
Efficient Derivative Computation for Cumulative B-Splines on Lie Groups
Christiane Sommer*, Vladyslav Usenko*, David Schubert, Nikolaus Demmel and Daniel Cremers

Chair for Computer Vision & Artificial Intelligence, Technical University of Munich

Background

Continuous-time trajectory representation using
B-splines is very useful for several tasks:

•High-frame-rate sensor calibration
•Fusion of multiple unsynchronized devices
•Smooth trajectory planning

k=2 (linear)
k=4 (cubic)
k=6 (degree 5)

However, current implementations for calibra-
tion [1] or odometry estimation [2, 3] are unable
to achieve real-time performance.

Example Application

Camera-IMU calibration using a Lie group cumu-
lative B-spline to represent the trajectory:

5 10 15 20

0

5

10 ax

ay

az

Observations of the calibration pattern are com-
bined with accelerometer and gyroscope mea-
surements to estimate the trajectory and calibra-
tion parameters jointly. Accelerometer measure-
ments (dots) are overlaid on the continuous es-
timate generated from the spline trajectory (line)
after optimization.

Acknowledgements

This work was supported by the ERC Consolida-
tor Grant “3D Reloaded”.

Contributions

In short, our work provides time derivatives and
Jacobians for Lie group-values B-splines that can
be more efficiently implemented than previous
derivatives. In particular, it features

•A simple formulation for the time derivatives of
Lie group cumulative B-splines that requires a
number of matrix operation which scales
linearly with the order k of the spline.

•Simple (linear in k) analytic Jacobians of the
value and the time derivatives of an SO(3)
spline with respect to its knots.

•Faster optimization time compared to the
currently available implementations, due to
provably lower complexity.

Cumulative B-Spline on Lie Groups

The cumulative B-spline of order k in a Lie group
L with control points X0, · · · , XN ∈ L has the
form

X(u) = Xi ·
k−1∏
j=1

Exp
λj(u) · dij

 , (1)

with the generalized difference vector dij
dij = Log

X−1
i+j−1Xi+j

 ∈ Rd , (2)

and λj(u) implicitly defined by the derivation of
B-splines [4, 5, 6]. We define

Aj(u) = Exp
λj(u) · dij

 (3)

and re-formulate (1) as a recurrence relation:

X(u) = X (k)(u) , (4)
X (j)(u) = X (j−1)(u)Aj−1(u) , (5)
X (1)(u) = Xi . (6)

Time Derivatives (Velocities)

The time derivative Ẋ is given by the following
recurrence relation:

Ẋ = Xω(k)
∧ , (7)

ω(j) = AdjA−1
j−1

ω(j−1) + λ̇j−1dj−1 ∈ Rd , (8)

ω(1) = 0 ∈ Rd . (9)

ω(k) is commonly referred to as velocity. For L =
SO(n), we also call it angular velocity.

Second Time Derivatives (Accelerations)

The second derivative of X w.r.t. u can be com-
puted by the following recurrence relation:

Ẍ = X
(ω(k))2

∧ + ω̇(k)
∧

 , (10)

where the (angular) acceleration ω̇(k) is recur-
sively defined by

ω̇(j) = λ̇j−1
ω(j)
∧ , Dj−1


∨

+ AdjA−1
j−1

ω̇(j−1) + λ̈j−1dj−1 ,
(11)

ω̇(1) = 0 ∈ Rd . (12)

References

[1] S. Lovegrove, A. Patron-Perez, and G. Sibley, “Spline Fusion: A continuous-time representation for visual-inertial fusion with
application to rolling shutter cameras.,” in Proc. British Mach. Vis. Conf., p. 93.1–93.12, 2013.

[2] C. Kerl, J. Stückler, and D. Cremers, “Dense continuous-time tracking and mapping with rolling shutter RGB-D cameras,” in
2015 IEEE International Conference on Computer Vision (ICCV), pp. 2264–2272, Dec 2015.

[3] E. Mueggler, G. Gallego, H. Rebecq, and D. Scaramuzza, “Continuous-time visual-inertial odometry for event cameras,” IEEE
Transactions on Robotics, vol. 34, pp. 1425–1440, Dec 2018.

[4] M. G. Cox, “The numerical evaluation of B-splines,” IMA Journal of Applied Mathematics, 1972.

[5] C. De Boor, “On calculating with B-splines,” Journal of Approximation theory, 1972.

[6] K. Qin, “General matrix representations for B-splines,” The Visual Computer, vol. 16, no. 3-4, pp. 177–186, 2000.

[7] S. Agarwal, K. Mierle, and Others, “Ceres solver.” http://ceres-solver.org.

Results

•Simulated velocity (vel.) and acceleration
(acc.) measurements are used to estimate the
trajectory

•Optimizations are done in Ceres [7]

•Baseline and our derivatives are implemented
in the very same framework for maximal
fairness

• In all experiments both formulations converged
to the same result with the same number of
iterations

Optimization time in seconds for L = SO(3):
k Config. Ours Baseline Speedup
4 acc. 0.057 0.147 2.57x
4 vel. 0.058 0.088 1.52x
5 acc. 0.081 0.280 3.45x
5 vel. 0.082 0.141 1.73x
6 acc. 0.117 0.520 4.43x
6 vel. 0.111 0.217 1.95x

Optimization time in seconds for L = SE(3):
k Config. Ours Baseline Speedup
4 acc. 0.277 0.587 2.12x
4 vel. 0.253 0.334 1.32x
5 acc. 0.445 1.196 2.69x
5 vel. 0.405 0.581 1.43x
6 acc. 0.644 2.332 3.62x
6 vel. 0.590 0.936 1.59x

Code

Experiments are available
open-source at:
https://gitlab.com/tum-vision/
lie-spline-experiments

Contact

•Christiane Sommer: sommerc@in.tum.de
•Vladyslav Usenko: vlad.usenko@tum.de

International Conference on Computer Vision and Pattern Recognition (CVPR) 2020

https://gitlab.com/tum-vision/lie-spline-experiments
https://gitlab.com/tum-vision/lie-spline-experiments

