Square Root Bundle Adjustment for Large-Scale Reconstruction
Nikolaus Demmel, Christiane Sommer, Daniel Cremers and Vladyslav Usenko

The bundle adjustment (BA) problem
Bundle adjustment is the joint refinement of camera poses and 3 D andmarks. It is essential for many vision applications such as Struc

Reprojection error of 3D landmark X_{j} observed at pixel position $u_{i j}$ in with $\left(R_{i}, t_{i}\right)$ and intrinsics

$$
r_{i j}=u_{i j}-\pi\left(R_{i} X_{j}+t_{i} ; c_{i}\right)
$$

Non-linear least squares energy for stacked variables $x_{p}=\left\{R_{i}, t_{i}, c_{i}\right\}$ and $x_{l}=\left\{X_{j}\right\}_{j}$

$$
E\left(x_{p}, x_{l}\right)=\Sigma_{i, j}\left\|r_{i j}\right\|^{2}=\left\|r\left(x_{p}, x_{l}\right)\right\|^{2}
$$

QR decomposition
Let $A \in \mathbb{R}^{m \times n}$ have full $\operatorname{rank} \operatorname{rank}(A)=n \leq m$. The QR decomposi tion of A is

$$
A=Q R=Q\binom{R_{1}}{0}=\left(\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right)\binom{R_{1}}{0}=Q_{1} R_{1} .
$$

The columns of Q_{2} form the left nullspace of A : $Q_{2}^{\top} A=0$.

Acknowledgements

This work was supported by the Munich Center for Machine Learning the ERC Advanced Grant SIMLACRON and by the DFG proje CR 250/20-1 Sppliting Methods for 3D Reconstruction and SLAM.

Landmark marginalization
Linear system:
$E_{\operatorname{lin}}\left(\Delta x_{p}, \Delta x_{l}\right)=\left\|r+\left(J_{p} J_{l}\right)\binom{\Delta x_{p}}{\Delta x_{l}}\right\|$

Nullspace marginalization:

$$
\min _{\Delta x_{n}}\left\|Q_{2}^{\top} r+Q_{2}^{\top} J_{p} \Delta x_{p}\right\|^{2}
$$

Normal equations
 $\left(\begin{array}{cc}H_{p p} & H_{p l} \\ H_{l p} & H_{l l}\end{array}\right)\binom{-\Delta x_{p}}{-\Delta x_{l}}=\binom{b_{p}}{b_{l}}$

Schur complement (RCS):
$\tilde{H}_{p p}\left(-\Delta x_{p}\right)=\tilde{b}_{p}$

$$
\text { where } J_{l}=Q R
$$

Implementation Strategy

Marginalization in Landmark Blocks:

dense storage per landmark block - compute QR factorization of J_{1}

- apply Givens rotations in-place
- all steps parallelizable over landmarks

PCG with Landmark Blocks Compute once:
$\tilde{b}_{p}=\left(Q_{2}^{\top} J_{p}\right)^{\top}\left(Q_{2}^{\top} r\right)$
Compute in every CG iteration:
$\tilde{H}_{p p} v=\left(Q_{2}^{\top} J_{p}\right)^{\top}\left(Q_{2}^{\top} J_{p} v\right)$
Damping in Landmark Blocks:

PCG with Damping: $\tilde{H}_{p p} v=\left(\hat{Q}_{2}^{\top} J_{p}\right)^{\top}\left(\hat{Q}_{2}^{\top} J_{p} v\right)+\lambda D_{p}^{2} v$.

Results: Convergence Plots and Performance Profiles Rendered optimized landmark point cloud and convergence plot for adybug 138. All solvers reach a similar cost, but the proposed square oot BA is the fastest.

Performance profiles show per centage of all 97 BAL problems solved to a given accuracy tolerance τ with increasing relative run-
time α. A curve more to the left and time α. A curve more to the eff and
top indicates better runtime and accuracy.

Code \& Contact

Code is available open-source https://go.vision.in.tum.de/rootba

Contact: Nikolaus Demme
dikolaus. demmel Detum.de

