, the
class of each pixel also depends on the neighboring pixels and global information
about the image [8, 47]. Such dependence raises the need for a segmentation model
to generate a representation for each model containing the neighboring information.
Aligned with the objective, convolutional models [45, 22] enabled a medium for the
segmentation task, extending their usage to real-world scenarios. Later, with the
discovery of the applicability of attention models [49] in the visual domain and, as a
result, representations that are further supervised by global information, the reach of
the segmentation models was extended [5, 40, 44, 34].
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2 Preliminaries

Even though segmentation differs in many aspects from the task of classification,
it contains the same closed-world assumption. For a given pixel x, segmentation
aims to estimate the probabilities p(x ∈ ci|x), or in short notation p(ci|x), where
C = {c1, c2, ..cN} is the set of known classes with |C| = N. The closed set assumptions
follow that:

N

∑
i

p(ci|x) = 1 (2.1)

Note that this assumption directly implies G \⋃N
i ci = ∅ where G denotes the global

set. One can calculate the probabilities p(ci|x) if p(x|ci) is known as Bayesian formula
follows:

p(ci|x) =
p(x|ci)p(ci)

∑N
j p(x|cj)p(cj)

(2.2)

Here, another assumption over class cardinalities are made as |ci| = |cj|, ∀ci, cj ∈ C,
which implies p(ci) =

1
N , ∀ci ∈ C. Following the assumption, we can rewrite eq 2.2

as:
p(ci|x) =

p(x|ci)

∑N
j p(x|cj)

(2.3)

In a deep model, the log of p(x|ci) is estimated by a learned function f (w, x) where
w corresponds to the model parameters. With the estimation, probabilities recovered
by:

p(ci|x) =
e f (wi,x)

∑N
j e f (wj,x)

(2.4)

Eq. 2.4 is referred as the softmax function in the literature where f (wi, x) are class
scores or logits.

As a consequence of the assumptions of discriminative training, when such a model
is moved to open-world settings, it only provides the predictions for predefined
classes. Further, it assigns any objects to one of the constrained closed-world classes,
which does not consistently yield a reasonable assignment in open-world settings
where the assumed global set differs.
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2 Preliminaries

2.2 OOD Detection

The objective of OOD detection arises when the expected input distribution is shifted
over the constrained class taxonomy [41]. With such a shift, the closed-world assump-
tion on the input does not hold, and objects from outside the defined class taxonomy
are expected. The assumption on the global set shifts as:

G = I ∪ O (2.5)

where I ∩ O = ∅. Here O is the OOD set, and I is the ID set where I =
⋃N

i ci.
Considering the new assumptions about the input space, the task of OOD detection
for a given input pixel x, is to find a measure for the OODness of the object that
would parallel an estimation for p(O|x). Said measure is generally a scalar score
function S(x) having a higher value for OOD inputs [32, 48, 33].

A common approach for OOD detection is providing OOD supervision for the
model [48, 7, 16]. The assumed closed-world taxonomy for the objects defines the set
ID set. The definition of OOD is the set difference between the global set and the ID
set. Following the definition, models with OOD supervision sample points outside
the ID distribution to estimate a sub-space for the OOD in the embedding space [33,
2]. Such models assume C + 1 classes in the input domain by extending the input
set with a OOD "class". These models typically optimize a score function that would
yield high values for OOD and low values for ID with additional training [32, 33, 18,
7, 48].

Our main argument against the supervised OOD methods is directly related to the
very definition of an OOD. Defining the ID and OOD by the human expectations for
the domain overlooks the decision mechanisms of supervised models. The distinction
between ID and OOD with respect to a supervised model comes from the data that
the model is supervised with. When OOD supervision is provided to a model, the
distribution from which said OD samples are drawn becomes an ID distribution.

Other OOD detection methods do not use OOD supervision and aim to detect OOD
inputs by inferring the inherent information from the model’s decisions [23, 28, 24, 25,
1, 29]. Unsupervised methods differ by their level of invasiveness and generalizability.
Invasive methods alter the model’s training process to provide self-supervision. In
the literature, such models are also called re-training methods. One common line
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2 Preliminaries

of invasive approach is generative methods, where OOD supervision is given by
generated objects or noise [19, 31, 30]. Even though these methods can achieve high
OOD detection scores, they also affect the ID accuracy of the model. Generalizability
depends on factors such as the requirement of an extra model on top of the original
model or the dependence of the method on a specific model. These methods offer
a solution for when a specific type of model is used, thus reducing their impact
on the extent of the method [28, 18, 37, 1]. One significant example is the recent
trend of methods that are specific to the Mask2Former [11] model. Even though
they can empirically show good results on the ood detection [18, 28], the proposed
methods can not be used in any other segmentation method. Also, considering the
interchangeability of methods between domains in the overall literature, such as their
usage with other tasks or other types of data, being highly dependent on a specific
model hinders their generalizability.

2.3 Backbone Architectures

Figure 2.1: Visualization of DeepLabv3+ architecture. Image taken from the original
source [10].

This part briefly overviews the different network architectures we employ during
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2 Preliminaries

OOD detection.
Figure 2.1 shows the architecture of DeepLabv3+ [10], which enhances DeepLabv3 [9]

with a decoder that utilizes the high field-of-view representations extracted from the
DeepLabv3 backbone. To extract a representation for each pixel, DeepLabv3 uses
atrous [52] convolutions, in which an atrous rate increases the stride of sampling in
the convolution kernel. Further extending this, DeepLabv3+ employ ASPP(Atrous
Spatial Pyramid Pooling), in which different representations with increasing atrous
rates are concatenated. DeepLabv3+ upsamples the extracted features from the
DeepLabv3 backbone with bilinear interpolation and combines them with low-level
features. We use DeepLabv3+ architecture with ResNet-101 [22] backbone.

Figure 2.2: Visualization of OCRNet architecture. Image taken from the original
source [54].

OCRNet [54] enhances the feature representations of the pixels with context-
aware representations of each class region on the image. Figure 2.2 illustrates the
architecture of OCRNet. They estimate soft object regions in the image where each
region corresponds to a class. For each object region, they compute an object region
representation by aggregating the features of each pixel belonging to the region.
They extract the context-aware scores for each pixel by utilizing the similarity score
between each pixel feature and their corresponding region score. They concatenate
the enhanced features with the initial features to generate the final representation.
Similarly, we use the OCRNet model with the ResNet-101 [22] backbone.

Mask2Former [11] is a segmentation model that can perform instance, panoptic,
and semantic segmentation. It is built on the Maskformer [12] architecture, which
outputs a binary mask for each class and optimizes an objective function that includes
both classification and binary mask loss. They also utilize a Transformer decoder,
aggregating global information from the latent space to all masks. Mask2Former, in
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2 Preliminaries

Figure 2.3, enhances the Transformer decoder by feeding representations from the
decoder at multiple scales. They also introduce masked attention to extract localized
features within predicted mask regions. Masked attention is similar to object regions
in OCRNet, where attention is applied to the regions based on their semantics.

Figure 2.3: Illustration of the Mask2Former architecture. Image taken from the
original source [11].

2.4 Cityscapes Taxonomy

Figure 2.4: Class taxonomy and distribution of Cityscapes. Figure is taken from the
original source [14].

8



2 Preliminaries

OODness of an object is defined by the distribution of attributes of the classes
the model is trained with. In that sense, the ID dataset and the class taxonomy the
model is trained with are of significant importance as they affect the very definition
of the problem. We use Cityscapes [14] as the ID dataset and use models that are
trained with the Cityscapes training set. Cityscapes contains street-view images
from different cities in Germany. Naturally, our ID set consists of 19 classes in the
Cityscapes class taxonomy. Figure 2.4 shows the classes and pixel distributions of
the Cityscapes dataset, and Figure 2.5 shows example labeled images with the same
taxonomy.

