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Abstract – In many tasks in information fusion objects of
interest need to be extracted from color images. Often the
only available information is the color of a specific object.
In this paper we present a novel method for segmenting im-
ages into two regions, foreground (e.g. object) and back-
ground. We introduce a convex energy functional based on
total variation that is subsequently solved using the Euler-
Lagrange theorem and a parallel implementation of succes-
sive over-relaxation. The main achievement of this formu-
lation is that, due to the convex formulation, the algorithm
is guaranteed to find the global optimum from all possible
solutions. Furthermore, this algorithm can be heavily par-
allized using the graphics processing unit (GPU). In the fol-
lowing we will show how to use the thus obtained image in-
formation in the context of passive emitter localization from
aerial platforms. It will be shown that the fusion of image-
and bearing-based localization results can strongly improve
the bearings-only results.

Keywords: image segmentation, emitter localization, par-
allel computing, total variation

1 Introduction
The problem of extracting relevant objects from images can
be seen as the segmentation of an image into two regions,
foreground and background. All pixels labeled as fore-
ground count as part of an object and are interesting can-
didates for further analysis. Image segmentation is a com-
mon task in computer vision, and many solutions have been
proposed for this problem. A good solution is provided by
variational approaches. There exist three main classes of
variational approaches for image segmentation, the first one
being level sets [1, 2, 3]. The main advantage is that the en-
ergy functional being minimized is formulated continuously,
so there is no need for discretization. On the other hand, the
local optimization of the energy functional does not neces-
sarily lead to globally optimal solutions. The second class
are the graph cuts [4, 5, 6, 7] with two main advantages: the

computation time is very short, even for large images, and
the solution is approximately globally optimal. The main
disadvantage of this approach is the discrete formulation on
a graph, which leads to discretization errors. A combina-
tion of the benefits from these two approaches constitutes
the third class: total variation (TV) minimization using the
total variation norm. Chan et al. [8] proposed this method in
2004 for image segmentation of intensity-based images us-
ing a transformed version of the Mumford-Shah model. In
this paper we will present an extension of this approach to
color-based segmentation and show that it can be computed
in far above real-time using a parallel implementation on the
GPU. Then we will present a framework for fusion of the
extracted image information with bearing data for the local-
ization of radio emitters. This fusion of bearing- and image-
based localization results is accomplished using multiple hy-
potheses tracking (MHT) [9, 10]. It will be shown that the
fusion of image and bearing information can strongly im-
prove the bearings-only results.

2 Color-TV-Segmentation
The segmentation of an image I : Ω → [0, 1]3 ⊂ R3 with
Ω ⊆ R2 can be seen as a separation of the image plane into
disjoint regions Ω1,Ω2, . . . ,Ωn,

Ω = Ω1 ∪ . . . ∪ Ωn ∪ Γ , (1)

where Γ denotes the contour of the segmentation, Γ =
∂Ω1∪. . .∪∂Ωn and Ωi∩Ωj = ∅ for all i 6= j ∈ {1, . . . , n}.

In the case discussed here there will be only two regions
Ωobj and Ωbgd, so we are looking for a binary image u :
Ω→ {0, 1}.

2.1 Formulation of a convex energy func-
tional

To perform the segmentation we will formulate an energy
functional based on the Mumford-Shah model [11]. A trans-
formation using the total variation concept will ensure the
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convexity of the functional. The total variation of a function
u : Ω→ R is defined as

TV(u) = sup
φ∈Φ


∫
Ω

u(x) divφ(x) dx

 (2)

with

Φ =
{
φ ∈ C1(Ω,R) : |φ(x)| ≤ 1 ∀x ∈ Ω

}
. (3)

If u is continuously differentiable, then

TV(u) =
∫
Ω

|∇u| dx . (4)

For binary functions u which are the characteristic function
of Ωobj the TV-norm TV(u) is equal to the length of the
contour of Ωobj: ∫

Ω

|∇u| dx = Per(Ωobj) (5)

with Per(Ωobj) =
∫

Γobj
ds the length of the contour Γobj.

