Efficient Derivative Computation for Cumulative B-Splines on Lie Groups

Christiane Sommer*, Vladyslav Usenko®, David Schubert, Nikolaus Demmel and Daniel Cremers

Chair for Computer Vision & Artificial Intelligence, Technical University of Munich

Background

Continuous-time trajectory representation using
B-splines is very useful for several tasks:

e High-frame-rate sensor calibration
e Fusion of multiple unsynchronized devices
e Smooth trajectory planning

\Vfﬁ

— k=2 (linear)
—— k=4 (cubic)
k=6 (degree 5)

However, current implementations for calibra-
tion [1] or odometry estimation [2, 3] are unable
to achieve real-time performance.

Example Application

Camera-IMU calibration using a Lie group cumu-
lative B-spline to represent the trajectory:

10
5L

O iy o 2 runap e Apnne, \/A‘\/A G
"“ﬁf P g W A, S0 o ey v
15 20

5 10

Observations of the calibration pattern are com-
bined with accelerometer and gyroscope mea-
surements to estimate the trajectory and calibra-
tion parameters jointly. Accelerometer measure-
ments (dots) are overlaid on the continuous es-
timate generated from the spline trajectory (line)
after optimization.

Acknowledgements

This work was supported by the ERC Consolida-
tor Grant “3D Reloaded”.

Contributions

In short, our work provides time derivatives and
Jacobians for Lie group-values B-splines that can
be more efficiently implemented than previous
derivatives. In particular, it features

e A simple formulation for the time derivatives of
Lie group cumulative B-splines that requires a
number of matrix operation which scales
linearly with the order £ of the spline.

e Simple (linear in k) analytic Jacobians of the
value and the time derivatives of an SO(3)
spline with respect to its knots.

e Faster optimization time compared to the
currently available implementations, due to
provably lower complexity.

Time Derivatives (Velocities)

The time derivative X is given by the following
recurrence relation:

X = Xwi?, (7)
WV = Adjy WYV 4 A d; o €RY, O (8)
w=0¢eR?, (9)

w'%) is commonly referred to as velocity. For £ =
S0(n), we also call it angular velocity.

References

Cumulative B-Spline on Lie Groups

The cumulative B-spline of order & in a Lie group
L with control points X,--- , Xy € L has the
form

k—1 i
X(u) = X0 Bxp(Aj(u)-dj), (1)
with the generalized difference vector d'
dj = Log (X 1 Xiy,| € RY, (2)

and \;(u) implicitly defined by the derivation of
B-splines [4, 5, 6]. We define

Aj(u) = Exp(A;(u) - d}) (3)
and re-formulate (1) as a recurrence relation:
X (u) = X" (u),
XU () = XU () Aj_y(u).,
XWY(u) = X;.

CRGRC

Second Time Derivatives (Accelerations)

The second derivative of X w.r.t. u can be com-
puted by the following recurrence relation:

X = X [(w"); + @l (10)
where the (angular) acceleration w'*) is recur-
sively defined by

WA D,
+ AdJA]__ll w(J_l) T+ )\j—ldj—l ;
wl =0eR?. (12)

[1] S. Lovegrove, A. Patron-Perez, and G. Sibley, “Spline Fusion: A continuous-time representation for visual-inertial fusion with
application to rolling shutter cameras.,” in Proc. British Mach. Vis. Conf., p. 93.1-93.12, 2013.

[2] C. Kerl, J. Stlckler, and D. Cremers, “Dense continuous-time tracking and mapping with rolling shutter RGB-D cameras,’ in
2015 IEEE International Conference on Computer Vision (ICCV), pp. 2264—-2272, Dec 2015.

[3] E. Mueggler, G. Gallego, H. Rebecq, and D. Scaramuzza, “Continuous-time visual-inertial odometry for event cameras,” IEEE

Transactions on Robotics, vol. 34, pp. 1425—-1440, Dec 2018.
M. G. Cox, “The numerical evaluation of B-splines,” IMA Journal of Applied Mathematics, 1972.

N o o b

International Conference on Computer Vision and Pattern Recognition (CVPR) 2020

C. De Boor, “On calculating with B-splines,” Journal of Approximation theory, 1972.
K. Qin, “General matrix representations for B-splines,” The Visual Computer, vol. 16, no. 3-4, pp. 177-186, 2000.

S. Agarwal, K. Mierle, and Others, “Ceres solver.” http://ceres-solver.org.

Results

e Simulated velocity (vel.) and acceleration
(acc.) measurements are used to estimate the
trajectory

e Optimizations are done in Ceres [7]

e Baseline and our derivatives are implemented
in the very same framework for maximal
fairness

e [n all experiments both formulations converged
to the same result with the same number of
iterations

Optimization time in seconds for £ = SO(3):

k Config. Ours Baseline Speedup

4 acc. 0.057 0.147 2.57X
4 vel. 0.058 0.088 1.52X
5 acc. 0.081 0.280 3.45x
5 vel. 0.082 0.141 1.73X
6 acc. 0.117 0.520 4.43X
6 vel. 0111 0.217 1.95x%

Optimization time in seconds for £ = SE(3):

k Config. Ours Baseline Speedup

4 acc. 0.277 0.587 2.12x
4 vel. 0.253 0.334 1.32X
5 acc. 0.445 1.196 2.69X
5 vel. 0.405 0.581 1.43X
6 acc. 0.644 2.332 3.62X
6 vel. 0.590 0.936 1.59x

Code

Experiments are available
open-source at:
https://gitlab.com/tum-vision/
lie-spline—-experiments

Contact

e Christiane Sommer: sommerc@in.tum.de
e Vladyslav Usenko: vlad.usenko@tum.de


https://gitlab.com/tum-vision/lie-spline-experiments
https://gitlab.com/tum-vision/lie-spline-experiments