Figure 2.5: Example labeled images from Cityscapes [14] dataset. Each pixel is color
coded by their semantics.
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3 Post-hoc Non-invasive Generalizable
OOD Detection

Figure 3.1: Distribution of the number of ID and OOD pixels under MSP [24]. ID
and OOD distributions are not discriminable as an intersection is expected
with high-confidence OOD and low-confidence ID pixels.

In this chapter, we review noninvasive, generalizable, post-hoc OOD detection
methods to provide an overview of the previous works on the OOD detection domain.
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3 Post-hoc Non-invasive Generalizable OOD Detection

3.1 Max Softmax Probability

OOD detection problems would have a direct solution if the predictive model were
ideal. An ideal model would have perfect prediction accuracy and calibration. In
other words, it would have a discrete binary prediction that is always correct for
any ID object. Since such a model would have no confusion between the samples
drawn from ID distributions, any confusion on the model would directly implicate
the presence of an OOD. However, as we move further from an ideal model, the
expected probability of an ID confusion increases. Without considering the possible
ID confusion, one of the baselines for the OOD detection is set as the confidence
of the predictions [24]. Even though confidence measures how well an input fits
in one of the expected distributions, it fails to discriminate between an ID and an
OOD confusion. For a given input x, the confidence of the prediction is calculated as
follows:

c(x) = maxc p(c|x) (3.1)

The expectancy of input as an OOD is negatively correlated with confidence.
Thus, a measure for detecting the OOD is inverse of the confidence and calculated
as −maxc p(c|x). In the context of OOD detection, using confidences as an OOD
measure is called Max Softmax Probability in literature [24]. In Figure 3.1, we plot
the number of pixels for each confidence value of ID and OOD pixels. We can show
that ID and OOD distributions are not discriminable under MSP. Even though most
ID pixels have high confidence, the number of pixels with low confidence is not
negligible. Interestingly, OOD pixels also tend to have high confidence. Considering
the expected number of ID pixels is higher than the OOD pixels, a significant overlap
between the low-confidence ID and high-confidence OOD inputs is expected. In
segmentation, distant objects and object intersections generally have low confidence.
The shortcoming of MSP is mainly falsely recognizing such low-confidence areas as
OOD.
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3 Post-hoc Non-invasive Generalizable OOD Detection

Figure 3.2: Distribution of ID and OOD pixels under entropy [24]. ID pixels are
clustered in the low entropy region. OOD pixels are distributed across
high entropy regions.

3.2 Entropy

While having similar confidence values, two predictions can differ in terms of the
informative value contained in the confidences of the remaining classes. For instance,
confusion between only two classes highly indicates an ID confusion on object
intersection, whereas if the confidence is distributed more equally among all classes,
prediction offers less information about the input. Considering the distribution of
confidences over all classes, entropy offers a solution to the shortcomings of MSP [24,
7]. In the posterior domain, entropy for an input x over N classes is defined as:

H(c|x) = −
N

∑
i

p(ci|x)logp(ci|x) (3.2)

In such a context, entropy measures total free information about the input. A
discriminative prediction about the input would have low entropy, even if confusion
between a few classes is present. In Figure 3.2, we empirically show the distribution
of ID and OOD pixels under entropy. Unlike MSP, we now see a lower overlap
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3 Post-hoc Non-invasive Generalizable OOD Detection

between the two distributions. ID pixels are densely clustered in low entropy values,
containing higher predictive information. OOD pixels are uniformly distributed
across different entropy regions. We still observe an overlap over low entropy regions.
However, entropy yields a more discriminable distribution over ID and OOD pixels
than MSP. Even though being more discriminative than MSP, entropy still suffers
from the closed-world assumption. Entropy is defined on the p(c|x) domain, where
for a discriminatively trained network, the closed-world assumption follows that
the global set only consists of ID. Overcoming the implications of the closed-world
assumption, later methods work on the p(x|c) domain, where no such underlying
assumption about the global set is made.

3.3 Max Logits

Figure 3.3: Distribution of ID and OOD pixels under max logits [23]. While having
a similar variance, the mean of the max logits of ID and OOD inputs
differ.

Logit or class score serves as a density of a class ci on input x and is independent
of the densities of other classes, rendering the logit domain free from the assumption

13



3 Post-hoc Non-invasive Generalizable OOD Detection

that the global set only consists of ID set. The closed-world assumption normalizes
the total density on x in the confidence domain. As a result, an input with low density
can have high confidence if there is an asymmetry in the densities of different classes.
On the other hand, one would expect low-class scores regardless of their ranking in
an OOD input. Based on these, the maximum of the class scores, or max logits, is
often utilized as a measure for OOD detection [23]. The high value of the maximum
class score indicates an ID, and the low value of the class score indicates an OOD.
Max logits is formalized as the inverse of the maximum class score and formulated
as:

Sn(x) = −maxc f (wc, x) (3.3)

In equation 3.3, f (wc, x) is the class score for class c. Note that, measure is also
negated on the maximum of class score. Similar to MSP, value of the max class score
is also negatively correlated with the expectancy of an input being OOD. In Figure 3.3,
we empirically show the distribution of ID and OOD pixels under max logits. Note
that the figure shows noninverted values to demonstrate the divergence of the two
distributions in the original form. It is apparent that, compared to confidence domain
models, max logits, as an ood detection measure, yields more divergent ID and OOD
distributions. By leveraging the mentioned properties, recent OOD detection methods
commonly use approaches defined in the logit domain. For instance, Standardized
Max Logits(SML) [25] normalize the class scores by means and standard deviations
calculated from the ID inputs. For class score sc, they calculate the standardized class
scores s′c as follows:

s′c =
sc − µ

σ
(3.4)

where µ and σ are the mean and standard deviation of class scores, calculated from
the sampled scores from the training set.

3.4 Free Energy

Instead of only focusing on the maximum class scores, "Energy-based Out-of-
distribution Detection" [32] claims the Helmholtz free energy on class scores as
a measure for OOD detection by explaining the relation between the discrimina-
tive objective function and energy-based methods(EBM) [26, 17]. They show the
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3 Post-hoc Non-invasive Generalizable OOD Detection

Figure 3.4: Distribution of ID and OOD pixels under energy function [32]. OOD
pixels are heavily clustered in high free energy regions.

interpretation of logits as negative energy function as follows:

−E(x, c) = f (wc, x) (3.5)

They show the equivalence of Gibbs distribution of energy values and the softmax
function of the discriminative training:

p(c|x) = e−E(x,c)/T∫
i e−E(x,i)/T

=
e f (wc,x)/T

∑i e f (wi,x)/T
(3.6)

Using the interpretation, they define the total free Energy as:

Se(x) = −T · log
∫

i
e−E(x,i)/T = −T · log ∑

i
e f (wi,x)/T (3.7)

Similar to the relationship of MSP and entropy, energy is a measure of class scores
over all classes. Formulation estimates the overall density of all classes over an input
x, as it can be interpreted as a negative log sum of p(x|c) for all classes. Instead of
estimating the probability of input x being a member of a class c, it measures an
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3 Post-hoc Non-invasive Generalizable OOD Detection

estimate parallel to the probability of input x being generated by one of the assumed
ID distributions. In this case, ID distributions are classes in the known taxonomy. As
estimating if an input x is drawn or generated by one of the ID distributions parallel
to the task of OOD detection, the energy function shows competitive results in the
domain. As in the max logits, the energy function is also free from the closed-world
assumption, as defined on the pre-softmax scores.

Figure 3.4 shows the distribution of ID and OOD inputs under the free energy
function. We observe that OOD inputs are densely clustered in high-energy regions.
OOD pixels are more densely clustered, thus having a lower standard deviation than
the max logits case. We see a similar distribution of ID pixels on max logits and free
energy; the main difference comes from the distribution of OOD pixels. As OOD
and ID pixels have different means, more densely clustered OOD pixels, with lower
standard deviation, yield a more divergent space for the inputs.