The Mumford-Shah model for the case of two regions and
intensity-based images is

E(Γ, µobj, µbgd) =
∫

Ωobj

[I(x)− µobj]
2 dx

+
∫

Ωbgd

[I(x)− µbgd]2 dx + ν |Γ| , (6)

where µobj and µbgd are average values for the intensities
of both regions, object and background, and ν is a parame-
ter weighting the impact of the contour length. The desired
segmentation follows from the solution of

∂E

∂Γ
= 0 (7)

and can be obtained using the Euler-Lagrange theorem.
To perform a segmentation of a color image we first trans-

form the input image I from the RGB to the HSV color
space,

IHSV = rgb2hsv(I). (8)

The advantage of the HSV color space lies in its intuitive and
simple model, which yields in a much better interaction with
the user, then the RGB color space. Now we can rewrite the
Mumford-Shah model for color images as follows:

E(Γ,µobj,µbgd) =
∫

Ωobj

∆
(
IHSV(x), µobj

)
dx

+
∫

Ωbgd

∆
(
IHSV(x), µbgd

)
dx + ν |Γ| (9)

with

∆(IHSV(x), µ) = wH (IH(x)− µH)2

+ wS (IS(x)− µS)2

+ wV (IV(x)− µV)2 , (10)

wH, wS and wV being (normalized) weighting parameters
for the individual channels. The disadvantage of (9) is that
it is not convex, because of the local optimization along the
contour Γ. Methods such as gradient descent tend to get
stuck in local minima in this case.

To solve this problem we will now transform this func-
tional using the total variation. For binary functions the
length of the contour Γ is proportional to its TV norm,

|Γ| =
∫
Ω

|∇u| dx . (11)

This allows us to rewrite (9) as

E(u,µobj,µbgd) =∫
Ωobj

∆(IHSV(x), µobj) dx +
∫

Ωbgd

∆(IHSV(x), µbgd) dx

+ ν

∫
Ω

|∇u| dx

(12)

=
∫
Ω

[
∆(IHSV(x), µobj)u(x)

+ ∆(IHSV(x), µbgd) (1− u(x))
]

dx + ν

∫
Ω

|∇u| dx

(13)

=
∫
Ω

[
(∆(IHSV(x), µobj)−∆(IHSV(x), µbgd)

]
u(x) dx

+ ν

∫
Ω

|∇u| dx .

(14)

Until now we have assumed u as a binary function. Since
minimization in the space of binary functions is not convex,
we will interpret u as real-valued. It is thus possible for u to
converge against +∞ or−∞. To eliminate this effect we in-
troduce an additional term into the functional that penalizes
all values of u outside of the valid range of 0 ≤ u(x) ≤ 1.
An example for such a function is (cf. Figure 1)

Θ(u(x)) = max [0, 2 |u(x)− 0.5| − 1] . (15)

The final energy functional for globally optimal color image

1425



segmentation is then given by

E(u,µobj,µbgd) =∫
Ω

[
∆(IHSV(x), µobj)−∆(IHSV(x), µbgd)

]
u(x) dx

+ν
∫
Ω

|∇u| dx + α

∫
Ω

Θ(u(x)) dx .

(16)

Theorem 1. The energy functional (16) is convex.

Proof. For the sake of conciseness, let us define D :=
(∆(IHSV(x), µobj) −∆(IHSV(x), µbgd)). Now we show
that (16) is convex with respect to u. For this purpose we
have to show that for all λ ∈ (0, 1):

∀u1, u2 : E((1− λ)u1 + λu2) ≤ (1− λ)E(u1) + λE(u2)
(17)

So we can write

E((1− λ)u1 + λu2) =
∫
Ω

D · ((1− λ)u1 + λu2) dx

+ν
∫
Ω

|∇((1− λ)u1 + λu2)| dx

+α
∫
Ω

Θ((1− λ)u1 + λu2) dx

(18)

=
∫
Ω

(1− λ) ·D · u1 + λ ·D · u2 dx

+ν
∫
Ω

|(1− λ)∇u1 + λ∇u2| dx

+α
∫
Ω

Θ((1− λ)u1 + λu2) dx

(19)

