Square Root Marginalization for Sliding-Window Bundle Adjustment

Nikolaus Demmel, David Schubert, Christiane Sommer, Daniel Cremers, Vladyslav Usenko Technical University of Munich

International Conference on Computer Vision October 11-17, 2021

Visual-Inertial Odometry

Odometry based on: Usenko et al., "Visual-Inertial Mapping with Non-Linear Factor Recovery", RA-L, April 2020

Demmel et al., "Square Root Marginalization for Sliding-Window Bundle Adjustment", ICCV21

Optimization-based sliding-window estimator

Demmel et al., "Square Root Marginalization for Sliding-Window Bundle Adjustment", ICCV21

3

Optimization-based sliding-window estimator

Demmel et al., "Square Root Marginalization for Sliding-Window Bundle Adjustment", ICCV21

→

Demmel et al., "Square Root Marginalization for Sliding-Window Bundle Adjustment", ICCV21

Sliding-window energy with marg. prior

sliding-window energy

Demmel et al., "Square Root Marginalization for Sliding-Window Bundle Adjustment", ICCV21

Jacobian form to store prior $E_{\rm m}(x) = \frac{1}{2} \|r'_{\rm m} + J_{\rm m} \Delta x\|^2$ J, r

 $J_{\rm m}$ is a square root of $H_{\rm m}$, i.e., $H_{\rm m} = J_{\rm m}^{\rm T} J_{\rm m}$

Optimization: nullspace marg. + Cholesky

Nullspace marginalization of landmarks based on: Demmel et al., "Square Root Bundle Adjustment for Large-Scale Reconstruction", CVPR21

compute \tilde{H} and \tilde{b} using Schur complement

$$\begin{split} \tilde{H} &= H_{pp} - H_{pl} H_{ll}^{-1} H_{lp} \\ \tilde{b} &= b_p - H_{pl} H_{ll}^{-1} b_l \\ \\ \\ \end{bmatrix} \end{split}$$

solving the reduced camera system with dense Cholesky decomposition

 $ilde{H}$

Demmel et al., "Square Root Marginalization for Sliding-Window Bundle Adjustment", ICCV21

compute \tilde{H} and \tilde{b} after nullspace projection

$$\Delta x = -\tilde{b}$$

 $\tilde{H} = (Q_2^{\mathsf{T}} J_p)^{\mathsf{T}} (Q_2^{\mathsf{T}} J_p)$ $\tilde{b} = (Q_2^{\mathsf{T}} J_p)^{\mathsf{T}} (Q_2^{\mathsf{T}} r)^{\mathsf{T}}$ NS

Marginalisation: specialized QR decomposition

- \bullet
- frame states to be marginalized are sorted into the leftmost columns
- Successive in-place Householder transformations result in upper-triangular matrix
- Columns for marginalized states and corresponding top-rows, and zero rows at the bottom are dropped

Demmel et al., "Square Root Marginalization for Sliding-Window Bundle Adjustment", ICCV21

start with reduced camera system in Jacobian form (including the old marginalization prior and possibly inertial residuals)

Marginalisation: specialized QR decomposition

Demmel et al., "Square Root Marginalization for Sliding-Window Bundle Adjustment", ICCV21

Rank-deficient case

r < n, standard

 \times \bigotimes \bigotimes \times r < n, flat

 \boxtimes Householder element o rank deficiency-revealing

Results: accuracy and runtime

Runtime

Accuracy

absolute trajectory error in meters

	\sqrt{VIO} -64	√ <i>VIO</i> -32	<i>VIO</i> -64	<i>VIO</i> -32
eurocMH01	0.093	0.093	0.093	0.991
eurocMH02	0.048	0.048	0.048	0.048
eurocMH03	0.051	0.051	0.051	х
eurocMH04	0.109	0.109	0.109	х
eurocMH05	0.137	0.137	0.137	Х
eurocV101	0.043	0.043	0.043	0.043
eurocV102	0.048	0.048	0.048	0.048
eurocV103	0.058	0.058	0.058	Х
eurocV201	0.037	0.037	0.037	0.037
eurocV202	0.053	0.053	0.053	Х
tumvi-corr1	0.300	0.300	0.300	Х
tumvi-corr2	0.426	0.426	0.426	Х
tumvi-mag1	1.456	1.457	1.456	Х
tumvi-mag2	0.908	0.920	0.908	Х
tumvi-room1	0.102	0.102	0.102	0.104
tumvi-room2	0.071	0.071	0.071	х
tumvi-slides1	0.310	0.310	0.310	Х
tumvi-slides2	0.759	0.759	0.759	Х