3.5 Decoupling Logits

Decoupling methods investigate the effects of different components of the class scores
on OOD detection separately. The dynamic components of the class score are the
norm and the position or direction of the embedding. We refer to them as dynamic as
they are not constant for different input points. Both have a distinctive effect on class
scores. Norms of the embeddings serve as a scalar that all class scores are multiplied.
While not having a direct impact on the class prediction, it affects the confidence of
the prediction. This interpretation of the norms follows the reasoning for temperature
scaling for calibration [20], which is also a scalar used to calibrate the confidence and
the accuracy. Following the logic, a line of work in the literature claims the norm of
the embedding as an OOD detection measure [42, 53]. As norms relate to confidence,
they claim that one would expect smaller norms in OOD.

Another line of work emphasizes the significance of the direction of the embedding,
as it is directly related to the model’s decision [38, 51, 43]. Class scores are defined by
the projection or cosine similarity of the embedding to different class vectors on the
linear head, and the direction of the embedding is the primary factor in the ranking of
class scores of the same input. They claim this cosine similarity as the OOD detection
measure, where one would expect a lower cosine similarity to any of the ID classes
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3 Post-hoc Non-invasive Generalizable OOD Detection

from an OOD input. The weighted sum of both similarities is also proposed, claiming
both affect OOD detection with different magnitudes [56]. In the next chapter, we
investigate the effects of decoupling on the segmentation domain and introduce a
detailed formulation.

17



4 Post-hoc Norm Decoupling in
Pixel-wise Segmentation

In this chapter, we discuss the effects of embedding norms on the segmentation
model’s decision patterns by examining the entropy and confidence distribution in
the embedding space. Following our reasoning, we study the effects of post-hoc norm
decoupling on existing OOD measures in pixel-wise segmentation. By doing so, we
provide insights into the adaptability and extent of the decoupling methods in the
segmentation domain.

4.1 Norms as a Degree of Freedom

In the linear classification head score (logit) vector s, where s = [s1, s2, s3, ..., sN]T, si is
score for class i and N is the number of classes, is calculated as:

Mz + b = s (4.1)

M is the matrix that corresponds to linear head in shape [CxN], C is the number of
classes, N is the dimension of the embedding space. z is the embedding vector of the
pixel in shape [Nx1], and b is bias. For the rest of the calculations, we will omit bias
for simplicity, as it is elementary to also consider bias in the following calculations.

A class score vector of a maximum entropy in the embedding space can be defined
as v = [v1, v2, v3, ..., vN]T where vi = vj for any i, j pair. The confidence vector is
uniform where all class scores are equal, and entropy has an upper bound where the
confidence vector is uniform [46]. Substituting to 4.1, we can define an equation for
an embedding on a maximum entropy point as:

Mh = αvI (4.2)
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4 Post-hoc Norm Decoupling in Pixel-wise Segmentation

where h is a maximum entropy point and vI is a vector with all elements equal to 1
and α is a scalar in R. αvI = v, means that set of αvI and v are equal. Equation 4.2
has infinitely many solutions for h if rank(M) = C. We can assume that M follows
the rank constraint since we expect a fully trained network to be able to successfully
discriminate between C classes. h having infinitely many solutions shows us that
there are infinitely many maximum entropy points in the embedding space.

Proposition 1. The confidence vector of an embedding is dependent on the relative position
of the embedding to maximum entropy points, regardless of the magnitudes of the class scores.

Proof. Relative position of an embedding to a maximum entropy point can be rep-
resented by a vector from the maximum entropy point to the embedding. We can
rewrite any embedding as a sum of a maximum entropy point and its relative distance
to the maximum entropy point:

z = h + k (4.3)

For the relative distance k and maximum entropy point k:

s = Mz

s = M(h + k)

s = Mh + Mk

k′ = Mk

s = αvI + k′

(4.4)

Note that M is constant, which makes k′ identical for any h with the same k. For
our current score vector s′, confidence for any class prediction i is defined as:

pi =
exp(si)

∑j exp(sj)

pi =
exp(α + k′i)

∑N
j exp(α + k′j)

(4.5)
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where k′i and si are the ith component of k′ and s respectively. To show that the
class prediction pi is independent of the magnifying factor α, we differentiate pi with
respect to α using the quotient rule. We rewrite the Equation 4.5 and differentiate as
following:

d
dα

pi =
d

dα

u
v

(4.6)

where u is equal to:

u = exp(α + k′i) (4.7)

and v is equal to:

v =
N

∑
j

exp(α + k′j) (4.8)

Following the quotient rule, we rewrite Equation 4.6 as:

d
dα

pi =
( d

dα u)v − ( d
dα v)u

v2
(4.9)

Since both u and v are exponents, d
dα u = u and d

dα v = v. Substituting into Equation
4.9:

d
dα

pi =
uv − uv

v2

d
dα

pi = 0
(4.10)

We can prove that infinitely many points with different class scores in the em-
bedding space have the same resulting confidence vector p. Indeed, we can rewrite
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any point in the embedding space as a sum of a maximum entropy point h and a
vector k as z = h + k. If we add vector k to any other maximum entropy point h′, we
get another point z′ = h′ + k. By equation 4.10, since two vectors h and h′ are both
maximum entropy points, resulting confidence vectors of both points z and z′ would
be equal.

Let us define an example embedding ze = he + ke with the assumption ∥ze∥ > ∥ke∥.
Origin is a maximum entropy point with the assumption b = 0. As a side note,
if we were to include the origin, maximum entropy points would simply shift by
−b. Since the origin is also a maximum entropy point, z′e = 0 + ke has the same
confidence vector as ze. We know that ∥z′e∥ = ∥ke∥ thus ∥z′e∥ < ∥ze∥. Note that we
can repeat selecting different maximum entropy points infinitely, getting an infinite
set of embeddings with the same confidence vector and differing norms. Further,
if we define an additional move from any of the embeddings, the change in the
confidence vector is identical for any vector in the said infinite set. We can write the
additional move as xe = he + ke +me. And again selecting origin as the reference basis,
x′e = 0+ ke +me with x′e and xe having the same confidence vector. One can aggregate
the move to any point with the same confidence vector, and the resulting confidence
vector would be the same, as the sum of two move vectors can be represented as
a single move. As a result, the gradient of the objective function with respect to
different embeddings with the same resulting confidence vector would be the same,
as the same move on the embeddings would result in an identical change in the
confidence vector, resulting in an identical gradient field around all points. Note that
the same gradient field repeats itself infinitely with differing norms.

By recalling the softmax function, our findings parallel the observation that es-
timating class scores for the model is an underconstrained problem. For the same
p(c|x), there are infinitely many solutions for f (wc, x). There is no incentive for the
model to converge to any magnitude of the class scores, given that no additional
regularization is used. Decision-wise, selecting any arbitrary maximum entropy point
does not impact the objective function as α in Equation 4.5 is a degree of freedom
decoupled from the resulting confidences. The ambiguity of α aggregates itself to
the class scores primarily via the norm of the embedding. Being primarily related to
a degree of freedom decoupled from the model’s decision mechanism, one can not
assume a different distribution of norms between ID and OOD inputs.
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We discuss the overall magnitude of the class scores, and as an extension, the
norms of the embeddings are decoupled from the model’s decision mechanism. The
softmax score normalizes class scores for the same input, and the decisive factor is
their ranking and relative magnitudes. This discussion calls for the question: What
information do the norms of the embeddings contain?

4.2 Logits Under External Shift

Figure 4.1: Distribution of the norms of ID and OOD embeddings. A high intersec-
tion between ID and OOD supports our claim for ambiguity.