≤
∫
Ω

(1− λ) ·D · u1 + λ ·D · u2 dx

+ν
∫
Ω

|(1− λ)∇u1|+ |λ∇u2| dx

+α
∫
Ω

|(1− λ)Θ(u1) + λΘ(u2) dx

(20)

= (1− λ)
∫
Ω

D · u1 dx + λ

∫
Ω

D · u2 dx

(21)

+ν(1− λ)
∫
Ω

|∇u1|dx + νλ

∫
Ω

|∇u2| dx

+α(1− λ)
∫
Ω

Θ(u1)dx + αλ

∫
Ω

Θ(u2) dx

(22)

= (1− λ)E(u1) + λE(u2)
(23)

Figure 1: Plot of the regularization function Θ(u(x)) from
Equation (15).

2.2 Efficient computation of the optimal seg-
mentation

The segmentation algorithm consists of two steps:

1. Find global minimum of (16) for u : Ω→ [0, 1].

2. Find the desired binary function by threshholding:
Ωobj = {x ∈ Ω|u(x) > λ, λ ∈ (0, 1)}.

λ is an arbitrary threshold from the open interval (0,1). Due
to the convexity of (16) the global minimum can be found
with local optimization methods. Here, we use a parallel
implementation of successive over-relaxation (SOR).

The Euler-Lagrange equation of (16) is

∂E

∂u
=

∂L
∂u
− d

dx
∂L
∂∇u

(24)

= −∆(IHSV, µobj) + ∆(IHSV, µbgd)

−ν div
(

∇u

|∇u|

)
− αΘ′(u) (25)

In this case the Lagrange function L is defined as:

L =
[
∆(IHSV(x), µobj)−∆(IHSV(x), µbgd)

]
u(x)

+ ν |∇u|+ αΘ(u(x)) (26)
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To use the SOR formalism we need to generate a linear
system of equations of the form A u = b. We write u as a
vector u, so that the columns of the image matrix are con-
catenated to an N -dimensional column-vector with N the
number of pixels. The vector b is given by the constant part
of the Euler-Lagrange equation (25).

bi = −∆(IHSV, µobj) + ∆(IHSV, µbgd) (27)

Accordingly, A contains the u-dependent part of (25). It is
useful to replace the function Θ(u) in the actual implemen-
tation with a simple thresholding. We obtain for A = (aij):

aij =


gi∼j , if j ∈ N (i)
−
∑

k∈N (i)

gi∼k, if i = j

0, otherwise

, (28)

where gi∼j is the diffusivity between pixel i and its neighbor
j. N (i) denotes the neighborhood of pixel i. The matrix A
is diagonally dominant. On the main diagonal we have the
sums of all diffusions to all neighboring pixels. For each
neighbor there exists another diagonal. In our experiments
we use a 4-connected neighborhood, so we get only five di-
agonals with content. All other entries of A are zero.

With this information the SOR-method can easily be im-
plemented. Since the diffusivity g = 1

|∇u|
depends on the

actual solution for u, we do not really have a linear system
of equations, but we make the assumtion that the diffusion
is constant, and we perform a new computation only every
K iterations.

For a speedup in the computation time we use the red-
black computation scheme for SOR (see [12] for details).
With this scheme we can parallelize the computation, so that
we create a separate thread for every pixel which computes
the solution using the latest information from its neighbors.
For the computation we use the NVIDIA CUDA framework,
so the main computing is done in parallel on the GPU.

2.3 Results
The results in this section were computed on a Intel
Core2Quad Q8200 CPU with 4GB RAM and a NVIDIA
GeForce GTX280 with 1GB RAM. Table 1 shows the run-

Table 1: Running times for color image segmentation.
size CPU (sec) GPU (sec) FPS

256× 192 1.039 0.004 250
512× 384 4.181 0.004 250
1024× 768 16.783 0.005 200

ning times for the segmentation of color images of different
sizes and the number of frames or images you can compute
per second (FPS) on the GPU. In this configuration we are

far above real-time image processing, which is usually at
20–30 FPS. This algorithm could even be used with a high-
speed camera.

