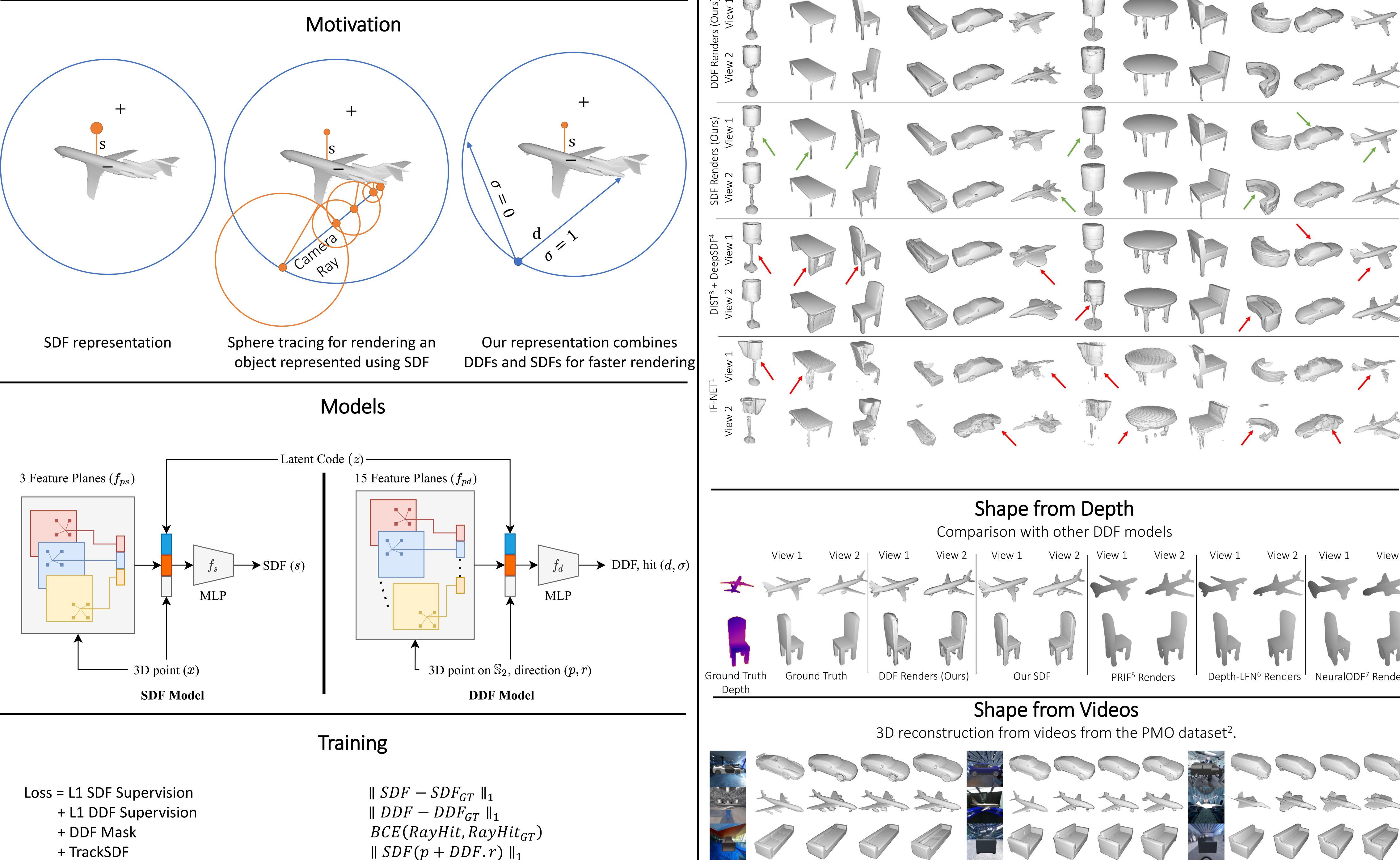


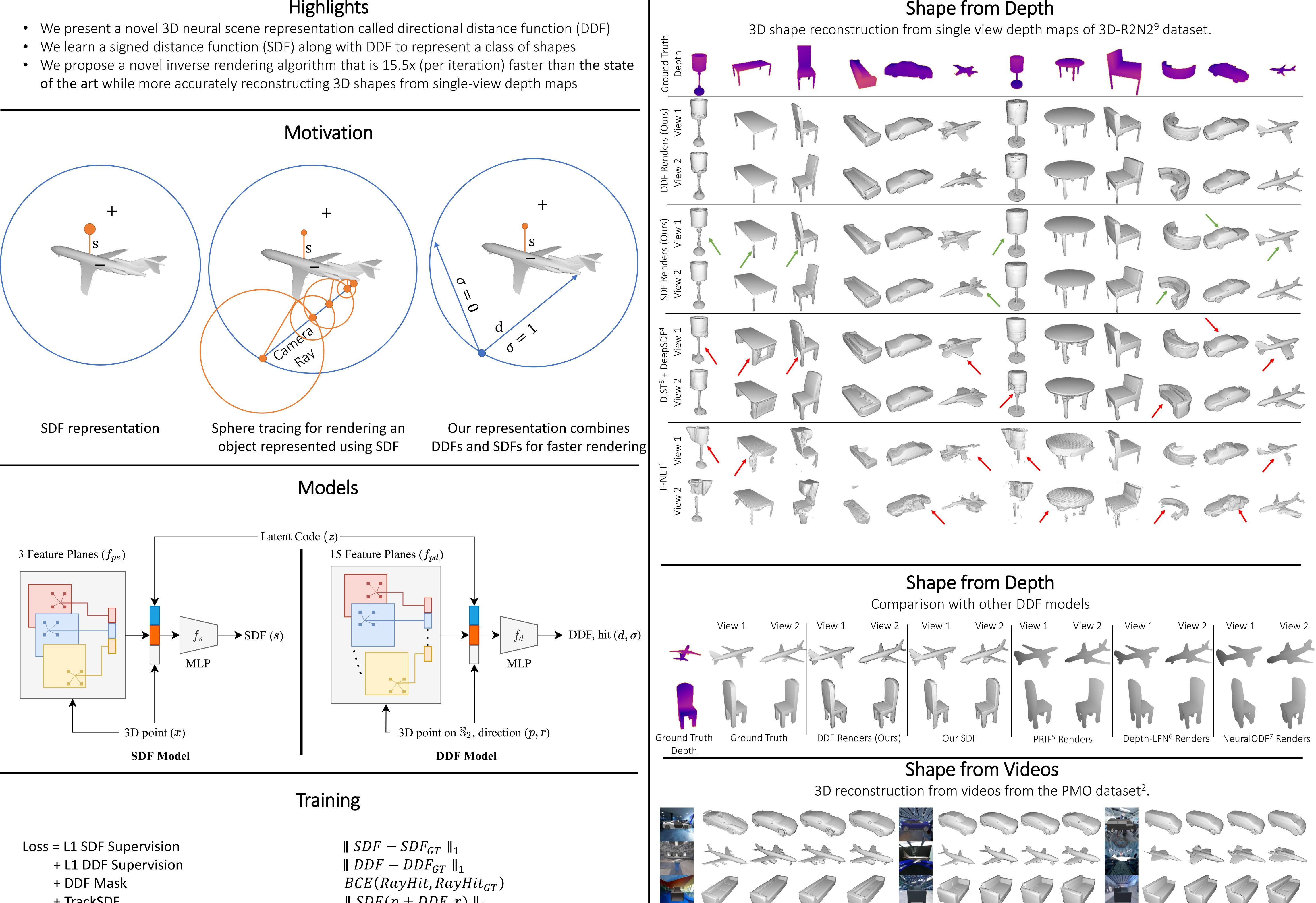
FIRe: Fast Inverse Rendering using Directional and Signed Distance Functions

Tarun Yenamandra¹, Ayush Tewari², Nan Yang¹, Florian Bernard³, Christian Theobalt⁴, Daniel Cremers¹ ¹TU Munich, MCML ²Massachusetts Institute of Technology ³University of Bonn ⁴MPI Informatics, SIC

Highlights

- of the art while more accurately reconstructing 3D shapes from single-view depth maps





+ TVL1 feature plane regularizer + Latent code regularizer

Trained per class of the ShapeNet⁸ dataset

Inference: Optimization for latent code from a given depth map

Loss = Depth

+ DDF Mask

+ SDF Mask (hit)

+ Latent code regularizer

 $\| depth - depth_{GT} \|_1$ $BCE(RayHit, RayHit_{GT})$ $\|SDF(p+DDF.r)\|_1$ $\|SDF(p+DDF.r) - \tau\|_1$ + SDF Mask (miss) τ is SDF truncation thresh.

Shapes are reconstructed from a given single-view depth map

A HELLEN										-				
Video	Ground Truth	Ours DDF	Ours SDF	DIST	Video	Ground Truth	Ours DDF	Ours SDF	DIST	Video	Ground Truth	Ours DDF	Ours SDF	DIST

Summary

We propose a novel neural scene representation, DDF defined on the unit sphere, for rendering images from our SDF model during inference with **1 forward pass** through the model. We present an algorithm to reconstruct 3D shapes from single view depth maps using our DDF and SDF models, which is **15.5× per iteration faster** than competing methods.

References

1. Chibane et al., "Implicit functions in feature space for 3d shape reconstruction and 5. Feng et al., "Prif: Primary ray-based implicit function," ECCV'22. completion," CVPR'20. 6. Sitzmann et al., "Light field networks: Neural scene representations with single-2. Lin et al., "Photometric mesh optimization for video-aligned 3d object evaluation rendering," NeurIPS'21. 7. Houchens et al., "Neuralodf: Learning omnidirectional distance fields for 3d shape reconstruction," CVPR'19. 3. Liu et al., "Dist: Rendering deep implicit signed distance function with differentiable representation," Arxiv'22. sphere tracing," CVPR'20. 8. Chang et al., "Shapenet: An information-rich 3d model repository," Arxiv'15. 4. Park et al., "Deepsdf: Learning continuous signed distance functions for shape 9. Choy et al., "3d-r2n2: A unified approach for single and multi-view 3d object reconstruction," ECCV'16. representation," CVPR'19.