The external shift is the shift in the distribution of external factors, including color
density, distance, brightness, and noise. It can also be phrased as a shift in the input
distribution. A model trained with objects varying in external factors must stay
robust under different external shifts. This need calls for a degree of freedom in the
class scores and embeddings decoupled from the model’s decision mechanism. We
claim that the norm of embeddings primarily contains information on the distribution
of external factors. In other words, the model uses norms as a balancer to stay robust
under external shifts. Said external factors are decoupled from the discriminative
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decision for the model yet still contain information about the input pixel. The model
can use decoupled degrees of freedom to adjust and normalize the class scores under
different external distributions during the training. However, on OOD detection,
one expects a similar distribution of external factors over ID and OOD objects in
the open-world segmentation domain. Such external factors are not a discriminative
measure over the object’s OODness, as the main discriminative factor is the whatness.

OOD detection on class scores requires a reliable comparison or ranking between
input pixels. Pixels under different external distributions can have varying class
scores regardless of the prediction’s confidence. This arbitrariness also holds for
ID and OOD pixels, as no assumption on external distribution that would directly
discriminate the OOD pixels can be made in the open-world segmentation domain.
For instance, an OOD with low noise and under dense illumination can have higher
class scores than an ID object under shadow or in the distance. Figure 4.1 shows
the distribution of norms of ID and OOD pixels. A high intersection between two
distributions supports our claims. Also, it is essential to note that the density of the
larger values of the norm is higher on OOD pixels.

The discussed effects of the norms on the class scores can be mitigated by projecting
embeddings into a hypersphere where the norms are constant. In the resulting
embedding space, class scores are dependent on the cosine similarity to class vectors
on the linear head, as well as the class weights. This way, the unpredictability of
class scores that is imposed by external factors is eliminated. Note that this can be
performed post-hoc as following:

Returning to the equation 4.1, let us define the logit for a single class as:

si = Miz + bi (4.11)

where si and bi are score and for the ith class respectively. Similarly, Mi is the ith

row of the linear head corresponding to the respective class. We will omit the bias,
as our empirical findings suggest that bias is negligible. Projecting the embedding
into a hyperspace is equivalent to dividing it by its norm. The resulting normalized
embedding is calculated by:

z′ =
z

∥z∥ (4.12)

Substituting z with z′, the class score on the hypersphere becomes:
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s′i = Mi
z

∥z∥ (4.13)

We can rewrite the Mi as:

Mi = ωimi (4.14)

where mi is the normalized linear head vector with norm ω. Substituting the
equations 4.14 and 4.12 into equation 4.13, we formulate the normalized class score
as:

s′i = ωimi
z

∥z∥
s′i = ωimiz′

s′i = ωicos(αi)

(4.15)

In equation 4.15, cos(αi) is the dot product between two normalized vectors mi and
z′, which is equivalent to the cosine similarity between the embedding and the class
vector.

We perform an experiment on ID images to illustrate the relation between norms
and external factors and the effect of normalized class scores. In this experiment,
we sample a subset of ID images from cityscapes and impose an external shift. We
reduce the color intensity of the images and apply a Gaussian blur. In the top graph
in Figure 4.5, we compare the distribution of norms of the same images with and
w/o external shift. There is a distinctive shift in the distribution of norms due to
the added external shift. We plot the class scores on the middle graph with a highly
parallel shift to the norms. To support our claim that the information about the
external distribution is primarily maintained in the norm, we decouple the norm
from the equation and show the distribution of normalized maximum class scores on
the bottom graph. Two distributions being nearly indistinguishable shows that one
can remove the external shift in the class scores by normalization. In other words,
normalized class scores are robust to external factors other than objects’ whatness,
which is a highly sought-after property in OOD detection.

We emphasize that our insights about the norms of the embeddings only hold for
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domains with the assumption of a similar external distribution between ID and OOD
inputs. Thus, norms can remain a discriminative measure in a domain with a direct
difference of external distributions between ID and OOD is expected.

As we establish the motivation on why norms of the embeddings are not a dis-
criminative factor and cause ambiguity on class scores in Section 4.1, and how such
ambiguity can manifest itself in a practical sense in this section, we move on to using
attained robust representation, normalized class scores, in OOD detection.

4.3 Decoupled Post-hoc Energy

Figure 4.2: The distribution of ID and OOD pixels under normalized max logits.
We observe an increase in divergence in ID-OOD distribution when nor-
malization is applied to class scores.

Following our motivation, we extend normalized class scores to score-based post-
hoc OOD detection methods. Notice that normalizing class scores does not hinder
the properties of non-invasiveness and generalizability. Normalizing does not require
any change in the model structure or retraining and also does not change the model’s
prediction accuracy. The reason for unchanging accuracy is that each class score
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vector is divided by the same norm value, which does not change the ranking between
class scores. Also, norm normalization can be applied in any discriminatively trained
segmentation model, thus retaining the generalizability of the class score-based
post-hoc methods.

Returning to Equation 4.15, which shows the normalized class score for a single
class, we can define the vector of normalized class scores for input x as:

s′ = ωcos(α) (4.16)

where s′ is the vector of the class scores, ω is the vector of the class weights, and α

is the vector of the cosine similarity. Notice that the only difference between initial
and normalized class scores is the division by the norm. Normalized class scores can
also be represented by class scores divided by the norm:

s′ =
f (w, x)
∥z∥ (4.17)

Following this, we can define an OOD score Normalized Max Logits:

S′
n(x) = −maxc

f (wc, x)
∥z∥ (4.18)

Figure 4.2 shows the ID and OOD input distributions under Normalized Max
Logits. Recalling the distribution in Figure 3.3, we observe less intersection on the
Normalized Max Logits than on the Max Logits. Increased divergence yields better
OOD detection. The change in the distribution by normalization is parallel to our
claim of arbitrariness aggregated to class scores over norms.

The Energy function is an OOD score measure that is defined by the class scores.
Empirical findings of the literature suggest that the Energy function is a better
estimate for OOD compared to Max Logits. We employ normalized class scores with
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Figure 4.3: The distribution of ID and OOD pixels under normalized energy func-
tion. Increased divergence and decreased intersection between ID and
OOD pixels is empirical evidence for the effectiveness of normalized class
scores with energy function [32] in OOD detection.

the energy method by redefining the energy function as:

−E′(x) =
f (wc, x)
∥z∥ (4.19)

By substituting to the total Helmholtz free energy, we define the normalized energy
function as:

S′
e(x) = −T · log ∑

i
e

f (wi ,x)
∥z∥T (4.20)

In practice, we use a temperature of 1. By substituting T as 1, in a simplified form,
the normalized energy function is:

S′
e(x) = −log ∑

i
e

f (wi ,x)
∥z∥ (4.21)

Figure 4.3 shows the ID-OOD distribution under normalized energy. Compared
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to energy without normalization, ID pixels retain a similar distribution. However,
we observe a higher density of OOD pixels in high-energy regions. Consequently,
the total ID-OOD intersection is reduced. As a result, one expects a higher OOD
detection accuracy on normalized max logits. Our empirical findings in Section 5 is
parallel to our observation.

4.4 Class Weights in Segmentation

Learned class weights in the linear head are a learned weighting of ID class distribu-
tions. In optimization, the model is given the freedom to adjust cosine similarities
between embeddings and the linear head vectors, also considering the class weights.

Figure 4.4: Mean value of max logits [23] with different η values. ID and OOD
distributions further diverge as we increase η.