In Figure 2 we present some segmentation results for im-
ages obtained from a aerial platform equipped with a steer-
able camera. The only prior information about the objects
of interest is the color: yellow.

a) b)

c) d)

e) f)

Figure 2: Segmentation results for aerial color images. Task:
find yellow object. a), c) and e) are the input images, b), d)
and f) the segmentation results.

3 Fusion of Image and Bearing Data
In this section we will show how to use the segmentation
results from aerial images to improve passive emitter local-
ization. Traditionally, emitters are localized using the signal
information received by an antenna array, which is subse-
quently condensed into bearing angles. To improve the ac-
curacy of bearing-only localization results we will combine
the available bearing data with image data. Therefore we
have to extract bearing-like information from the image seg-
mentation. For each object we need to calculate two angles,
azimuth and elevation, in the local coordinate system of the
bearing sensor. The workflow of our algorithm is presented
in Figure 3.

Having accumulated a number of bearings and having ob-
tained a first localization result based on this data, e.g. by
Maximum Likelihood estimation, a stearable camera on the
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Figure 3: Workflow of a DOA sensor and image sensor fu-
sion algorithm

aerial platform is pointed to the estimated emitter position.
The thus obtained image is then subject to the segmenta-
tion algorithm, and the optical bearings to the extracted ob-
jects are determined. In the next step another bearing mea-
surement is performed and a new localization, based on the
larger measurement set, is carried out. This scheme iterates,
as long as signals from the emitter are received. A closer
look at the extration of image information is presented in
the following, and a brief formulation of the localization al-
gorithm will conclude this section.

3.1 Extracting angles from a binary image
In practice we do not need to perform the segmentation on
the whole image, since a traditional bearing-/localization-
system produces, apart from the position of an object, also
a confidence region in form of a covariance error ellipse.
Projecting this ellipse into the image plane, the search space
is considerably reduced. Because of the arbitrary position of
the ellipse in a image we approximate it through a bounding,
so that no information is cut away. The only information of
this ellipse are the max/min angles of the ellipse axes, see
Figure 4.

Let Pk be the 3× 4 projection matrix at time tk,

Pk = K · Rk ·
[

I | − xk0
]
. (29)

K is the 3 × 3 calibration matrix, I is the 3 × 3 identity
matrix, Rk and xk0 describe the position and attitude of the
camera in the local coordinate system of the bearing sensor:
Rk is a 3 × 3 rotation matrix and xk0 is a 3 × 1 vector with
cartesian position information. They can be obtained from
a GPS/INS system on the platform. The matrix K can be
estimated with calibration measurements in a laboratory. So
we can calculate the projection of the extremum points { A,
B, C, D } of the ellipse into the image plane. For the point

Figure 4: Error ellipse in the image footprint

A writen in homogeneous coordinates as a you get:

a′ = Pk · a = K · Rk ·
[

I | − xk0
]
· a (30)

ax =
a′1
a′3

(31)

ay =
a′2
a′3

(32)

The maximal/minimal axe coordinates are given by

xmax = max{ax, bx, cx, dx} (33)
xmin = min{ax, bx, cx, dx} (34)
ymax = max{ay, by, cy, dy} (35)
ymin = min{ay, by, cy, dy} . (36)

If the angle between one axis of the ellipse and the x-axis of
the image is close to π

4 , then a simple bounding box with the
size (xmax−xmin)×(ymax−ymin) will cut off information,
see Figure 5. To solve this we expand the x and y size with
a factor q(α), with α the angle between the x axis of the
image and a axis of the ellipse. So we get the new sizes

sx = (xmax − xmin) (1 + q(α)) (37)
sy = (ymax − ymin) (1 + q(α)) . (38)

The function q(α) is given by a Gaussian centered around π
4 .

The center of the bounding box follows from the projection
of the last localization result.

Within this bounding box we need to compute the opti-
cal bearings to all the extracted objects. To this end we first
calculate the barycenter of each object in the binary segmen-
tation image. Let uc be the binary image inside the bounding
box, then all barycenters can be calculated as

ci =
1
Ωi

∫
Ωi

uc(x) · x dx . (39)
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Figure 5: Bounding boxes for error ellipse projected into the
image.

