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Visual-Inertial Odometry
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Odometry based on: Usenko et al., “Visual-Inertial Mapping with Non-Linear Factor Recovery”, RA-L, April 2020



Optimization-based sliding-window estimator
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LDLT
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Sliding-window energy with marg. prior
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Esw(x) =
1
2

∥ra(x)∥2 + Em(x)

1

sliding-window energy active residuals (visual, inertial)

marginalization prior

conventional

proposed

Em(x) =
1
2

Δx⊤HmΔx + b′ ⊤
m Δx + const

H, b

perturbation from current state x

Hessian form to store prior

J, r

Em(x) =
1
2

∥r′ m + JmΔx∥2

Jacobian form to store prior

 is a square root of , i.e., Jm Hm Hm = J⊤
mJm



Optimization: nullspace marg. + Cholesky
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2

conventional

proposed
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 is null space of landmark Jacobian, i.e., Q2 Jl = (Q1 Q2) (R1

0 )

LDLT LDLT

H̃ Δx = − b̃

solving the reduced camera system 
with dense Cholesky decomposition H̃ = (Q⊤

2 Jp)⊤(Q⊤
2 Jp)

b̃ = (Q⊤
2 Jp)⊤(Q⊤

2 r)⊤

NS

compute  and  after nullspace projectionH̃ b̃compute  and  using Schur complementH̃ b̃

SC

H̃ = Hpp − HplH−1
ll Hlp

b̃ = bp − HplH−1
ll bl

Nullspace marginalization of landmarks based on: Demmel et al., “Square Root Bundle Adjustment for Large-Scale Reconstruction”, CVPR21



Marginalisation: specialized QR decomposition
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• start with reduced camera system in Jacobian form (including the old marginalization prior and possibly inertial residuals)  
• frame states to be marginalized are sorted into the leftmost columns 
• Successive in-place Householder transformations result in upper-triangular matrix 
• Columns for marginalized states and corresponding top-rows, and zero rows at the bottom are dropped



Marginalisation: specialized QR decomposition
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Results: accuracy and runtime
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Accuracy 
absolute trajectory error in meters

conventional

proposed

Runtime 
total runtime for optimization / marginalization in seconds

Ablation study 
different algorithmic choices for optimization and marginalization 

for VIO on EuRoC 



Results: numerical stability of marginalization prior
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Trajectory Minimum Eigenvalue of Hessian

Nullspace of Hessian



Conclusion

• We propose a novel square root formulation for 
optimization-based sliding-window estimators. 

• We prove that the proposed specialized QR-
decomposition for frame state marginalization is 
equivalent to the conventionally used Schur complement 
and naturally deals with rank deficiencies. 

• The resulting odometry estimator runs in single precision 
without loss of accuracy and is 36% faster than the 
conventional baseline approach.
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Open Source Implementation: 

https://go.vision.in.tum.de/rootvo
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