Classification methods that use decoupling suggest normalizing by class weights [38,
56]. In the segmentation domain, our empirical findings suggest otherwise(Chapter
5 Figure 5.7). Normalizing by class weights, in our case, reduces the divergence
between ID and OOD distributions and, as an extension, OOD detection accuracy.
On the contrary, increasing the class weights further penalizes the embeddings with
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low cosine similarity to any class vector. We propose introducing exponent η on class
scores as a tunable parameter:

s′w = ωηcos(α) (4.22)

With the introduction of updated class scores, the energy function becomes:

S′
w(x) = −log ∑

i
e

ωη−1 f (wc ,x)
∥z∥ (4.23)

Figure 4.4 plots the mean class scores of ID and OOD inputs under different η

values. Notice that η = 0 is equivalent to normalizing the class weights. We show a
correlation with η and divergence of ID and OOD distributions. While normalizing
by class weights brings the two distributions closer, increasing it further diverges.
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Figure 4.5: Experiments of maximum class scores under domain shift. The top
graph shows the distribution of norms of ID inputs with and w/o an
external shift. The middle graph shows the distribution of maximum class
scores under the same constraints. The bottom graph shows recovered
logit distributions with normalization.
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In this section, we present a thorough evaluation of the performance of OOD detection
methods employed with norm normalization. We compare our methods against the
previous baselines and show the effect of the normalization in different OOD detection
methods. To demonstrate the robustness and consistency of our methods, we test
multiple models on multiple datasets. We quantitatively evaluate our methods with
three different OOD accuracy metrics. We include a discussion of underlying reasons
for the performance of visual transformer methods on OOD detection. Later, we
present a qualitative analysis by showing heat maps of the OOD scores, demonstrating
the direct effect of score normalization. We follow up with additional experiments
where we further investigate the effect of normalization and class weights. Lastly, we
discuss the limitations of our method.

5.1 Metrics

We follow the literature to examine the accuracy of our methods for OOD detec-
tion [24]. In doing so, we use commonly used metrics in pixel-wise and instance-wise
OOD detection, such as AP, AUROC, and FPR95. Said metrics measure the divergence
or discriminability of the scores of OOD and ID inputs.

In pixel-wise detection tasks, True Positives(TP) are the number of pixels in the
target that are successfully detected. False Positives(FP) are the number of pixels
outside the target that are wrongfully detected as a target, and False Negatives(FN)
are the number of pixels on the target that are not detected.

Following the definitions, Precision is the ratio of correctly predicted targets to the
total number of predictions. Recall is the ratio of correctly predicted pixels to the
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total number of targets. Both calculated as:

Precision =
TP

TP + FP
(5.1)

Recall =
TP

TP + FN
(5.2)

Average Precision(AP) is generally defined as the area under the Precision-Recall
curve. This metric is standard in evaluating detection-based tasks. In OOD detection,
AP is calculated for different confidence thresholds of OOD scores. AP is averaged
across different thresholds based on the TPR(True Positive Rate) scores. Averaged AP
score across different thresholds can be formalized as:

AP =
1
N ∑

t>γ

APt (5.3)

where t is the confidence threshold, APt is the Average Precision at threshold t and γ

is a lower bound for thresholds set based on TPR values.
AUROC is the area under the TP-FP curve. TP-FP curve embeds the TP rates

under different FP rates. AUROC measures the accuracy of the model under different
thresholds of FP rates. By doing so, it plots how TP rates change under increasing
FP rates. The model would have a TP of 1.0 regardless of the FP rate in an ideal
scenario. Such a scenario results in a value of 1, which is the maximal for AUROC.
The worst-case scenario is a TP of 0 under different FP rates, which results in an
area of 0 under the TP-FP curve. AUROC is scaled between 0-1, and a higher value
indicates a better OOD detection accuracy.

False positives cause critical disturbances while employing OOD detection methods
in real-world settings. To measure the safety of the method, FP rates at high TP
rates are of significant importance. FPR95 is the FP rate for thresholds in which
TPR > 0.95.

5.2 Thresholding

Thresholding on OOD scores is typically done as follows:
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L(x) =

1 if S(x) ≥ γ

0 if S(x) < γ
(5.4)

where L(x) is a binary mask for OOD objects, S(x) is OOD score and γ is the
threshold [16].

In the distribution graphs we show, one can select the threshold in the intersection
of two distributions to maximize the metric scores. However, in the practical case,
the threshold is determined by the objective of the application. In a safety-critical
deployment, one can select a threshold that would set the FP rate to 0. In a domain
where the importance of detecting OOD outweighs the false positives, one can choose
a threshold that would result in a TP rate of 100. Selecting threshold is a domain-
specific problem. It also presents an equivalent challenge to all OOD score methods.
For that reason, OOD detection metrics measure the performance under different
thresholds determined by TP and FP rates, leaving selecting a specific threshold out
of the evaluation.

5.3 Datasets

We use the datasets under the Segment Me If You Can(SMIYC) [6] benchmark to
evaluate our methods. SMIYC baseline offers different datasets with different OOD
scenarios and varying domain shifts for obstacle and anomaly detection in semantic
segmentation. These datasets contain images with OOD objects from varying sources,
such as street-view images and online sources. SMIYC provides pixel-wise labeling
for the validation images with a taxonomy of ID-OOD. Images are binary-labeled
following the taxonomy. The classes of the cityscapes taxonomy define the ID for
SMIYC. Any object outside the cityscapes taxonomy is defined as an OOD. While
testing with the SMIYC datasets, the objective is to generate a class score for each
pixel, a higher score indicating a higher probability of being an OOD.

The first dataset we use for the evaluation is Lost and Found. It contains different
street-view images with OOD objects on the road, selected from different categories
to create a diversity of OOD objects. The Standard Object category contains boxes
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Figure 5.1: Example Images on Lost and Found [6]. Lost and Found poses a challenge
for OOD detection under low domain shift.

and crates of different colors. The Random Hazards category contains varying outdoor
and indoor objects, including pylons, tires, plastic bags, and bumpers. The Emotional
Hazards category contains critical objects such as dogs, balls, and bobby cars. Lastly,
the Humans category contains kids.

The Lost and Found dataset employs a relatively low domain shift, as images are
taken from daylight street-view images similar to the Cityscapes ID images. However,
objects are placed at differing distances, introducing the challenge of detecting OOD
in a small field of view. Figure 5.1 shows example images sampled from the Lost and
Found dataset. As seen in the example images, objects are placed on the street-view
scenes manually. In the left image, the green crate is OOD, and an OOD detection
method should give high scores for only pixels that correspond to the crate. In
the right image, multiple OOD objects are placed at the scene at the same time,
thus creating a challenge for dense multi-instance OOD detection. We use publicly
available test split of Lost and Found to evaluate our methods.

Unless we state otherwise, the ID-OOD distribution graphs we show are sampled
from the Lost and Found dataset.

The second dataset we use is Anomaly Track. It contains various images sampled
from online sources, so it employs a high domain shift for a model trained with
Cityscapes images. Also, it contains a wide variety of OOD classes as. Figure 5.2
shows two example images for the Anomaly Track dataset, which shows an example
of a high shift from the external assumptions of the Cityscapes. Both images are
focused on a single instance with varying backgrounds. Since images are not street-
view images, the Anomaly Track tests the accuracy of OOD detection in arbitrarily
composed input images. For our evaluation, we used the validation set of Anomaly
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Figure 5.2: Example Images on Anomaly Track [6]. Anomaly Track contains images
from online sources, extending the OOD detection challenge to different
image compositions.

Figure 5.3: Example Images on Obstacle Track [6]. Contains various OOD objects
placed on the road in rural areas.

Track.
The third dataset we use is Obstacle Track. Like Lost and Found, it consists of OOD

objects on the road. Different from Lost and Found, it does not contain street-view
images from populated cities but from rural areas. Although it does not have the
same street-view structure as the Cityscapes dataset, it employs a lower shift than
the Anomaly Track. In Figure 5.3, we show example images from the Obstacle track.
The left image contains multiple of the same object with different colors, creating a
medium for testing the OOD detection scores with changing external factors. The
right image contains a dog as OOD object. The SMIYC benchmark generally contains
many images with animals as OOD, emphasizing the importance of detecting critical
OOD objects with an emotional and ethical factor. We use the validation set of
Obstacle Track.

The last dataset we use is Road Anomaly, a primitive version of the SMIYC
benchmark. It contains a mixture of OOD objects placed on the road and images
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Figure 5.4: Example Images on Road Anomaly [6]. As a primitive version of the
SMIYC [6] benchmark, Road Anomaly poses a complex challenge in
varying conditions.