So we obtain a set c = {c1, c2, . . . , cm} of barycenters for
m found objects. Ωi is the region containing object i.

For each ci we have to calculate the corresponding an-
gle in the coordinate system of the bearing sensor. We can
rewrite the projection matrix P into a 3 × 3 matrix S and a
3× 1 vector v,

Pk = [ S | v ] . (40)

With this we can now write

λ · ci = [ S | v ]
[

x
1

]
= Sx + v (41)

x = S−1(λci − v) . (42)

In this case λ is the distance from the camera to the object.
This distance can be obtained from a digital elevation model
(DEM). x is the direction vector from the camera to the ex-
tracted object in the real world.

3.2 Localization algorithm
The bearing-only localization is based on the algorithm pro-
posed in [13]. When using automated image segmentation
it is possible that the object of interest is not detected (prob-
ability of detection PD < 1 in the parlance of target track-
ing) and/or that unwanted objects are extracted (false alerts).
Therefore, a fusion algorithm must be able to handle such
ambiguous situations; this is accomplished by including the
complete set of data interpretations in the likelihood func-
tion, which leads data fusion by multiple hypotheses track-
ing (MHT).

If we have one emitter and, at time tk, nk measurements,
then there exist nk+1 possible data interpretations (hypothe-
ses):

h0
k : emitter was not detected; nk false reports (1 hypothe-

sis)

hjk : emitter detected; measurement zjk is the emitter; nk−1
false reports (nk hypotheses) for j = 1, ..., nk.

Using the Kalman filter with the MHT likelihood, we ob-
tain the probability density function (pdf) for the state of the
emitter xk based on all measurements Zk up to the time tk
as:

p(xk|Zk) =
n̂k−1∑
i=1

nk∑
j=0

pijk N (xk; xijk|k, P
ij
k|k). (43)

Here, the index i labels the n̂k−1 track hypotheses from time
step k− 1 and xijk|k, P

ij
k|k are the filtering results (mean and

covariance) of hypothesis i with measurement j. pijk are the
normalized hypotheses weights. So, at each time step, the
pdf is given by a weighted sum of gaussian hypotheses for
the emitter state.

Since in every iteration step new hypotheses are gener-
ated, it is necessary to avoid a combinatorial disaster by
dropping hypotheses with weights below a given threshold
(pruning), combining similar hypotheses (merging) and tak-
ing only those measurements into account that fall within
a certain expectation region around the prediction (gating).
For details on MHT we refer to [14] and [9].

3.3 Simulation results
In the simulations we carried out, an emitter was posi-
tioned at the origin of the coordinate system and a Poisson-
distributed number of false targets were placed randomly in
the field of interest (FOI) around the true emitter position.
In order to test the robustnes of our algorithm, we simulated
false reports of the image sensor by scattering, at each time
step, a Poisson-distributed number of clutter measurements
evenly in the FOI. For the sake of simplicity we simulated
a circular flight course at constant height. With this choice
of the observer motion, the observability requirements for
bearing-only location are satisfied from the beginning. Lo-
calization results at different stages of the simulation are
shown in Figure 7 in form of the (multi-modal) probability
density function (pdf) over the field of interest. In the begin-
ing there are three main hypotheses for the emitter location.
After some iterations the false hypotheses are depleted and
nearly allprobability mass is concentrated at the true target
position. The simulation was repeated a thousand times, and
the mean error of the localization is shown in Figure 6. It
can be seen that the fusion of bearing and image data can
considerably increase the localization accuracy.

4 Conclusion
We have presented in this paper a novel approach for color
image segmentation based on the variational concept of to-
tal variation. Due to the parallel implementation we achieve
very fast running times even for large images. Because of
the convex formulation our algorithm always finds the glob-
ally optimal solution. Furthermore, we have outlined how
to use these segmentation results to improve the accuracy
of bearing-based emitter localization with aerial platforms.
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Figure 6: Comparison of performance for bearing-only
(DOA sensor) and fused bearing-image (DOA and Image
sensor) localization.

Our simulation results show that the fusion of both systems
can increase the accuracy of the localization by a factor of
two.
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