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We provide an ablation study on different parts of the
IMU initializer in section[I, an ablation study on the impact
of the dynamic photometric weight in section [[I} and runtime
results in section [[II}

I. ABLATION IMU INITIALIZER

We perform an ablation study on various parts of the IMU
initializer. In particular, we compare to the following three
baselines, which build on top of each other, meaning that
everything removed in baseline n is also removed in baseline
n+ 1.

1) We remove the Reinitialization and the Marginaliza-
tion replacement, corresponding to the orange and the
yellow boxes in Fig. 3 of the main paper. Note that
the scale is still optimized in the main system after
initialization.

2) No readvancing: We do not replace the marginalization
prior of the main graph after the first initialization. This
means that in the purple box “Initialize” in Fig. 3 of
the main paper we only replace the values and not the
marginalization prior of the main graph. Instead we add
a constant prior on the initial scale, which is necessary
for the scale to not immediately diverge afterwards.

3) No PGBA: We remove the "PGBA IMU Init” and
directly initialize with the result of the Coarse IMU
Init.

The experiments are performed in non-realtime mode in
order to not be dependent on the particular machine.

The results on the 4Seasons dataset are shown in Fig. [ST]
With each ablation the result becomes significantly worse,
showing that all parts of the method contribute to the results.
In particular we observe that the proposed delayed marginal-
ization is very important, as it is the foundation of both the
pose graph bundle adjustment (PGBA) and the readvancing
(and subsequently also the marginalization replacement).

For completeness we should mention that on TUM-VI
and EuRoC the contributions do not bring a significant
performance improvement, as both datasets are much less
challenging for the IMU initialization.

II. ABLATION DYNAMIC PHOTOMETRIC WEIGHT

We provide ablation studies showing the effect of the
dynamic photometric weight proposed in the main paper. For
this we disable the dynamic part and always use the constant
weight W = A (of course A is set to the same value as for the
other results). In Fig. we compare to the results shown in
the main paper on TUM-VI, both runs are in realtime mode.
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Fig. S1: Ablation study on various parts of the IMU ini-
tializer on the 4Seasons dataset (non-realtime). Removing
the reinitialization and the marginalization replacement (1.)
makes a significant difference, as the marginalization prior
can become inconsistent if the initial scale estimate is off.
Removing also the initial marginalization replacement pow-
ered by readvancing (2.) further deteriorates the performance.
Removing the pose graph bundle adjustment and only using
the Coarse IMU init (3.) makes the biggest difference. This
ablation shows the significance of delayed marginalization
which is the foundation of PGBA, readvancing and marginal-
ization replacement.

It can be seen that the dynamic weights improve the overall
robustness of the method. The effect is most visible on the
TUM-VI slides (Fig. [S2b] [S2c), where the version without
dynamic weights does not work well in 4 of the 15 runs
whereas our method works well in all runs. The dynamic
weighting is designed for situations where the image quality
gets really bad. On the other datasets, significant degradation
of image quality is rare, hence there is only a marginal
difference for them.

III. RUNTIME

We perform extensive runtime analysis on the same Mac-
Book Pro 2013 (i7 at 2.3GHz) that was used for generating
the results in the main paper. For each part of the method
we save the mean time and standard deviation it takes while
processing a sequence. We run our method in real-time mode
10 times on each sequence of EuRoC dataset, resulting in
110 recorded means and standard deviations for each part.
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(a) Cumulative error plot. (b) DM-VIO on the slides. (c) Without dynamic weights on
the slides

Fig. S2: Realtime results on the TUM-VI dataset with and without the dynamic photometric weights. a) Cumulative error
plot. The dynamic weight provides a noticeable improvement in robustness. Only few sequences contain hard enough images
to trigger the dynamic weight, hence the overall improvement can appear small. However for these hard sequences, success
rate is increased. b) and c): Each colored square represents the drift (%) for one of the 5 runs (rows) on the three slides
sequences (columns). With dynamic weights our method works well for all 30 runs whereas the version without them fails
once and accumulates a large drift for three executions.

TABLE S1: We save runtime statistics for different parts of the method and show the mean over all 110 runs on the EuRoC
dataset (10 times on each sequence). Top 2 sections: Runtime for the two main threads. Bottom 3 sections: Runtime for the
parts of the IMU initializer, which are performed occasionally. Note that the overhead introduced by our initializer is small:
The only regular overhead is the delayed marginalization, taking 0.44ms which amounts to 0.8% of the keyframe operations.
Both, the Coarse IMU initializer and the PGBA initializer perform most operations in a separate thread when running. The
only relevant overhead in the keyframe thread is after a successfull PGBA and during a marginalization replacement.

Component Part Mean time (ms) Standard deviation (ms)
Mean of 110 runs  Mean of 110 runs
Coarse Tracking thal . 10.34 10.16
Performed for every frame. Dlr.eCt Image Ahgnrpent 470 131
Build Image Pyramid 4.78 0.52
Total 53.67 6.89
Bundle Adjustment 26.49 5.57
Create Candidate Points 5.83 0.38
K . Trace candidate points 4.37 1.83
eyframe Operations - h
Performed for every keyframe Activate new points 3.56 0.77
' Keyframe Marginalization (full) 3.24 0.5
— Drop residuals, recompute adjoints, etc. — 171 — 0.39
— Marginalize main graph — 0.61 — 0.10
— Delayed marginalization — 044 — 0.20
. Runtime in separate thread 9.08 5.63
Coarse IMU Init Overhead Coa.Ir)se Tracking thread 0.05 0.04
Runtime in separate thread 74.11 24.77
— Optimization — 54.72 — 23.40
— Readvancing — 7.61 — 1.37
PGBA (Re-)init Overhead Keyframe thread when active 0.17 0.04
Overhead Keyframe thread after success 14.50 8.52
— Include KFs added while PGBA was running — 13.15 — 8.52
— Readvancing of the newly added KFs — 1.35 —0.19
Total (Keyframe Thread) 21.02 8.98
Marginalization Replacement Build Graph 1.15 0.45

Readvance 19.87 8.97



We present the mean mean runtime and the mean standard
deviation over the 110 runs in Table [S1]

Even on the relatively old machine the overall runtimes
are quite fast. The tracking could run at 97 FPS on average
and the keyframe processing could run at 19 FPS. Note that
the dataset is recorded at only 20 FPS, and to work well our
method needs to process 5-6 keyframes per second.

The only regular overhead introduced by our initializer
is the delayed marginalization, which amounts to 0.8% of
the total processing time of each keyframe. The Coarse
IMU initializer and the PGBA both run in separate threads
when active. We do note that after a successful PGBA, some
processing has to be done in the keyframe thread in order
to include the keyframes, which have been bundle adjusted
while the PGBA was running. Similarly the marginalization
replacement currently runs in the keyframe thread. How-
ever both of these parts are comparably fast (14.50ms and
21.02ms respectively), and are performed only a few times
during every run.
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