Method Lost and Found Anomaly Track Obstacle Track Road Anomaly

AUC AP FPR AUC AP FPR AUC AP FPR AUC AP FPR

Norm - N 35.99 0.36 99.99 41.11 12.72 97.08 27.73 0.43 99.99 51.40 10.82 95.80
Max Softmax [24] 93.35 23.08 31.85 81.74 46.27 57.38 70.21 1.94 66.25 70.75 20.56 68.91
Max Logit [23] 95.60 58.95 29.77 85.32 58.46 55.46 74.35 3.94 70.77 76.43 25.88 65.81
SML [25] 90.01 33.63 55.41 71.71 37.27 81.62 47.71 0.63 92.78 63.03 13.67 80.69
Entropy [24] 94.08 41.99 31.63 83.23 54.29 57.11 71.60 3.95 66.67 72.09 23.08 68.76
Energy [32] 95.63 60.07 29.77 85.48 58.17 54.97 75.60 4.80 70.83 77.19 25.77 65.46

N-Max Logit 97.45 71.1 13.28 95.18 77.30 18.63 86.15 9.57 40.12 83.61 36.33 62.17
N-Energy 96.44 75.53 23.58 95.00 78.17 22.00 95.87 26.49 14.65 86.63 42.78 58.43
N-Energy + CW 97.54 83.19 13.93 95.27 81.28 22.78 97.46 72.54 8.87 86.85 48.98 60.97

Table 5.1: OOD accuracy of normalization. We present the quantitative analysis of
normalization with DeepLabv3+[10]. The N—prefix adds normalization to
the method. CW means optimized class weights. We experiment on four
different datasets with three different metrics.

from online sources with OOD objects. Because of its variety, it stays challenging
and relevant to this date and is used as a benchmark in recent literature. Figure 5.4
shows two examples from the said mixture. On the left, similar to Lost and Found
and Obstacle Track, three OOD objects are placed manually on the road. On the right
is an online image with an animal as OOD. We use the Road Anomaly test set.

5.4 Quantitative Experiments

Table 5.1 presents the quantitative evaluation of normalized class scores with DeepLabv3+.
We use a flat model trained on the Cityscapes train set with a discriminative softmax
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loss. We test each method with the same backbone to compare different methods
fairly. We do not use any postprocessing, including SML.

The first baseline Norm-N represents the norms as an OOD score with the negative
correlation assumption. The negative correlation assumption here follows that a
smaller norm indicates a higher score for OOD. We follow this assumption because
the literature on norms that claims norms as a distinctive feature of OOD detection
follows the same assumption [42, 53]. The negative correlation assumption indicates
that the norm is related to the class scores and confidence and, thus, is higher for
ID. We show that, for all four datasets, the norm performs the worst. The average
precision being near 0 suggests that there is no divergence between ID and OOD
distributions under the norm as an OOD score. For the norms, for Anomaly Track
and Road Anomaly, AUC or AUROC is close to 50, supporting our claims for a
similar distribution of norms between ID and OOD. AUROC = 50 indicates that TP
and FP rates are equal for all thresholds.

We show the effect of the score normalization on max logits and energy scores.
N-Max Logit indicates max logit on normalized scores. Similarly, N-Energy indicates
the energy score on normalized scores. N-Energy + CW is the normalized energy
score with an increased class weight with η = 1.5. Normalized max logit outperforms
the max logit by +1.85/+9.86/+11.8/+7.18 for AUC on Lost and Found, Anomaly
Track, Obstacle Track, and Roan Anomaly, respectively. With the same order of the
datasets, for Average Precision, gain by normalizing class score over max logit is
+12.15/+18.84/+5.63/+10.45. For FPR, lower scores indicate a better result. FPR reduces
by -16.49/-39.93/-30.6/-1.3 with norm normalization. For max logits, for all metrics on
all datasets, there is a consistent improvement with normalization.

Moving on to the energy function as an OOD score, we observe a significant
improvement parallel to the max logits results. For AUC, normalizing scores results
in a gain of +0.81/+9.52/+20.27/+9.44 for four datasets respectively. For Average
Precision, gain by normalizing is +15.46/+20.0/+21.66/+17.01. We also observe a
significant decrease in FPR by -6.19/-36.97/-56.18/-7.03. Consistent improvement in
the energy function supports our claim that normalized class scores can be employed
with different OOD measures.

The best-performing method on all datasets is the class-weighted normalized energy
score, which outperforms normalized energy and normalized max logit separately
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in 10 out of 12 experiments. The two experiments where increased class weight
reduces the performance are FPR experiments. However, a significant improvement
over the Average Precision outweighs the possibility of a slight increase in FPR.
For all four datasets, gain on Average Precision by normalizing the class weights
are +7,66/+3.11/+46.05/+6.00. Our empirical findings on class weights support our
claim that increased class weight further pushes ID and OOD distributions apart. In
some cases, said push can result in two distributions passing a threshold with high
intersection, resulting in a significant increase in Average Precision. Obstacle Track is
an example of such improvement.

In Table 5.2, we show the evaluation of our methods with OCRNet. We follow the
same experimental setup with DeepLabv3+.

We observe that the Norm-N score function results with the worst accuracy, sug-
gesting a similar non-divergent ID-OOD distribution with the norm. Similar to
DeepLabv3+ experiments, on OCRNet, score normalization yields a consistent in-
crease in the OOD detection accuracy with all metrics on all datasets. On the AUROC,
normalized max logits outperform max logits by +1.66/+18.37/+3.39/+11.74 respec-
tively for four datasets, with the most significant improvement on Anomaly Track. On
Average Precision, the gain by normalizing class scores is +15.41/+34.7/+27.1/+11.74,
significantly improving over the Anomaly Track and Obstacle track. FP rate re-
duces by -13.18/-46.7-/-19.31/-29.39 with normalization, showing the superiority of
our method in safety-critical deployment.

Moving to compare energy and normalized energy functions, we show an im-
provement of +1.82/+19.00/+4.18/+16.1 on the AUROC metric. Similar to the results
on max logits, we observe a significant improvement over the Anomaly Track and
Road Anomaly. Given that both datasets contain online-sourced images, we show
the gain of normalizing in a high domain shift on image composition. On Average
Precision, following the consistency of improvement, normalizing results in an in-
crease of +20.68/+43.71+/+41.32/+19.88. Similar to max logits, the FP rate reduces by
-13.96/-50.12/-23.51/-30.41.

Compared to the gain on max logits, normalizing the class score yields a higher
increase in the accuracy of the energy score. This difference is consistent with different
metrics and different backbones. This observation suggests that not only the max
class score but all class scores are projected into a more robust representation with
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Method Lost and Found Anomaly Track Obstacle Track Road Anomaly

AUC AP FPR AUC AP FPR AUC AP FPR AUC AP FPR

Norm - N 15.77 0.70 99.99 21.36 8.92 98.03 15.54 0.37 99.99 32.43 7.05 98.82
Max Softmax [24] 92.63 26.16 29.46 76.23 33.72 63.45 93.41 10.62 21.25 65.00 14.02 74.62
Max Logit [23] 97.24 63.37 16.54 77.51 34.52 65.79 95.81 41.04 22.08 71.10 17.76 71.36
SML [25] 92.39 50.71 50.39 62.82 19.05 76.55 80.47 18.76 70.34 57.23 11.38 89.45
Entropy [24] 93.82 43.96 28.74 77.52 36.90 63.44 94.80 25.57 20.56 66.51 15.46 74.37
Energy [32] 97.44 66.63 15.48 76.58 31.57 65.33 95.66 50.35 23.69 72.14 18.93 70.83

N-Max logit 98.90 78.18 3.26 94.22 69.22 19.09 99.20 68.14 2.77 82.84 26.56 41.97
N-Energy 99.26 87.31 1.52 95.58 75.28 17.18 99.84 91.67 0.14 88.24 38.41 35.65
N-Energy + CW 99.25 89.70 1.77 96.76 83.13 15.12 99.77 93.78 0.18 88.10 42.87 40.42

Table 5.2: Effect of normalization on OOD measures using OCRNet[54]. We follow
the same experimental structure as the DeepLabv3+[10] experiment.

hypersphere projection in terms of OOD detection.
Unlike the DeepLabv3+, we observe comparable results on energy function with

and without increased class weight. However, there is a consistent gain on Average
Precision by +2.39/+7.85/+2.11/+4.46. We optimize for class weight η using Anomaly
Track. Consequently, on the Anomaly Track, class weights resulted in an improvement
over all metrics. As we employ a coarse grid search on η, these results can be further
improved with a denser search.

