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The bundle adjustment (BA) problem

Bundle adjustment is the joint refinement of camera poses and 3D
landmarks. It is essential for many vision applications such as Struc-
ture from Motion, 3D reconstruction and SLAM. Large scale means
thousands of cameras and millions of points.
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Reprojection error of 3D landmark Xj observed at pixel position uij in
frame i with camera pose (Ri, ti) and intrinsics ci:

rij = uij − π(RiXj + ti; ci) .
Non-linear least squares energy for stacked variables xp = {Ri, ti, ci}i
and xl = {Xj}j:

E(xp, xl) = ∑
i,j
‖rij‖2 = ‖r(xp, xl)‖2

QR decomposition

Let A ∈ Rm×n have full rank rank(A) = n ≤ m. The QR decomposi-
tion of A is

A = QR = Q
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The columns of Q2 form the left nullspace of A: Q>2 A = 0.
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Summary

We propose nullspace marginalization to reduce the system size in
bundle adjustment problems and prove that it is algebraically equiv-
alent to Schur complement. For use in a Levenberg-Marquardt solver
with Preconditioned Conjugate Gradient, we present an efficient im-
plementation strategy that is well parallelizable and allows compu-
tation in single precision with little loss of solution quality. We perform
extensive evaluation on the real-world BAL datasets, demonstrating
significantly reduced runtime compared to Ceres Solver and our
own Schur complement-based implementation.

Landmark marginalization

Linear system:

Elin(∆xp,∆xl) = ‖r+
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Nullspace marginalization:

min
∆xp
‖Q>2 r + Q>2 Jp∆xp‖2

where Jl = QR

Schur complement (RCS):

H̃pp(−∆xp) = b̃p

Implementation Strategy

Marginalization in Landmark Blocks:

Jp Jl r
Q⊤

2 Jp

Q⊤
1 Jp

Q⊤
2 r

Q⊤
1 rR1

0

• dense storage per landmark block
• compute QR factorization of Jl
• apply Givens rotations in-place
• all steps parallelizable over landmarks
• apply damping with 6 Givens rotations

PCG with Landmark Blocks:
Compute once:

b̃p = (Q>2 Jp)>(Q>2 r) .
Compute in every CG iteration:

H̃pp v = (Q>2 Jp)>(Q>2 Jp v) .

Damping in Landmark Blocks:
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PCG with Damping:

H̃pp v = (Q̂>2 Jp)>(Q̂>2 Jp v)+λD2
p v .

Results: Convergence Plots and Performance Profiles

Rendered optimized landmark point cloud and convergence plot for
ladybug138. All solvers reach a similar cost, but the proposed square
root BA is the fastest.
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Performance profiles show per-
centage of all 97 BAL problems
solved to a given accuracy toler-
ance τ with increasing relative run-
time α. A curve more to the left and
top indicates better runtime and
accuracy.
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Code & Contact

Code is available open-source:
https://go.vision.in.tum.de/rootba

Contact: Nikolaus Demmel
nikolaus.demmel@tum.de
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