	\sqrt{VO} -64	\sqrt{VO} -32	<i>VO</i> -64	<i>VO</i> -32
kitti00	3.92	3.92	3.92	X
kitti02	9.72	9.72	9.72	х
kitti03	1.34	1.34	1.34	1.34
kitti04	1.22	1.22	1.22	1.22
kitti05	2.75	2.75	2.75	х
kitti06	2.61	2.61	2.61	2.61
kitti07	1.52	1.53	1.52	1.44
kitti08	3.85	3.85	3.85	Х
kitti09	4.13	4.13	4.13	х
kitti10	1.11	1.11	1.11	26.12

total runtime for optimization / marginalization in seconds

	\sqrt{VIO} -64	\sqrt{VIO} -32	<i>VIO-</i> 64	<i>VIO</i> -32
eurocMH01	23.4/2.5	18.6 / 2.3	35.9/1.8	33.4 / 1.7
eurocMH02	20.0/2.1	15.6 / 1.9	31.7 / 1.5	29.0 / 1.4
eurocMH03	17.6 / 1.8	13.9 / 1.6	26.3 / 1.3	х
eurocMH04	<i>13.1</i> / 1.3	10.3 / 1.2	19.5 / 0.9	х
eurocMH05	15.0/1.5	11.6 / 1.3	22.6/1.1	х
eurocV101	15.0/2.2	12.0 / 2.0	23.6/1.5	22.4 / 1.5
eurocV102	<i>8.3</i> / 1.0	6.8 / 0.9	11.5 / 0.7	10.6 / 0.7
eurocV103	<i>8.3</i> / 1.0	6.7 / 0.9	11.1 / 0.7	х
eurocV201	12.1 / 1.4	9.5 / 1.4	20.8 / 1.0	19.2 / 1.0
eurocV202	11.4 / 1.3	9.3 / 1.2	15.5 / 0.9	х
tumvi-corr1	24.4/3.2	18.7 / 2.6	36.7 / 2.2	х
tumvi-corr2	29.4/3.8	22.0 / 3.1	42.2 / 2.6	Х
tumvi-mag1	78.1 / 10.5	57.4 / 8.4	112.5 / 7.0	х
tumvi-mag2	59.6/7.7	42.2 / 6.3	88.2 / 5.1	х
tumvi-room1	<i>13.2 </i> 1.7	10.0 / 1.4	21.6 / 1.3	19.6 / 1.3
tumvi-room2	12.2 / 1.8	9.4 / 1.5	20.2 / 1.3	х
tumvi-slides1	28.6/3.6	20.9 / 3.0	44.1 / 2.5	Х
tumvi-slides2	24.8/3.1	18.5 / 2.5	38.8 / 2.1	Х

	\sqrt{VO} -64	\sqrt{VO} -32	<i>VO</i> -64	<i>VO</i> -32
kitti00	29.5 / 2.7	23.6 / 2.2	50.2 / 2.3	X
kitti02	32.0/3.0	25.0 / 2.3	53.2 / 2.4	х
kitti03	5.2 / 0.6	4.3 / 0.5	9.4 / 0.5	9.0 / 0.5
kitti04	1.5/0.2	1.2 / 0.1	2.6 / 0.1	2.5 / 0.1
kitti05	18.0/1.7	15.0 / 1.4	31.1 / <i>1.5</i>	х
kitti06	5.8 / 0.6	4.8 / 0.5	9.8/0.6	9.3/0.6
kitti07	6.3/0.7	5.3 / 0.6	11.2 / 0.6	10.7 / 0.6
kitti08	26.3 / 2.5	21.2 / 2.0	44.2 / 2.1	х
kitti09	10.1 / 1.0	8.0 / 0.8	16.7 / 0.8	х
kitti10	6.9/0.7	5.5 / 0.6	11.6 / 0.6	9.7 / 0.6

Demmel et al., "Square Root Marginalization for Sliding-Window Bundle Adjustment", ICCV21

Ablation study

different algorithmic choices for optimization and marginalization for VIO on EuRoC

	proposed		ablation study					
opt.	NS+I	LDLT	SC+I	LDLT	NS+I	LDLT	SC+I	LDLT
marg.	NS-	+QR	NS+	+QR	SC-	+SC	SC-	+SC
precision	64	32	64	32	64	32	64	32
ATE [m]	0.068	0.068	0.068	0.068	0.068	0.232	0.068	0.21
real-time	6.9x	8.2x	5.0x	5.6x	7.1x	7.9x	5.2x	5.5x
t total [s]	17.9	14.9	24.4	21.8	17.4	15.5	23.7	22.2
t opt [s]	14.4	11.4	22.2	20.3	14.4	11.5	22.1	20.4
t marg [s]	1.6	1.5	1.6	<i>1.3</i>	1.4	1.4	1.3	1.2

2

211 5x .2).4

10

Results: numerical stability of marginalization prior

Nullspace of Hessian

Demmel et al., "Square Root Marginalization for Sliding-Window Bundle Adjustment", ICCV21

Minimum Eigenvalue of Hessian

Conclusion

- We propose a novel square root formulation for optimization-based sliding-window estimators.
- We prove that the proposed specialized QRdecomposition for frame state marginalization is equivalent to the conventionally used Schur complement and naturally deals with rank deficiencies.
- The resulting odometry estimator runs in single precision without loss of accuracy and is 36% faster than the conventional baseline approach.

Open Source Implementation:

https://go.vision.in.tum.de/rootvo

Demmel et al., "Square Root Marginalization for Sliding-Window Bundle Adjustment", ICCV21

Acknowledgements: This work was supported by the ERC Advanced Grant SIMULACRON and by the German Science Foundation Grant CR 250/20-1 Splitting Methods for 3D Reconstruction and SLAM