Observed improvements with normalization are empirical evidence for the am-
biguity of class scores maintained by the norm of the embedding. Projecting all
embeddings in a hypersphere representation with a constant norm renders class
scores solely dependent on the whatness of an object, thus yielding a better OOD
detection accuracy. Our results show that post-hoc decoupling is an employable
strategy since it improves the OOD detection accuracy significantly.

Normalization layers of visual transformers implicitly yield an embedding space
where norms are approximately equal. Using a visual transformer backbone is equiv-
alent to using a backbone with a hyperspherical embedding space. To demonstrate
this, we calculate the norms’ mean and standard deviation with the Mask2Former
employed with the Swin-L[35] backbone. We observe that on four datasets: Lost and
Found, Anomaly Track, Obstacle Track, and Road Anomaly, the mean of the norms of
the embedding is 13.90/13.89/13.89/13.89 for ID and 13.88/13.90/13.88/13.90 for OOD
respectively, with a standard deviation of approximately 0.01 for all cases.
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Method Lost and Found Anomaly Track Obstacle Track Road Anomaly

AUC AP FPR AUC AP FPR AUC AP FPR AUC AP FPR

RBA-R101[37, 22] 69.16 7.21 98.97 80.60 60.93 95.49 68.75 24.14 99.87 73.71 38.19 87.59
EAM-R101[18, 22] 70.94 6.51 98.03 81.13 60.69 90.74 76.87 25.56 99.99 76.76 39.97 84.24
En-R101[32, 22] 71.76 7.26 86.46 81.39 61.14 90.14 82.68 26.54 99.99 78.23 39.72 83.47
RBA-SwinL[37, 35] 80.63 27.93 97.13 91.10 85.24 86.11 98.15 94.47 0.25 94.16 77.76 28.69
EAM-SwinL[18, 35] 81.94 28.22 96.10 94.17 87.05 33.11 99.34 95.05 0.21 94.49 78.45 22.49
En-SwinL[32, 35] 83.31 28.02 88.11 94.67 87.31 30.50 99.51 95.13 0.21 94.60 77.93 22.49

OCRNet-R101[54,
22]

99.18 87.42 2.41 96.76 83.13 15.12 99.77 93.78 0.18 88.10 42.87 40.42

Table 5.3: Comparison of our method to recent unsupervised methods that utilize
Mask2Former [11] architecture. Our method outperforms the previous
methods when utilized with the same backbone. It shows comparable
results when compared backbones are utilized with a ViT [15, 35] backbone.
Naming convention follows method-backbone. En is energy.

We claim that increased OOD detection accuracy using a visual transformer back-
bone in recent methods is mainly related to the normalization property of the attention
layers. One backbone that yields a significantly higher OOD detection accuracy is
Mask2Former[11]. OOD detection methods that use Mask2Former commonly refer
to the architecture of masked attention layers as a reason for increased accuracy and
build OOD detection methods based on said architecture[1, 37, 18]. To demonstrate
the driving effect on OOD detection accuracy on Mask2Former, we propose an exper-
iment comparing a simple energy score with two recent OOD detection methods on
Mask2Former.

In Table 5.3, we evaluate two unsupervised OOD detection methods that claim to
leverage the architecture of Mask2Former. RBA claims that a pixel rejected by all of
the class masks of Mask2Former can be classified as OOD. Extending on this, EAM
extracts an anomaly score for the whole image from the class token of Mask2Former.
It distributes this anomaly score to per-mask features, resulting in a single mask of
anomaly scores. We compare these methods with a simple energy score calculated
from the class scores of the last layer of Mask2Former. We use the same Mask2Former
models with R-101(ResNet-101) and Swin-L backbones we acquired from the official
repository of Mask2Former to compare the three methods. For the implementation
of RBA and EAM, we again use the original implementation from the repositories of
said methods.
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Comparison between R-101 and Swin-L results shows the significant effect of the
backbone regardless of the model architecture. For instance, the change between AP of
R-101 and Swin-L backbones in Obstacle Track for three methods with Mask2Former
is +68.59/+69.49/+70.33. FPR dramatically reduces from nearly 100 to nearly 0 , just
with the backbone change. This dramatic change is consistent with all datasets. To
compare the effects of different methods, we emphasize the importance of building
an experiment where all methods are tested with the same backbone. Moving
to the impact of different OOD score extraction methods, we show that a simple
energy function on the Swin-L backbone outperforms the other two methods in 10
of the 12 experiments. Further, our OCRNet method with norm normalization and
R-101 backbone outperforms the Mask2Former methods with the same backbone
in all experiments and stays competitive with their Swin-L counterpart in 7 out
of 12 experiments. Our findings suggest that the high OOD detection accuracy of
Mask2Former methods does not come from either Mask2Former architecture or OOD
score methods but mainly from backbone and normalized embeddings as a side
product of visual transformer backbones.

5.5 Qualitative Experiments

We visualize the output score maps using a heat scale in qualitative evaluation. On
the heat scale, low values are represented by black, and high values are bright yellow.
For visualization, we normalize the OOD scores using the formula:

sn(x) =
s(x)− mini(si(x))

maxi(si(x))− mini(si(x))
(5.5)

where sn(x) is the normalized class score, brought into 0 − 1 scale, s(x) is the
original score, and mini(si(x)) and maxi(si(x)) are image-wise calculated minimum
and maximum score. We normalize the class score image-wise and not globally for
visualization purposes.

Figure 5.10 shows a comparison between energy and normalized energy. The top
two images contain an animal on the scene as an OOD. We observe that this is a case
of failure for the energy score, as OOD object have an overall low free energy. Also,
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ID segments, such as the intersection of vegetation and the road in the first image
and the side of the road in the second image, have relatively higher free energy. With
normalized energy, not only do OOD pixels have higher energy scores, but the high
energy of the ID regions is relatively normalized. This normalization can be observed
in the intersection of ID segments in the first image and the side road in the second
image. To further demonstrate this effect, we present a scene with a telephone box as
OOD in the third image. Even though both methods have high energy for OOD pixel,
the energy function, compared to the normalized energy, has more false negatives in
the distant regions. In the fourth image, where the dog is OOD, we see high scores
for the OOD pixels before normalization. However, similar to the third image, we
observe a high false positive rate on the road. Again, this high energy on the ID
is mitigated by score normalization. We see a fox as OOD in the fifth image and
zebras as OOD in the sixth image. Similar to the first two images, OOD pixels have a
low score before the normalization. This is also due to instance-oriented classes in
Cityscapes, such as vehicles, having a high score when a distinct object is on the road.
Normalization mitigates this effect and yields a high OOD score for the OOD pixels.
The last image exemplifies a high domain shift from the noisy and blurred regions
due to rain. As a result, the model outputs low scores and high energy throughout
the image. The tire, as OOD, has a relatively low score compared to the rest of the
image. Normalization mitigates high energy resulting from the domain shift, and the
tire can be discriminated.

To illustrate the direct effect of normalization on class scores, we extend our
qualitative evaluation to max logits. In Figure 5.11, we compare the heat maps of
max logits with normalized max logits over multiple images. The first image shows
multiple animals as OOD. Following our claims on the ambiguity of class scores, the
max logit score on animals is on a similar scale to the rest of the image. Only the
edge of the animals has a relatively high max logits score, which is expected since
it is also observed in ID objects. With normalization, animals, as a whole, have a
high max logit score, which discriminates them from the rest of the image. In the
second image, a small toy on the road is OOD. Even though both models can detect
the toy, normalization reduces the score of the ID pixels. In the third image, the max
logit score partly detects the OOD tractor. We see areas of low energy, such as areas
around tires. With normalized max logits, the tractor as a whole has a high energy
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score. The fourth image shows an umbrella and two cups on the road as OOD. Even
though there is no significant difference in the score of the OOD pixels between max
logits and normalized max logits, OOD detection improves with a reduced FP rate.
In the fifth image, pylons as OOD show a similar score distribution to the animals in
the first image under max logits. Similar to the previous examples, by normalization,
scores of the OOD pixels is increased, and ID pixels decreased. The same trend
persists with the sixth and seventh images, where a bobby car and two boxes are
OOD, respectively.

Qualitative evaluation shows us that with normalization, OOD detection accuracy
not only improved by increased scores on OOD pixels but also by decreased scores
on ID pixels. With max logits and the energy score, we observe that ID scores blend
together to a low value. Coupled with the consistent increase in the OOD scores, this
explains the significant improvement in the quantitative results.

5.6 Additional Experiments

Via additional experiments, we provide further insights into the effects of norm and
class weights.

In the first experiment, we reintroduce the norm to the class scores and present
the effects on max logits. For reintroducing, we increase an exponent over norms
ranging between 0 to 1. By recalling the Formula 4.17, we formalize the reintroducing
as follows:

s′e = ∥z∥δs′ (5.6)

where s′e is experimental class score, and δ is increased in the said range. δ = 1 is
equivalent to normalizing the class scores by norms, and δ = 0 results in the original
class scores. Following the formulation, max logits on experimental scores become:

S′
e(x) = −maxc

f (wc, x)

∥z∥1−δ (5.7)
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Figure 5.5: The effect of δ on Average Precision using DeepLabv3+ [10]. The x-axis
contains the increasing values of δ. We present the impact of reintroducing
the norm on Average Precision with four datasets. We observe a consistent
decrease with increasing δ.

Figure 5.5 shows the change of Average Precision with increasing δ using DeepLabv3+.
Dots in the graph show sample points. Our experiments show the applicability of
a weighted sum on norms and normalized scores in the segmentation domain. We
observe that reintroducing norms, even with small weights, results in a decrease
in the Average Precision metric. In Figure 5.6, we show the results of the same
experiment with the OCRNet. Similar to the DeepLabv3+, we observe a consistent
decrease in the accuracy with the increased weight of δ. Our empirical findings in
this experiment oppose a weighted sum approach [56].

In our second experiment, we investigate the effects of the exponent η over class
weights. We use Anomaly Track as a reference to optimize for η. Figure 5.7 shows the
effect of changing η on Average Precision. We show that, as suggested by previous
work for the classification domain, normalizing by class weights is not adaptable
to the segmentation domain. η = 0 corresponds to normalizing, which results in a
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Figure 5.6: The effect of δ on Average Precision using OCRNet [54]. Using the same
experimental structure, we observe a higher impact on the norm compared
to DeebLabv3+ [15]. Consistency of the effect on Average Precision also
persists with OCRNet.

significant decrease over the original class scores. We see an increasing trend with
increasing η. However, gain diminishes after η = 1.5 for both of the backbones. After
the gain diminished, we observed that FP rates started to increase slightly, and as a
result, we selected η = 1.5 for the rest of our experiments.

5.7 Limitations

In Section 4.2, we discussed the assumption of similar external distribution between
ID and OOD objects. Our claim implies that norms can be a discriminative measure
if there is a distinct difference in external distribution between ID and OOD. In that
case, removing the norms could result in a loss of accuracy because norm decoupling
would remove a discriminative channel from the class scores.
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Figure 5.7: Average Precision under varying η values. We show the findings for
optimizing η with Anomaly Track, which we choose as a reference set on
optimization. We present results with DeepLabv3+ [10] and OCRNet [54]
architectures.

To evaluate this case, we experiment with a dataset with an inherent difference
in external distributions between ID and OOD. In Figure 5.8, we show example
images from the FS Static [4] dataset. FS Static contains images from the Cityscapes
validation set with pasted OOD images from online sources. While pasting OOD
patches, blending is applied to the images, reducing the OOD object’s transparency.
Since OOD images are from external sources and have a different transparency
compared to the rest of the images, it creates a scenario where our assumption of
similar external distributions does not hold.

Figure 5.9 shows the distribution of norms of embeddings sampled from the FS
Static dataset. Recalling our experiment in Figure 4.5, we show that the difference
of the norms with FS Static is parallel to the shift resulting from Gaussian blur and
changed color density. This parallel shift confirms our claims on both the FS Static
dataset’s external distribution and the external shift’s effect on the norms.
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Figure 5.8: Example Images on FS Static [4]. Presents a challenge in a domain where
our assumption of external distribution does not hold.

Method DeepLabv3+ OCRNet

AUC AP FPR AUC AP FPR

Max Logit [23] 88.87 22.72 65.10 94.90 27.75 20.51
Energy [32] 88.99 23.82 65.13 95.05 29.30 20.30
N-Max Logit 85.34 19.99 73.71 93.44 30.00 27.34
N-Energy 85.14 15.49 70.43 93.20 29.19 28.11

Table 5.4: Quantitative results of normalization with FS Static dataset [4]. We
present results with DeepLabv3+ [10] and OCRNet [54] architectures.

Table 5.4 shows the quantitative evaluation of normalized class scores on FS Static.
We show results with DeepLabv3+ and OCRNet following our previous experimental
setup. With DeepLabv3+ and OCRNet, we observe a decrease in OOD detection
accuracy when normalized class scores are employed with max logits and energy.
With OCRNet, even though there is no significant change in Average Precision,
we observe a decrease in AUROC and an increase in FP rate. Even though this
experiment shows a limitation for our method, it also is empirical evidence for our
motivation and technical explanation of the effects of the norm on class scores.
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Figure 5.9: Distribution of the norms of the embeddings from FS Static dataset [4].
We observe a similar shift to our external distribution experiment in Figure
4.5.

48



5 Evaluation

Figure 5.10: Qualitative comparison of energy [32] and normalized energy on OCR-
Net [54] . We show the original image, energy, and normalized energy
from left to right.
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Figure 5.11: Qualitative comparison of max logits [23] and normalized max logits on
OCRNet [54]. We show the original image, max logits, and normalized
max logits from left to right.
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6 Conclusion

This work extends the post-hoc norm decoupling for OOD detection to the segmenta-
tion domain. Through technical investigation, we reveal the ambiguity of embedding
norms and propose a novel explanation of their effects on class scores. Backed by
empirical evidence, we provide insights about how this ambiguity manifests itself.
Following our explanation, we present a solution for the ambiguity of class scores
imposed by the norms. By projecting embeddings to a hypersphere, we ensure a
representation that is robust to external factors other than the object’s whatness. We
demonstrate the utilization of normalized class scores as an OOD measure by em-
ploying them with max logits and energy functions. Our empirical findings suggest
that class weight normalization for decoupling in classification does not extend to
the dense segmentation domain. On the contrary, increasing class weights further
diverges ID and OOD distributions, improving accuracy.

We back our claims by evaluating our method on multiple datasets with two
different backbones. Our method consistently improve score-based OOD detection
methods by a significant margin. This consistency is empirical evidence for our
technical findings. Further, we reason the improved OOD detection accuracy yielded
by visual transformer backbones. We show the practical equivalence of hyperspherical
and ViT [15] representations and achieve comparable results to recent ViT models
by normalizing class scores. Our empirical findings highlight the importance of the
backbone in OOD detection.

With this work, we emphasize the importance of understanding the model’s
decision mechanisms in OOD detection. We hope our insights can inspire further
development in OOD detection and explainability domains.
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